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ABSTRACT

Open-Set Domain Generalization (OSDG) aims to enable deep learning models
to recognize unseen categories in new domains, which is crucial for real-world
applications. Label noise hinders open-set domain generalization by corrupting
source-domain knowledge, making it harder to recognize known classes and re-
ject unseen ones. While existing methods address OSDG under Noisy Labels
(OSDG-NL) using hyperbolic prototype-guided meta-learning, they struggle to
bridge domain gaps, especially with limited clean labeled data. In this paper, we
propose Evidential Reliability-Aware Residual Flow Meta-Learning (EReLiFM).
We first introduce an unsupervised two-stage evidential loss clustering method to
promote label reliability awareness. Then, we propose a residual flow matching
mechanism that models structured domain- and category-conditioned residuals,
enabling diverse and uncertainty-aware transfer paths beyond interpolation-based
augmentation. During this meta-learning process, the model is optimized such that
the update direction on the clean set maximizes the loss decrease on the noisy set,
using pseudo labels derived from the most confident predicted class for supervi-
sion. Experimental results show that EReLiFM outperforms existing methods on
OSDG-NL, achieving state-of-the-art performance. The source code is available at
https://anonymous.4open.science/r/ERELIFM-CBCB.

1 INTRODUCTION

Open-Set Domain Generalization (OSDG) tackles both domain and category shifts, requiring models
to classify known categories while rejecting unseen ones. It is critical in dynamic applications such
as healthcare Li et al. (2020), security Busto et al. (2020), and autonomous driving Guo et al. (2022),
where new domains and categories often arise. Recent works employ meta-learning Wang et al.
(2023); Shu et al. (2021) to simulate cross-domain tasks during training, improving adaptability to
novel environments. Yet, one can never expect the annotation to be 100% correct. Label noise further
complicates OSDG by compromising the reliability of knowledge learned from source domains. This
challenges existing OSDG approaches as introduced in Peng et al. (2024a). Although label noise has
been extensively studied in standard classification tasks, it remains largely unaddressed in OSDG.

Existing techniques, such as relabeling Zhang et al. (2024); Zheng et al. (2020); Li et al. (2024),
data pruning Kim et al. (2021); Karim et al. (2022), and loss-based noise-agnostic methods Xu et al.
(2024); Yue & Jha (2024) focus on refining training data by correcting mislabeled instances or through
selective optimization based on loss values. However, these methods do not address the additional
challenge of adapting to unseen domains and distinguishing novel categories, which is essential in
OSDG. Peng et al. (2024a) introduced novel benchmarks for the task of OSDG under Noisy Labels
(OSDG-NL) based on widely-used PACS Li et al. (2017) and DigitsDG Zhou et al. (2020a) datasets.
Related approaches from both the OSDG and noisy label learning fields are evaluated as baselines.

HyProMeta Peng et al. (2024a) serves as the first solution developed specifically targeting OSDG-NL,
where hyperbolic prototypes are used to guide meta-learning optimization. Label noise agnostic meta-
learning in HyProMeta is achieved by computing hyperbolic category prototypes to separate clean
and noisy samples based on hyperbolic distances, correcting noisy labels using nearest prototypes,
and augmenting training with a learnable prompt to enhance generalization to unseen categories.
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However, prototype-based classification in HyProMeta is limited by sensitivity to noise and feature
quality, which results in a negative effect on label noise diagnosis. Due to the limited number of clean
samples and limited label-clean/noisy partition capability, HyProMeta suffers from unsatisfactory
generalization performance, as less trustworthy a priori can be provided for the label-noise-agnostic
meta-learning.

In this work, we propose a new method, i.e., Evidential Reliability-Aware Residual Flow Meta-
Learning (EReLiFM). Our method introduces a new synergy between uncertainty-aware label reli-
ability modeling and domain-category transfer modeling, which has not been explored in OSDG-
NL. Unlike prior works that either (i) separate clean/noisy samples using feature-space prototypes
(HyProMeta) or (ii) rely on linear interpolation (MixUp) for augmentation, our method introduces a
fundamentally different paradigm. First, we propose Unsupervised Two-Stage Evidential Loss Clus-
tering (UTS-ELC), which leverages evidential loss trajectories to capture not only prediction errors
but also their associated uncertainties, enabling more reliable clean/noisy separation across domains.
Second, we introduce Domain and Category Conditioned Residual Flow Matching (DC-CRFM), a
flow-matching strategy conditioned on domain and category labels, which learns structured residuals
rather than interpolations, thereby modeling diverse transfer paths between categories and domains.
Finally, by integrating these two components within a meta-learning framework, we achieve princi-
pled decoupling of clean and noisy supervision, which is absent in prior methods. This combination
enables EReLiFM to provide both uncertainty-aware noise diagnosis and diverse domain-category
transfer modeling capabilities that neither clustering nor augmentation methods alone can offer. Our
approach achieves state-of-the-art results on the PACS Li et al. (2017), DigitsDG Zhou et al. (2020a),
and TerraINC Beery et al. (2018) datasets, showing its effectiveness in providing diverse cues to
ensure correct optimization.

2 RELATED WORK

Noisy Label Learning. Accurate labels are crucial for deep learning models to acquire reliable
information Xu et al. (2024), while mislabeled data can mislead the optimization Cheng et al.
(2020). To combat label noise, various strategies have been proposed: label corruption probabilities
modeling Xia et al. (2019); Tanno et al. (2019); Zhu et al. (2021b; 2022); Li et al. (2022), re-weighting
samples to adjust loss contributions Liu & Tao (2016), and detecting noisy labels before training Song
et al. (2019); Wei et al. (2022); Chen et al. (2021). TCL Huang et al. (2023) applies contrastive
learning and Gaussian Mixture Models. Furthermore, noise-robust loss functions Liu & Guo (2020);
Ma et al. (2020); Zhu et al. (2021a) and regularization tricks Wei et al. (2021); Cheng et al. (2023); Liu
et al. (2022) enhance model resilience. Methods like BadLabel Zhang et al. (2024) and LSL Kim et al.
(2024) leverage label-flipping attacks and label structure, respectively. Notably, HyProMeta Peng
et al. (2024a) first introduces two benchmarks for the challenging OSDG-NL.

