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ABSTRACT

Open-Set Domain Generalization (OSDG) aims to enable deep learning models
to recognize unseen categories in new domains, which is crucial for real-world
applications. Label noise hinders open-set domain generalization by corrupting
source-domain knowledge, making it harder to recognize known classes and re-
ject unseen ones. While existing methods address OSDG under Noisy Labels
(OSDG-NL) using hyperbolic prototype-guided meta-learning, they struggle to
bridge domain gaps, especially with limited clean labeled data. In this paper, we
propose Evidential Reliability-Aware Residual Flow Meta-Learning (EReLiFM).
We first introduce an unsupervised two-stage evidential loss clustering method to
promote label reliability awareness. Then, we propose a residual flow matching
mechanism that models structured domain- and category-conditioned residuals,
enabling diverse and uncertainty-aware transfer paths beyond interpolation-based
augmentation. During this meta-learning process, the model is optimized such that
the update direction on the clean set maximizes the loss decrease on the noisy set,
using pseudo labels derived from the most confident predicted class for supervi-
sion. Experimental results show that EReLiFM outperforms existing methods on
OSDG-NL, achieving state-of-the-art performance. The source code is available at
https://anonymous.4open.science/r/ERELIFM—CBCB.

1 INTRODUCTION

Open-Set Domain Generalization (OSDG) tackles both domain and category shifts, requiring models
to classify known categories while rejecting unseen ones. It is critical in dynamic applications such
as healthcare |Li et al.| (2020), security Busto et al.| (2020), and autonomous driving |Guo et al.| (2022),
where new domains and categories often arise. Recent works employ meta-learning Wang et al.
(2023)); Shu et al.|(2021) to simulate cross-domain tasks during training, improving adaptability to
novel environments. Yet, one can never expect the annotation to be 100% correct. Label noise further
complicates OSDG by compromising the reliability of knowledge learned from source domains. This
challenges existing OSDG approaches as introduced in [Peng et al.|(2024a). Although label noise has
been extensively studied in standard classification tasks, it remains largely unaddressed in OSDG.

Existing techniques, such as relabeling Zhang et al.|(2024); [Zheng et al.| (2020); |Li et al.[ (2024),
data pruning |[Kim et al.| (2021); [Karim et al.| (2022), and loss-based noise-agnostic methods |Xu et al.
(2024);|Yue & Jha|(2024) focus on refining training data by correcting mislabeled instances or through
selective optimization based on loss values. However, these methods do not address the additional
challenge of adapting to unseen domains and distinguishing novel categories, which is essential in
OSDG. Peng et al.| (2024a)) introduced novel benchmarks for the task of OSDG under Noisy Labels
(OSDG-NL) based on widely-used PACS [Li et al.|(2017) and DigitsDG Zhou et al.|(2020a)) datasets.
Related approaches from both the OSDG and noisy label learning fields are evaluated as baselines.

HyProMeta |Peng et al.|(2024al) serves as the first solution developed specifically targeting OSDG-NL,
where hyperbolic prototypes are used to guide meta-learning optimization. Label noise agnostic meta-
learning in HyProMeta is achieved by computing hyperbolic category prototypes to separate clean
and noisy samples based on hyperbolic distances, correcting noisy labels using nearest prototypes,
and augmenting training with a learnable prompt to enhance generalization to unseen categories.
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However, prototype-based classification in HyProMeta is limited by sensitivity to noise and feature
quality, which results in a negative effect on label noise diagnosis. Due to the limited number of clean
samples and limited label-clean/noisy partition capability, HyProMeta suffers from unsatisfactory
generalization performance, as less trustworthy a priori can be provided for the label-noise-agnostic
meta-learning.

In this work, we propose a new method, i.e., Evidential Reliability-Aware Residual Flow Meta-
Learning (EReLiFM). Our method introduces a new synergy between uncertainty-aware label reli-
ability modeling and domain-category transfer modeling, which has not been explored in OSDG-
NL. Unlike prior works that either (i) separate clean/noisy samples using feature-space prototypes
(HyProMeta) or (ii) rely on linear interpolation (MixUp) for augmentation, our method introduces a
fundamentally different paradigm. First, we propose Unsupervised Two-Stage Evidential Loss Clus-
tering (UTS-ELC), which leverages evidential loss trajectories to capture not only prediction errors
but also their associated uncertainties, enabling more reliable clean/noisy separation across domains.
Second, we introduce Domain and Category Conditioned Residual Flow Matching (DC-CRFM), a
flow-matching strategy conditioned on domain and category labels, which learns structured residuals
rather than interpolations, thereby modeling diverse transfer paths between categories and domains.
Finally, by integrating these two components within a meta-learning framework, we achieve princi-
pled decoupling of clean and noisy supervision, which is absent in prior methods. This combination
enables EReLiFM to provide both uncertainty-aware noise diagnosis and diverse domain-category
transfer modeling capabilities that neither clustering nor augmentation methods alone can offer. Our
approach achieves state-of-the-art results on the PACS |Li et al.|(2017)), DigitsDG|Zhou et al.|(2020a)),
and TerraINC [Beery et al.| (2018)) datasets, showing its effectiveness in providing diverse cues to
ensure correct optimization.

2 RELATED WORK

Noisy Label Learning. Accurate labels are crucial for deep learning models to acquire reliable
information [Xu et al.| (2024), while mislabeled data can mislead the optimization (Cheng et al.
(2020). To combat label noise, various strategies have been proposed: label corruption probabilities
modeling|Xia et al.[{(2019); Tanno et al.|(2019); Zhu et al.[(2021b}2022); |L1 et al.[(2022), re-weighting
samples to adjust loss contributions |Liu & Tao|(2016), and detecting noisy labels before training|Song
et al.| (2019); Wei et al.| (2022)); (Chen et al.[(2021). TCL Huang et al. (2023) applies contrastive
learning and Gaussian Mixture Models. Furthermore, noise-robust loss functions [Liu & Guo|(2020);
Ma et al.| (2020); Zhu et al.[(2021a) and regularization tricks Wei et al.|(2021)); Cheng et al.|(2023); Liu
et al.|(2022) enhance model resilience. Methods like BadLabel|Zhang et al.|(2024)) and LSL |Kim et al.
(2024)) leverage label-flipping attacks and label structure, respectively. Notably, HyProMeta |Peng
et al.|(2024a) first introduces two benchmarks for the challenging OSDG-NL.

Open-Set Domain Generalization. Open-Set Domain Generalization (OSDG) presents two in-
terrelated challenges: domain generalization Wang et al| (2020); [Nam et al.| (2021)); Zhou et al.
(2020c); |Guo et al.| (2023)); Zhou et al.| (2020b); [Li et al.| (2021a3b); Dong et al.| (2024b), which
trains models to transfer across source domains and the unseen, and open-set recognition [Wang
et al.| (2024); [Zhao et al|(2023); Bao et al|(2021); |Geng et al.[|(2021); [Peng et al.|(2024c), which
aims to reject unknown categories with low confidence scores [Fu et al.| (2020); |Singha et al.| (2024);
Bose et al.[(2023); Chen et al.| (2022)); |Li et al.| (2018)); Zhao & Shen| (2022). Although typically
studied separately, OSDG explores strategies to address both challenges simultaneously. Previous
work has investigated metric learning |[Katsumata et al.| (2021, domain-augmented meta-learning |[Shu
et al.| (2021), and GAN-based data synthesis Bose et al.|(2023) to boost model robustness. Recently,
formalized OSDG protocols Wang et al.| (2023)) have demonstrated the effectiveness of meta-learning
in handling OSDG. HyProMeta |Peng et al.|(2024a) focuses on hyperbolic prototypes to distinguish
label-clean/noisy data, but is limited by the information scarcity of the limited label-clean samples.
Multi-modal open set domain generalization task is for the first time proposed by |Dong et al.| (2024a)).
Gupta et al.| (2025) explore Low-Shot Open-Set Domain Generalization (LSOSDG) task and pro-
pose masked cross-modal translation and multi-modal Jigsaw puzzle to achieve self-supervision.
Flow-matching-based approaches|Dao et al.| (2023)); |Gat et al.| (2024); Klein et al.| (2023)); \Chen &
Lipman|(2023)); [Eijkelboom et al.|(2024)) have gained attention for their effectiveness in optimal trans-
portation between distributions and real-world applications. We propose EReLiFM, which integrates
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Figure 1: An overview of our proposed method. We first train the backbone and record the epoch-
wise loss per sample. We cluster these losses into V,, groups without a predefined number. Cluster
averaging yields a new loss set per domain and category. GMM then performs binary separation,
identifying the lower-loss cluster as the label-clean set, which trains the residual-conditioned flow
matching to generate domain and categorical residuals. Finally, the partitioned dataset and trained
model are integrated into our label noise aware meta learning (detailed in Alg. E[)

evidential-loss-based clean/noisy partitioning with domain- and category-conditioned residual flow
in a meta-learning framework, achieving significant improvements over existing OSDG-NL methods.

3 METHODOLOGY

3.1 TASK DESCRIPTION

In this task, we consider a set containing Ny domains D = {d,da, ..., dy, } and adopt the leave-
one-out setting from Wang et al.| (2023), where a single domain d; is reserved for testing, while
the remaining Dg = D/{d;} serve as source domains during training. The dataset’s label set )/
consists of Vi (known categories in training) and ), (unseen categories in test), where ) = Y, U ).
For each pair of the sample x; and label y; in the source domain, y; is converted to other known
categories according to the different label noise settings to simulate the annotation error. Our aim is
to achieve the best optimization when label noise exists in open-set domain generalization.

3.2 ERELIFM

In this work, we propose Evidential Reliability-Aware Residual Flow Meta-Learning (EReLiFM) to
deal with noisy labels within the realm of OSDG, which will be elaborated in this subsection.

Our method addresses OSDG under noisy labels through a three-stage design that improves data
reliability, diversity, and supervision quality. First, we separate clean from noisy samples using UTS-
ELC, which relies on evidential-loss trajectories and uncertainty rather than embedding similarity,
enabling a more reliable partition under domain shift. Next, we enrich and diversify the clean subset
with DC-CRFM, a flow-based residual modeling approach that synthesizes realistic cross-domain
and cross-category variations to expand the effective training distribution. Finally, we optimize a
meta-learning objective that decouples clean and noisy supervision: clean and augmented samples
drive the meta-train updates, while noisy samples are handled in meta-test using evidential pseudo-
labeling to prevent overfitting to incorrect annotations. Together, these stages form a coherent
filter—enrich—decouple pipeline that achieves robust generalization in the presence of substantial label
noise. The whole workflow of our proposed approach is depicted in Figure[T]

Unsupervised Two-Stage Evidential Loss Clustering. OSDG leverages reliable cues from source
domains and known categories to recognize unknown categories in unseen domains
(2024b); |Wang et al.| (2023)). However, since label noise reduces the scale of reliable data, most of
the existing works in the open-set domain generalization field deliver limited performance under
label noise. Recognition of the data with label noise is critical to handle label noise for providing
reliable optimization direction guidance for the deep learning model during optimization. Existing
work, i.e., HyProMeta Peng et al.| (20244)), relies on clustering on embeddings for label noise agnostic
learning, which is sensitive to outliers and feature quality, delivering limited performance. In this
work, we optimize this process by proposing Unsupervised Two-Stage Evidential Loss Clustering
(UTS-ELC), which separates label-clean/noisy data from a training dynamics perspective. We rely
on evidential training dynamics instead of embeddings to achieve label noise diagnosis to avoid the
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sensitivity to outlier embeddings. Early works|Han et al.|(2018)); [Liu et al.|(2021)) adopt multi-model
joint optimization strategies based on the small-loss criterion. However, such approaches do not
explicitly achieve a clear separation between clean and noisy labels. More recently, |Yue & Jha
(2024) introduce an unsupervised clustering strategy on recorded training dynamics to perform this
separation. In contrast, our experiments show that a domain- and category-aware evidential loss leads
to a more reliable distinction between clean and noisy sets under the open-set domain generalization
scenario. Evidential loss models both evidence and uncertainty, providing a clearer training signal
for separating clean and noisy samples. Clean samples quickly accumulate high evidence and low
uncertainty, producing stable, low-loss trajectories. Noisy samples yield inconsistent evidence,
leading to higher uncertainty and more volatile losses. Because evidential learning penalizes both
errors and unwarranted confidence, mislabeled samples incur larger, more persistent penalties. In
contrast, standard cross-entropy lacks an uncertainty term and cannot reliably distinguish samples
whose losses overlap or fluctuate early in training. Optimized as a Dirichlet-based belief update,
evidential loss pushes clean samples toward high-evidence regions while noisy samples stay in
low-evidence regimes, creating a geometric margin in trajectory space that clustering methods can
exploit. Next, we describe how to achieve UTS-ELC in detail.

