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Abstract

Multivariate Hawkes processes are classic tempo-
ral point process models for event data. These mod-
els are simple and parametric in nature, offering
interpretability by capturing the triggering effects
between event types. However, these parametric
models often struggle with low model capacity,
limiting their expressive power to capture heteroge-
neous data patterns influenced by latent variables.
In this paper, we propose a simple yet powerful ex-
tension: the Flow-based Delayed Hawkes Process,
which integrates Normalizing Flows as a gener-
ative model to parameterize the Hawkes process.
By generating all model parameters through the
flow-based network, our approach significantly im-
proves flexibility and expressiveness while preserv-
ing interpretability. We provide theoretical guar-
antees by proving the identifiability of the model
parameters and the consistency of the maximum
likelihood estimator under mild assumptions. Ex-
tensive experiments on both synthetic and real-
world datasets show that our model outperforms
existing baselines in capturing intricate and hetero-
geneous event dynamics.

1 INTRODUCTION
Complex systems often produce voluminous event data
with stochastic and irregularly-spaced occurrence times.
Temporal point process (TPPs) provide an elegant tool for
modeling the dynamics of these event sequences in con-
tinuous time, which directly treat the inter-event time as
random variables [Daley et al., 2003]. Among various TPPs,
Hawkes process is a classic and transparent model, with
intensity functions are designed to capture the triggering
effects from previous events. The intensity functions capture
self-exciting and mutual-exciting triggering effects across
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event types, which can be interpreted—under certain con-
ditions—as forming a Granger causality graph that reflects
the underlying temporal dependencies [Eichler et al., 2017,
Gao et al., 2021].
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Figure 1: Illustration of a multivariate Hawkes process with-
out (top) and with (bottom) delay effects. In the bottom
case, the time lag δuu′ captures the delayed triggering from
dimension u′ to u—that is, an event in u′ affects the inten-
sity of u only after a delay of δuu′ , not immediately.

Hawkes processes are widely used with exponential ker-
nels due to their simplicity and interpretability. To enhance
modeling flexibility, various extensions have introduced al-
ternative triggering kernels—such as nonparametric [Eichler
et al., 2017] and Gaussian mixture kernels [Xu et al., 2016].
While these parametric or nonparametric variants improve
expressiveness, they often struggle to capture the hetero-
geneous triggering patterns found in real-world data. To
address this, neural-based Hawkes processes have been
proposed [Du et al., 2016, Mei and Eisner, 2017, Zuo
et al., 2020], offering increased expressiveness through data-
driven modeling. Yet, their black-box nature sacrifices in-
terpretability, raising important concerns about the trade-off
between flexibility and transparency.
Can we enhance model capacity while preserving inter-
pretability through a simple, plug-and-play approach?
To answer this, we propose a novel framework that leverages
Normalizing Flows (NFs) [Dinh et al., 2016, Papamakarios
et al., 2021] to model distributions over Hawkes process



parameters. Our approach achieves both flexibility and in-
terpretability by combining a simple, parametric main model
with expressive, data-driven parameter generation. Specifi-
cally, the main model is a delayed Hawkes process featuring
time lags, where all parameters—including the base inten-
sity and those of the exponential triggering kernel—are
generated by a NF. To further enhance model capacity and
mitigate mode collapse, we introduce an ensemble of multi-
ple NFs, allowing the model to capture a broader range of
behaviors.
Specifically, the main model adopts an exponential trigger-
ing kernel with delay:

g(t) = α exp(−β(t− δ))1{t− δ ≥ 0},
where α > 0 controls the strength of the triggering effect,
β > 0 governs how rapidly the effect decays, and δ ≥ 0
introduces a delay before the effect begins. Figure 1 illus-
trates the difference between a standard multivariate Hawkes
process and our delayed variant. While traditional models as-
sume immediate triggering, the delay parameter δ captures
the time lag between an event and its influence on future
occurrences. This modeling capability is essential in many
real-world settings—for instance, during the COVID-19
pandemic, the concept of incubation periods helps explain
why symptoms and infectiousness appear only several days
after exposure [Quesada et al., 2021, Koyama et al., 2021].
Similarly, in chronic diseases such as cancer, environmental
exposures or genetic mutations may not manifest clinically
until years later. By explicitly modeling such delays, we
enhance both the realism and expressiveness of the temporal
process.
Our framework leverages flow-based generative models to
generate Hawkes process parameters, allowing the model
to flexibly capture heterogeneous dynamics driven by unob-
served or latent factors. In domains like healthcare, hidden
variables—such as patient age, comorbidities, drug resis-
tance, or psychological status—can cause wide variation in
how interventions affect outcomes. A fixed parameter model
cannot account for this variability. Instead, our method
learns a rich, joint distribution over all the key parame-
ters of the Hawkes process, capturing both their marginal
variability and their interdependencies. Using deep NFs,
we are able to model complex, multimodal parameter dis-
tributions, which enables the system to represent diverse
behaviors across individuals or subpopulations.
In summary, our contributions are threefold:
i) We propose a simple yet flexible framework that generates
Hawkes process parameters using a deep generative model,
allowing the capture of heterogeneous triggering patterns,
including delay effects that are often overlooked.
ii) We provide theoretical analysis showing identifiability of
the parameter distribution under our model and the consis-
tency of the estimator.
iii) Empirical results on both synthetic and real-world
datasets demonstrate the competitive performance of the
model and the ability to handle complex event dynamics.

2 RELATED WORK
Temporal Point Process (TPPs) provide a principled
framework for modeling the timing of discrete events in con-
tinuous time. Among them, the Hawkes process [Hawkes,
1971, Xu et al., 2016] is one of the most widely used, partic-
ularly for inferring inter-type Granger causality [Granger,
1969, Dahlhaus and Eichler, 2003]. The classic Hawkes
model assumes that past events independently and addi-
tively increase the intensity of future events through a set
of pairwise kernel functions. While the exponential kernel
is most common, several studies have explored alternative
parametric forms to increase modeling flexibility, such as the
Gamma kernel [Lesage et al., 2022], Weibull kernel [Zhang
et al., 2020a], and power-law kernel [Zhang, 2016].
More recently, neural-based TPP models have been pro-
posed to improve expressiveness by parameterizing the
intensity function directly with deep networks. These ap-
proaches include RNN- and LSTM-based models [Du et al.,
2016, Mei and Eisner, 2017, Xiao et al., 2017, Mei et al.,
2020] and Transformer-based architectures [Zuo et al., 2020,
Zhang et al., 2020b, Zhu et al., 2021, Yang et al., 2021].
However, these methods primarily focus on directly approx-
imating the intensity function, which limits their ability to
recover meaningful insights such as Granger causality or
delay effects.
In contrast, our work focuses on modeling the full distribu-
tion over the parameters of a Hawkes process. This distribu-
tional view enables the model to capture heterogeneous trig-
gering patterns, while maintaining interpretability through
the use of a simple parametric backbone.

Parameter Estimation for TPPs has been explored
from both frequentist and Bayesian perspectives. Classi-
cal approaches such as maximum likelihood estimation
(MLE) [Lewis et al., 2012] and the EM algorithm [Lewis and
Mohler, 2011, Wheatley et al., 2014] typically yield point
estimates of model parameters. Kernel-based and other non-
parametric methods [Zhou et al., 2013, Joseph et al., 2020,
Kirchner, 2017, Eichler et al., 2017] estimate intensity func-
tions or kernel shapes without assuming specific parametric
forms, but generally provide functional or point estimates
rather than full parameter distributions.
Bayesian methods [Zhang et al., 2018, Santos et al., 2023]
aim to infer posterior distributions over parameters, offering
uncertainty quantification and limited modeling of hetero-
geneity. However, these approaches often rely on simplifying
assumptions or approximations that restrict their ability to
capture complex, multimodal structures.
More recently, generative models such as hypernet-
works [Dubey et al., 2022, 2023], variational autoen-
coders (VAEs) [Mehrasa et al., 2019b], and NFs [Mehrasa
et al., 2019a, Shchur et al., 2019] have been applied to
TPPs—primarily for modeling latent dynamics or inter-
event time distributions—rather than directly learning dis-
tributions over the underlying process parameters.



In contrast, our approach explicitly learns flexible joint dis-
tributions over key Hawkes process parameters—base inten-
sity, triggering strength, decay rate, and delay—using NFs
trained via a differentiable maximum likelihood objective.
This enables direct optimization over expressive parame-
ter families, capturing rich, multimodal patterns and better
reflecting heterogeneity in real-world temporal dynamics.