Open-Set Domain Generalization. Open-Set Domain Generalization (OSDG) presents two in-
terrelated challenges: domain generalization Wang et al. (2020); Nam et al. (2021); Zhou et al.
(2020c); Guo et al. (2023); Zhou et al. (2020b); Li et al. (2021a;b); Dong et al. (2024b), which
trains models to transfer across source domains and the unseen, and open-set recognition Wang
et al. (2024); Zhao et al. (2023); Bao et al. (2021); Geng et al. (2021); Peng et al. (2024c), which
aims to reject unknown categories with low confidence scores Fu et al. (2020); Singha et al. (2024);
Bose et al. (2023); Chen et al. (2022); Li et al. (2018); Zhao & Shen (2022). Although typically
studied separately, OSDG explores strategies to address both challenges simultaneously. Previous
work has investigated metric learning Katsumata et al. (2021), domain-augmented meta-learning Shu
et al. (2021), and GAN-based data synthesis Bose et al. (2023) to boost model robustness. Recently,
formalized OSDG protocols Wang et al. (2023) have demonstrated the effectiveness of meta-learning
in handling OSDG. HyProMeta Peng et al. (2024a) focuses on hyperbolic prototypes to distinguish
label-clean/noisy data, but is limited by the information scarcity of the limited label-clean samples.
Multi-modal open set domain generalization task is for the first time proposed by Dong et al. (2024a).
Gupta et al. (2025) explore Low-Shot Open-Set Domain Generalization (LSOSDG) task and pro-
pose masked cross-modal translation and multi-modal Jigsaw puzzle to achieve self-supervision.
Flow-matching-based approaches Dao et al. (2023); Gat et al. (2024); Klein et al. (2023); Chen &
Lipman (2023); Eijkelboom et al. (2024) have gained attention for their effectiveness in optimal trans-
portation between distributions and real-world applications. We propose EReLiFM, which integrates
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Figure 1: An overview of our proposed method. We first train the backbone and record the epoch-
wise loss per sample. We cluster these losses into Np groups without a predefined number. Cluster
averaging yields a new loss set per domain and category. GMM then performs binary separation,
identifying the lower-loss cluster as the label-clean set, which trains the residual-conditioned flow
matching to generate domain and categorical residuals. Finally, the partitioned dataset and trained
model are integrated into our label noise aware meta learning (detailed in Alg. 1).

evidential-loss-based clean/noisy partitioning with domain- and category-conditioned residual flow
in a meta-learning framework, achieving significant improvements over existing OSDG-NL methods.

3 METHODOLOGY

3.1 TASK DESCRIPTION

In this task, we consider a set containing Nd domains D = {d1, d2, ..., dNd
} and adopt the leave-

one-out setting from Wang et al. (2023), where a single domain dt is reserved for testing, while
the remaining DS = D/{dt} serve as source domains during training. The dataset’s label set Y
consists of Yk (known categories in training) and Yu (unseen categories in test), where Y = Yk ∪Yu.
For each pair of the sample xs and label ys in the source domain, ys is converted to other known
categories according to the different label noise settings to simulate the annotation error. Our aim is
to achieve the best optimization when label noise exists in open-set domain generalization.

3.2 ERELIFM

In this work, we propose Evidential Reliability-Aware Residual Flow Meta-Learning (EReLiFM) to
deal with noisy labels within the realm of OSDG, which will be elaborated in this subsection.

Our method addresses OSDG under noisy labels through a three-stage design that improves data
reliability, diversity, and supervision quality. First, we separate clean from noisy samples using UTS-
ELC, which relies on evidential-loss trajectories and uncertainty rather than embedding similarity,
enabling a more reliable partition under domain shift. Next, we enrich and diversify the clean subset
with DC-CRFM, a flow-based residual modeling approach that synthesizes realistic cross-domain
and cross-category variations to expand the effective training distribution. Finally, we optimize a
meta-learning objective that decouples clean and noisy supervision: clean and augmented samples
drive the meta-train updates, while noisy samples are handled in meta-test using evidential pseudo-
labeling to prevent overfitting to incorrect annotations. Together, these stages form a coherent
filter–enrich–decouple pipeline that achieves robust generalization in the presence of substantial label
noise. The whole workflow of our proposed approach is depicted in Figure 1.

Unsupervised Two-Stage Evidential Loss Clustering. OSDG leverages reliable cues from source
domains and known categories to recognize unknown categories in unseen domains Peng et al.
(2024b); Wang et al. (2023). However, since label noise reduces the scale of reliable data, most of
the existing works in the open-set domain generalization field deliver limited performance under
label noise. Recognition of the data with label noise is critical to handle label noise for providing
reliable optimization direction guidance for the deep learning model during optimization. Existing
work, i.e., HyProMeta Peng et al. (2024a), relies on clustering on embeddings for label noise agnostic
learning, which is sensitive to outliers and feature quality, delivering limited performance. In this
work, we optimize this process by proposing Unsupervised Two-Stage Evidential Loss Clustering
(UTS-ELC), which separates label-clean/noisy data from a training dynamics perspective. We rely
on evidential training dynamics instead of embeddings to achieve label noise diagnosis to avoid the
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sensitivity to outlier embeddings. Early works Han et al. (2018); Liu et al. (2021) adopt multi-model
joint optimization strategies based on the small-loss criterion. However, such approaches do not
explicitly achieve a clear separation between clean and noisy labels. More recently, Yue & Jha
(2024) introduce an unsupervised clustering strategy on recorded training dynamics to perform this
separation. In contrast, our experiments show that a domain- and category-aware evidential loss leads
to a more reliable distinction between clean and noisy sets under the open-set domain generalization
scenario. Evidential loss models both evidence and uncertainty, providing a clearer training signal
for separating clean and noisy samples. Clean samples quickly accumulate high evidence and low
uncertainty, producing stable, low-loss trajectories. Noisy samples yield inconsistent evidence,
leading to higher uncertainty and more volatile losses. Because evidential learning penalizes both
errors and unwarranted confidence, mislabeled samples incur larger, more persistent penalties. In
contrast, standard cross-entropy lacks an uncertainty term and cannot reliably distinguish samples
whose losses overlap or fluctuate early in training. Optimized as a Dirichlet-based belief update,
evidential loss pushes clean samples toward high-evidence regions while noisy samples stay in
low-evidence regimes, creating a geometric margin in trajectory space that clustering methods can
exploit. Next, we describe how to achieve UTS-ELC in detail.

To mitigate the detrimental impact of label noise on the residual flow matching design, we first
categorize the data based on their recorded evidential loss trajectories, as samples trained with
incorrect labels typically exhibit higher loss, in accordance with Co-Teaching Han et al. (2018).
While UTS-ELC builds on the intuition of loss trajectory clustering, our key novelty is the use of
evidential uncertainty and domain/category-specific cues, which provide a more reasonable and
reliable separation of clean/noisy data under OSDG.

Initially, we train the backbone network on the entire dataset, despite the presence of label noise,
while employing cyclic learning rates to improve convergence stability. Furthermore, we integrate
evidential learning to enhance the model’s generalization capability as Eq. (1). Evidential learning
enables models to estimate both predictions and their associated uncertainty, leading to more reliable
and calibrated predictions.

LEL =

C∑
i=1

[yi (logSEL − log(Mα(x)i + 1))] , (1)

where SEL =
∑C

i=1(Dir(ppred|Mα(x)i + 1)) denotes the strength of a Dirichlet distribution, Mα

indicates the backbone, yi is the one-hot annotation of sample x from class i, ppred is the predicted
probability, and C is the class number.

During training, the evidential learning loss is recorded for each sample at every epoch. For a given
sample x, the recorded loss is represented as l = [l1, l2, ..., lNe

], whereNe denotes the total number of
epochs. We then construct a new feature set based on the recorded losses for each sample, formulated
as X = {li|xi ∈ T }, where T represents the entire training set. To differentiate samples with and
without label noise, we apply the unsupervised clustering method, FINCH Sarfraz et al. (2019), to the
loss feature set, facilitating an initial hierarchical clustering process, according to Eq. (2) and Eq. (3).