To mitigate the detrimental impact of label noise on the residual flow matching design, we first
categorize the data based on their recorded evidential loss trajectories, as samples trained with
incorrect labels typically exhibit higher loss, in accordance with Co-Teaching Han et al.| (2018)).
While UTS-ELC builds on the intuition of loss trajectory clustering, our key novelty is the use of
evidential uncertainty and domain/category-specific cues, which provide a more reasonable and
reliable separation of clean/noisy data under OSDG.

Initially, we train the backbone network on the entire dataset, despite the presence of label noise,
while employing cyclic learning rates to improve convergence stability. Furthermore, we integrate
evidential learning to enhance the model’s generalization capability as Eq. (I). Evidential learning
enables models to estimate both predictions and their associated uncertainty, leading to more reliable
and calibrated predictions.
c
Lpr =Y lyi(log Spr — log(Ma(x); +1))], (1)
i=1

where Sg1, = Zle(Dir(ppreﬂMa(x)i + 1)) denotes the strength of a Dirichlet distribution, M,
indicates the backbone, y; is the one-hot annotation of sample x from class %, py,..q is the predicted
probability, and C is the class number.

During training, the evidential learning loss is recorded for each sample at every epoch. For a given
sample x, the recorded loss is represented as 1 = [I1, o, ..., Iy, ], where N, denotes the total number of
epochs. We then construct a new feature set based on the recorded losses for each sample, formulated
as X = {l;|x; € T}, where T represents the entire training set. To differentiate samples with and
without label noise, we apply the unsupervised clustering method, FINCH [Sarfraz et al.|(2019), to the
loss feature set, facilitating an initial hierarchical clustering process, according to Eq. (Z) and Eq. (3).

Q) = {wi,ws, ...,wn, } « FINCH(XY), 2)

Q={Qyld € Ds,y € Wi}, 3

where Q represents the complete set of partitions, and X’} and €2} denote the loss set and the set of
unsupervised cluster partitions for domain d and class y, respectively.

Next, we construct a new set by computing the average of the samples within each domain and
category for each partition according to Eq. 4]

RY = L (X)), w2 (X)), oo (e, (X))}, 4
where £(-) denotes the averaging operation, IV,, denotes the total number of partitions clustered by
the first level results on FINCH |Sarfraz et al.|(2019), and Xé’ represents the resultant score set.
Finally, a Gaussian Mixture Model (GMM) based classifier (with two Gaussian components) is

applied to perform a binary classification on the score set. This facilitates a threshold-free partitioning
of the training data. The GMM class with the lower average loss is identified as the label-clean set

(ie., Xéy’”)) and the other is denoted as noisy set (i.e., féy’")), as Eq. .
2P 2P = GMM(Ay), s.t. p(X) < p(XP). ©)
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Algorithm 1 Training with EReLiFM.

Require: Dg: source domain set; Vi: known category set; M, : neural network backbone; M., :
flow matching model; Lo g: cross entropy loss; Lg1.: evidential learning loss; 7 : dataset
with label noise; ry: random Gaussian noise.

1: Dataset separation, Teiean, Tnoisy <~ UTS-ELC(T).
2: Train M., on 7Tjeqn Using domain and category residuals, conditioned by classes and domains.
3: while not converged do

> Meta-Training Stage N

Biican < Iter(Teiean ), with domain label and category label y4 and y..

Sample §. < V/{yc}. and g4 + Ds/{ya}.

Ry < M, (ro, (Ye, ¥e), (Yd, ¥a)), generate domain residual.

By + Add(B jean, Rq), merge domain residual.

9: Assign y. — yqr for By,

10: R, < M, (no, (Y¢,¥e), (Yd,¥a)), generate category residual.

11: B, + Add(B.iean, Re), merge categorical residual.

12: Assign y, — y¢r for B, where y, denotes an additional class beyond known classes.

13: Update parameters based on Ly, —train = Ae * Lo (Beican, Ye) + Aar * Lo (Bar, Yar) +

Aer ¥ LOE (Bcrv YCT)'

14: > Meta-Test Stage <

15: Boisy < Iter(Tnoisy) With category label y ..

16: Ypseudo = ArgMax(Ma (Bnoisy))-

17: Emftest = >\p * »CEL(Bnoisy: ypseudo) + )\nc * »C'CE (Bnoisyv ync)

18: UpdateParameters(/Jm,test + ,Cm,tmm). // Final Parameter Update

A A S

We then obtain the corresponding dataset according to the aforementioned partition manner, where
we use Teieqn and Troisy to denote the clean set and noisy set, respectively.

Domain and Category Conditioned Residual Flow Matching. Despite the aforementioned eviden-
tial loss-based separation strategy, training remains challenged by the scarcity of reliably annotated
data. HyProMeta Peng et al.[(2024a)) addresses this issue through cross-category MixUp and learnable
prompts, thereby expanding the data scope to stabilize training. Yet, the diversity remains limited,
since MixUp models only a single interpolation path between source and target data. To mitigate
domain shift, enhance the model’s sensitivity to diverse category transfers, and expand the scale of
reliably annotated training data, we introduce Domain and Category Conditioned Residual Flow
Matching (DC-CRFM). DC-CRFM generates diverse transfer paths by reconstructing domain- and
category-residuals from random noise, conditioned on both domain and category labels. In this
way, DC-CRFM explicitly models transitions across categories and domains, boosting generalization
during training. Importantly, we train DC-CRFM on the clean subset identified by UTS-ELC. Unlike
MixUp, which interpolates between samples, DC-CRFM learns structured residuals across domains
and categories. As demonstrated in our ablations (Tab. [7), this design yields significant improve-
ments over MixUp, evidencing that DC-CRFM is fundamentally distinct from interpolation-based
augmentation.

Flow matching is a technique in machine learning that aligns feature distributions between source and
target domains |Lipman et al.|(2023). It appears as an efficient alternative compared with diffusion
models Ho et al.|(2020) for data generation, where methods leveraging straight flows are introduced
by|[Liu et al|(2023).

In our work, we propose a domain and category conditioned residual flow matching strategy to enrich
the paths across different domains and categories based on a clean label set 7j¢q,. Domain residuals
represent the visual differences between samples of the same category from different domains, while
category residuals capture discrepancies between different categories within the same domain. We
use our proposed conditioned flow matching to generate category and domain residuals.

To enrich cross-domain and cross-category transfer, we propose Domain and Category Conditioned
Residual Flow Matching (DC-CRFM), a conditioned variant of flow matching that learns residual

distributions rather than directly generating samples. Given a source sample I, a target sample I, and

a condition q (e.g., source—target domain/category pair), REM draws a residual ry = I; — I ~ pﬁq)
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via a probability-flow ODE driven by a conditioned vector field fy. Training is depicted in Eq.[6]

Lrrm = E(q,ro,r1, 1) [1fo(re, t,00(q)) — (r1 — 1) 3], 10 = (1 —t)ro + try, (6)

where ro ~ A(0, 1) (Gaussian distribution), r1 ~ Pt~ U (0, 1) (normal distribution), and 1 (q)

encodes the condition. At inference, integrating % = fo(r, ¢,4(q)) from noise ro~A (0, 1) yields

r~ pgfﬂ, which is then added to I to form an augmented sample I,,s = I + r. This design captures

structured residual transitions between domains and categories, in contrast to simple interpolations
such as MixUp|Zhou et al.| (2020c); Peng et al.|(2024a).

Evidential Reliability-Aware Residual Flow Meta-Learning. Meta-learning has been proven
effective for open-set domain generalization by constructing tailored meta-tasks to promote cross-
domain generalization [Wang et al.| (2023); |Peng et al.| (2024bga). Building upon this insight, our
main training framework adopts a meta-learning paradigm. Specifically, we define a new meta-
training task over UTS-ELC-selected clean data and DC-CRFM-augmented clean data based on
UTS-ELC selection. The optimized model from meta-training is then used to improve optimization
on the noisy subset during meta-testing. Here, DC-CRFM plays a central role by enriching label-
clean data with diverse category/domain transfer paths. Samples from the noisy set are supervised
with high-confidence pseudo-labels via evidential learning, and regularized by cross-entropy loss
against the original labels, thereby reinforcing consistency with the label-clean set. Compared with
HyProMeta |Peng et al.|(2024al)), our meta-task differs in both meta-train and meta-test phases. In the
meta-train stage, we exclusively rely on DC-CRFM augmented clean data, avoiding any optimization
over noisy samples. In the meta-test stage, we focus solely on the noisy set: pseudo-labels are
assigned via maximum-confidence predictions, and supervision is defined by a competition between
pseudo-labels and original labels, as UTS-ELC does not guarantee perfect separation. To further
account for uncertainty, evidential supervision is imposed on the pseudo-labels.

Through this process, we obtain a flow matching model that generates domain and category residuals
while distinguishing clean from noisy data. These components are integrated into meta-learning for
denoising and improving generalization in OSDG, as outlined in Alg.[T]

We first separate clean and noisy data using UTS-ELC, then train M, on 7gcq, With residual
augmentation. In the meta-train stage, for each Bjq., with labels (y.,yq), we sample (Y., ¥q)
to generate residuals, producing B, (domain residual, supervised by (y.,y4)) and B, (category
residual, supervised by an additional class y,). We assign y, — y. for B.,.. The model is updated
with ﬁmftrain = )\c * £CE(Bclean7 YC) + /\dr * ‘CCE (Bdr7 ydr) + )\cr * ECE(BCT7 ycr>'

In the meta-test stage, noisy samples B,,,;,, are optimized via competition between the original
label y .. and a pseudo-label ypscudo = ArgMax(Ma(Broisy)), with evidential regularization. The
meta-test loss is calculated as L, _iest = Ap * LEL(Bnoisy, Ypseudo) + Ane * Lou(Bnoisys Yne)-

An auxiliary cross-entropy term ensures that useful cues can still be extracted from misclassified
clean samples. The final loss combines both stages, L, ¢rqin + Lm-test, €nsuring robust optimization
with reliable supervision. This pipeline strengthens cross-domain generalization while also improving
recognition of out-of-distribution categories. Overall, clean/noisy separation via evidential training
dynamics enables reliable residual flow training, while flow-augmented clean data and noisy samples
are optimized separately in meta-train and meta-test to ensure robust learning.