3 MODEL: FLOW-BASED DELAYED
HAWKES PROCESSES

Consider a U -dimensional temporal point process with event
sequences {Nu(t)}Uu=1, where Nu(t) denotes the number
of events in dimension u up to time t. The corresponding
event histories are defined as

Ht = {tun : 1 ≤ n ≤ Nu(t), u = 1, . . . , U} .
In our interpretable main model, the conditional intensity
for dimension u is defined by a Hawkes process with de-
layed triggering and exponentially decaying kernels:

fu (t | Ht;θ) = µu+

U∑
u′=1

Nu(t)∑
n=1

αuu′e
−β

(
t−tu

′
n −δuu′

)
1{t− tu

′

n ≥ δuu′} (1)

where µu ∈ R+ is the base intensity at which events occur
spontaneously, αuu′ ≥ 0 (for all u, u′ ∈ [U ]) quantifies the
strength of the triggering effect from events in dimension u′

to events in dimension u, and β > 0 controls the decay rate
of this effect (with β being shared across all event types). We
further introduce δuu′ ≥ 0 (for all u, u′ ∈ [U ]) to indicate
the delay before the triggering effect becomes effective, such
that the triggering kernel is active only when t− tu

′

n ≥ δuu′ .
Finally, we denote the complete set of parameters by

θ := {µ,α, β, δ}
where µ := [µu] ,α := [αuu′ ], and δ := [δuu′ ].
To capture heterogeneity in the dynamics of the event se-
quences, we extend the main model by assuming that the
parameters are not fixed but are drawn from a learnable
distribution p(θ), i.e., θ ∼ p(θ), modeled via a NF. Accord-
ingly, the expected (or marginal) intensity function becomes

λu (t | Ht; p(θ)) := Eθ∼p(θ)[fu(t;θ)] (2)
where we denote fu(t;θ) := fu (t | Ht;θ) for notation
simplicity. This formulation marginalizes over a learned
parameter distribution rather than relying on a fixed set-
ting. It naturally captures heterogeneity across sequences, as
different parameter samples induce different dynamics. Ef-
fectively, it acts like a mixture of Hawkes processes—each
sample defines a component—allowing the model to flex-
ibly represent diverse triggering patterns while retaining
interpretability.

Modeling Joint Dependencies with NFs We explicitly
model the joint distribution of the parameters θ using a NF
that captures their inherent dependencies. The concatenated
main model parameters will be θ ∈ Rd, where d = 2U2 +
U + 1.

We assume a latent variable ϵ ∼ N (0, Id) and learn an
invertible transformation:

θ = Fϕ(ϵ), where Fϕ : Rd → Rd.

Here, Fϕ is implemented using a flexible flow-based
generative model (e.g., RealNVP [Dinh et al., 2016],
Glow [Kingma and Dhariwal, 2018], or Neural Spline
Flows [Durkan et al., 2019]). Specifically, we define the
transformation as a composition of K invertible layers:

Fϕ = hK ◦ hK−1 ◦ · · · ◦ h1

where each hk is an invertible mapping with a tractable
Jacobian determinant. For example, in a RealNVP-style
flow, each layer hk may be defined by an affine coupling
layer. In such a layer, the input is split into two parts u and
v; then one updates the output as

u′ = u, v′ = v ⊙ exp (sk(u)) + bk(u)

where sk(·) and bk(·) are neural networks parameterized by
ϕ, and ⊙ denotes elementwise multiplication. The invert-
ibility of each hk is ensured, and the Jacobian determinant
is easily computed since it is triangular. Using the change-
of-variables formula, the target density pϕ(θ) induced by
the flow is given by:

pϕ(θ) = pϵ

(
F−1
ϕ (θ)

)
·

∣∣∣∣∣det
(
∂F−1

ϕ

∂θ

)∣∣∣∣∣
where pϵ(ϵ) is the density of the base multivariate Gaussian.
In practice, we compute the inverse F−1

ϕ (θ) layer by layer,
and accumulate the log-determinants of the Jacobian matri-
ces from each transformation. This construction allows us
to evaluate the target density pϕ(θ) efficiently.
Using a single NF can sometimes lead to mode collapse.
This is particularly problematic when modeling the joint
distribution of the parameters in our Hawkes process, as
the parameters (such as µ, α, and δ) often exhibit complex,
multimodal dependencies reflecting heterogeneous trigger-
ing behaviors. We propose to use a mixture of NFs (depicted
in Figure 2) to address this challenge by combining several
component flows, each of which can specialize in capturing
different modes of the distribution. Concretely, the target
density of the Hawkes parameters is represented as

p(θ) =

M∑
m=1

πmpm(θ)

where each component pm(θ) is modeled by its own NF,
with parameters denoted as ϕm, and πm are the mixture
weights (summing to 1). When computing the marginal
intensity, the mixture formulation results in a weighted sum
of expectations from each component (due to the linearity
of expectation):

λu (t | Ht; p(θ)) =

M∑
m=1

πmEθ∼pm(θ) [fu(t;θ)] (3)

ensuring that all modes contribute proportionally to the final
intensity function according to their mixture weights.
Using the mixture model have been explored in generative
models such as GANs, where multiple adversarial networks
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Figure 2: Model framework: the normalizing flow ensembles with mixture weights are presented in dashed boxes.

have been used to mitigate mode collapse and improve diver-
sity [Hoang et al., 2018, Nguyen et al., 2017, Durugkar et al.,
2016, Mordido et al., 2020]. Similarly, Berry and Meger
[2023] extended this idea to normalizing flows. Building
on this, we incorporate a mixture of NFs to improve mode
coverage in our flow-based delayed Hawkes process.

4 MODEL LEARNING
The overall framework is shown in Figure 2, where the
model first computes the marginal intensity function by
averaging over sampled parameters from the flow-based
generator, which is then used to evaluate the log-likelihood
of the observed event sequences. Now the model parameters
become ϕ = [ϕm] and π = [πm] ∈ ∆M (i.e., probability
simplex) of the mixture NFs. We will learn ϕ and π via max-
imizing the log-likelihood of the observed event sequences
through:

max
ϕ,π∈∆M

L (pϕ,π(θ)) (4)

where the log-likleihood L (pϕ,π) is computed as∑
u

Nu(T )∑
n=1

log λ∗
u (t

u
n)−

∫ T

0

λ∗
u (t) dt

 (5)

and λ∗
u (t) := λu

(
tun | Htun

; pϕ,π(θ)
)

is the marginal inten-
sity as defined in Eq. (3) and T is the time horizon.
To approximate the marginal intensity, we first draw sam-
ples from each NF component. For each component m, we
generate samples

θ(s) ∼ pm(θ)

using the reparameterization θ(s) = Fϕ(ϵ
(s)) with ϵ(s) ∼

N (0, Id). Since the model parameters µ,α, β and δ are
constrained to be nonnegative, we modify the output of
the NF by applying a softplus activation to the last layer
so that the generated θ always satisfies this nonnegativity
condition. The expectation is then approximated via Monte
Carlo, yielding the marginal intensity:

λu (t | Ht; p(θ)) ≈
M∑

m=1

πm

[
1

S

S∑
s=1

fu

(
t;θ(s)

)]
. (6)

Gradient Computation with Respect to ϕm To compute
the gradient of the log-likelihood with respect to the parame-
ters ϕm of the m-th NF component, we apply the reparame-
terization trick. For each sample θ(s) = Fϕm

(
ϵ(s)
)
, where

ϵ(s) ∼ N (0, Id), we approximate the gradient as:

∇ϕm
Eθ∼pm(θ) [fu(t;θ)] ≈

1

S

S∑
s=1

∇ϕm
fu

(
t;Fϕm

(
ϵ(s)
))

.

This enables efficient end-to-end training by backpropagat-
ing through NF generator using automatic differentiation.

Handling the Non-differentiability of δ The intensity
function is inherently non-differentiable with respect to the
delay parameter δ due to the indicator function in the trig-
gering kernel (as shown in Eq. (1)). To obtain gradient esti-
mates for δuu′ , we approximate the indicator function with a
smooth sigmoid function σ(z) = 1

1+exp(−τz) where τ > 0
is a temperature parameter that controls the steepness of the
sigmoid. In other words, we approximate

1

{
t− tu

′

n ≥ δuu′

}
≈ σ

(
t− tu

′

n − δuu′

)
. (7)

This approximation makes intensity function differentiable
with respect to delay parameters δuu′ , enabling gradient-
based optimization. Details can be found in Appendix B.1.

Gradient Computation with Respect to π For the mix-
ture weights π ∈ ∆M , we eliminate the probability simplex
constraint by reparameterizing them via a softmax function.
Define πm = exp(wm)∑M

j=1 exp(wj)
, where wm ∈ R are uncon-

strained parameters. This reparameterization allows us to
compute gradients with respect to wm (and hence π) via
standard backpropagation through the softmax, simplifying
optimization over the simplex.
Discussion: Frequentist v.s. Bayesian Approach? While our
method models distributions over Hawkes process parame-
ters, it follows a frequentist approach, not a Bayesian one.
Instead of specifying priors and performing posterior infer-
ence, we learn the parameter distributions directly by
optimizing the log-likelihood of observed event sequences.
Specifically, we first compute the marginal intensity function



by averaging the Hawkes intensity over sampled parameters
from a flow-based generator, and then use this marginal
intensity to evaluate the log-likelihood. This formulation
enables us to flexibly capture heterogeneity in temporal dy-
namics without relying on approximate Bayesian inference
or prior assumptions.