Ωy
d = {ω1, ω2, ..., ωNp} ← FINCH(X y

d ), (2)

Ω = {Ωy
d|d ∈ DS , y ∈ Yk}, (3)

where Ω represents the complete set of partitions, and X y
d and Ωy

d denote the loss set and the set of
unsupervised cluster partitions for domain d and class y, respectively.

Next, we construct a new set by computing the average of the samples within each domain and
category for each partition according to Eq. 4.

X̂ y
d = {µ(ω1(X y

d )), µ(ω2(X y
d )), ..., µ(ωNp

(X y
d ))}, (4)

where µ(·) denotes the averaging operation, Np denotes the total number of partitions clustered by
the first level results on FINCH Sarfraz et al. (2019), and X̂ y

d represents the resultant score set.

Finally, a Gaussian Mixture Model (GMM) based classifier (with two Gaussian components) is
applied to perform a binary classification on the score set. This facilitates a threshold-free partitioning
of the training data. The GMM class with the lower average loss is identified as the label-clean set
(i.e., X̂ (y,c)

d ) and the other is denoted as noisy set (i.e., X̂ (y,n)
d ), as Eq. (5).

X̂ (y,c)
d , X̂ (y,n)

d = GMM(X̂d), s.t. µ(X̂ (y,c)
d ) < µ(X̂ (y,n)

d ). (5)
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Algorithm 1 Training with EReLiFM.

Require: DS : source domain set; Yk: known category set; Mα: neural network backbone; Mγ :
flow matching model; LCE : cross entropy loss; LEL: evidential learning loss; T : dataset
with label noise; r0: random Gaussian noise.

1: Dataset separation, Tclean, Tnoisy ← UTS-ELC(T ).
2: Train Mγ on Tclean using domain and category residuals, conditioned by classes and domains.
3: while not converged do
4: ▷Meta-Training Stage ◁
5: Bclean ← Iter(Tclean), with domain label and category label yd and yc.
6: Sample ŷc ← Y/{yc}, and ŷd ← DS/{yd}.
7: Rd ←Mγ(r0, (yc,yc), (yd, ŷd)), generate domain residual.
8: Bdr ← Add(Bclean,Rd), merge domain residual.
9: Assign yc → ydr for Bdr.

10: Rc ←Mγ(n0, (yc, ŷc), (yd,yd)), generate category residual.
11: Bcr ← Add(Bclean,Rc), merge categorical residual.
12: Assign ya → ycr for Bcr, where ya denotes an additional class beyond known classes.
13: Update parameters based on Lm−train = λc ∗ LCE(Bclean,yc) + λdr ∗ LCE(Bdr,ydr) +

λcr ∗ LCE(Bcr,ycr).
14: ▷Meta-Test Stage ◁
15: Bnoisy ← Iter(Tnoisy) with category label ync.
16: ypseudo = ArgMax(Mα(Bnoisy)).
17: Lm−test = λp ∗ LEL(Bnoisy,ypseudo) + λnc ∗ LCE(Bnoisy,ync).
18: UpdateParameters(Lm−test + Lm−train). // Final Parameter Update

We then obtain the corresponding dataset according to the aforementioned partition manner, where
we use Tclean and Tnoisy to denote the clean set and noisy set, respectively.

Domain and Category Conditioned Residual Flow Matching. Despite the aforementioned eviden-
tial loss-based separation strategy, training remains challenged by the scarcity of reliably annotated
data. HyProMeta Peng et al. (2024a) addresses this issue through cross-category MixUp and learnable
prompts, thereby expanding the data scope to stabilize training. Yet, the diversity remains limited,
since MixUp models only a single interpolation path between source and target data. To mitigate
domain shift, enhance the model’s sensitivity to diverse category transfers, and expand the scale of
reliably annotated training data, we introduce Domain and Category Conditioned Residual Flow
Matching (DC-CRFM). DC-CRFM generates diverse transfer paths by reconstructing domain- and
category-residuals from random noise, conditioned on both domain and category labels. In this
way, DC-CRFM explicitly models transitions across categories and domains, boosting generalization
during training. Importantly, we train DC-CRFM on the clean subset identified by UTS-ELC. Unlike
MixUp, which interpolates between samples, DC-CRFM learns structured residuals across domains
and categories. As demonstrated in our ablations (Tab. 7), this design yields significant improve-
ments over MixUp, evidencing that DC-CRFM is fundamentally distinct from interpolation-based
augmentation.

Flow matching is a technique in machine learning that aligns feature distributions between source and
target domains Lipman et al. (2023). It appears as an efficient alternative compared with diffusion
models Ho et al. (2020) for data generation, where methods leveraging straight flows are introduced
by Liu et al. (2023).

In our work, we propose a domain and category conditioned residual flow matching strategy to enrich
the paths across different domains and categories based on a clean label set Tclean. Domain residuals
represent the visual differences between samples of the same category from different domains, while
category residuals capture discrepancies between different categories within the same domain. We
use our proposed conditioned flow matching to generate category and domain residuals.

To enrich cross-domain and cross-category transfer, we propose Domain and Category Conditioned
Residual Flow Matching (DC-CRFM), a conditioned variant of flow matching that learns residual
distributions rather than directly generating samples. Given a source sample Is, a target sample It and
a condition q (e.g., source→target domain/category pair), RFM draws a residual r1 = It − Is ∼ p(q)r

5
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via a probability-flow ODE driven by a conditioned vector field fθ. Training is depicted in Eq. 6.

LRFM = E(q, r0, r1, t)

[
∥fθ(rt, t, ψ(q))− (r1 − r0)∥22

]
, rt = (1− t)r0 + tr1, (6)

where r0 ∼ N (0, 1) (Gaussian distribution), r1 ∼ p(q)r , t ∼ U(0, 1) (normal distribution), and ψ(q)
encodes the condition. At inference, integrating dr

dt = fθ(r, t, ψ(q)) from noise r0∼N (0, 1) yields
r∼p(q)r , which is then added to Is to form an augmented sample Iaug = Is + r. This design captures
structured residual transitions between domains and categories, in contrast to simple interpolations
such as MixUp Zhou et al. (2020c); Peng et al. (2024a).

Evidential Reliability-Aware Residual Flow Meta-Learning. Meta-learning has been proven
effective for open-set domain generalization by constructing tailored meta-tasks to promote cross-
domain generalization Wang et al. (2023); Peng et al. (2024b;a). Building upon this insight, our
main training framework adopts a meta-learning paradigm. Specifically, we define a new meta-
training task over UTS-ELC-selected clean data and DC-CRFM-augmented clean data based on
UTS-ELC selection. The optimized model from meta-training is then used to improve optimization
on the noisy subset during meta-testing. Here, DC-CRFM plays a central role by enriching label-
clean data with diverse category/domain transfer paths. Samples from the noisy set are supervised
with high-confidence pseudo-labels via evidential learning, and regularized by cross-entropy loss
against the original labels, thereby reinforcing consistency with the label-clean set. Compared with
HyProMeta Peng et al. (2024a), our meta-task differs in both meta-train and meta-test phases. In the
meta-train stage, we exclusively rely on DC-CRFM augmented clean data, avoiding any optimization
over noisy samples. In the meta-test stage, we focus solely on the noisy set: pseudo-labels are
assigned via maximum-confidence predictions, and supervision is defined by a competition between
pseudo-labels and original labels, as UTS-ELC does not guarantee perfect separation. To further
account for uncertainty, evidential supervision is imposed on the pseudo-labels.