4 EXPERIMENTS

4.1 NoOISY LABEL SETTINGS

We adopt the setting of HyProMeta |Peng et al.[(2024a) for OSDG-NL, incorporating symmetric
and asymmetric label noise. Symmetric noise randomly reassigns class labels at predefined rates
(20%, 50%, 80%) without considering semantics. In contrast, asymmetric noise mislabels samples
according to semantic similarity using BERT Devlin et al.|(2019) for textual feature extraction and
cosine similarity for class similarity computation. The asymmetric noise level is set to 50%.
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Photo (P) Art (A) Cartoon (C) Sketch (S) Avg
Acc  H-score OSCR | Acc H-score OSCR | Acc H-score OSCR | Acc H-score OSCR | Acc H-score OSCR

5832 5921 51.72 | 53.66 4828 4291 | 46.78  38.29 3174 | 31.55  22.88 2430 | 47.58  42.17 37.67
64.30  70.87 61.99 | 51.66 52.10 4540 | 55.65 44.88 38.64 | 3558 2235 25.86 | 51.80  47.55 42.97
5493 5573 48.24 | 5372 53.25 46.55 | 5023 5536 4570 | 31.55 21.84 28.38 | 47.61  46.55 42.22
5347 5613 4722 | 5447 4746 4348 | 5327 5397 44.33 | 24.01 16.75 1152 | 46.31  43.58 36.64
5897 5893 52.15 | 49.97  48.17 39.20 | 47.50  44.07 34.63 | 30.59 1244 16.81 | 46.76  40.90 35.70
55.57 4233 3827 | 41.78  43.09 3295 | 4575 4044 3326 | 3327  12.11 1546 | 3833 3449 29.99

6252 67.96 59.46 | 5235 4529  41.09 | 50.13  44.47 37.01 | 29.56  13.49 2270 | 48.64  42.80  40.07
63.00  70.61 61.18 | 58.08  40.01 44.97 | 5833  53.37 48.89 | 22.84 9.69 16.48 | 50.56  43.42 42.88
60.26  69.11 59.35 | 58.66  55.83 49.03 | 5807 51.18 45.08 | 2587  18.48 16.40 | 37.22  48.65 4247
59.94  69.23 58.69 | 49.59 48.04  40.04 | 3744 3432 25.96 | 19.10  20.72 12.86 | 41.52  41.52 34.39
60.10  65.39 56.89 | 55.16  44.70  44.01 | 5931  47.35 39.93 | 3454 1749 20.86 | 52.28  43.73 40.42
6220  52.63 5323 | 5460 54.05 46.51 | 59.31  52.02 47.65 | 3454 2822 21.44 | 52.66  46.73 41.96
6220 5747 5393 | 5460 53.10 46.38 | 59.31 5370  48.68 | 3454 3271 24.06 | 52.66  49.25 42.76
65.19  58.09 57.84 | 53.28 47.07 4036 | 57.56  52.17 4595 | 3752  28.83 2231 | 5339  46.54 41.62
65.19  63.82 60.63 | 5328  46.70 39.80 | 57.56  50.58 45.63 | 37.52  30.61 26.55 | 53.39 4793 43.15
66.00  76.84 66.00 | 59.91 56.89 4993 | 59.41 5647 5042 | 39.16 34.76 2646 | 56.12  56.24  48.20

82.39 81.52 78.68 ‘ 77.61 66.14 65.37 ‘ 65.39 55.26 65.39 ‘ 58.11 44.56 38.15 ‘ 70.88 61.87 61.90
Table 1: Results (%) of PACS on ResNet18. The open-set ratio is 6:1 and symmetric label noise is
with ratio 20%.

Ours

Photo (P) Art (A) Cartoon (C) Sketch (S) Avg
Method Acc  H-score OSCR | Acc H-score OSCR | Acc H-score OSCR | Acc H-score OSCR | Acc H-score OSCR

54.68 5240  46.51 | 52.78  22.65 30.94 | 47.19  37.73 34.89 | 26.33 9.83 7.62 | 4525 30.65 29.99
48.38  38.12 3355 | 3571 3233 2447 | 3894  26.88 18.60 | 2693  27.59 18.96 | 37.49  31.23 23.90
46.20  57.45 45.07 | 4534 47.29 37.89 | 3517 4335 32.14 | 2840 2695 15.71 | 38.78  43.76 3270
5252 56.07 50.55 | 46.84 3191 30.35 | 28.47  28.28 19.97 | 30.83  25.63 2478 | 39.67 3547 31.41
4136 30.83 20.27 | 4228  39.78 31.40 | 4239  37.59 30.89 | 26.90 1540 742 | 3823 3090  22.50
55.57 4233 3827 | 39.21 2781 2493 | 33.01 2781 2149 | 2552 6.65 1341 | 3833 26.15 24.53

5541 6240 54.17 | 4572 4450 3451 | 4373 3844 30.13 | 27.30 7.65 20.95 | 43.04  38.25 34.94
60.66  63.57 56.75 | 55.09  40.01 4497 | 4652 39.85 32.10 | 32.02 2440 17.09 | 48.57  41.96 37.73
59.37  68.02 58.54 | 56.49  50.15 44.92 | 4678  46.02 3691 | 23.69 2432 16.40 | 46.58  47.13 39.19
5858  67.77 56.25 | 45.78 4139 38.30 | 3419  33.89 2395 | 2043 1415 6.81 | 39.75  39.30 31.33
54.04 6225 30.23 | 41.78  37.68 27.03 | 47.09  26.67 27.03 | 30.88  22.81 17.09 | 4345 3735 25.35
60.58 5137 4429 | 5328 51.88  44.12 | 50.54  49.07 42.84 | 36.67  28.00 20.83 | 50.27  45.08 38.02
60.58 4899 4325 | 5328 37.32 33.99 | 50.54  44.08 39.39 | 36.67  30.58 21.83 | 50.27  40.24 34.62
61.15 6220 5497 | 52.47 4390 37.71 | 49.66  48.05 40.75 | 3439  28.62 2098 | 49.42  45.69 38.60
61.15 2532 48.79 | 5247  42.61 36.20 | 49.66  49.13 41.34 | 3439 2133 21.70 | 49.42 3460  37.00
HyProMeta Peng et al. (2024 65.19  73.38 63.79 | 60.85  52.51 46.97 | 51.99 4955 4171 | 39.06 3353 23.44 | 5427 5224 43.98

8191 78.14 71.52 ‘ 70.29  61.86 59.58 ‘ 61.89  50.00 45.53 ‘ 49.22 37.69 29.34 ‘ 6583  56.92 52.99
Table 2: Results (%) of PACS on ResNet18. The open-set ratio is 6:1 and symmetric label noise is
with ratio 50%.

Photo (P) Art (A) Cartoon (C) Sketch (S) Avg

Method ‘ Acc  H-score OSCR | Acc H-score OSCR | Acc  H-score OSCR‘ Acc  H-score OSCR | Acc H-score OSCR

31.58 2581 17.39 | 27.08  26.60 1645 | 27.69  27.17 17.66 | 21.20 8.52 14.87 | 26.89  22.03 16.59
17.21 12.49 10.18 | 24.27  12.67 13.87 | 22.85 12.99 10.85 | 19.66 4.31 11.63 | 21.00  10.62 11.63
2262  14.11 22,62 | 1595 14.50 10.16 | 19.39  24.34 1495 | 26.13  14.14 17.96 | 21.02  16.77 16.42
22.05 19.53 1527 | 2477  23.65 17.53 | 27.13 2249 14.76 | 16.03 12.86 10.00 | 22.05 19.63 14.39
18.58  22.82 13.89 | 23.64  16.71 1456 | 1537 1584 7.94 | 21.68 1.92 826 | 19.82 1432 11.16
24.39 8.71 9.41 | 30.08  24.67 17.85 | 20.94  13.16 1221 | 21.76 2126 11.74 | 2429  16.95 12.80

38.77 2379 1588 | 22.12  20.58 11.40 | 23.98 1445 8.98 | 2576 1645 1171 | 27.66  18.82 11.99
3118 19.56 18.49 | 27.64 6.64 12.81 | 2078 21.43 12.81 | 21.65  22.00 7.90 | 2531 17.41 13.00
33.04 9.18 12.11 | 2245  19.28 11.18 | 28.16  23.38 13.64 | 23.19 4.47 16.40 | 26.71 14.08 13.33
18.09  18.69 10.19 | 22.51  20.22 11.97 | 23.67  21.96 11.89 | 19.75 1220 1529 | 21.01 18.27 12.33
25.28 2205 16.88 | 24.70  17.68 1290 | 21.61  20.39 11.14 | 2444 1239 15.13 | 24.01 18.13 14.01
30.61 15.03 21.20 | 2233 2247 1420 | 29.55  26.02 14.96 | 23.11 15.61 874 | 2640 1978 14.78
30.61 12.82 11.92 | 2233 21.15 1145 | 2955  22.67 13.82 | 23.11 8.34 747 | 2640 16.25 11.17
40.06  39.36 34.58 | 19.51 3.89 530 | 2940 2625 1844 | 2544 2373 18.01 | 28.60  23.31 19.08
40.06  15.06 23.84 | 19.51 12.30 11.93 | 29.40  29.83 18.73 | 2544 2637 17.71 | 28.60  20.89 18.05
47.01 3498 43.29 | 2877  25.28 20.07 | 31.40  28.38 18.59 | 26.72  25.04 18.40 | 33.48 2842 25.09

54.04  48.50 47.16 ‘ 3283 3452 24.04 ‘ 4379 3794 29.13 ‘ 23.83  29.26 19.75 ‘ 38.62  37.56 30.02
Table 3: Results (%) of PACS on ResNet18. The open-set ratio is 6:1 and symmetric label noise is
with ratio 80%.

Photo (P) Art (A) Cartoon (C) Sketch (S) Avg

Method ‘ Acc  H-score OSCR‘ Acc  H-score OSCR‘ Acc  H-score OSCR‘ Acc  H-score OSCR | Acc H-score OSCR

15.83 3.33 10.69 | 3521  30.54 20.96 | 2646  24.24 14.88 | 20.35 1.20 2.63 | 2446 14.83 12.29
4443 37.82 2894 | 38.65 39.48 23.11 | 3192 20.12 1349 | 2324 1125 429 | 3456 27.17 17.46
37.16  44.56 3570 | 26.89  31.98 2477 | 31.10  34.52 25.33 | 13.88 16.21 20.38 | 27.26  31.82 26.54
4620 4231 38.82 | 44.28  42.69 3441 | 4270  35.22 26.28 | 32.77 2.77 22.37 | 4149 30.75 30.47
27.30  19.63 14.32 | 2427 1156 13.18 | 25.63  14.77 12.04 | 22.21 16.31 25.07 | 24.85 15.57 16.15
17.37  23.20 14.13 | 2545 2444 15.04 | 20.06 9.68 11.93 | 20.48 2.60 324 | 2084 14.98 11.09

38.69  28.90 31.88 | 37.71  29.82 19.55 | 33.99 2457 16.20 | 20.56  26.92 17.79 | 3274 27.55 21.35
45.15  49.11 39.31 | 37.59  34.82 2443 | 4296  42.10 2443 | 2600 1502 15.65 | 37.93 3526 25.96
5121 4025 45.11 | 4221 3224 26.34 | 4446  38.66 30.80 | 24.36 1.32 15.99 | 40.56  28.12 29.56
4047 14.21 35.14 | 32.15 18.26 9.48 | 20.06 12.52 8.53 | 2048 11.83 547 | 2829 1420 14.66
49.76 41.10 4039 | 3596  36.32 26.54 | 41.72  32.04  23.55 | 25.58 4.81 23.55 | 3825 2857 28.51
46.20 4501 37.13 | 3746  29.69 2292 | 36.41  30.80  20.83 | 31.07 23.88 1329 | 37.79 3235 23.54
46.20 4897 39.86 | 37.46  20.65 17.95 | 36.41  32.06 22.69 | 31.07 2523 1523 | 37.79  31.73 23.93
5493 56.65 4844 | 3158  30.11 21.19 | 37.13 3223 22.83 | 2544 2373 18.01 | 37.27  35.68 27.62
5493 3036  40.79 | 31.58  30.97 1873 | 37.13 3256 2321 | 2544 2637 17.71 | 3727 30.07 25.11
51.62  61.33 49.38 | 4528 41.74 3572 | 49.25  49.63 39.63 | 38.50 3741 2648 | 46.16  47.53 37.80

69.22 66.92 64.07 ‘ 56.35 47.20 42.76 ‘ 59.46 48.91 42.14 ‘ 47.55 41.62 35.03 ‘ 58.15 51.16 46.00
Table 4: Results (%) of PACS on ResNet18. The open-set ratio is 6:1 and asymmetric label noise is
with ratio 50%.