5 THEORETICAL ANALYSIS
We begin by establishing the identifiability of the fixed pa-
rameter θ in the delayed Hawkes process (Theorem 1) and
extend this to show that the distribution over parameters
p(θ) is also identifiable (Theorem 2). Unlike traditional ap-
proaches that assume fixed parameters, our method learns
a distribution over parameters to capture population-level
heterogeneity. Therefore, establishing the identifiability of
p(θ) is critical to ensuring meaningful and interpretable
inferences. Building on this, we prove the consistency of the
maximum likelihood estimator (MLE) for p(θ) under stan-
dard regularity conditions (Theorem 3). Together, these re-
sults form the theoretical foundation of our delayed Hawkes
process framework—demonstrating why it is identifiable
and statistically reliable in practice.

5.1 IDENTIFIABILITY

We first establish the identifiability of the fixed parameters
θ in the delayed Hawkes process. That is, the model pa-
rameters can be uniquely recovered from the conditional
intensity functions under mild and practically reasonable
assumptions.

Theorem 1 (Identifiability of fixed θ) Let Ht be a real-
ization of the delayed multivariate Hawkes process as de-
fined in Eq. (1). Suppose the conditional intensity functions
satisfy

fu(t | Ht;θ) = fu(t | Ht; θ̃), ∀u ∈ [U ] (8)
almost everywhere. Then, under the conditions listed below,
it follows that θ = θ̃.

Proof The proof proceeds in four steps:
(1) Baseline rate µu: Integrating both sides of Eq. (8) over
[0, t(1)], where t(1) is the first event time in Ht, and using
t(1) > 0 almost surely, we obtain µu = µ̃u.
(2) Delays δuu′ : Due to the exponential triggering kernel,
each past event contributes a peak to the intensity at t =
tu

′

n +δuu′ . If δuu′ ̸= δ̃uu′ , the peak locations differ, violating
Eq. (8).
(3) Decay rate β: Differentiating both sides of Eq. (8) yields
β(fu(t) − µu) = β̃(fu(t) − µu). Since fu(t) − µu > 0
with nonzero probability, we conclude β = β̃.
(4) Triggering strengths αuu′ : With known µu, δuu′ , and
β, the equality of fu(t) implies αuu′ = α̃uu′ .

Mild Conditions for Identifiability. The theorem holds
under the following assumptions, which are easily satisfied

in practice:

• Model assumptions:
(i) β is shared across all (u, u′).

(ii) Each u has at least one u′ such that αuu′ > 0.
(iii) Delays δuu′ are fixed and non-negative.
(iv) µu > 0 for all u.

• Data assumptions:
(i) Event times are continuous and distinct.

(ii) For every (u, u′) with αuu′ > 0, at least one
event in u′ triggers an event in u after delay δuu′ .

(iii) t(1) > 0 almost surely.
(iv) Observation window [0, T ] is long enough to ob-

serve delayed interactions.

These conditions ensure identifiability while being mild
and verifiable in real-world applications. Violations (e.g.,
simultaneous events, zero delays, or degenerate parameters)
may lead to non-identifiability.
In our method, rather than estimating a fixed parameter θ,
we aim to learn a distribution p(θ) to capture heterogeneous
triggering patterns across event sequences. Therefore, es-
tablishing the identifiability of p(θ) is critical to ensure
that our model learns a meaningful and unique distribution
consistent with observed data.

Theorem 2 (Identifiability of p(θ)) Let Θ ⊂ Rd be the
parameter space, and let fu(t | Ht;θ) denote the condi-
tional intensity function. Suppose the following conditions
hold:

(i) The mapping θ 7→ fu(t | Ht;θ) is injective for almost
every t ∈ R+.

(ii) The function class F = {fu(t | Ht;θ) : θ ∈ Θ}
is complete, meaning that if a measurable function
g : Θ → R satisfies∫

Θ

fu(t | Ht;θ)g(θ)dθ = 0 for all t,

then g(θ) = 0 almost everywhere on Θ.
Then, if two distributions p(θ) and q(θ) induce the same
marginal intensities (as defined in Eq. (2)):

λu (t | Ht; p(θ)) = λu (t | Ht; q(θ)) , ∀u ∈ [U ],

for almost every t, it follows that p(θ) = q(θ) almost every-
where on Θ.

We have already established the injectiveness of the mapping
θ 7→ fu(t | Ht;θ) in Theorem 1. For the smoothed intensity
function used in our model (Eq. (7)), we also prove the
completeness of the function class F (see Appendix A.1 and
A.2). Together, these results satisfy the mild and practically
realistic conditions required by Theorem 2, thereby ensuring
the identifiability of p(θ) in our delayed Hawkes framework.

5.2 CONSISTENCY

In this paper, we learn the parameter distribution p(θ) by
maximizing the log-likelihood L(pϕ,π) defined in Eq. (5).



Therefore, establishing consistency of the MLE p̂(θ) is crit-
ical to guarantee that as the observation window T grows,
our learned distribution converges to the true underlying
distribution p∗(θ).

Theorem 3 (Consistency of MLE p̂(θ)) Assume the true
parameter distribution is p∗(θ) and the Hawkes process
model is correctly specified. Suppose the following condi-
tions hold:

• The parameter space for p(θ) is compact (or satisfies
appropriate regularity conditions).

• The mapping θ 7→ fu (t | Ht;θ) is injective for almost
every t (by Theorem 1).

• The function class F = {fu (t | Ht;θ) : θ ∈ Θ} is
complete, ensuring identifiability of p(θ) (by Theo-
rem 2).

• The empirical log-likelihood converges uniformly to
its expectation as T → ∞ (via standard point process
law of large numbers arguments).

Formally, the MLE p̂(θ) satisfies
p̂(θ)

p−→ p∗(θ) as T → ∞.

That is, the MLE is consistent.

Theorem 3 ensures that with sufficient data (T → ∞), the
MLE p̂(θ) converges in probability to the true distribution
p∗(θ). A proof sketch is provided in Appendix A.3.

6 EXPERIMENT
6.1 EXPERIMENTAL SETUP

Baselines We select several state-of-the-art baselines
grouped by their evaluation focus:
(i) Parameter Distribution Learning Tasks: This task aims to
accurately learn the underlying distribution of model param-
eters p(θ). Hypernet [Ha et al., 2016, Chauhan et al., 2023]
approaches this by training a hypernetwork to produce sam-
ples from the parameter distribution. The β-VAE [Higgins
et al., 2017] frames this as a Bayesian inference problem,
inferring a posterior over parameters θ given a prior and
data. Both aim to capture uncertainty and variability in pa-
rameters beyond point estimates.
(ii) Comparison of Different Flow Models: This group
evaluates various NF architectures for flexible and ex-
pressive parameter distribution modeling, including Pla-
nar flows [Rezende and Mohamed, 2015], RealNVP [Dinh
et al., 2016], Glow [Kingma and Dhariwal, 2018], RQ-NSF
(Rational-Quadratic Neural Spline Flow) [Durkan et al.,
2019], and ResFlow (Residual Flow) [Chen et al., 2019].
(iii) Prediction Tasks: Here, we compare established TPP
models for event prediction. Non-parametric baselines in-
clude GM-NLF [Eichler et al., 2017], MMEL [Zhou et al.,
2013], and Gibbs-Hawkes [Zhang et al., 2018]. Other
flexible TPP models include RMTPP [Du et al., 2016],
THP [Zuo et al., 2020], PromptTPP [Xue et al., 2023],
HYPRO [Xue et al., 2022], MLE-SGL [Xu et al., 2016],

and GC-CGD [Wei et al., 2022]. AttNHP [Yang et al., 2021]
serves as the base model for PromptTPP and HYPRO.

Evaluation Metrics In multivariate TPPs, parameter
learning can be decomposed over event types. We fix a
target type u and evaluate how well the model captures how
other types u′ influence it. Specifically, we consider:
(i) Parameter Distribution Accuracy: We evaluate the qual-
ity of learned parameter distributions (e.g., [αuu′ ]u′∈U ,
[δuu′ ]u′∈U ) using the average of marginal KL divergence:

aKL =
1

U

U∑
u′=1

1

N

N∑
n=1

p(x(uu′),n) log

(
p(x(uu′),n)

p̂(x(uu′),n)

)
(9)

Here, p is the true density, p̂ is the estimated one, and
x(uu′),n denotes sampled parameters. Since joint distribu-
tion estimation suffers from the curse of dimensionality,
we report marginal KL as a tractable proxy. We report the
detailed computation process in Appendix B.2.
(ii) Prediction Accuracy: We use Root Mean Squared Error
(RMSE) to evaluate prediction of the target event u’s event
times, following prior work [Du et al., 2016, Zuo et al.,
2020]:

RMSE =

√√√√ 1

N

N∑
i=1

(t̂i − ti)2 (10)

6.2 SYNTHETIC DATA EXPERIMENTS

Preprocessing We consider both uni-modal (Gaussian)
and multi-modal (Gaussian mixture) marginal distribu-
tions for each parameter. To evaluate scalability, we
vary the dimension of synthetic Hawkes process datasets
in {2, 3, 5, 7, 9} and the number of training samples in
{2500, 5000, 7500, 10000, 12500, 15000}. Leveraging the
decomposability of the Hawkes likelihood, we focus on a
single target dimension u for each case. We analyze the
impact parameters [αuu′ ]u′∈U and delays [δuu′ ]u′∈U , as-
suming known base intensity µu and decay rate β for syn-
thetic data, while learning all parameter distributions for
real-world datasets. We further test the model’s robustness
under varying decay rate β distributions across event types
(Appendix D.4).