Through this process, we obtain a flow matching model that generates domain and category residuals
while distinguishing clean from noisy data. These components are integrated into meta-learning for
denoising and improving generalization in OSDG, as outlined in Alg. 1.

We first separate clean and noisy data using UTS-ELC, then train Mα on Tclean with residual
augmentation. In the meta-train stage, for each Bclean with labels (yc,yd), we sample (ŷc, ŷd)
to generate residuals, producing Bdr (domain residual, supervised by (yc,yd)) and Bcr (category
residual, supervised by an additional class ya). We assign ya → ycr for Bcr. The model is updated
with Lm−train = λc ∗ LCE(Bclean,yc) + λdr ∗ LCE(Bdr,ydr) + λcr ∗ LCE(Bcr,ycr).

In the meta-test stage, noisy samples Bnoisy are optimized via competition between the original
label ync and a pseudo-label ypseudo = ArgMax(Mα(Bnoisy)), with evidential regularization. The
meta-test loss is calculated as Lm−test = λp ∗ LEL(Bnoisy,ypseudo) + λnc ∗ LCE(Bnoisy,ync).

An auxiliary cross-entropy term ensures that useful cues can still be extracted from misclassified
clean samples. The final loss combines both stages, Lm-train+Lm-test, ensuring robust optimization
with reliable supervision. This pipeline strengthens cross-domain generalization while also improving
recognition of out-of-distribution categories. Overall, clean/noisy separation via evidential training
dynamics enables reliable residual flow training, while flow-augmented clean data and noisy samples
are optimized separately in meta-train and meta-test to ensure robust learning.

4 EXPERIMENTS

4.1 NOISY LABEL SETTINGS

We adopt the setting of HyProMeta Peng et al. (2024a) for OSDG-NL, incorporating symmetric
and asymmetric label noise. Symmetric noise randomly reassigns class labels at predefined rates
(20%, 50%, 80%) without considering semantics. In contrast, asymmetric noise mislabels samples
according to semantic similarity using BERT Devlin et al. (2019) for textual feature extraction and
cosine similarity for class similarity computation. The asymmetric noise level is set to 50%.
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Photo (P) Art (A) Cartoon (C) Sketch (S) Avg
Method Acc H-score OSCR Acc H-score OSCR Acc H-score OSCR Acc H-score OSCR Acc H-score OSCR

TCL Huang et al. (2023) 58.32 59.21 51.72 53.66 48.28 42.91 46.78 38.29 31.74 31.55 22.88 24.30 47.58 42.17 37.67
NPN Sheng et al. (2024) 64.30 70.87 61.99 51.66 52.10 45.40 55.65 44.88 38.64 35.58 22.35 25.86 51.80 47.55 42.97
BadLabel Zhang et al. (2024) 54.93 55.73 48.24 53.72 53.25 46.55 50.23 55.36 45.70 31.55 21.84 28.38 47.61 46.55 42.22
DISC Li et al. (2023) 53.47 56.13 47.22 54.47 47.46 43.48 53.27 53.97 44.33 24.01 16.75 11.52 46.31 43.58 36.64
LSL Kim et al. (2024) 58.97 58.93 52.15 49.97 48.17 39.20 47.50 44.07 34.63 30.59 12.44 16.81 46.76 40.90 35.70
PLM Zhao et al. (2024) 55.57 42.33 38.27 41.78 43.09 32.95 45.75 40.44 33.26 33.27 12.11 15.46 38.33 34.49 29.99

ARPL Bendale & Boult (2016) 62.52 67.96 59.46 52.35 45.29 41.09 50.13 44.47 37.01 29.56 13.49 22.70 48.64 42.80 40.07
ODGNet Bose et al. (2023) 63.00 70.61 61.18 58.08 40.01 44.97 58.33 53.37 48.89 22.84 9.69 16.48 50.56 43.42 42.88
MLDG Shu et al. (2019) 60.26 69.11 59.35 58.66 55.83 49.03 58.07 51.18 45.08 25.87 18.48 16.40 37.22 48.65 42.47
SWAD Cha et al. (2021) 59.94 69.23 58.69 49.59 48.04 40.04 37.44 34.32 25.96 19.10 20.72 12.86 41.52 41.52 34.39
MixStyle Zhou et al. (2020c) 60.10 65.39 56.89 55.16 44.70 44.01 59.31 47.35 39.93 34.54 17.49 20.86 52.28 43.73 40.42
MEDIC-cls Wang et al. (2023) 62.20 52.63 53.23 54.60 54.05 46.51 59.31 52.02 47.65 34.54 28.22 21.44 52.66 46.73 41.96
MEDIC-bcls Wang et al. (2023) 62.20 57.47 53.93 54.60 53.10 46.38 59.31 53.70 48.68 34.54 32.71 24.06 52.66 49.25 42.76
EBiL-HaDS-cls Peng et al. (2024b) 65.19 58.09 57.84 53.28 47.07 40.36 57.56 52.17 45.95 37.52 28.83 22.31 53.39 46.54 41.62
EBiL-HaDS-bcls Peng et al. (2024b) 65.19 63.82 60.63 53.28 46.70 39.80 57.56 50.58 45.63 37.52 30.61 26.55 53.39 47.93 43.15
HyProMeta Peng et al. (2024a) 66.00 76.84 66.00 59.91 56.89 49.93 59.41 56.47 50.42 39.16 34.76 26.46 56.12 56.24 48.20

Ours 82.39 81.52 78.68 77.61 66.14 65.37 65.39 55.26 65.39 58.11 44.56 38.15 70.88 61.87 61.90

Table 1: Results (%) of PACS on ResNet18. The open-set ratio is 6:1 and symmetric label noise is
with ratio 20%.