Ours

Ours

Ours

4.2 DATASETS AND METRICS

We adopt OSDG protocols from MEDIC |Wang et al.| (2023)) and HyProMeta

where training domains share the same categories. Evaluation is on three benchmarks: PACS
) ( photo, art-painting, cartoon, sketch), DigitsDG (mnist, mnist-m,
svhn, syn), and TerraINC Beery et al.| (2018)) (reported in Tab. [16|in appendix). We follow the
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20% sym 50% sym 80 % sym 50% asym
Method Acc  H-score OSCR | Acc H-score OSCR | Acc H-score OSCR | Acc H-score OSCR
TCL|Huang et al. 5247  55.28 46.85 | 50.19  43.92 42.02 | 2331 18.44 12.26 | 3891  39.94 30.98
NPN|Sheng et al.| 4 47.68  44.04 38.51 | 3206 29.07 23.83 | 1795 11.12 11.42 | 2554  17.72 13.20
BadLabe . 49.06  50.57 46.04 | 39.83  45.65 36.62 | 2092  22.11 19.63 | 32.27 41.03 31.86
DISC|Li et al.| 3 5221  40.11 4293 | 36.73 3436 27.93 | 22.77 9.89 12.67 | 2899  13.55 11.21
LSL 2024 5296  48.54 49.12 | 50.19  42.60 40.80 | 23.39 1255 12.69 | 35.84 23.88 19.73
PL! 1202 5294  47.03 46.62 | 42.17 3745 35.33 | 2640  15.88 9.72 | 2478  23.62 17.48
ARPL Bendale & Bo 5535  48.84 4835 | 45.28  39.26 36.52 | 21.62 1648 14.68 | 38.81  36.58 30.08
ODGNet|Bose et al. (202 54.89  50.24 4836 | 55.12 5343 4831 | 20.92  15.08 8.27 | 40.69  39.08 31.92
MLDG Shu et al.| 5530  50.06 4892 | 55.89  52.98 49.64 | 25.77  21.04 15.74 | 4450 4646  40.70
SWAD |Cha et al.|(2021) 53.59 5458 4898 | 5251  55.16 47.03 | 23.75  19.62 13.90 | 40.13 4334 33.77
MixStyle[Zhou et al. [(2020c] 53.00 45.66 43.59 | 4120 33.14 30.27 | 24.00  14.97 1535 | 43.56  39.84  36.88
MEDIC-c! (20 56.76  52.64 47.99 | 53.61  48.99 47.08 | 28.97  23.03 16.36 | 4242 4323 35.49
MEDIC-bcl g (2023] 56.76  48.54 4845 | 53.61  40.86 38.67 | 2898 1843 13.10 | 4242 40.01 33.31
EBiL-HaDS-cls|Peng et al.[(2024b 56.24 4948  46.67 | 52.68 4577 4439 | 30.87 14.26 18.71 | 4049  40.39 32.21
EBIL-HaDS-bcls|Peng et al.[(2024b) | 56.24 4726  46.50 | 52.68 3891 35.68 | 30.87 2535 16.90 | 4049  38.72 27.29
HyProMeta|Peng et al. (2024 59.65  60.06 54.97 | 58.68 59.33 5291 | 37.06  29.09 25.26 | 49.99 4847 4344

Ours 73.07 6100 6124 | 7180 6079 6321 | 41.63 3675 3496 | 5505 5561  50.60
Table 5: Results (%) of PACS on ViT-Base. The open-set ratio is 6:1. The average domain perfor-
mance is reported.

20% sym 50% sym 80% sym 50% asym

Method Acc  H-score OSCR | Acc H-score OSCR | Acc H-score OSCR | Acc H-score OSCR
NPN|Sheng et al. (2024} 3849  23.03 2943 | 42.66 2191 28.83 | 17.43 8.02 933 | 5839 29.98 42.38
BadLabel|[Zhang et al. [(2024] 46.31 38.81 4412 | 3670 2694 3337 | 1744 5.40 830 | 38.05 33.01 33.26
ODGNet, (2023 68.88  40.87 51.07 | 60.90 30.62 43.12 | 17.17 11.31 9.52 | 4596 2646 32.41
MLDG (2022 65.66 3050 4993 | 4495 3385 3231 | 17.23 591 9.00 | 57.19 2938 41.57
MEDIC-cls|Wang ( 20.09 1223 894 | 17.17 1021 5.51 18.21 7.34 883 | 1644 11.10 7.37

MEDIC-bcls 12023 20.09  13.65 6.76 | 17.17  12.80 528 | 17.73 747 830 | 1644 1455 6.98

EBiL-HaDS-cls g 1.1(202 63.96  43.81 49.39 | 5393 3234 39.33 | 15.56 9.36 745 | 56.07 3575 38.38
EBiL-HaDS-bcls! g 63.96 4564 4536 | 5393 31.73 2842 | 15.56 9.52 731 | 56.07 38.18 41.37
HyProMeta Peng et al. |( 72.00 43.28 55.34 | 6144 3579 4410 | 2032 1797 10.63 | 6526 42.54  48.79

Ours ‘ 76.60  52.84 61.34 ‘ 62.78  44.94 47.19 ‘ 20.76  18.12 11.57 ‘ 67.54  41.97 50.97
Table 6: Results (%) of DigitsDG on ConvNet. The open-set ratio is 6:4. The average domain
performance is reported.

leave-one-domain-out setting Wang et al.[(2023), using OSCR as the primary metric, with H-score
and Acc as secondary metrics.

4.3 IMPLEMENTATION DETAILS

The experiments are all conducted by PyTorch2.0 on one NVIDIA A100 GPU. Training is limited
to 1 x 10* steps, utilizing the SGD optimizer with a learning rate (LR) of 1 x 10~3 and a batch
size of 16. A learning rate decay of 1 x 107! is applied after 8 x 103 meta-training steps. During
the residual flow matching training, DiT [Peebles & Xie|(2023) is utilized as the backbone, where
the training batch size is set as 128. NN, is chosen as 10. Regarding the feature learning backbones,
the ConvNet [Zhou et al. (2021)) is employed as the backbone network on the DigitsDG dataset,
following|Zhou et al.[(2021). EReLiFM is only applied during training. In inference, no DiT structure
is required, and the prediction relies solely on the chosen backbone and a lightweight classification
head. This ensures test-time efficiency. For reference, the backbones used have parameter counts of
~ 11.7M (ResNetl8), ~ 86 M (ViT-Base), and ~ 1.4M (ConvNet). A., A4, and A\, are chosen as
1, 0.1, and 0.1, while A, and A, are chosen as 1 and 1 equally according to the performance on the
validation set.

4.4 COMPARISON BASELINES

For fair evaluation under the OSDG-NL setting, we compare against baselines that are compatible
with domain generalization methods. ARPL, ODGNet, MLDG, SWAD, MixStyle, MEDIC, and EBiL-
HaDS are established open-set domain generalization methods, while MLDG, MEDIC, EBiL-HaDS,
and HyProMeta also serve as meta-learning approaches from the open-set domain generalization
field. HyProMeta is the only existing method specifically designed for OSDG-NL and thus provides
the most directly comparable baseline. Methods designed for closed-set noisy-label learning (e.g.,
TCL, NPN, BadLabel) are also included, not as direct OSDG baselines, but to provide additional
evaluation from a label-noise learning perspective. This ensures that our comparisons cover OSDG,
noisy-label learning, and OSDG-NL dimensions.
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4.5 ANALYSIS OF THE MODEL PERFORMANCE

In Tab. [T} Tab. 2] Tab.[3] and Tab.[d] we present performance comparisons between our proposed
approach and other related methods. Among these, TCL Huang et al.| (2023), NPN |[Sheng et al.
(2024), BadLabel |[Zhang et al.| (2024), DISC |Li et al.| (2023)), LSL |Kim et al.| (2024)), and PLM Zhao
et al.| (2024) focus on label noise learning, while MEDIC |Wang et al.| (2023), MLDG |Shu et al.
(2019), ARPL |Chen et al| (2022), MixStyle Zhou et al.| (2020c), ODGNet Bose et al.| (2023)),
SWAD (Cha et al.| (2021), and EBiL.-HaDS [Peng et al.| (2024b) specifically target open-set domain
generalization. HyProMeta Peng et al.|(2024a) is the first work addressing the OSDG-NL problem,
utilizing hyperbolic prototypes to guide meta-learning. Although HyProMeta achieves the best
performance among existing baselines, its reliance on a limited number of label-clean samples from
the source domains and known classes constrains the model’s generalization capability for OSDG-NL.

Compared to HyProMeta Peng et al.|(2024a), our approach achieves 14.76%, 11.56%, 5.14%, and
11.99% accuracy improvements, 5.63%, 4.68%, 9.14%, and 3.63% H-score improvements, and
13.70%, 9.01%, 4.93%, and 8.20% OSCR improvements on the PACS dataset|Li et al.[(2017) using
ResNet18|He et al.[(2016) as the feature learning backbone, under symmetric label noise ratios of
20%, 50%, 80%, and asymmetric label noise ratio 50%, respectively. These improvements stem
from residual flow matching, which enriches cross-category/domain paths, and UTS-ELC, which
reliably separates clean from noisy labels. This allows effective optimization on limited clean data,
while evidential learning further extracts cues from noisy samples during meta-test. We also find
larger gains on visually rich domains (i.e., photo, art painting, cartoon) than on sketch; under
80% symmetric noise, OSCR improvement on sketch is only 1.35%, indicating our method is most
effective when visual features are preserved. EReLiFM outperforms HyProMeta because it addresses
the weaknesses of prototype-based alignment at multiple levels. First, evidential training dynamics
clustering separates clean from noisy samples, ensuring that training is guided by reliability-aware
representations rather than corrupted prototypes. Second, domain- and category-conditioned residual
flow matching models the distributional transport across domains and categories, capturing richer
variations than simple mean-level alignment. Finally, the proposed evidential reliability-aware
residual flow meta-learning pipeline systematically leverages clean, augmented, and cautiously
recycled noisy data to expand the range of training tasks, thereby narrowing the gap to unseen
domains. Together, these components form a principled framework that is theoretically more robust
than HyProMeta, which relies solely on prototype matching.

4.6 CROSS-BACKBONE GENERALIZABILITY

To assess the cross-backbone generalizability, we conduct experiments using the ViT-Base|Dosovitskiy
et al.| (2021) backbone on PACS|Li et al.|(2017) under the four label noise settings, as presented in
Tab.[5] We first observe that employing a larger transformer architecture leads to overall performance
improvements across all methods. Notably, HyProMeta |[Peng et al.| (20244) achieves 6.77%, 8.93%,
0.17%, and 5.64% OSCR improvements when using ViT-Base compared to ResNet18 He et al.
(2016). Similar trends are observed in the performance of our proposed approach. Compared to the
current state-of-the-art method, i.e., HyProMeta Peng et al.[(2024a), our approach achieves 13.42%,
13.12%, 4.57%, and 5.06% accuracy improvements, 0.94%, 1.46%, 7.66%, and 7.14% H-score
improvements, and 6.27%, 10.30%, 9.70%, and 7.16% OSCR improvements under symmetric label
noise ratios of 20%, 50%, 80%, and asymmetric label noise ratio of 50%, respectively. Per-target
domain results are reported in the appendix.

4.7 EVALUATION ON ANOTHER DATASET

We further evaluate the generalizability of our proposed approach on the DigitsDG dataset, with
results presented in Tab. [ Several state-of-the-art methods with strong OSDG-NL performance are
reported, including NPN |Sheng et al.| (2024)), BadLabel |[Zhang et al.| (2024)), ODGNet |[Bose et al.
(2023), MLDG |Shu et al.| (2019), MEDIC |Wang et al.|(2023)), EBiL-HaDS Peng et al.|(2024b), and
HyProMeta [Peng et al.|(2024a). Among these, HyProMeta achieves the highest OSCR, with 55.34%,
44.10%, 10.63%, and 48.79% under symmetric label noise ratios of 20%, 50%, 80%, and asymmetric
label noise ratio of 50%, respectively. Our approach consistently outperforms HyProMeta Peng et al.
(2024al), achieving 61.34%, 47.19%, 11.57%, and 50.97% OSCR under the same noise settings. This
improvement highlights the robustness of our method in handling noisy labels while ensuring effective
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generalization across domains. Our approach benefits from residual flow matching, which enriches
domain and category knowledge, and UTS-ELC, which improves clean-noisy label separation for
robust meta-learning. Results confirm effectiveness across OSDG-NL datasets, including Terralnc
(Tab.[I6), where our method outperforms HyProMeta. Unlike prototype-based [Peng et al.| (2024a)
or interpolation-based Zhou et al.|(2020c) methods, which assume clean feature geometry or linear
transition paths, residual flows approximate probabilistic transport maps between distributions. This
theoretically provides a richer and more faithful modeling of domain- and category-conditioned shifts,
and enables a more generalizable model optimization, especially when combined with evidential
uncertainty for reliability-aware supervision during the label-noise-aware meta-learning stage. Further
details can be found in the appendix.