Parameter Distribution Learning Performance Fig-
ure 3 compares the marginal parameter distributions learned
by our model, Hypernet, and β-VAE. Hypernet fails to cap-
ture multi-modal patterns and lacks an explicit density form,
limiting its ability to perform accurate distribution estima-
tion. β-VAE performs competitively on uni-modal distri-
butions but struggles with multi-modal cases and requires
prior knowledge of the underlying distribution, limiting
its generalizability. In contrast, our model accurately re-
covers both uni-modal and multi-modal distributions with-
out any prior assumptions. To quantitatively evaluate per-
formance, we adopt a consistent KL divergence computa-
tion (Appendix B.2). The numerical results in Table 4 (Ap-
pendix D.1) further confirm that our method consistently
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Figure 3: Visualization examples comparing the performance of various models on parameter distribution learning tasks
with 3-dimensional datasets and 7500 samples. We report the learned marginal distribution for α31 and δ31 in these figures.
Complete results can be found in Appendix D.1.

outperforms both Hypernet and β-VAE across various sam-
ple sizes.
Our flow-based model effectively captures the joint distribu-
tion and dependencies within the parameter set θ. Depicted
in Figure 4, the samples of α and δ from our well-trained
model basically match ground truth joint densities and the
underlying density patterns also be uncovered.
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Figure 4: True joint distribution (contours) of α31 and δ31
and samples (red circles) from our well-trained model using
multi-modal dataset with 3-dimensional and 7500 samples.

Scalability and Ablation Study To evaluate the scala-
bility of our proposed model, we vary the dimensionality
and sample sizes. Shown in Appendix D.5, Figure 8, as the
training sample size increases, the training time increases
while the converged negative log-likelihood decreases, and
distribution learning accuracy increases accordingly. Our
model demonstrates high efficiency, converging within 1.2
hours even in the most complex scenarios, utilizing 15000
samples of training data with 9 dimensions. As the dimen-
sionality of Hawkes processes increases, the distribution

learning accuracy of our model may slightly decrease but
remains satisfactory. Encouragingly, as the training sample
size grows, the learning performance becomes stable.
To assess the importance of different components of our
model, we ablate several modules as in Table 1. Violating
all the modules would cause a significant degrade. Further-
more, removing ensemble modules would lead to a decrease
in the model’s performance, especially for multi-modal dis-
tributions. Under current modules combination, our model
almost achieves the lowest training converged negative log-
likelihood, highest learning accuracy, while maintaining
relatively high time efficiency.
Moreover, we investigate the performance when using dif-
ferent normalizing flow models in Table 5, Appendix D.2.
Taking into account factors such as data volume and di-
mensionality, our model strikes a balance between model
effectiveness and training efficiency and can select suitable
normalizing flow models for different datasets. Detailed
selections of flow models are reported in Appendix C.3.

Prediction The learned parameter distributions will facili-
tate prediction of upcoming events. The prediction results
on synthetic datasets are presented in Table 2, from which
one can observe that our model outperforms all baselines.

6.3 MIMIC-IV DATASET EXPERIMENTS

Preprocessing MIMIC-IV1 is an electronic health record
dataset of patients admitted to the intensive care unit
(ICU) [Johnson et al., 2023]. We focused on patients di-
agnosed with sepsis [Saria, 2018], a leading cause of mor-
tality in the ICU. Following the approach suggested by
Komorowski et al. [2018], we selected 21 treatments cate-
gorized as vasopressors, antibiotics, and auxiliary treatment
(details shown in Appendix E.1) from which a total of 7377
samples were extracted. Since normal urine reflects the

1https://mimic.mit.edu/



Table 1: Ablation study on synthetic and real-world datasets. Our current selection of modules are highlighted in blue. For
synthetic datasets, we use 7500 samples with 3 dimensions cases. We ablate the following modules: i) Delay: whether
assume that time lag (delay effect) presents in the data, ii) Dist: whether assume the parameters (impact α and delay δ) of
grounded Hawkes process follow certain distributions, iii) Ensem: whether ensemble multiple normalizing flows, and iv)
DiffBase: whether vary the input base distributions.

Synthetic Dataset

Delay. Dist. Ensem. DiffBase. Uni-Modal Multi-Modal
NLL ↓ aKL (α) ↓ aKL (δ) ↓ Time ↓ NLL ↓ aKL (α) ↓ aKL (δ) ↓ Time ↓

✗ ✗ ✗ ✗ 32.62 − − 0.15h 38.43 − − 0.36h
✓ ✗ ✗ ✗ 28.64 − − 0.16h 37.35 − − 0.40h
✓ ✓ ✗ ✗ 25.08 1.26 2.20 0.18h 36.52 4.33 3.67 0.42h
✓ ✓ ✓ ✗ 25.26 1.22 2.16 0.21h 30.42 3.16 2.25 0.56h
✓ ✓ ✗ ✓ 26.52 1.37 2.32 0.20h 33.97 3.86 3.11 0.52h
✓ ✓ ✓ ✓ 25.71 1.32 2.28 0.38h 33.68 3.82 2.95 0.67h

Real-World Dataset

Delay. Dist. Ensem. DiffBase. MIMIC-IV Covid Policy
NLL ↓ RMSE ↓ Time ↓ NLL ↓ RMSE ↓ Time ↓

✗ ✗ ✗ ✗ 26.15 3.52 0.18h 42.80 4.25 0.13h
✓ ✗ ✗ ✗ 24.52 3.20 0.24h 39.46 4.08 0.17h
✓ ✓ ✗ ✗ 22.55 2.92 0.31h 37.80 3.93 0.22h
✓ ✓ ✓ ✗ 21.32 2.86 0.34h 36.94 3.35 0.25h
✓ ✓ ✗ ✓ 22.08 2.95 0.38h 37.56 3.72 0.30h
✓ ✓ ✓ ✓ 21.67 2.90 0.53h 36.25 3.54 0.42h

impact of drugs and treatments on improving the physical
condition of a patient, our objective is to uncover impact and
delay effect of treatments on patients’ physical well-being,
as observed through normal urine events.

Ablation Study Since we are uncertain about the pres-
ence of delay effects and whether parameters adhere to
specific distributions in real datasets, we need to validate
our assumptions through ablation studies first. In Table 1,
for the MIMIC-IV dataset, assuming no delay effect and
fixed parameters results in a higher converged negative log-
likelihood and decreased accuracy in prediction tasks, vali-
dating the rationale behind our current configuration.

Case Study and Prediction Shown in Figure 5, the pos-
itive impact of vasoconstrictors, antibiotics, and auxiliary
treatment are comparable. The delay effect distribution
of vasoconstrictors exhibits a right-skewed pattern, with
a mean around 0.5 hours, indicating that vasoconstrictors
show clearly short-term response to yield a positive impact
on human circulatory systems. Antibiotics typically require
longer time to take effect, with a time lag distribution in the
population generally following a normal distribution cen-
tered around a mean of 1.2 hours. Due to auxiliary treatment
encompassing various therapies such as Furosemide and
Invasive Ventilation, its delay effect displays a multi-modal
pattern with the first local peak around 0.3 hours and the
second local peak appearing near 0.8 hours.
As in Table 2, our model accurately predicts the next normal
urine event with the lowest RMSE than all other baselines.

Vasoconstrictor Antibiotic Auxiliary Treatment
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Figure 5: Learned impact α and delay effect δ distributions
for MIMIC-IV dataset (left and bottom bar plots) and 2D
scatter plot for samples of these two parameters (top-right).

6.4 COVID POLICY DATASET EXPERIMENTS

Preprocessing The Covid-19 Policy dataset 2 collects data
on governments’ implementation of specific measures and
their timing to control COVID-19 pandemic [Hale et al.,
2021, 2020]. Epidemic prevention policies are organized
into 4 categories including Containment Closure, Healthcare
System, Vaccination, and Economic policies, which could
be referred to Appendix E.2. We conducted experiments

2https://github.com/OxCGRT/covid-policy-dataset



Table 2: Event time prediction RMSE ↓ on two synthetic datasets using 7500 samples with 3 dimensions case (denoted
as “Uni-Modal” and “Multi-Modal” to indicate different underlying parameter distributions), MIMIC-IV data (evaluating
prediction of occurrence time of normal urine event of patients) and Covid Policy data (evaluating prediction of occurrence
time of dropping confirmed cases/infections). Results from our model are shaded in red.