Photo (P) Art (A) Cartoon (C) Sketch (S) Avg
Method Acc H-score OSCR Acc H-score OSCR Acc H-score OSCR Acc H-score OSCR Acc H-score OSCR

TCL Huang et al. (2023) 54.68 52.40 46.51 52.78 22.65 30.94 47.19 37.73 34.89 26.33 9.83 7.62 45.25 30.65 29.99
NPN Sheng et al. (2024) 48.38 38.12 33.55 35.71 32.33 24.47 38.94 26.88 18.60 26.93 27.59 18.96 37.49 31.23 23.90
BadLabel Zhang et al. (2024) 46.20 57.45 45.07 45.34 47.29 37.89 35.17 43.35 32.14 28.40 26.95 15.71 38.78 43.76 32.70
DISC Li et al. (2023) 52.52 56.07 50.55 46.84 31.91 30.35 28.47 28.28 19.97 30.83 25.63 24.78 39.67 35.47 31.41
LSL Kim et al. (2024) 41.36 30.83 20.27 42.28 39.78 31.40 42.39 37.59 30.89 26.90 15.40 7.42 38.23 30.90 22.50
PLM Zhao et al. (2024) 55.57 42.33 38.27 39.21 27.81 24.93 33.01 27.81 21.49 25.52 6.65 13.41 38.33 26.15 24.53

ARPL Bendale & Boult (2016) 55.41 62.40 54.17 45.72 44.50 34.51 43.73 38.44 30.13 27.30 7.65 20.95 43.04 38.25 34.94
ODGNet Bose et al. (2023) 60.66 63.57 56.75 55.09 40.01 44.97 46.52 39.85 32.10 32.02 24.40 17.09 48.57 41.96 37.73
MLDG Shu et al. (2019) 59.37 68.02 58.54 56.49 50.15 44.92 46.78 46.02 36.91 23.69 24.32 16.40 46.58 47.13 39.19
SWAD Cha et al. (2021) 58.58 67.77 56.25 45.78 41.39 38.30 34.19 33.89 23.95 20.43 14.15 6.81 39.75 39.30 31.33
MixStyle Zhou et al. (2020c) 54.04 62.25 30.23 41.78 37.68 27.03 47.09 26.67 27.03 30.88 22.81 17.09 43.45 37.35 25.35
MEDIC-cls Wang et al. (2023) 60.58 51.37 44.29 53.28 51.88 44.12 50.54 49.07 42.84 36.67 28.00 20.83 50.27 45.08 38.02
MEDIC-bcls Wang et al. (2023) 60.58 48.99 43.25 53.28 37.32 33.99 50.54 44.08 39.39 36.67 30.58 21.83 50.27 40.24 34.62
EBiL-HaDS-cls Peng et al. (2024b) 61.15 62.20 54.97 52.47 43.90 37.71 49.66 48.05 40.75 34.39 28.62 20.98 49.42 45.69 38.60
EBiL-HaDS-bcls Peng et al. (2024b) 61.15 25.32 48.79 52.47 42.61 36.20 49.66 49.13 41.34 34.39 21.33 21.70 49.42 34.60 37.00
HyProMeta Peng et al. (2024a) 65.19 73.38 63.79 60.85 52.51 46.97 51.99 49.55 41.71 39.06 33.53 23.44 54.27 52.24 43.98

Ours 81.91 78.14 77.52 70.29 61.86 59.58 61.89 50.00 45.53 49.22 37.69 29.34 65.83 56.92 52.99

Table 2: Results (%) of PACS on ResNet18. The open-set ratio is 6:1 and symmetric label noise is
with ratio 50%.

Photo (P) Art (A) Cartoon (C) Sketch (S) Avg
Method Acc H-score OSCR Acc H-score OSCR Acc H-score OSCR Acc H-score OSCR Acc H-score OSCR

TCL Huang et al. (2023) 31.58 25.81 17.39 27.08 26.60 16.45 27.69 27.17 17.66 21.20 8.52 14.87 26.89 22.03 16.59
NPN Sheng et al. (2024) 17.21 12.49 10.18 24.27 12.67 13.87 22.85 12.99 10.85 19.66 4.31 11.63 21.00 10.62 11.63
BadLabel Zhang et al. (2024) 22.62 14.11 22.62 15.95 14.50 10.16 19.39 24.34 14.95 26.13 14.14 17.96 21.02 16.77 16.42
DISC Li et al. (2023) 22.05 19.53 15.27 24.77 23.65 17.53 27.13 22.49 14.76 16.03 12.86 10.00 22.05 19.63 14.39
LSL Kim et al. (2024) 18.58 22.82 13.89 23.64 16.71 14.56 15.37 15.84 7.94 21.68 1.92 8.26 19.82 14.32 11.16
PLM Zhao et al. (2024) 24.39 8.71 9.41 30.08 24.67 17.85 20.94 13.16 12.21 21.76 21.26 11.74 24.29 16.95 12.80

ARPL Bendale & Boult (2016) 38.77 23.79 15.88 22.12 20.58 11.40 23.98 14.45 8.98 25.76 16.45 11.71 27.66 18.82 11.99
ODGNet Bose et al. (2023) 31.18 19.56 18.49 27.64 6.64 12.81 20.78 21.43 12.81 21.65 22.00 7.90 25.31 17.41 13.00
MLDG Shu et al. (2019) 33.04 9.18 12.11 22.45 19.28 11.18 28.16 23.38 13.64 23.19 4.47 16.40 26.71 14.08 13.33
SWAD Cha et al. (2021) 18.09 18.69 10.19 22.51 20.22 11.97 23.67 21.96 11.89 19.75 12.20 15.29 21.01 18.27 12.33
MixStyle Zhou et al. (2020c) 25.28 22.05 16.88 24.70 17.68 12.90 21.61 20.39 11.14 24.44 12.39 15.13 24.01 18.13 14.01
MEDIC-cls Wang et al. (2023) 30.61 15.03 21.20 22.33 22.47 14.20 29.55 26.02 14.96 23.11 15.61 8.74 26.40 19.78 14.78
MEDIC-bcls Wang et al. (2023) 30.61 12.82 11.92 22.33 21.15 11.45 29.55 22.67 13.82 23.11 8.34 7.47 26.40 16.25 11.17
EBiL-HaDS-cls Peng et al. (2024b) 40.06 39.36 34.58 19.51 3.89 5.30 29.40 26.25 18.44 25.44 23.73 18.01 28.60 23.31 19.08
EBiL-HaDS-bcls Peng et al. (2024b) 40.06 15.06 23.84 19.51 12.30 11.93 29.40 29.83 18.73 25.44 26.37 17.71 28.60 20.89 18.05
HyProMeta Peng et al. (2024a) 47.01 34.98 43.29 28.77 25.28 20.07 31.40 28.38 18.59 26.72 25.04 18.40 33.48 28.42 25.09

Ours 54.04 48.50 47.16 32.83 34.52 24.04 43.79 37.94 29.13 23.83 29.26 19.75 38.62 37.56 30.02

Table 3: Results (%) of PACS on ResNet18. The open-set ratio is 6:1 and symmetric label noise is
with ratio 80%.