4.8 ANALYSIS OF THE MODULE ABLATION

Ablation of the DC-CRFM. The ablation results are shown in Tab. [1 To eval-
vate the impact of DC-CRFM, we examine five model variants: w/o DC-CRFM,
w/o domain RA, w/o category RA, w/ mixup (replace DC-CRFM), and w/ DirectFM.
w/o DC-CRFM removes residual flow matching from
meta-learning, w/o domain RA excludes augmentation

. . . w/o DC-CRFM 71.89 17.80 5891 | 50.19  39.04 33.19
of generated domain residuals, w/o category RA omits  vodmnts, el EaETd
category residual augmentation, and w/ mixup (replace — jjmmniricePeoRm | 5060 L% e | e Bk B
DC-CRFM) uses direct cross-domain and -class MixUp  wersicuss |7 los G| 45 0% 2%

maist syn

Variants ‘ACC H-score OSCR‘ACC H-score  OSCR

w/ UTS-LC in RFM 78.92 2389  59.62 | 39.19  24.30

to replace DC-CRFM. Our results show that w/o DC- yetenmes |58 28 gt 2 o 0
CRFM leads to 10.97% and 6.45% OSCR drop on tar- o [8597 G479 6988 | S661 4leo 3964

get domains mnist and syn, highlighting the significance Table 7: Module ablation on the DigitsDG
of using our proposed category and domain-conditioned dataset, symmetric label noise with ratio
residual flow matching in meta-learning. Additionally, 50% is selected.

our approach consistently outperforms w/o domain RA, w/o category RA, and w/ mixup (replace
DC-CRFM), demonstrating the superior design of DC-CRFM for the OSDG-NL task. w/ DirectFM
indicates that we do not learn residuals but use flow matching to generate images as augmentation.
Notably, DC-CRFM consistently outperforms MixUp (w/ mixup (replace DC-CRFM)) by large
margins, confirming that flow matching is not a simple interpolation-based augmentation. Instead, it
learns structured residuals conditioned on domains and categories, enabling richer transferable paths.

Ablation of the clean/noisy dataset partition technique. We present two variants: w/o UTS-ELC
in RFM and w/ UTS-LC in RFM. In the w/o UTS-ELC in RFM setting, residual flow matching is
trained on the entire dataset without performing any clean/noisy separation; that is, all samples
(clean and noisy) are treated uniformly when learning residuals. In the w/ UTS-LC in RFM, we
still perform clean/noisy clustering using standard loss trajectories (UTS-LC), but the evidential
learning loss is removed—meaning that the clustering relies only on plain cross-entropy trajectories,
without uncertainty modeling. This ablation isolates the impact of evidential loss on clean/noisy
partition quality and shows how our method behaves when the clustering signal becomes less reliable.
Our approach outperforms both variants by > 5% OSCR, demonstrating the importance of proper
label-clean/noisy data partitioning and the benefit of using evidential learning loss.

Ablation of meta-learning task. We further conduct another ablation regarding the meta-learning by
removing the evidential pseudo-label supervision in the meta-test stage, indicated by w/o L. Our
proposed method contributes 8.73% and 5.96% performance gains in terms of OSCR, illustrating the
superiority of using evidential pseudo-label supervision on the label-noisy set during the meta-training
for the model optimization. On the other hand, the variant w/o Lo g shows a performance drop,
indicating the importance of both losses. While Lz}, enables label correction, Lo helps extract
useful cues from misassigned clean samples in the noisy set.

5 CONCLUSION

We present EReLiFM, a reliability-aware residual flow meta-learning framework for open-set domain
generalization under noisy labels. By combining evidential clustering for clean/noisy data separation
with domain- and category-conditioned flow matching, our method enhances data reliability and
diversity for meta-learning. Experiments on multiple benchmarks confirm that EReLiFM achieves
robust performance against label noise and strong generalization to unseen domains and categories.

10
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REPRODUCIBILITY STATEMENT

The source code of our proposed approach is available at https://anonymous.4open.
science/r/ERELIFM-CBCBjto ensure reproducibility.

ETHICS STATEMENT

This work presents a methodological contribution to open-set domain generalization under noisy
labels and is conducted entirely on publicly available benchmark datasets that do not involve human
subjects or sensitive personal information. The research does not raise concerns regarding privacy,
security, fairness, bias, or potential harmful applications, and complies with accepted standards of
research integrity and ethical practice.
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APPENDIX

A THE USE OF LARGE LANGUAGE MODELS (LLMS)

In this work, we mainly rely on LLM for text rephrasing to polish the paper writing.

B SOCIAL IMPACT AND LIMITATIONS

Social impact: The proposed EReLiFM framework has a significant social impact by improving
model generalization to new categories and domains under noisy labels, which is critical for real-world
applications such as healthcare, security, and autonomous driving. By facilitating robust learning
in open-set environments, this work enhances the reliability of deep learning models deployed
in dynamic and uncertain conditions when label noise exists. The ability to manage label noise
ensures that models trained on imperfect annotations, such as crowdsourced data, maintain their
effectiveness and trustworthiness. Furthermore, our approach mitigates biases in deep learning-based
decision-making by distinguishing between reliable and noisy labels, contributing to fairer and more
accountable deep learning systems. However, the potential misclassification and biased prediction
remain, which could lead to erroneous decisions with adverse societal implications.

Limitations: We propose EReLiFM to mitigate label noise in OSDG, but its performance under
extreme noise remains limited, highlighting a key research direction. This work focuses on image-
based OSDG-NL, leaving video-based OSDG-NL for future exploration.

C MORE DETAILS REGARDING THE EVALUATION METRICS

We follow the protocol outlined in the MEDIC approach [Wang et al.| (2023)). For the PACS |Li et al.
(2017) dataset, we adopt an open-set ratio of 6 : 1, designating elephant, horse, giraffe, dog, guitar,
and house as seen categories, while person is treated as unseen. Similarly, in DigitsDG Zhou et al.
(2020a), we use an open-set ratio of 6 : 4, with digits 0, 1,2, 3,4, 5 as seen and 6, 7, 8,9 as unseen.

For evaluation, we employ three metrics. Acc measures closed-set accuracy on seen categories, while
H-score and OSCR assess open-set recognition. The H-score, dependent on a threshold from the
source domain validation set, is considered as the secondary metric. In contrast, OSCR, introduced
by MEDIC [Wang et al.| (2023)), evaluates open-set recognition without a predefined threshold, making
it our primary metric.

The H-score is computed using a threshold ratio A to distinguish seen from unseen samples. Pre-
dictions below A are classified as unseen, and accuracy is separately calculated for seen (Accy) and
unseen (Acc,) categories. The final H-score is given by:

2 X Acc, X Accy,
Hscore = . 7
Ace,, + Accy, 7

OSCR, unlike AUROC, integrates accuracy with AUROC through dynamic thresholding, focusing
only on correctly classified samples. It combines elements from both H-score and AUROC, offering
a more comprehensive measure of confidence reliability in OSDG tasks.

D ANALYSIS OF CONFIDENCE SCORE

Fig. P] visualizes confidence scores for seen (red) and unseen (blue) categories, computed as the
maximum Softmax probability. Our approach achieves the best separation between seen categories
and unseen categories on the test domain, while the confidence scores delivered by other listed
baselines are merged together. This visualization illustrates the superior capability of the proposed
approach when it deals with out-of-distribution categories. The proposed categorical flow matching
improves the awareness of unseen categories during the representation learning.
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Figure 2: Confidence score visualization of learned representations on PACS with target domain

photo, using ResNet18 2016) under symmetric label noise with ratio 50%.

Photo (P) Art (A) Cartoon (C) Sketch (S) Avg
Method Acc  H-score OSCR | Acc H-score OSCR | Acc H-score OSCR | Acc H-score OSCR | Acc H-score OSCR

67.77  79.17 67.64 | 6435  63.45 5691 | 51.32 5024 4230 | 2643 2825 20.54 | 5247 5528 46.85
63.97 7161 62.53 | 57.22 5143 4595 | 47.65  40.11 3285 | 21.86  13.01 12.71 | 47.68  44.04 3851
62.66  64.81 5787 | 51.59 6049  49.13 | 5085 5842 4775 | 31.15 1854 29.40 | 49.06  50.57 46.04
66.69  71.98 65.67 | 54.10 29.80  41.07 | 5348 41.72 40.83 | 34.57 16.94 24.16 | 52.21  40.11 42.93
67.04  71.46 63.82 | 63.10 63.42 58.01 | 5327 5492 47.14 | 28.44 4.37 27.51 | 5296  48.54 49.12
65.73  61.01 59.76 | 65.73  61.01 59.76 | 52.71  48.17 46.32 | 2757 17.94 20.62 | 52.94  47.03 46.62

68.09 7504 6731 | 5691 51.96  44.50 | 59.93  60.98  54.02 | 36.46 7.36 27.55 | 5535 48.84 48.35
66.48  71.17 65.60 | 62.44  65.75 58.60 | 60.50 59.99  53.54 | 30.14 4.05 15.68 | 54.89  50.24 48.36
66.16 7274  64.05 | 57.85 5434 4779 | 60.80 6193  54.69 | 3638 11.21 29.16 | 5530  50.06 48.92
63.00 7201 62.08 | 6479 66.60  60.22 | 56.68 59.18  51.10 | 29.90  20.51 2251 | 5359  54.58 48.98
6842  63.75 59.88 | 63.23 6142 5649 | 51.99 5434 4519 | 28.36 3.13 12.79 | 53.00  45.66 43.59
65.83  70.15 62.11 | 66.04 5536  57.33 | 5642 59.05  51.07 | 38.76  26.01 2145 | 56.76  52.64 47.99
65.83  70.08 6340 | 66.04 55.18 5540 | 5642 5409  49.89 | 38.76  14.81 25.12 | 56.76  48.54 48.45
6543 5559  50.68 | 6548 6580  60.71 | 56.83 5838 5043 | 3722 18.15 24.87 | 56.24 4948  46.67
6543 5339  55.16 | 6548 59.68  58.33 | 56.83  56.59  48.76 | 37.22 1938 2375 | 56.24 4726  46.50
6890 8047  68.86 | 68.17 70.60  63.65 | 61.47  62.10  55.15 | 40.06 27.06 3221 | 59.65  60.06 54.97

94.26  80.16 81.49 ‘ 86.12 7233 80.79 ‘ 7267 64.00  61.67 ‘ 3924 27.50 21.01 ‘ 73.07 61.00 6124

Ours

Table 8: Results (%) of PACS (2017) on ViT-Base [Dosovitskiy et al.|(2021)). The open-set
ratio is 6:1 and symmetric label noise with ratio 20% is selected.

Photo (P) Art (A) Cartoon (C) Sketch (S) Avg
Method Acc  H-score OSCR | Acc H-score OSCR | Acc H-score OSCR | Acc H-score OSCR | Acc H-score OSCR
TCL|Huang et al. (2023 68.17 6270  67.56 | 64.48 67.84  61.30 | 4580 3584  35.68 | 2229  9.28 3.54 | 50.19 4392 42.02

27.71 10.79 848 | 39.34 3388 3240 | 40.39  44.98 34.61 | 2080  26.62 19.84 | 3206  29.07 23.83
51.62  61.25 5041 | 3252 37.26 26.67 | 43.58  55.85 4245 | 31.60 28.24 2693 | 39.83  45.65 36.62
5735 5208 44.73 | 38.02 37.36 28.09 | 30.84  31.69 22.68 | 20.72  16.32 1620 | 36.73  34.36 27.93
6599  68.68 62.18 | 55.66  49.85 4497 | 4920 4494 36.86 | 29.90 6.91 19.18 | 50.19  42.60 40.80
57.67 5081 51.87 | 51.41  46.57  41.82 | 39.66  39.47 31.89 | 19.95 1293 1575 | 42.17 3745 3513

5727 6295 53.89 | 39.21  37.92 29.78 | 51.62 5340 4517 | 33.03 2.77 17.23 | 4528  39.26 36.52
68.09  76.73 67.32 | 6479  64.09 59.64 | 5322 5274  47.68 | 3439  20.16 18.61 | 55.12 5343 48.31
67.29  75.04 6597 | 66.98  66.41 62.00 | 5544  54.65 4735 | 33.83 1582 2325 | 55.89 5298 49.64
68.58  78.86 68.33 | 63.29  65.39 5828 | 51.68 5220  44.65 | 2648  24.19 16.84 | 5251  55.16 47.03
5404 5394 4623 | 5272  46.49 39.10 | 37.65  29.78 2247 | 20.38 2.35 13.29 | 4120 33.14 30.27

MEDIC-cls|Wang et al. (2023 62.76  69.29 60.03 | 63.10  62.25 55.06 | 5642 5630  49.08 | 32.16 8.13 24.16 | 53.61 4899 47.08
MEDIC-bcls|Wang et al. (2023} 62.76  50.05 44.19 | 63.10 4567  46.56 | 5642 3996  40.02 | 32.16 27.74 2391 | 53.61  40.86 38.67
62.84  64.75 57.55 | 63.79  62.07 56.86 | 48.07  45.94 38.18 | 36.00 1031 2498 | 52.68  45.77 44.39

6284 4539  40.81 | 63.79 5627  51.76 | 48.07 43.14  34.07 | 36.00 10.83 16.06 | 52.68  38.91 35.68
68.80 80.58  68.72 | 67.60 68.10 ~ 62.07 | 58.95 5832  51.68 | 39.37 30.30  29.16 | 58.68  59.33 5291

83.20 7855 77.30 | 8743 79.11 82.34 | 6343 58.69 5391 | 5312 26.82 39.28 | 71.80  60.79  63.21

EBIL-HaDS-cls[Peng (2024b]
2

EBiL-HaDS-bcls|Peng et al. |

Ours

Table 9: Results (%) of PACS on ViT-Base |Dosovitskiy et al.|(2021). The open-set ratio is 6:1 and
symmetric label noise with ratio 50% is selected.