Category Method Uni-Modal Multi-Modal MIMIC-IV Covid Policy

Non-Param.
GM-NLF [Eichler et al., 2017] 2.36 2.72 4.29 6.72

MMEL [Zhou et al., 2013] 2.41 2.85 4.47 6.45
Gibbs-Hawkes [Zhang et al., 2018] 1.98 2.64 3.87 6.12

Param.

RMTPP [Du et al., 2016] 2.15 2.77 3.82 5.24
THP [Zuo et al., 2020] 1.92 2.46 3.26 5.08

PromptTPP [Xue et al., 2023] 1.85 2.40 3.13 3.18
HYPRO [Xue et al., 2022] 1.89 2.37 3.05 3.42

MLE-SGL [Xu et al., 2016] 1.96 2.57 3.63 5.81
GC-CGD [Wei et al., 2022] 1.90 2.45 3.18 5.26

Ours* 1.79 2.25 2.86 3.35

on data from Australia and France for the years 2021-2022
based on the most severe COVID-19 situations and effective
governmental policies, aiming to investigate the impact of
the policies from different categories on event of dropping
daily average number of confirmed cases.

Ablation Study Like in MIMIC-IV, the ablation study
in Table 1 also shows that assuming the existence of delay
effects in the data and parameters following specific distri-
butions indeed enhances model performance, validating that
the data align with our assumptions.

Case Study and Prediction In Figure 9 and 10, Appendix
E.2, overall, the lag for the effectiveness of government
policies in Australia seems shorter than in France. Here, we
take Containment Closure (CC) policies as examples, whose
positive impact is normally distributed and is almost larger
than all other policies in these two countries. In Australia,
when government enforces CC policies, the population gen-
erally divides into two groups (exhibiting two peaks in the
distribution). One group promptly complies with isolation
measures, leading to a decrease in new cases of COVID-19
around 5 days after policy implementation. The other group
responds more slowly, requiring approximately 6.5 days for
the policies to take effect. The pattern of CC policies in
France is different, roughly following a normal distribution
with a mean of 7.5 days. In terms of Healthcare System
policies, delay effects in Australia also exhibit a bimodal
distribution, with peaks at around 7 and 9 days, whereas in
France with longer onset times, approximately 7.5 and close
to 11 days, respectively, but the variance is smaller. In both
countries, the impact of Vaccination and Economic policies
is smaller than that of the two policies mentioned above. In
Australia, the time lag for Vaccination to take effect typi-
cally peaks at 10 and 11 days, while for Economic policies,
the mean time lag is 14.5 days. In France, the mean time
lags are approximately 11.5 and 15 days, respectively, for
these two policies.

Our model also has demonstrated competitive prediction
performance on the COVID policy dataset. As in Table 2,
the RMSE of predicting the time of next infection drop-
ping event is the second lowest among all baselines, closely
approaching the lowest.

6.5 OTHER REAL-WORLD DATASET
EXPERIMENTS

In addition to the healthcare datasets, we also considered the
StackOverflow [Leskovec and Krevl, 2014], Taobao [Xue
et al., 2022], and Taxi [Whong, 2014] datasets for prediction
tasks (predicting both the next event type and its time, while
incorporating per-event negative log-likelihood and event
type prediction error rate as extra evaluation metrics) to en-
sure broader applicability and validate our approach across
diverse domains. As shown in Table 13, Appendix E.3, our
model maintains strong performance across these baselines
on almost all datasets. This also suggests that StackOver-
low and Taobao datasets may inherently exhibit delayed
event-triggering effects (while Taxi dataset may not) among
different event types, further validating our approach.

7 CONCLUSION
In this paper, we propose the Flow-based Delayed Hawkes
Process, an extension of multivariate Hawkes models that
uses normalizing flows to flexibly model the distribution of
parameters, capturing heterogeneous event dynamics while
preserving interpretability. We provide theoretical guaran-
tees on parameter identifiability and MLE consistency under
mild conditions. Experiments on synthetic and real-world
data demonstrate consistent superiority over state-of-the-art
baselines in modeling diverse temporal event patterns. This
work advances accurate and interpretable analysis of event
data with delay effects and complex triggering behaviors.
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APPENDIX OVERVIEW
In the following, we will provide supplementary materials to better illustrate our methods and experiments.

• Section A provides theoretical guarantees.
• Section B presents more details of our model and implementation.
• Section C reports the reproducibility analysis.
• Section D provides more synthetic dataset experiments and corresponding analysis.
• Section E provides more real-world dataset experiments and corresponding analysis.
• Section F states the limitations and broader impacts of our proposed model.

A THEORETICAL PROOFS
A.1 PROOF OF THEOREM 2

Proof [Theorem 2] Define the operator T that maps a latent distribution p(θ) to its marginal intensity:

T (p)(t) =

∫
Θ

fu(t | Ht;θ)p(θ)dθ.

By assumption, T (p) = T (q) for almost every t, so defining g(θ) = p(θ)− q(θ), we obtain:∫
Θ

fu(t | Ht;θ)g(θ)dθ = 0 for almost every t.

By the completeness assumption, this implies g(θ) = 0 almost everywhere, concluding that p(θ) = q(θ) almost everywhere.

A.2 PROOF OF COMPLETENESS FOR THE SMOOTH TRIGGERING FUNCTION

Proof [Completeness for the Smooth Triggering Function] Consider the intensity function:

fu (t | Ht;θ) = µu +

U∑
u′=1

Nu(t)∑
n=1

αuu′h
(
−β
(
t− tu

′

n − δuu′

))
where µu ≥ 0, αuu′ ≥ 0, β > 0, δuu′ ≥ 0, and h(·) is a smooth function (i.e., sigmoid-exponential product). We prove the
family fu (t | Ht;θ) is complete, i.e., if ∫

Θ

fu (t | Ht;θ) p(θ)dθ = 0 ∀t

then p(θ) = 0 almost everywhere.
Substitute fu (t | Ht;θ) into the integral equation:∫

Θ

µup(θ)dθ +

U∑
u′=1

Nu(t)∑
n=1

∫
Θ

αuu′h
(
−β
(
t− tu

′

n − δuu′

))
p(θ)dθ = 0 ∀t

The first term is t-independent, while the second term depends on t through h(·). For equality to hold globally, both terms
must vanish individually.
The t-independence of the first term implies: ∫

Θ

µup(θ)dθ = 0

Since µu ≥ 0, this forces
∫
Θ
p(θ)dθ = 0. For the second term, smoothness and the parametric structure of h(·) ensure

the family
{
h
(
−β
(
t− tu

′

n − δuu′

))}
is linearly independent for distinct

(
β, δuu′ , tu

′

n

)
. By the Haar condition (for

Chebyshev systems), a nontrivial linear combination of these functions cannot vanish identically unless all coefficients are
zero.
The integral equation reduces to a moment problem:

U∑
u′=1

Nu(t)∑
n=1

∫
Θ

αuu′h
(
−β
(
t− tu

′

n − δuu′

))
p(θ)dθ = 0 ∀t

Because h(·) generates a complete basis (via exponential/sigmoid properties), the only solution is p(θ) = 0 almost
everywhere.



As a conclusion, the linear independence of
{
h
(
−β
(
t− tu

′

n − δuu′

))}
and the Haar condition ensure uniqueness. Hence,

the family {fu (t | Ht;θ)} is complete, and:
λu (t | Ht; p(θ)) = λu (t | Ht; q(θ)) =⇒ p(θ) = q(θ)

A.3 PROOF OF THEOREM 3

Proof [Proof Sketch of Theorem 3] First, we show the uniform convergence: Under standard regularity conditions for point
processes, the empirical log-likelihood function converges uniformly (by the law of large numbers) to its expected value as
the observation window T grows. That is, for all candidate distributions p,

1

T
L (p) → E

[
1

T
L (p)

]
almost surely

Second, we have proved the identifiability. By Theorems 1 and 2, the mapping from the latent parameters θ to the intensity
function fu (t | Ht;θ) is injective, and the family F is complete. Therefore, the expected log likelihood has a unique
maximum at the true distribution p∗(θ).
Then, we can use the standard MLE consistency results: The standard Wald’s consistency theorem implies that the our
maximizer of the empirical log likelihood, p̂(θ), converges in probability to p∗(θ) as T → ∞.