Photo (P) Art (A) Cartoon (C) Sketch (S) Avg
Method Acc H-score OSCR Acc H-score OSCR Acc H-score OSCR Acc H-score OSCR Acc H-score OSCR

TCL Huang et al. (2023) 15.83 3.33 10.69 35.21 30.54 20.96 26.46 24.24 14.88 20.35 1.20 2.63 24.46 14.83 12.29
NPN Sheng et al. (2024) 44.43 37.82 28.94 38.65 39.48 23.11 31.92 20.12 13.49 23.24 11.25 4.29 34.56 27.17 17.46
BadLabel Zhang et al. (2024) 37.16 44.56 35.70 26.89 31.98 24.77 31.10 34.52 25.33 13.88 16.21 20.38 27.26 31.82 26.54
DISC Li et al. (2023) 46.20 42.31 38.82 44.28 42.69 34.41 42.70 35.22 26.28 32.77 2.77 22.37 41.49 30.75 30.47
LSL Kim et al. (2024) 27.30 19.63 14.32 24.27 11.56 13.18 25.63 14.77 12.04 22.21 16.31 25.07 24.85 15.57 16.15
PLM Zhao et al. (2024) 17.37 23.20 14.13 25.45 24.44 15.04 20.06 9.68 11.93 20.48 2.60 3.24 20.84 14.98 11.09

ARPL Bendale & Boult (2016) 38.69 28.90 31.88 37.71 29.82 19.55 33.99 24.57 16.20 20.56 26.92 17.79 32.74 27.55 21.35
ODGNet Bose et al. (2023) 45.15 49.11 39.31 37.59 34.82 24.43 42.96 42.10 24.43 26.00 15.02 15.65 37.93 35.26 25.96
MLDG Shu et al. (2019) 51.21 40.25 45.11 42.21 32.24 26.34 44.46 38.66 30.80 24.36 1.32 15.99 40.56 28.12 29.56
SWAD Cha et al. (2021) 40.47 14.21 35.14 32.15 18.26 9.48 20.06 12.52 8.53 20.48 11.83 5.47 28.29 14.20 14.66
MixStyle Zhou et al. (2020c) 49.76 41.10 40.39 35.96 36.32 26.54 41.72 32.04 23.55 25.58 4.81 23.55 38.25 28.57 28.51
MEDIC-cls Wang et al. (2023) 46.20 45.01 37.13 37.46 29.69 22.92 36.41 30.80 20.83 31.07 23.88 13.29 37.79 32.35 23.54
MEDIC-bcls Wang et al. (2023) 46.20 48.97 39.86 37.46 20.65 17.95 36.41 32.06 22.69 31.07 25.23 15.23 37.79 31.73 23.93
EBiL-HaDS-cls Peng et al. (2024b) 54.93 56.65 48.44 31.58 30.11 21.19 37.13 32.23 22.83 25.44 23.73 18.01 37.27 35.68 27.62
EBiL-HaDS-bcls Peng et al. (2024b) 54.93 30.36 40.79 31.58 30.97 18.73 37.13 32.56 23.21 25.44 26.37 17.71 37.27 30.07 25.11
HyProMeta Peng et al. (2024a) 51.62 61.33 49.38 45.28 41.74 35.72 49.25 49.63 39.63 38.50 37.41 26.48 46.16 47.53 37.80

Ours 69.22 66.92 64.07 56.35 47.20 42.76 59.46 48.91 42.14 47.55 41.62 35.03 58.15 51.16 46.00

Table 4: Results (%) of PACS on ResNet18. The open-set ratio is 6:1 and asymmetric label noise is
with ratio 50%.

4.2 DATASETS AND METRICS

We adopt OSDG protocols from MEDIC Wang et al. (2023) and HyProMeta Peng et al. (2024a),
where training domains share the same categories. Evaluation is on three benchmarks: PACS Li
et al. (2017) ( photo, art-painting, cartoon, sketch), DigitsDG Zhou et al. (2020a) (mnist, mnist-m,
svhn, syn), and TerraINC Beery et al. (2018) (reported in Tab. 16 in appendix). We follow the
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20% sym 50% sym 80 % sym 50% asym
Method Acc H-score OSCR Acc H-score OSCR Acc H-score OSCR Acc H-score OSCR

TCL Huang et al. (2023) 52.47 55.28 46.85 50.19 43.92 42.02 23.31 18.44 12.26 38.91 39.94 30.98
NPN Sheng et al. (2024) 47.68 44.04 38.51 32.06 29.07 23.83 17.95 11.12 11.42 25.54 17.72 13.20
BadLabel Zhang et al. (2024) 49.06 50.57 46.04 39.83 45.65 36.62 20.92 22.11 19.63 32.27 41.03 31.86
DISC Li et al. (2023) 52.21 40.11 42.93 36.73 34.36 27.93 22.77 9.89 12.67 28.99 13.55 11.21
LSL Kim et al. (2024) 52.96 48.54 49.12 50.19 42.60 40.80 23.39 12.55 12.69 35.84 23.88 19.73
PLM Zhao et al. (2024) 52.94 47.03 46.62 42.17 37.45 35.33 26.40 15.88 9.72 24.78 23.62 17.48

ARPL Bendale & Boult (2016) 55.35 48.84 48.35 45.28 39.26 36.52 21.62 16.48 14.68 38.81 36.58 30.08
ODGNet Bose et al. (2023) 54.89 50.24 48.36 55.12 53.43 48.31 20.92 15.08 8.27 40.69 39.08 31.92
MLDG Shu et al. (2019) 55.30 50.06 48.92 55.89 52.98 49.64 25.77 21.04 15.74 44.50 46.46 40.70
SWAD Cha et al. (2021) 53.59 54.58 48.98 52.51 55.16 47.03 23.75 19.62 13.90 40.13 43.34 33.77
MixStyle Zhou et al. (2020c) 53.00 45.66 43.59 41.20 33.14 30.27 24.00 14.97 15.35 43.56 39.84 36.88
MEDIC-cls Wang et al. (2023) 56.76 52.64 47.99 53.61 48.99 47.08 28.97 23.03 16.36 42.42 43.23 35.49
MEDIC-bcls Wang et al. (2023) 56.76 48.54 48.45 53.61 40.86 38.67 28.98 18.43 13.10 42.42 40.01 33.31
EBiL-HaDS-cls Peng et al. (2024b) 56.24 49.48 46.67 52.68 45.77 44.39 30.87 14.26 18.71 40.49 40.39 32.21
EBiL-HaDS-bcls Peng et al. (2024b) 56.24 47.26 46.50 52.68 38.91 35.68 30.87 25.35 16.90 40.49 38.72 27.29
HyProMeta Peng et al. (2024a) 59.65 60.06 54.97 58.68 59.33 52.91 37.06 29.09 25.26 49.99 48.47 43.44

Ours 73.07 61.00 61.24 71.80 60.79 63.21 41.63 36.75 34.96 55.05 55.61 50.60

Table 5: Results (%) of PACS on ViT-Base. The open-set ratio is 6:1. The average domain perfor-
mance is reported.

20% sym 50% sym 80% sym 50% asym
Method Acc H-score OSCR Acc H-score OSCR Acc H-score OSCR Acc H-score OSCR

NPN Sheng et al. (2024) 38.49 23.03 29.43 42.66 21.91 28.83 17.43 8.02 9.33 58.39 29.98 42.38
BadLabel Zhang et al. (2024) 46.31 38.81 44.12 36.70 26.94 33.37 17.44 5.40 8.30 38.05 33.01 33.26

ODGNet Bose et al. (2023) 68.88 40.87 51.07 60.90 30.62 43.12 17.17 11.31 9.52 45.96 26.46 32.41
MLDG Chen et al. (2022) 65.66 30.50 49.93 44.95 33.85 32.31 17.23 5.91 9.00 57.19 29.38 41.57
MEDIC-cls Wang et al. (2023) 20.09 12.23 8.94 17.17 10.21 5.51 18.21 7.34 8.83 16.44 11.10 7.37
MEDIC-bcls Wang et al. (2023) 20.09 13.65 6.76 17.17 12.80 5.28 17.73 7.47 8.30 16.44 14.55 6.98
EBiL-HaDS-cls Peng et al. (2024b) 63.96 43.81 49.39 53.93 32.34 39.33 15.56 9.36 7.45 56.07 35.75 38.38
EBiL-HaDS-bcls Peng et al. (2024b) 63.96 45.64 45.36 53.93 31.73 28.42 15.56 9.52 7.31 56.07 38.18 41.37
HyProMeta Peng et al. (2024a) 72.00 43.28 55.34 61.44 35.79 44.10 20.32 17.97 10.63 65.26 42.54 48.79

Ours 76.60 52.84 61.34 62.78 44.94 47.19 20.76 18.12 11.57 67.54 41.97 50.97

Table 6: Results (%) of DigitsDG on ConvNet. The open-set ratio is 6:4. The average domain
performance is reported.

leave-one-domain-out setting Wang et al. (2023), using OSCR as the primary metric, with H-score
and Acc as secondary metrics.