E PER-TARGET-DOMAIN RESULTS ON PACS USING VIT-BASE AND
DI1GITSDG USING CONVNET

We further deliver the per-target-domain performances for the experiments conducted on the PACS
2017) dataset using ViT-Base [Dosovitskiy et al.| (2021) backbone (as shown in Tab. [3] Tab.[9

Tab. [0} and Tab.[TT), and the experiments conducted on the DigitsDG [Zhou et al, (20202 dataset
using ConvNet [Zhou et al| (2021)) backbone (as shown in Tab. [I2] Tab. [13] Tab. [14] and Tab. [T3).
From the aforementioned tables, we can observe that our proposed approach consistently outperforms

the others across all the metrics and label noise settings in general, which demonstrates the superior
generalizability of our approach across different backbones, label noise settings, and datasets.
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Photo (P) Art (A) Cartoon (C) Sketch (S) Avg
Method Acc  H-score OSCR | Acc H-score OSCR | Acc H-score OSCR | Acc H-score OSCR | Acc H-score OSCR
2270 2547 16.55 | 2226  23.14 14.42 | 19.75 14.23 6.53 | 28.52 10.92 11.54 | 23.31 18.44 12.26
15.27 15.29 79 16.07 10.88 11.29 | 19.96 17.19 8.06 | 20.48 1.12 18.43 | 17.95 11.12 11.42
1333 20.96 13.32 | 2477 3236 2198 | 2398 32.76 21.91 | 21.60 2.36 2131 | 2092 22.11 19.63

2237 1.92 11.07 | 2458  19.66 12.81 | 24.08  13.40 14.20 | 20.03 4.56 12.61 | 22.77 9.89 12.67
10.02 3.64 589 | 2627 10.83 17.29 | 31.87  27.63 19.75 | 25.39 8.09 7.83 | 2339 1255 12.69
29.32 593 134 | 2677 2858 18.39 | 2527  25.69 16.89 | 24.22 333 225 | 2640 15.88 9.72

25.85 2035 21.54 | 20.14  18.60 13.63 | 2424  23.62 1423 | 16.26 3.36 932 | 21.62 1648 14.68
23.18  19.01 10.04 | 22.64  21.69 10.84 | 19.80  19.01 10.58 | 18.07 0.60 1.60 | 2092  15.08 8.27
29.08 29.84 22.82 | 30.08  29.62 20.16 | 24.24 2237 15.85 | 19.66 2.34 411 | 2577  21.04 15.74
1942 15.01 15.83 | 23.83  22.54 1446 | 28.14  26.18 1629 | 2359 1473 9.01 | 23.75 19.62 13.90
2270 2594 1823 | 17.32 8.52 15.69 | 3497 2421 16.86 | 20.99 1.21 10.62 | 24.00  14.97 15.35
3570  23.85 1491 | 28.46  30.78 20.50 | 3022  26.39 16.88 | 21.51 11.08 13.13 | 2897  23.03 16.36
3570  23.85 18.53 | 28.46  27.55 17.87 | 3022 13.99 1118 | 21.54 8.32 481 | 28.98 1843 13.10
34.89 3.49 17.80 | 32.02  20.65 2232 | 30.84 6.28 17.64 | 25.71 26.60 17.09 | 30.87  14.26 18.71
34.89  20.63 16.79 | 32.02  26.79 17.85 | 30.84  24.30 16.61 | 2571  29.67 16.33 | 30.87 2535 16.90
41.03 2998 2692 | 39.84  39.82 30.06 | 36.31  33.05 23.79 | 31.07 1350 20.26 | 37.06  29.09 25.26

4459 3294 5415 | 57.63 4827 3588 | 4291 3799 3117 | 2140 27.80 18.63 | 41.63  36.75 34.96

Ours

Table 10: Results (%) of PACS on ViT-Base |Dosovitskiy et al.|(2021). The open-set ratio is 6:1 and
symmetric label noise with ratio 80% is selected.

Photo (P) Art (A) Cartoon (C) Sketch (S) Avg
Acc  H-score OSCR | Acc H-score OSCR | Acc H-score OSCR | Acc H-score OSCR | Acc H-score OSCR

5121 56.51 48.47 | 46.65 51.35 40.80 | 31.92 3094 2261 | 2587 2094 12.04 | 3891  39.94 30.98
27.63 8.86 6.32 | 3240 19.00 15.72 | 21.66  16.87 1425 | 2048  26.15 16.50 | 2554  17.72 13.20
46.12 5896  45.77 | 3533  34.30 34.83 | 2692  39.52 26.18 | 20.70  31.32 20.66 | 32.27  41.03 31.86
47.17  17.08 9.77 | 2464  19.96 1075 | 2022 12.84 9.22 | 2393 4.31 15.10 | 28.99  13.55 11.21
49.52 5.63 15.99 | 37.52  34.68 26.68 | 28.16  27.60 18.13 | 28.16  27.60 18.13 | 35.84  23.88 19.73
20.51  23.01 18.15 | 20.17 13.41 8.08 | 37.85 33.88 2643 | 2059 2416 17.26 | 2478  23.62 17.48

50.32 5347 44.10 | 44.03  42.48 3324 | 43.15  36.75 30.20 | 17.72 13.62 1277 | 38.81  36.58 30.08
5113 5583 48.95 | 49.16  45.58 37.21 | 40.69  37.35 28.85 | 21.76  17.55 12.68 | 40.69  39.08 31.92
5299  57.10 51.53 | 4590 56.06 4393 | 46.11  43.18 39.17 | 32.98  29.49 28.18 | 4450  46.46 40.70
50.32 5499 4545 | 4484  54.03 42.11 | 39.92 4557 3545 | 2542 1878 12.07 | 40.13 4334 33.77
53.72 5347 52.97 | 46.15  48.22 39.13 | 44.87 44.84 36.37 | 29.50  12.81 19.03 | 4356  39.84 36.88
52.10  59.31 48.42 | 4647 5657 4442 | 3569 29.04  21.31 | 3542 28.01 2779 | 4242 4323 35.49
52.10 4972 4270 | 46.47 5552 4388 | 35.69 3026 20.16 | 3542 2454 2648 | 4242 40.01 33.31
54.60 5292 4498 | 4697 5652 4429 | 3466  25.52 2248 | 2571 26.60 17.09 | 40.49  40.39 3221
54.60  39.01 29.61 | 46.97 5434 4274 | 3466 31.86 2247 | 2571 29.67 1633 | 4049 3872 27.79
56.87  59.59 53.15 | 55.97 5631 48.31 | 4894  46.85 40.16 | 38.18  31.14  32.15 | 49.99 4847 43.44

85.06 8045  83.81 | 6241 5956 5545 | 49.25 5111 4275 | 2348 3130 2037 | 5505 5561  50.60

Ours

Table 11: Results (%) of PACS on ViT-Base |Dosovitskiy et al.|(2021). The open-set ratio is 6:1 and
asymmetric label noise with ratio 50% is selected.

mnist mnist,, syn svhn Avg
Method Acc  H-score OSCR | Acc H-score OSCR H-score OSCR | Acc H-score OSCR | Acc H-score OSCR
2178  22.54 1441 | 1733 11.95 9.89 | 3849  23.03 29.43

6325 5249  61.18 | 30.00 3482 2742 | 50.17 51.19  46.06

‘ 41.82 1675 41.82
90.33 50.84  71.38 | 59.28  26.10  43.83 | 70.11  53.83 49.54

55.81 3271 39.54
53.75 6.08 35.20
1372 1029 6.63
1372 1347 5.94
5233 39.08 3824

46.31  38.81 44.12

68.88  40.87 51.07
65.66  30.50  49.93
20.09  12.23 8.94
20.09  13.65 6.76
63.96  43.81 49.39

‘ 8228 29.42 70.68 ‘ 3256 2822 22.74

90.67  27.60 80.46 | 57.89  48.38 42.77 | 60.33  39.95 41.30
22.08 8.71 5.89 | 21.33  20.09 9.94 | 23.24 9.83 13.28
2208 1231 557 | 21.33 16.19 10.11 | 2324 12.64 5.41
88.28  48.19 78.11 | 4286  33.81 29.72 | 7236 54.16 51.49
88.28  59.51 61.82 | 42.86 3427 30.03 | 7236 53.55 49.29 | 5233 3523 4031 | 63.96 45.64 4536
HyProMeta|Peng et al.[(2024a] 9347 5515 8235 | 61.69 4143 43.40 | 7402 5388 53.10 | 5883  22.64 42.52 | 7200  43.28 55.34

Ours | 9519 57.92 8641 | 67.67 5097 51.76 | 7844 60.49  58.85 | 65.08 41.98 4832 | 76.60 52.84  61.34

Table 12: Results (%) of DigitsDG on ConVNet
ratio 20% is selected.

, where symmetric label noise with

svhn Avg
Acc  H-score OSCR | Acc H-score OSCR
28.42 1.38 16.37 | 42.66 2191 28.83
19.83 4.88 19.28 | 36.70 2694  33.37

5175 1970 3538 | 60.90  30.62 43.12
24.61 6.48 1429 | 4495  33.85 32.31
7.61 5.70 2.35 17.17  10.21 5.51
7.61 7.13 2.02 | 17.17  12.80 5.28
43.81 2345 30.23 | 53.93 3234 39.33
47.43 47.86 | 4278  30.28 2224 | 5192 18.79 2275 | 43.81  30.42 20.81 | 53.93  31.73 28.42
31.35 63.53 | 60.41  46.23 46.37 | 5533  41.29 3472 | 47.64 2429 31.79 | 61.44 3579 44.10

6479  69.88 | 6031  49.11 47.34 | 56.61  41.60 39.64 | 4822 2426  31.89 | 6278 44.94  47.19

mnist mnist,,,
Method Acc  H-score OSCR | Acc H-score OSCR
2580  49.14 | 2831  28.29 18.65
3512 5747 | 4228 42,69 3844

2226  49.81 | 59.22 3688  44.86
54.21 50.52 | 48.94  41.54 35.35
0.17 2.81 2589  22.88 12.16
12.08 326 | 2589 20.73 11.88
31.34 62.64 | 42.78 3474 32.69

syn
Acc  H-score OSCR
4578 3217 3115
2136 25.07 18.30

6139  43.65 4241
4353 3315 29.09
1278 12.10 4.73
1278 11.26 3.97
5192 39.84 31.75

Table 13: Results (%) of DigitsDG on ConvNet (2021), where symmetric label noise with
ratio 50% is selected.