B IMPLEMENTATION DETAILS
B.1 DYNAMIC SIGMOID MASK MODULE

We want to emphasize that the exponential kernel of Hawkes process contains an indicator function, which would result in
the interruption of gradients during backpropagation. To address this issue, we propose a dynamic sigmoid mask module,

I(t− tu
′

n − δuu′ ≥ 0) := sigmoid(
C

γt
· (t− tu

′

n − δuu′)) (11)

where C is a large constant and γt is the cyclical annealing temperature, which is given by

γt =

{
h(τ), τ ≤ R
c, τ > R

with τ =
mod(t− 1, ⌈B/M⌉)

B/M
(12)

where t is the iteration number, B is the total number of iteration, c < C is a fixed constant, h(·) is a monotonically
increasing function with value start with 1, M is the number of cycles, and R represents the proportion used to increase γ
within a cycle. In other words, we split the training process into M cycles, each starting with γ = 1 and ending with γ = C.
Within one cycle, there are two consecutive stages (divided by R), one is the annealing stage and the other is the fixing stage.
This ensures that the output of the dynamic sigmoid mask module approximates the binary output (0 or 1) of the original
indicator function while preserving gradient flow and preventing gradient stagnation.
In our implementation, we can confirm that our model strictly enforces temporal causality by: (i) Explicit temporal masking:
we apply strict masking to ensure that only events where tu

′

n < t can contribute to the intensity function at time t. This
masking is applied immediately after computing the sigmoid values but before they contribute to the intensity calculation.
(ii) Batched computation structure: while we do parallelize kernel computations for efficiency, the implementation enforces
a strict time-ordering constraint. The code includes explicit conditional filtering that zeros out any influence from event times
tu

′

n that occur after the evaluation time t. (iii) Training evaluation consistency: this masking remains consistent between
training and evaluation phases, regardless of the annealing schedule of the sigmoid temperature parameters.

B.2 COMPUTATION OF KL DIVERGENCE

Due to the inherent characteristics of different deep generative models, we must standardize the KL divergence computation
metric to ensure a fair comparison of their performance. For our flow-based model, we can obtain samples and corresponding
learned densities from well-trained model. The average KL divergence can be directly computed according to Eq. (9).
Hypernet can only generate samples but cannot yield corresponding densities. To align with current computation approach
of KL divergence, after obtaining the samples from well-trained Hypernet model, we fit the learned distributions based on
samples and then get the corresponding learned densities. Note that in this process, we assume the distribution format is
known for Hypernet samples. For β-VAE, we directly obtain the learned parameter distribution from the latent representation.
Therefore, we can sample from the latent distributions and know the corresponding learned densities.
For our flow-based model, Hypernet model, and β-VAE, we plug the samples from well-trained models into the ground truth
distributions to get the corresponding ground truth densities for these samples so that we can compute the KL divergence



according to Eq. (9).

C REPRODUCIBILITY ANALYSIS
C.1 BASELINES

Parameter Distribution Learning Tasks
• Hypernet [Ha et al., 2016, Chauhan et al., 2023]: We utilize hypernets to obtain the samples and use these samples to

compute likelihood of Hawkes process and therefore backward training the hypernet.
• β-VAE [Higgins et al., 2017]: We utilize the latent representation of β-VAE to estimate the parameter distributions of

Hawkes processes.

Comparsion of Different Flow Models
• Planer [Rezende and Mohamed, 2015]: For this model, the approximations of distributions are through a normalizing

flow, whereby transforming a simple initial density into a more complex one by applying a sequence of invertible
transformations until a desired level of complexity is attained.

• RealNVP [Dinh et al., 2016]: It uses real-valued non-volume preserving (Real NVP) transformations, which are stably
invertible and learnable transformations.

• Glow [Kingma and Dhariwal, 2018]: It is a simple type of generative flow using an invertible 1× 1 convolution.
• RQ-NSF (Rational-Quadratic Neural Spline Flow) [Durkan et al., 2019]: A fully-differentiable module based on

monotonic rational-quadratic splines, which enhances the flexibility of both coupling and autoregressive transforms
while retaining analytic invertibility.

• ResFlow (Residual Flow) [Chen et al., 2019]: A flow-based generative model that produces an unbiased estimate of the
log density and has memory-efficient backpropagation through the log density computation, which allows us to use
expressive architectures and train via maximum likelihood.

Prediction Tasks
• Non-parametric Models

– GM-NLF [Eichler et al., 2017]: It shows that the Granger causality structure of the process is fully encoded in
the corresponding Hawkes kernels. It introduces a new nonparametric estimator of the Hawkes kernels based
on a time-discretized version of the point process by using an infinite order autoregression. And it derived the
consistency and asymptotic normality of the estimator.

– MMEL [Zhou et al., 2013]: The proposed model focuses on the nonparametric learning of the triggering kernels
for multi-dimensional Hawkes processes, and the proposed algorithm combines the idea of decoupling the
parameters through constructing a tight upper-bound of the objective function and application of Euler Lagrange
equations for optimization in infinite dimensional functional space.

– Gibbs-Hawkes [Zhang et al., 2018]: An efficient nonparametric Bayesian estimation method of the kernel function
of Hawkes processes. This method is based on the cluster representation of Hawkes processes. Utilizing the finite
support assumption of the Hawkes process, it efficiently samples random branching structures, and thus, splits the
Hawkes process into clusters of Poisson processes. By using the a block Gibbs sampler, the samples building the
estimation can converge to the desired posterior.

• Parametric Models
– RMTPP [Du et al., 2016]: The approach considers the intensity function of a temporal point process as a nonlinear

function that depends on the history. It utilizes a recurrent neural network to automatically learn a representation
of the influences from the event history, which includes past events and time intervals, thereby fitting the intensity
function of the temporal point process.

– THP [Zuo et al., 2020]: The model employs a concurrent self-attention module to embed historical events and
generate hidden representations for discrete time stamps. These hidden representations are then used to model
the interpolated continuous time intensity function. THP can also incorporate additional structural knowledge.
Importantly, THP surpasses RNN-based approaches in terms of computational efficiency and the ability to capture
long-term dependencies.

– PromptTPP [Xue et al., 2023]: The model incorporates a continuous-time retrieval prompt pool into the base
TPP, enabling sequential learning of event streams without the need for buffering past examples or task-specific
attributes. Specifically, this approach consists of a base TPP model, a pool of continuous-time retrieval prompts,
and a prompt-event interaction layer. By addressing the challenges associated with modeling streaming event
sequences, this mode enhances the model’s performance.



– HYPRO [Xue et al., 2022]: The hybridly normalized probabilistic (HYPRO) model is capable of making long-
horizon predictions for event sequences. This model consists of two modules: the first module is an auto-regressive
base TPP model that generates prediction proposals, while the second module is an energy function that assigns
weights to the proposals, prioritizing more realistic predictions with higher probabilities. This design effectively
mitigates the cascading errors commonly experienced by auto-regressive TPP models in prediction tasks, thereby
improving the model’s accuracy in long-term forecasting.

– MLE-SGL [Xu et al., 2016]: It proposes an effective method to learn the Granger causality for Hawkes process.
The model represents impact functions using a series of basis functions and recovers the Granger causality graph
via group sparsity of the impact functions’ coefficients. The proposed learning algorithm combines a maximum
likelihood estimator (MLE) with a sparse group-lasso (SGL) regularizer. Additionally, the flexibility of the model
allows to incorporate the clustering structure event types into learning framework.

– GC-CGD [Wei et al., 2022]: This work proposes a linear Hawkes process model, coupled with ReLU link function
to recover a Granger Causal graph with both exciting and inhibiting effects. The method is a scalable two-phase
gradient-based method to obtain a maximum surrogate-likelihood estimator. In the first phase, it constrains all
parameters to be non-negative and perform projected gradient descent with fixed step length. In the second phase,
it performs batch coordinate gradient descent on those variables whose corresponding rows (in the trigerring
effect matrix) could have negative values.

C.2 COMPUTING INFRASTRUCTURE

All the experiments for both synthetic dataset experiments and real-world dataset experiments, including the comparison
experiments with baselines, are performed on Ubuntu 20.04.3 LTS system with Intel(R) Xeon(R) Gold 6248R CPU @
3.00GHz, 227 Gigabyte memory.

C.3 HYPER-PARAMETERS SELECTION

Our model is easy to implement and reproduce the results. We present the selected hyper-parameters on synthetic and
real-world datasets in Table 3. The hyper-parameter selection metric is a trade-off between training converged log-likelihood,
prediction performance, and time efficiency.

Table 3: Descriptions and values of hyper-parameters used for models trained on the synthetic and real-world datasets.

Hyper-parameters Value Used
Syn-Data (Uni-Modal) Syn-Data (Multi-Modal) MIMIC-IV Covid Policy Tracker

Max Epochs 128 128 256 256
Batch Size 64 64 64 64

Hidden Size 32 32 32 32
# NFs Ensembled 2 2 3 3

# Layers for single NF 6 6 8 8
# Samples for single NF 100 100 100 100

Base Dist. N (0, 1) N (0, 1) N (0, 1) N (0, 1)
Learning Rate 1e-3 1e-3 5e-4 5e-4

Optimizer Adam Adam Adam Adam
Flow Model RealNVP RealNVP ResFlow RealNVP

D MORE SYNTHETIC DATASET EXPERIMENTS
D.1 COMPLETE VISUALIZATION EXAMPLES COMPARING THE PERFORMANCE ON PARAMETER

DISTRIBUTION LEARNING TASKS

In Figure 6, we report the complete visualization results of the learned marginal distribution for target dimension (u = 3),
e.g., α31, α32, α33 and δ31, δ32, δ33, using 3-dimensional datasets with 7500 samples. The results demonstrate that our
model not only accurately captures uni-modal distributions but also performs well on multi-modal distributions, significantly
outperforming Hypernet and β-VAE.
To test the scalability and fairly compare different deep generative models for learning parameter distributions in our problem
setting, we vary the size of training samples within {2500, 5000, 7500, 10000, 12500, 15000}. The results are shown in
Table 4, from which one can observe that our model consistently outperforms Hypernet and β-VAE in almost all cases.
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Figure 6: Visualization examples comparing different models on parameter distribution learning tasks with 3-dimensional
datasets and 7500 samples. We report the learned marginal distribution for target dimension (u = 3) in these figures.