4.3 IMPLEMENTATION DETAILS

The experiments are all conducted by PyTorch2.0 on one NVIDIA A100 GPU. Training is limited
to 1 × 104 steps, utilizing the SGD optimizer with a learning rate (LR) of 1 × 10−3 and a batch
size of 16. A learning rate decay of 1× 10−1 is applied after 8× 103 meta-training steps. During
the residual flow matching training, DiT Peebles & Xie (2023) is utilized as the backbone, where
the training batch size is set as 128. Ne is chosen as 10. Regarding the feature learning backbones,
the ConvNet Zhou et al. (2021) is employed as the backbone network on the DigitsDG dataset,
following Zhou et al. (2021). EReLiFM is only applied during training. In inference, no DiT structure
is required, and the prediction relies solely on the chosen backbone and a lightweight classification
head. This ensures test-time efficiency. For reference, the backbones used have parameter counts of
∼ 11.7M (ResNet18), ∼ 86M (ViT-Base), and ∼ 1.4M (ConvNet). λc, λdr, and λcr are chosen as
1, 0.1, and 0.1, while λp and λnc are chosen as 1 and 1 equally according to the performance on the
validation set.

4.4 COMPARISON BASELINES

For fair evaluation under the OSDG-NL setting, we compare against baselines that are compatible
with domain generalization methods. ARPL, ODGNet, MLDG, SWAD, MixStyle, MEDIC, and EBiL-
HaDS are established open-set domain generalization methods, while MLDG, MEDIC, EBiL-HaDS,
and HyProMeta also serve as meta-learning approaches from the open-set domain generalization
field. HyProMeta is the only existing method specifically designed for OSDG-NL and thus provides
the most directly comparable baseline. Methods designed for closed-set noisy-label learning (e.g.,
TCL, NPN, BadLabel) are also included, not as direct OSDG baselines, but to provide additional
evaluation from a label-noise learning perspective. This ensures that our comparisons cover OSDG,
noisy-label learning, and OSDG-NL dimensions.
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4.5 ANALYSIS OF THE MODEL PERFORMANCE

In Tab. 1, Tab. 2, Tab. 3, and Tab. 4, we present performance comparisons between our proposed
approach and other related methods. Among these, TCL Huang et al. (2023), NPN Sheng et al.
(2024), BadLabel Zhang et al. (2024), DISC Li et al. (2023), LSL Kim et al. (2024), and PLM Zhao
et al. (2024) focus on label noise learning, while MEDIC Wang et al. (2023), MLDG Shu et al.
(2019), ARPL Chen et al. (2022), MixStyle Zhou et al. (2020c), ODGNet Bose et al. (2023),
SWAD Cha et al. (2021), and EBiL-HaDS Peng et al. (2024b) specifically target open-set domain
generalization. HyProMeta Peng et al. (2024a) is the first work addressing the OSDG-NL problem,
utilizing hyperbolic prototypes to guide meta-learning. Although HyProMeta achieves the best
performance among existing baselines, its reliance on a limited number of label-clean samples from
the source domains and known classes constrains the model’s generalization capability for OSDG-NL.

Compared to HyProMeta Peng et al. (2024a), our approach achieves 14.76%, 11.56%, 5.14%, and
11.99% accuracy improvements, 5.63%, 4.68%, 9.14%, and 3.63% H-score improvements, and
13.70%, 9.01%, 4.93%, and 8.20% OSCR improvements on the PACS dataset Li et al. (2017) using
ResNet18 He et al. (2016) as the feature learning backbone, under symmetric label noise ratios of
20%, 50%, 80%, and asymmetric label noise ratio 50%, respectively. These improvements stem
from residual flow matching, which enriches cross-category/domain paths, and UTS-ELC, which
reliably separates clean from noisy labels. This allows effective optimization on limited clean data,
while evidential learning further extracts cues from noisy samples during meta-test. We also find
larger gains on visually rich domains (i.e., photo, art painting, cartoon) than on sketch; under
80% symmetric noise, OSCR improvement on sketch is only 1.35%, indicating our method is most
effective when visual features are preserved. EReLiFM outperforms HyProMeta because it addresses
the weaknesses of prototype-based alignment at multiple levels. First, evidential training dynamics
clustering separates clean from noisy samples, ensuring that training is guided by reliability-aware
representations rather than corrupted prototypes. Second, domain- and category-conditioned residual
flow matching models the distributional transport across domains and categories, capturing richer
variations than simple mean-level alignment. Finally, the proposed evidential reliability-aware
residual flow meta-learning pipeline systematically leverages clean, augmented, and cautiously
recycled noisy data to expand the range of training tasks, thereby narrowing the gap to unseen
domains. Together, these components form a principled framework that is theoretically more robust
than HyProMeta, which relies solely on prototype matching.

4.6 CROSS-BACKBONE GENERALIZABILITY

To assess the cross-backbone generalizability, we conduct experiments using the ViT-Base Dosovitskiy
et al. (2021) backbone on PACS Li et al. (2017) under the four label noise settings, as presented in
Tab. 5. We first observe that employing a larger transformer architecture leads to overall performance
improvements across all methods. Notably, HyProMeta Peng et al. (2024a) achieves 6.77%, 8.93%,
0.17%, and 5.64% OSCR improvements when using ViT-Base compared to ResNet18 He et al.
(2016). Similar trends are observed in the performance of our proposed approach. Compared to the
current state-of-the-art method, i.e., HyProMeta Peng et al. (2024a), our approach achieves 13.42%,
13.12%, 4.57%, and 5.06% accuracy improvements, 0.94%, 1.46%, 7.66%, and 7.14% H-score
improvements, and 6.27%, 10.30%, 9.70%, and 7.16% OSCR improvements under symmetric label
noise ratios of 20%, 50%, 80%, and asymmetric label noise ratio of 50%, respectively. Per-target
domain results are reported in the appendix.