F ABLATION OF UNSUPERVISED CLUSTERING FOR CLEAN-NOISY PARTITION

In Tab. [19] we present ablation experiments on the unsupervised clustering approach for label-
clean/noisy set partitioning. Separation correctness is evaluated using accuracy, where a binary
indicator serves as ground truth, denoting whether the current label matches the original unperturbed
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EBiL-HaDS-cls|Peng et al. (2024b] 12.72 7.25 5.36 16.14 12.10 8.46
EBiL-HaDS-bcls|Peng et al. (2024b] | 12.72 7.15 5.62 16.14 8.64 743
HyProMeta|Peng et al. (2024a) 2228 2094 12.23 | 21.58 16.92 11.73

Ours | 2533 2382 1414 | 1864  20.03 10.85

16.92 12.83 8.17 16.44 527 779 | 15.56 9.36 7.45
1692 15.29 8.34 | 16.44 7.00 7.83 | 15.56 9.52 7.31
1931 1847 9.77 | 1811 1555 8.78 | 2032 1797 10.63

2189 1267 12.02 | 17.17  15.94 9.26 | 2076  18.12 11.57

mnist mnist,,, svhn Avg
Method Acc  H-score OSCR | Acc  H-score OSCR cc H score OSCR | Acc  H-score OSCR | Acc H-score OSCR
NPN|Sheng et al. (2024 16.67 0.01 9.65 18.61 13.38 10.15 | 17.78 18.12 9.29 16.67 0.55 8.21 17.43 8.02 9.33
BadLabel|Zhang et al. [(2024] 18.58 5.84 7.39 17.39 15.13 8.99 16.67 0.41 8.36 17.11 0.22 8.44 17.44 5.40 8.30
ODGNet|Bose et al.[(2023} 16.19 1.51 10.37 | 17.28 11.80 10.64 | 18.47 17.04 8.49 16.72 14.89 8.59 17.17 11.31 9.52
MLDG Shu et al. (2019] 16.06 6.70 9.69 18.58 3.26 9.27 16.94 6.81 8.20 17.33 6.88 8.84 17.23 591 9.00
MEDIC-cIs|Wang et al.|(2023) 21.17 3.51 11.37 | 18.75 16.52 7.77 15.81 4.48 7.54 17.11 4.86 8.64 18.21 7.34 8.83
MEDIC-bcls|Wang et al. {2023} 21.17 7.21 8.32 16.83 13.25 8.81 15.81 4.44 7.70 17.11 4.96 8.38 17.73 7.47 8.30
\

Table 14: Results (%) of DigitsDG on ConvNet|Zhou et al.[(2021), where symmetric label noise with
ratio 80% is selected.

EBiL-HaDS-cls|Peng et al. (2024b] 67.39  36.21 53.76
EBiL-HaDS-bcls|Peng et al. (2024b] | 67.39  44.88 50.01 | 44.14  36.20 3731
HyProMeta Peng et al. (2024a) 73.53 5023 61.08 | 6042 4638 46.23

Ours | 84.80 5659 7181 | 6244  47.95 47.72

44.14 3530  29.61 | 60.86 46.15 3881 | 51.89 2534 3135 | 56.07 3575 38.38
60.86 4840  41.70 | 51.89 2325 36.46 | 56.07  38.18 41.37

69.81 5472 50.39 | 57.28 18.84 3745 | 6526 4254 4879
67.36  51.08 47.78 | 55.55 12.27 36.56 | 67.54  41.97 50.97

mnist mnist,, syn svhn Avg
Method Acc  H-score OSCR | Acc H-score OSCR cc  H-score OSCR | Acc H-score OSCR | Acc H-score OSCR
NPN|Sheng et al. |(2024] 71.08 2446 6145 | 5458 4121 3879 | 5592 4295 3503 | 51.97 1128 3423 | 5839 2998 4238
BadLabel|Zhang et al. (2024] 53.00 38.77  43.34 | 3394 2779  30.06 | 37.64 4459 3347 | 27.61 2090  26.18 | 38.05 33.01 33.26
ODGNet[Bose et al. (2023} 53.67 4823 4131 | 3936 27.19  28.08 | 51.17 2492 3491 | 39.64 551 2532 | 4596 2646 3241
MLDG Shu et al. (2019} 68.17 2334  55.68 | 56.47 40.89  40.97 | 5631 41.94  38.02 | 47.81 1135 31.60 | 57.19  29.38  41.57
MEDIC-cls|Wang et al. |(2023) 19.86 1441 1122 | 19.75 1593 8.03 9.83 8.28 2.88 | 16.31 5.78 7.36 | 1644  11.10 7.37
MEDIC-bcls|Wang et al.[(2023) 19.86  21.31 1122 | 1975 14.66 6.73 9.83 8.82 258 | 1631  13.40 739 | 1644 1455 6.98
\

Table 15: Results (%) of DigitsDG on ConvNet|Zhou et al.|(2021)), where asymmetric label noise
with ratio 50% is selected.

20% sym 50% sym 80% sym 50% asym
Method Acc  H-score OSCR | Acc H-score OSCR | Acc H-score OSCR | Acc H-score OSCR
HyProMeta|Peng et al.|(2024a) | 56.61  37.75 28.86 | 47.90  18.56 30.64 | 3472 20.82 24.14 | 36.77  15.19 24.71
Ours | 5847 37.86 3025 | 50.10  33.99 33.50 | 49.55 22.89 3240 | 40.73 3749  28.50

Table 16: Experimental results on TerriaINC dataset from DomainBed.

label. We compare our method with two variants, i.e, GMM and FINCH, where we directly apply
GMM and FINCH on the recorded loss to achieve binary clustering. From the experimental results,
we can observe that our approach generally outperforms those two variants. FINCH [Sarfraz et al.
(2019) shows comparable performance with our approach on the symmetric label noise ratio of
20%, while our approach outperforms FINCH by large margins on the other label noise settings,
demonstrating that the combination of the FINCH and GMM classifier is more robust to severe
label noise. We further deliver more analysis for the sensitivity of the proposed HyProMeta to
the clean/noisy partition. On PACS with art painting as the target domain and 50% label noise,
reducing clustering accuracy from 92.25% to 42.76% and leading to a smaller OSCR drop from
59.58% to 46.97%. While performance is affected, the method remains robust due to selective clean
sample usage, evidential pseudo-labeling, and meta-learning regularization. Although DBSCAN and
KMEANS are also applied to loss trajectories, they remain highly sensitive to density assumptions
and centroid initialization, which often leads to unstable cluster boundaries when loss patterns vary
across domains and categories. In contrast, FINCH produces data-driven hierarchical partitions
that do not require predefined density thresholds or cluster numbers, allowing it to better adapt
to the heterogeneous and noisy loss dynamics characteristic of OSDG-NL. The subsequent GMM
refinement further models the aggregated loss statistics with a probabilistic mixture, yielding a
smoother and more discriminative clean/noisy separation than the rigid partitions produced by
DBSCAN or KMEANS. Consequently, our FINCH+GMM pipeline delivers a more reliable clean
subset, which directly strengthens the downstream residual-flow meta-learning process and leads
to superior overall performance. We further provide the t-SNE visualizations where blue points
denote correctly identified noisy samples and red points denote misclassified ones. On PACS (Photo
as the target domain, 50% symmetric noise), our method achieves 92.25% label-noise detection
accuracy, compared with 72.46% for HyProMeta Peng et al.[(2024a)), demonstrating a substantially
more reliable separation in Figure [3|left hand side. The ablation of the epochs required for UTS-ELC
is proposed in Figure [3|right hand side.
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20% sym 50% sym 80% sym 50% asym
Method Acc  H-score OSCR | Acc H-score OSCR | Acc H-score OSCR | Acc H-score OSCR

MEDIC-cls|Wang et al.|(2023) | 41.74 0.42 32.57 | 24.46 6.54 16.93 | 10.06 3.52 6.44 | 27.30 9.83 19.35
MEDIC-bcls|Wang et al.[(2023) | 41.74  37.58 31.60 | 2446  23.38 17.38 | 10.06  12.69 6.52 | 27.30  27.87 20.01
HyProMeta|Peng et al.|[(2024a) | 42.32  40.35 33.86 | 25.58 28091 20.11 | 12.40 16.00 8.76 | 27.55 2825 21.60

Ours | 4407 4271 3627 | 41.61 4053 3251 | 20.08 2243 13.07 | 37.65 3475  28.11

Table 17: Experimental results on OfficeHome dataset.

80% sym 50% asym
Acc  H-score OSCR | Acc H-score OSCR | Acc H-score OSCR

51.75 0.00 3048 | 21.68  10.44 946 | 58.04 21.15 31.70
MEDIC-bcls|Wang et al.[(2023) | 89.51 67.44 7223 | 51.75  31.04 2474 | 21.68 15.85 9.78 | 58.04 14.16 31.82
HyProMeta Peng et al.|[(2024a) | 90.81  54.35 56.34 | 74.83  67.92 63.33 | 23.78  24.39 1622 | 72.73  34.20 36.48

Ours | 9580 6556  81.53 | 80.42  65.94 66.99 | 29.37 3031 2111 | 76.92 4479  47.77

20% sym 50% sym
Method Acc  H-score OSCR

MEDIC-cls|Wang et al.|(2023) 89.51 60.33 71.33

Table 18: Experimental results on VLCS dataset.

Method \ 20% sym 50% sym 80% sym 50% asym
GMM 72.11 87.83 54.56 50.49
FINCH 90.39 85.29 50.02 38.71
DBSCAN 82.42 54.45 20.12 24.71
KMEANS 80.05 50.08 20.12 24.71
Representation \ 54.80 49.74 45.32 25.07
Ours | 90.04 92.25 56.05 5291

Table 19: Ablation experiments on PACS art painting using ResNet18He et al.|(2016)) as backbone for
the unsupervised clustering approach regarding the label-clean/noisy sets partition. The performance
is evaluated by the accuracy computed over the partitioned sample set using a binary indicator of
whether the uncleaned label matches the original label for each sample.

Acc  H-score OSCR | Acc H-score OSCR

PACS (Photo) DigitsDG (mnist)
Method | #Params

DiT-S 30.98M | 77.71 7529  70.07 | 74.86 4.45 63.42
DiT-B 129.60M | 82.39  81.52  78.68 | 8597  64.79 69.88
DiT-L 43590M | 7746  65.01 63.65 | 78.83  22.96 66.43

Table 20: Ablation regarding the scalability of DC-CRFM using different sizes of DiT. Experiments
are conducted on PACS dataset (test domain: Photo) and DigitsDG dataset (test domain: MNIST).

G TRAINING OVERHEAD AND COMPUTATION COST OF DC-CRFM

The number of parameters of our method is ~ 215.6M during training, where DC-CRFM takes
~ 129.6 M due to its encoder-decoder structure for the generation of residuals, and ~ 86.0M
during testing when we use ViT-Base |Dosovitskiy et al.| (2021) as backbone, since DC-CRFM only
participates in training. The whole training procedure takes ~ 5h on PACS when we use one A100
GPU and ViT-Base as backbone.

H FURTHER CLARIFICATION REGARDING THE GENERALIZABILITY TO OTHER
DATASETS

We conduct further experiments on Terralnc dataset Beery et al|(2018) from DomainBed Peng et al.
(2019) with open-set ratio (8:2). The results are reported in Tab. [16] where we find our approach still
outperforms the current best approach, HyProMeta. Across all noise conditions, the proposed method
(Ours) outperforms HyProMeta in all metrics. Notably, under 50% symmetric noise, it achieves
a significant H-score gain of 15.43% and OSCR gain of 2.86%, indicating improved robustness
in separating clean/noisy samples and generalizing to unseen categories. Even under high-noise
settings (80% symmetric and 50% asymmetric), our method maintains superior OSCR and H-score,
validating its effectiveness in tackling the OSDG-NL task.
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N ﬁ
a1 ./.\‘\v//‘\s

—e— PACS Photo 50% sym
—e— OfficeHome Clipart 50% sym
—e— OfficeHome Clipart 20% sym

uracy (%)

Acc

Epochs

(a) Ours (b) HyProMeta (c) Ablation of number of epochs

Figure 3: (a) T-SNE visualizations of the clean/noisy partition performance of our approach, where the
red dot denotes false separation and the blue dot denotes correct separation. (b) TSNE visualization
of the clean/noisy partition performance of HyProMeta. (c) Ablation of the hyperparameter N, on
PACS and OfficeHome dataset, where Photo and Clipart are chosen as target domains and label noise
ratio is selected as 50% symmetric.

“——

(c) Categorical and domain aware residuals of our method

Figure 4: Visualization of domain and categorical residuals. The comparison is made between (a)
categorical and domain-aware residuals of the MixStyle Zhou et al.| (2020c) method, (b) categorical
and domain-aware residuals of FACT Xu et al.|(2021), and (c) categorical and domain-aware residuals
of our proposed DC-CRFM. For each row, the first four figures follow the setting: (source domain:
Sketch, target domain: Art Painting, source class: Dog, target class: House), while the rest four
figures follow the setting: (source domain: Cartoon, target domain: Art Painting, source class: Horse,
target class: Guitar).