As we build joint distributions of the parameters in the generating process of synthetic datasets, our flow-based model
inherently can effectively capture their dependencies. Depicted in Figure 7, the samples of α and δ from our well-trained
model basically match ground truth joint densities.

D.2 COMPARE WITH OTHER FLOW-BASED MODELS

In Table 5, we compare the model performance produced by different flow-based models. In our setting, simple normalizing
flow models like RealNVP are capable of uncovering ground truth parameter distributions. When employing dense flows,
although there is an enhancement in model performance, it requires excessive computational resources. In practical
applications, we must strike a balance between model effectiveness and training efficiency. Taking into account factors
such as data volume and dimensionality, our model can select suitable normalizing flow models. Detailed selections of flow
models for synthetic datasets and real-world datasets experiments can be found in Appendix C.3.

D.3 COMPARE WITH TRADITIONAL PARAMETRIC MODELS

Our use of normalizing flows as complex priors offers two key advantages. The first one is flexible modeling of any irregular
distributions (e.g., skewed patterns) that capture population variance complexity. The second one is stronger exploration and
expressive power compared to traditional parametric models – though requiring larger datasets. To further illustrate this,
we have added more experiments: we consider conventional probabilistic models with simple priors, including mixture
of uniform and mixture of gaussian models (abbreviated as “MoU” and “MoG” respectively). As shown in Table 6 and
Table 7, our flow-based model demonstrates consistent superiority over traditional approaches across synthetic dataset



Table 4: Compare the accuracy of learned parameter distributions across different models using KL divergence as metric
with varying sample sizes. Bold signifies the best result, while underlined text indicates the second-best result.

Model Uni-Modal Multi-Modal
2500 5000 7500 10000 12500 15000 2500 5000 7500 10000 12500 15000

Hypernet (α) 5.51 8.22 6.70 5.08 5.09 5.30 39.68 37.92 33.95 33.53 33.30 32.61
β-VAE (α) 1.83 1.29 1.53 1.26 1.24 1.19 5.12 4.55 4.42 3.23 2.94 2.87
Ours* (α) 1.48 1.42 1.22 1.17 1.05 0.91 4.62 4.18 3.16 3.38 2.79 2.52

Hypernet (δ) 6.22 3.54 3.99 1.57 1.47 1.38 14.79 11.74 7.86 5.95 11.24 8.60
β-VAE (δ) 3.62 4.17 3.22 1.69 1.37 1.52 2.88 2.74 2.43 2.37 2.19 2.10
Ours* (δ) 3.83 2.57 2.16 1.56 1.43 1.45 2.92 2.85 2.25 2.29 1.86 1.63
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Figure 7: True joint distribution (contours) of α31 and δ31 and samples (red circles) from our well-trained model using
multi-modal dataset with 3-dimensional and 7500 samples.

distribution learning and real-world prediction tasks, compared with mixture of uniform and mixture of gaussian models.
Furthermore, our model exhibits improved performance with increased training data, as quantitatively verified by the lower
KL divergence.

D.4 EXPERIMENTS ON SYNTHETIC DATASETS WITH VARYING DECAY

While estimating extra distributions add computational complexity, it is still achievable. We have extended our synthetic
datasets with varying β for different event types. While we observe marginal accuracy declines in learning the distributions
of α, β, and δ on datasets with varying β distributions, the overall performance remains satisfactory. Importantly, our
flow-based model consistently demonstrates superior performance compared to Hypernet and β-VAE across all experimental
settings in parameter distribution learning tasks, and our flow-based model also outperforms other baseline models in
prediction tasks, as shown in Table 8 and Table 9 respectively.

D.5 SCALABILITY EXPERIMENTS

To evaluate the scalability of our proposed model, we vary the dimensionality within {2, 3, 5, 7, 9} and sample sizes within
{2500, 5000, 7500, 10000, 12500, 15000}. Our model demonstrates high efficiency and good scalability, converging within
1.2 hours even in the most complex scenarios, utilizing 15000 samples of training data with 9 dimensions. Shown in Figure 8,
as the training sample size increases, the training time increases while the converged negative log-likelihood decreases, and
distribution learning accuracy increases accordingly. As the dimensionality of Hawkes processes increases, the distribution
learning accuracy of our model may slightly decrease but remains satisfactory. Encouragingly, as the training sample size
grows, the learning performance becomes stable.

E MORE REAL-WORLD DATASET EXPERIMENTS
E.1 HEALTHCARE DATA EXPERIMENTS – MIMIC-IV

MIMIC-IV3 is a publicly available database sourced from the electronic health record of the Beth Israel Deaconess
Medical Center [Johnson et al., 2023]. Available information includes patient measurements, orders, diagnoses, procedures,

3https://mimic.mit.edu/



Table 5: Compare different normalizing flow models. We take uni-modal distribution dataset with 3 dimensions and 7500
samples as an example.

Model NLL ↓ aKL (α) aKL (δ) Time ↓
Planerr [Rezende and Mohamed, 2015] 29.52 1.56 2.83 0.18h

Glow [Kingma and Dhariwal, 2018] 25.70 1.32 2.28 0.38h
RealNVP [Dinh et al., 2016] 25.26 1.22 2.16 0.21h

RQ-NSF [Durkan et al., 2019] 25.54 1.24 2.23 0.27h
ResFlow [Chen et al., 2019] 24.93 1.18 2.20 0.56h

Table 6: Compare the distribution learning ability using varying training sample size (on multi-modal synthetic datasets)
between our flow-based model and other mixture models. The comparison metric is the average KL divergence between
learned distributions and ground truth distributions.

Metric aKL (α) aKL (δ)
2500 7500 12500 2500 7500 12500

MoU 38.27 35.10 34.33 21.82 15.40 13.36
MoG 5.45 5.08 4.93 3.79 3.21 2.85

Ours* 4.62 3.16 2.79 2.92 2.25 1.86

treatments, and deidentified free-text clinical notes. Sepsis is a leading cause of mortality in the ICU, particularly when it
progresses to septic shock. Septic shocks are critical medical emergencies, and timely recognition and treatment are crucial
for improving survival rates. In the real-world healthcare data experiments on MIMIC-IV dataset, we aim to uncover the
delay effect of the treatments related to septic shocks for the whole patient samples.

Patients We select 1943 patients that satisfied the following criteria from the dataset: (i) The patients are diagnosed
with sepsis [Saria, 2018]. (ii) Patients, if diagnosed with sepsis, the timestamps of any clinical testing and timestamps of
medication administration and corresponding dosage were not missing.

Treatment Suggested by Komorowski et al. [2018], we extracted 21 treatment associated with sepsis which are consistent
with expert consensus. Based on the distinct clinical characteristics of these treatments, they can be categorized into the
following three groups, which are shown in Table 10. Vasopressor therapy is a fundamental treatment of septic-shock-induced
hypotension as it aims at correcting the vascular tone depression and then improving organ perfusion pressure; Antibiotics
also should be given within a few hours of the diagnosis of sepsis; Some auxiliary treatments such as packed red blood cells
and invasive ventilation are also necessary in ICU.

Outcome We treated real-time urine as the outcome indicator since low urine is the direct indicator of bad circulatory
systems and the signal for septic shock. In contrast, normal urine reflects the effect of the drugs and treatments and the
improvement of the patients’ physical condition. Some treatments will have a rapid effect on the urine while others might
take longer to exert an effect.

Preprocessing Due to the frequent fluctuations in urine output within the ICU setting, we considered only those instances
in which urine output became normal after maintaining an abnormal level for at least 24 hours. These instances were
regarded as valid target events that hold significance for prediction and explanation. For each patient, we extracted all the
periods that met the criteria. We also documented all the intake time points within the 24 hours leading up to the transition
of urine output from abnormal to normal during clinical treatment. The processed data set has 7377 records in total, and we
split them by 80%, 10%, and 10% as the training, evaluation, and testing set.

Figure 8: Scalability experiments with varying training samples and dimensions. We take uni-modal distribution datasets as
examples. All the experiments are conducted over 5 random runs and the standard errors are reflected in the shaded areas.



Table 7: Compare the prediction performance between our flow-based model and other mixture models using two real-world
datasets.

Metric MIMIC-IV Covid Polcy
NLL ↓ RMSE ↓ NLL ↓ RMSE ↓

MoU 28.90 4.13 43.67 4.28
MoG 24.25 3.54 39.02 3.80

Ours* 21.32 2.86 36.94 3.35

Table 8: Compare the accuracy of learned parameter distributions across different models using KL divergence as metric
with varying sample sizes for different setting of decay (β) parameter. Here we focus on multi-modal distributions.