I SCALING OF DIT

We provide the scalability evaluation in Tab. 20| where we find that DiT-B [Peebles & Xie| (2023))
works the best compared to DIT-S/L across different datasets, and we also adopt DiT-B in our
experiments. For PACS on the test domain Phoro, DiT-B achieves the best results (Acc: 82.39%,
H-score: 81.52%, OSCR: 78.68%), showing that scaling from DiT-S to DiT-B improves performance.
However, further increasing the model size to DiT-L results in performance degradation, especially in
H-score and OSCR.

For DigitsDG on the test domain MNIST, the gap is even more pronounced. DiT-B again performs
the best (Acc: 85.97%, H-score: 64.79%, OSCR: 69.88%), whereas DiT-L suffers a sharp drop in
H-score (22.96%) despite having the highest parameter count. This indicates that DiT-B offers the
best balance between model complexity and generalization for DC-CRFM.
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Method 20% sym 50% sym 80% sym 50% asym

ACC  H-Score OSCR ACC H-Score OSCR ACC H-Score OSCR ACC H-Score OSCR
HyProMeta (mean) 65.37 73.6 63.45 59.72 62.64 54.44 51.44 44.64 40.68 54.82 59.89 50.53
HyProMeta (var) +0.44 +224 +£036 +2.17 +7.11 +£543 +0.78 +695 +146 =+4.11 + 129 £2.20
Ours (mean) 83.87 80.24  79.28  80.55 77.85  76.82 53.7 53.15 4678 6991 6598  65.28
Ours (var) +1.43 +0.68 +3.09 +0.84 +298 +1.57 +247 +348 +145 +098 + 133 +1.71

Table 21: Statistical significance Results of our method and HyProMeta Peng et al.[(20244a) on the
PACS dataset when we select Photo as the target domain.

J VISUALIZATIONS OF LEARNED RESIDUALS

We further provide the visualizations of cross-domain and -category residuals in Figure ] The
categorical and domain residuals calculated based on the linear interpotation method proposed by
MixStyle produces only linear transfer paths between pairs of samples, resulting in abrupt and visually
incoherent transitions that can not capture more diverse and smooth domain or category shifts, while
this limitation also exits for FACT as it achieves data augmentation by using linear
interpolation in frequency domain, which does not explicitly model diverse and smooth transfer
paths among diverse categories and domains. Note that we visualized the cross category and domain
residuals, while during training only cross domain augmentation is used for MixStyle in our main
experiments to ensure consistency with their original approach for domain generalization.

Because linear interpolation method directly depends on the finite set of available training samples,
the types of residuals it can generate are fundamentally limited by the dataset scale, restricting
the diversity and richness of cross-domain transformations. In contrast, our DC-CRFM learns
structured residual distributions conditioned on domain and category labels, enabling smooth, soft,
and semantically coherent transitions that better reflect true domain- and category-level variations.
This benefit becomes especially important under label noise, where the clean/noisy separation cannot
be perfectly accurate; in such cases, hard linear mixup method, e.g., MixStyle |Zhou et al.|(2020c),
often amplifies label corruption, while our flow-based residuals provide smooth and diverse image
space transfers. By modeling continuous probability-flow trajectories rather than relying on linear
interpolation, our method generates diverse and robust residuals that remain informative even when
supervision is imperfect. Overall, DC-CRFM advances Mixstyle [Zhou et al| (2020¢) by offering
smoother, more expressive, and distribution-level residual transformations that substantially improve
domain generalization in noisy-label settings.

K PRELIMINARIES

In this section, we further provide an overview of the foundational components leveraged in our
proposed method, including FINCH [Sarfraz et al|(2019), Gaussian Mixture Models (GMMs), and
vanilla Flow Matching.

K.1 FINCH BASED UNSUPERVISED CLUSTERING METHOD

First Integer Neighbor Clustering (FINCH) [Sarfraz et al| (2019) is a parameter-free clustering method
which is built based on the following rules: each sample is linked to its first nearest neighbor, and
clusters emerge as the connected components of this induced graph.

Given a set of embeddings {x;}¥ ,, let d(x;, ;) denote the cosine distance between the embeddings.
FINCH [Sarfraz et al.|(2019) constructs a directed graph by assigning to each embedding x; its first
nearest neighbor according to Eq.[§]

NN(i) = argmin d(x;, x;). (8)

JFi

A cluster assignment is achieved through grouping samples according to the transitive closure of
this relation. Formally, two embeddings x; and x; belong to the same cluster C}, if there exists a
sequence according to Eq.

X; = Xq, = 00— Xq,, — Xj, )
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such that each arrow represents a first-neighbor link according to Eq.
NN(i) = a3, NN(ay) =as, ..., NN(an)=7. (10)
Clusters {C} } | are therefore the connected components of the graph by Eq.
G=(V,E), V=A{1,...,N}, E={(i,NN(>i))}. (11)

FINCH [Sarfraz et al.| (2019)) applies this procedure hierarchically. Once the first-level clusters are
obtained, each cluster C}, is represented by its centroid:

1
X, 12
= 1o > (12)

x; €Ck

and the algorithm repeats the nearest-neighbor linking step on the set of cluster centroids. This
produces a sequence of increasingly coarse partitions [C W.c™ ... .c (L)] until all samples merge
into a single cluster.

Because FINCH [Sarfraz et al.|(2019) does not require the number of clusters nor density thresholds,
and because its hierarchical structure naturally reveals coarse and fine partitions, it is well-suited for
our clean/noisy separation based on evidential-loss trajectories.

K.2 GAUSSIAN MIXTURE MODELS

Gaussian Mixture Models (GMMs) are probabilistic models that represent the feature distribution as
a weighted sum of K Gaussian components, as shown in Eq.[T3|

K
p(x) =Y me N (x| e, D), (13)
k=1
where ), are weights for the mixture, and N () denotes a Gaussian distribution with mean fu,
and covariance Y. The parameters are usually learned using the Expectation-Maximization (EM)
algorithm. GMMs provide soft probabilistic assignments, allowing us to refine clean/noisy separation
by modeling uncertainty and distribution overlap in evidential-loss trajectories.

K.3 FLOW MATCHING

Flow Matching (FM) is a generative method that learns a continuous-time velocity field which can
transport samples from a source distribution to a target distribution. Instead of learning a score
function or a diffusion procedure, FM directly estimates the vector field that describes how samples
should move over time.

Given a pair of distributions po () (source) and p; (x) (target), Flow Matching defines a family of
intermediate distributions p;(z) generated by a time-dependent ordinary differential equation (ODE),
according to Eq.[T4]

dx(t)

Cdt
where v, is a learnable velocity field parameterized by +. A solution trajectory x(t) of this ODE
connects a source sample to a target sample, according to Eq.[I3]

x(0) ~ po, x(1) ~ p1. (15)

To train the velocity field, FM constructs synthetic training trajectories using a straight-line path
interpolation by Eq.

= v, (x(t),t), te0,1], (14)

x¢ = (1 —t)x¢ + txq, (16)
where xg ~ pg and x; ~ p;. The true (oracle) velocity associated with this path is as Eq. fljl

uy(Xo,X1) = X1 — Xo, )

which is constant along the trajectory.
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Figure 5: Ablation results for UTS-ELC for different label noise ratios on PACS dataset when we
select Photo as the target domain.

The FM objective minimizes the squared error between the predicted velocity field and this oracle
velocity as in Eq. [I§]

»CFM(’V) = Exowpo,xlwpl,tNM(O,l) |:||V'y(xtat) - (Xl - XO)H2:| . (18)

Once trained, the velocity field defines a generative mapping. New samples can harvested by
integrating the learned ODE according to Eq.[19]

x(1) = x(0) +/O vy (x(t),t) dt. (19)

L ANALYSIS OF ERROR PROPOGATION

In this section, we provide a detailed analysis of the error propagation behavior in our proposed
framework. Understanding how misclassification between clean and noisy sets affects different
components of the training pipeline is essential for explaining both the robustness and the limitations
of UTS-ELC.

When a clean sample is mistakenly assigned to the noisy set, its impact on training is relatively
mild. Such a sample is excluded from the meta-train pool, reducing its direct influence on the inner-
loop optimization. However, it still participates in the meta-test stage, where its label information
is utilized through both the original annotation and the evidential pseudo-label. As a result, the
sample continues to contribute useful gradient signals during meta-test correction. Although this
misplacement introduces some inconsistency, the meta-test supervision largely compensates for
it, preventing substantial degradation. Consequently, this type of error leads to only limited error
propagation throughout the training process.

A more detrimental situation arises when the opposite misclassification occurs—that is, when a
noisy sample is incorrectly included in the clean set. In this scenario, the incorrect label is treated as
reliable and is fed directly into the meta-train step. This is problematic because the meta-train stage
lies at the core of the inner-loop optimization, meaning any erroneous gradient signals generated
here will propagate through multiple updates. These corrupted gradients influence not only the
immediate optimization but also subsequent meta-updates, amplifying their negative impact. This
failure mode becomes particularly pronounced under extremely high noise rates, where the proportion
of mislabeled samples in the clean set increases, causing unreliable supervision to dominate the
learning process. This explains the noticeable performance degradation observed in such extreme
noise conditions.

Despite these challenges, UTS-ELC remains consistently more robust than all baseline methods.
Its dual-stage supervision, evidential modeling, and unified training scheme allow it to tolerate a
considerable amount of noise before significant degradation occurs. Even under highly adverse
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scenarios, the interplay between meta-test correction and evidential uncertainty estimation prevents
catastrophic collapse, demonstrating the inherent resilience of the framework.

M ANALYSIS OF STATISTICS SIGNIFICANCE

In order to validate the statistic significance of our proposed approach, we further provide mean and
standard error of five different runs of HyProMeta Peng et al.[(2024a) and our proposed approach in
Table2T] The results show that EReLiFM generally achieves the highest mean OSCR with smaller
fluctuations of OSCR, even under strong label noise. In contrast, HyProMeta exhibits much larger
variance, especially at higher noise ratios.

N ANALYSIS OF PSEUDO LABEL QUALITY

We further provide the analysis of the pseudo-label accuracy on PACS when Photo domain is used as
the target domain. The pseudo-label accuracy and the corresponding final OSCR values are shown in
Table.

From these results, we can see a clear observation: when the pseudo-label accuracy drops significantly,
e.g., under 80% symmetric noise or 50% asymmetric noise, the final OSCR also decreases. In contrast,
when the pseudo-label accuracy stays reasonably high (around 77% or above, as in the 20% and
50% symmetric noise settings), its impact on OSCR is quite small. For example, these settings still
achieve 78.68% and 77.52% OSCR, respectively.

Overall, this shows that the final performance is closely tied to the quality of pseudo-labels: once their
accuracy falls extremly lower, the errors start to propagate during meta-testing and lead to noticeable
performance drops. We acknowledge it as an open challenge for OSDG-NL and the above analysis is
added into our revised paper.

Method 20% sym 50% sym 80% sym 50% asym
Ypseudo ACC 90.34 77.23 32.90 75.48
Final OSCR 78.68 77.52 47.16 64.07

Table 22: Accuracy of the pseudo label prediction and the corresponding OSCR. Performances are
reported on PACS dataset when Photo is selected as target domain.

O FURTHER JUSTIFICATION OF THE META LEARNING DESIGN

Our work mainly targets OSDG scenarios with significant and realistic label noise, where separating
clean and noisy samples is both necessary and effective. Nevertheless, our UTS-ELC is designed to
remain stable even when the noise level approaches 0%. As shown in Figure [5]of the appendix, the
UTS-ELC drives the clean—noisy separation to naturally match the underlying noise ratio: when the
noise ratio becomes small, the predicted noisy set also shrinks accordingly. On a fully clean dataset,
the evidential-loss trajectories converge rapidly to low and stable values, causing almost all samples
to be assigned to the clean set while the noisy set vanishes, as you said.

This behavior also ensures that meta-learning remains well-posed in the clean-data regime. The
meta-test step is used only for label-correction under noisy supervision; thus, when the noisy set tends
to zero, the optimization reduces to using the meta-train step alone. In this case, the model effectively
collapses to standard supervised open-set domain generalization approach, which is sufficient for
providing fully correct supervision.

However, the main focus of this work is on achieving reliable meta-learning under significant label
noise and on mitigating the effect of severe label corruption during training as much as possible. We
acknowledge that jointly achieve OSDG and OSDG-NL is important, and we are willing to consider
it as future work.
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