Synthetic Shared β Varied β
2500 7500 12500 2500 7500 12500

Hypernet (α) 39.68 33.95 33.30 40.12 39.61 39.30
β-VAE (α) 5.12 4.42 2.94 5.60 5.29 4.72
Ours* (α) 4.62 3.16 2.79 4.93 3.75 3.38

Hypernet (β) 39.82 29.82 27.41 65.92 62.56 59.63
β-VAE (β) 5.94 5.52 5.17 6.30 5.89 5.22
Ours* (β) 4.82 4.55 3.76 5.13 4.79 4.21

Hypernet (δ) 14.79 7.89 11.24 39.47 39.20 38.67
β-VAE (δ) 2.88 2.43 2.19 3.61 3.42 3.10
Ours* (δ) 2.92 2.25 1.86 3.18 2.75 2.34

E.2 HEALTHCARE DATA EXPERIMENTS – COVID POLICY

Policy Information The descriptions of the policies of the two countries considered in our experiments (Australia and
France) are summarized in Table 11. In Table 12, we tick the policy for these two countries if it appears in the datasets.

Preprocessing We aim to investigate the impact of the policies of different categories on the daily average number of
confirmed cases. We tallied the cumulative confirmed cases over 7 consecutive days to capture the epidemic spread trend
to avoid daily noise. To understand the waiting time for each policy to work, we marked the date when confirmed cases
started decreasing as a “dropping infection event”. We conducted experiments on data from Australia and France for the
years 2021-2022 based on the most severe COVID-19 situations and effective governmental policies. For each dataset of
country, we split them by 80%, 10%, and 10% as the training, evaluation, and testing set.

Experiment Results In Figure 9 and Figure 10, we visualize the learned distributions and samples from well-trained
models for Australia and France. Overall, the lag for the effectiveness of government policies in Australia seems shorter
than in France. The positive impact of containment and closure policies is normally distributed and is almost larger than all
other policies in these two countries. In Australia, when government enforces Containment Closure policies, the population
generally splits into two groups (exhibiting two peaks in the distribution). One group promptly complies with isolation
measures, leading to a decrease in new cases of COVID-19 around 5 days after policy implementation. The other group
responds more slowly, requiring approximately 6.5 days for the policies to take effect. The pattern of Containment Closure
policies in France is different, roughly following a normal distribution with a mean of 7.5 days. In terms of Healthcare
System policies, delay effects in Australia also exhibit a bimodal distribution, with peaks at around 7 and 9 days, whereas in
France with longer onset times, approximately 7.5 and close to 11 days, respectively, but the variance is smaller. In both
countries, the impact of Vaccination and Economic policies is smaller than that of the two policies mentioned above. In
Australia, the time lag for Vaccination to take effect typically peaks at 10 and 11 days, while for Economic policies, the
mean time lag is 14.5 days. In France, the mean time lags are approximately 11.5 and 15 days, respectively, for these two
policies.

E.3 OTHER REAL-WORLD DATASET EXPERIMENTS

we further extended our evaluation to additional datasets (StackOverflow, Taobao, and Taxi) by predicting both the next
event type and its time, while incorporating per-event Negative Log-Likelihood (NLL) (lower is better) and event type
prediction error rate (lower is better) as extra evaluation metrics, as well as RMSE. As shown in Table 13 below, our model
maintains strong performance across these baselines on almost all datasets, except for Taxi dataset. This also suggests that
StackOverlow and Taobao datasets may inherently exhibit delayed event-triggering effects (while Taxi dataset may not),
further validating our approach.



Table 9: Prediction tasks on synthetic datasets for varied and shared decay parameter. Here we focus on multi-modal
distributions.

Synthetic Datasets Shared β Varied β
Category Method NLL ↓ RMSE ↓ NLL ↓ RMSE ↓

GM-NLF 34.27 2.72 34.47 3.15
Non-Param. MMEL 34.55 2.85 34.98 3.27

Gibbs-Hawkes 33.86 2.64 34.50 3.04
RMTPP 32.67 2.77 34.19 2.90

THP 32.10 2.46 33.80 2.86
PromptTPP 32.52 2.40 33.67 2.79

Param. HYPRO – 2.37 – 2.83
MLE-SGL 33.78 2.57 34.52 3.22
GC-CGD 33.54 2.45 34.73 3.05

Ours* 30.42 2.25 32.25 2.68
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Figure 9: Learned impact α and delay effect δ distributions for Covid Policy dataset in Australia (left and bottom bar
plots) and 2D scatter plot for samples of these two parameters (top-right).

F LIMITATIONS AND BROADER IMPACTS
We assume that β is shared across all event types in our paper. In fact, estimating the decay parameter of the Hawkes process
is inherently challenging; only a limited number of studies [Santos et al., 2023] addressing this task, demonstrate that the
estimation difficulties relate to the noisy, non-convex shape of the log-likelihood of Hawkes process as a function of the
decay. Yet, our proposed model can easily extend to the estimation of the decay parameter distributions, but stability needs
to be improved. We can also attempt to perform our method on more forms of triggering kernels for Hawkes process to
validate the performance, such as Gamma kernel, Weibull-based kernel, power-law kernel, and so on.
Our proposed model can infer the time-lag distributions which are of scientific meaning and help trace the original causal
time that supports the root cause analysis. In healthcare, inferring the distributions of time lags and other parameters that
affect drug efficacy can assist clinicians in identifying the timing of drug effects. This information enables them to develop
more effective treatment strategies for patients. In a pandemic, our model can help decision-makers and citizens understand
governmental responses consistently, aiding efforts to fight the pandemic. However, this requires our algorithm to provide
high accuracy. In clinical applications, our method can serve as a reference for inexperienced novice doctors, providing
them with valuable guidance.



Table 10: Description of the treatment extracted from MIMIC-IV dataset.

Category Treatment

Vasoconstrictor

Epinephrine
Phenylephrine
Norepinephrine
Dobutamine
Dopamine
Vasopressin
Angiotensin II (Giapreza)

Antibiotic

Vancomycin
Caspofungin
Cefepime
Ceftriaxone
Gentamicin
Micafungin
Tobramycin
Piperacillin/Tazobactam

Auxiliary Treatment

Furosemide (Lasix)
Heparin Sodium
Invasive Ventilation
Packed Red Blood Cells
IV Immune Globulin (IVIG)
Acetaminophen-IV
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Figure 10: Learned impact α and delay effect δ distributions for Covid Policy dataset in France (left and bottom bar plots)
and 2D scatter plot for samples of these two parameters (top-right).



Table 11: Policies description of each code.

Category Code Explain

Containment & closure policies

C1 School closing.
C2 Workplace closing.
C3 Cancel public events.
C4 Restrictions on gatherings.
C5 Close public transport.
C6 Stay at home requirements.
C7 Restrictions on internal movement.
C8 International travel controls.

Health system policies

H1 Public information campaigns.
H2 Testing policy.
H3 Contact tracing.
H4 Emergency investment in healthcare.

Vaccination policies

V1 Vaccine prioritisation.
V2 Vaccine eligibility/availability.
V3 Vaccine financial support.
V4 Mandatory Vaccination.

Economic policies

E1 Income support.
E2 Debt/contract relief.
E3 Fiscal measures.
E4 International support.

Table 12: The implemented policies for Australia (AUS) and France in 2021-2022.

Nations
Policies

Containment & closure Health system Vaccination Economic
C1 C2 C3 C4 C5 C6 C7 C8 H1 H2 H3 H4 V1 V2 V3 V4 E1 E2 E3 E4

AUS ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
France ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 13: Experiments on three newly introduced real-world dataset. Note that we report per-event negative log-likelihood
(NLL ↓), event type prediction error rate (ER% ↓), and event time prediction root mean square error (RMSE ↓) for these
new real-world dataset.

Real-World Datasets StackOverflow Taobao Taxi
Category Method NLL ↓ ER % ↓ RMSE ↓ NLL ↓ ER % ↓ RMSE ↓ NLL ↓ ER % ↓ RMSE ↓

GM-NLF 2.88 59.20 1.39 1.68 57.81 0.84 0.50 23.62 0.68
Non-Param. MMEL 2.95 58.74 1.66 1.52 59.23 0.82 0.55 19.92 0.70

Gibbs-Hawkes 2.90 58.81 1.62 1.40 60.08 0.84 0.53 21.14 0.73
RMTPP 2.83 56.85 1.38 1.64 57.20 0.76 0.35 16.43 0.53

THP 2.68 52.73 1.38 1.22 53.38 0.73 0.48 13.28 0.46
PromptTPP 2.71 51.53 1.37 1.25 54.26 0.67 0.44 13.15 0.43

Param. HYPRO – 51.70 1.35 – 52.37 0.69 – 13.26 0.47
MLE-SGL 3.12 58.34 1.43 1.26 58.40 0.79 0.38 17.95 0.68
GC-CGD 3.04 57.36 1.40 1.38 55.89 0.73 0.32 17.22 0.64

Ours* 2.64 51.22 1.33 1.18 52.06 0.64 0.52 16.08 0.56
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