4.7 EVALUATION ON ANOTHER DATASET

We further evaluate the generalizability of our proposed approach on the DigitsDG dataset, with
results presented in Tab. 6. Several state-of-the-art methods with strong OSDG-NL performance are
reported, including NPN Sheng et al. (2024), BadLabel Zhang et al. (2024), ODGNet Bose et al.
(2023), MLDG Shu et al. (2019), MEDIC Wang et al. (2023), EBiL-HaDS Peng et al. (2024b), and
HyProMeta Peng et al. (2024a). Among these, HyProMeta achieves the highest OSCR, with 55.34%,
44.10%, 10.63%, and 48.79% under symmetric label noise ratios of 20%, 50%, 80%, and asymmetric
label noise ratio of 50%, respectively. Our approach consistently outperforms HyProMeta Peng et al.
(2024a), achieving 61.34%, 47.19%, 11.57%, and 50.97% OSCR under the same noise settings. This
improvement highlights the robustness of our method in handling noisy labels while ensuring effective
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generalization across domains. Our approach benefits from residual flow matching, which enriches
domain and category knowledge, and UTS-ELC, which improves clean-noisy label separation for
robust meta-learning. Results confirm effectiveness across OSDG-NL datasets, including TerraInc
(Tab. 16), where our method outperforms HyProMeta. Unlike prototype-based Peng et al. (2024a)
or interpolation-based Zhou et al. (2020c) methods, which assume clean feature geometry or linear
transition paths, residual flows approximate probabilistic transport maps between distributions. This
theoretically provides a richer and more faithful modeling of domain- and category-conditioned shifts,
and enables a more generalizable model optimization, especially when combined with evidential
uncertainty for reliability-aware supervision during the label-noise-aware meta-learning stage. Further
details can be found in the appendix.

4.8 ANALYSIS OF THE MODULE ABLATION

Ablation of the DC-CRFM. The ablation results are shown in Tab. 7. To eval-
uate the impact of DC-CRFM, we examine five model variants: w/o DC-CRFM,
w/o domain RA, w/o category RA, w/ mixup (replace DC-CRFM), and w/ DirectFM.

Variants mnist syn
ACC H-score OSCR ACC H-score OSCR

w/o DC-CRFM 71.89 17.80 58.91 50.19 39.04 33.19
w/o domain RA 76.03 30.23 66.66 50.17 35.59 30.20
w/o category RA 73.17 28.87 66.02 53.42 37.54 33.27
w/ mixup (replace DC-CRFM) 80.61 14.96 67.46 37.44 2.14 22.06
w/ DirectFM 75.44 62.33 63.28 54.69 34.56 37.08

w/o UTS-ELC in RFM 77.42 16.84 64.48 47.31 19.08 29.26
w/ UTS-LC in RFM 78.92 23.89 59.62 39.19 24.30 25.50

w/o LEL in meta-test 78.42 23.33 61.15 52.58 36.62 33.68
w/o LCE in meta-test 69.89 60.09 56.24 38.17 16.10 24.36

Ours 85.97 64.79 69.88 56.61 41.60 39.64

Table 7: Module ablation on the DigitsDG
dataset, symmetric label noise with ratio
50% is selected.

w/o DC-CRFM removes residual flow matching from
meta-learning, w/o domain RA excludes augmentation
of generated domain residuals, w/o category RA omits
category residual augmentation, and w/ mixup (replace
DC-CRFM) uses direct cross-domain and -class MixUp
to replace DC-CRFM. Our results show that w/o DC-
CRFM leads to 10.97% and 6.45% OSCR drop on tar-
get domains mnist and syn, highlighting the significance
of using our proposed category and domain-conditioned
residual flow matching in meta-learning. Additionally,
our approach consistently outperforms w/o domain RA, w/o category RA, and w/ mixup (replace
DC-CRFM), demonstrating the superior design of DC-CRFM for the OSDG-NL task. w/ DirectFM
indicates that we do not learn residuals but use flow matching to generate images as augmentation.
Notably, DC-CRFM consistently outperforms MixUp (w/ mixup (replace DC-CRFM)) by large
margins, confirming that flow matching is not a simple interpolation-based augmentation. Instead, it
learns structured residuals conditioned on domains and categories, enabling richer transferable paths.

Ablation of the clean/noisy dataset partition technique. We present two variants: w/o UTS-ELC
in RFM and w/ UTS-LC in RFM. In the w/o UTS-ELC in RFM setting, residual flow matching is
trained on the entire dataset without performing any clean/noisy separation; that is, all samples
(clean and noisy) are treated uniformly when learning residuals. In the w/ UTS-LC in RFM, we
still perform clean/noisy clustering using standard loss trajectories (UTS-LC), but the evidential
learning loss is removed—meaning that the clustering relies only on plain cross-entropy trajectories,
without uncertainty modeling. This ablation isolates the impact of evidential loss on clean/noisy
partition quality and shows how our method behaves when the clustering signal becomes less reliable.
Our approach outperforms both variants by > 5% OSCR, demonstrating the importance of proper
label-clean/noisy data partitioning and the benefit of using evidential learning loss.

Ablation of meta-learning task. We further conduct another ablation regarding the meta-learning by
removing the evidential pseudo-label supervision in the meta-test stage, indicated by w/o LEL. Our
proposed method contributes 8.73% and 5.96% performance gains in terms of OSCR, illustrating the
superiority of using evidential pseudo-label supervision on the label-noisy set during the meta-training
for the model optimization. On the other hand, the variant w/o LCE shows a performance drop,
indicating the importance of both losses. While LEL enables label correction, LCE helps extract
useful cues from misassigned clean samples in the noisy set.

5 CONCLUSION

We present EReLiFM, a reliability-aware residual flow meta-learning framework for open-set domain
generalization under noisy labels. By combining evidential clustering for clean/noisy data separation
with domain- and category-conditioned flow matching, our method enhances data reliability and
diversity for meta-learning. Experiments on multiple benchmarks confirm that EReLiFM achieves
robust performance against label noise and strong generalization to unseen domains and categories.
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APPENDIX

A THE USE OF LARGE LANGUAGE MODELS (LLMS)

In this work, we mainly rely on LLM for text rephrasing to polish the paper writing.

B SOCIAL IMPACT AND LIMITATIONS

Social impact: The proposed EReLiFM framework has a significant social impact by improving
model generalization to new categories and domains under noisy labels, which is critical for real-world
applications such as healthcare, security, and autonomous driving. By facilitating robust learning
in open-set environments, this work enhances the reliability of deep learning models deployed
in dynamic and uncertain conditions when label noise exists. The ability to manage label noise
ensures that models trained on imperfect annotations, such as crowdsourced data, maintain their
effectiveness and trustworthiness. Furthermore, our approach mitigates biases in deep learning-based
decision-making by distinguishing between reliable and noisy labels, contributing to fairer and more
accountable deep learning systems. However, the potential misclassification and biased prediction
remain, which could lead to erroneous decisions with adverse societal implications.

Limitations: We propose EReLiFM to mitigate label noise in OSDG, but its performance under
extreme noise remains limited, highlighting a key research direction. This work focuses on image-
based OSDG-NL, leaving video-based OSDG-NL for future exploration.

C MORE DETAILS REGARDING THE EVALUATION METRICS

We follow the protocol outlined in the MEDIC approach Wang et al. (2023). For the PACS Li et al.
(2017) dataset, we adopt an open-set ratio of 6 : 1, designating elephant, horse, giraffe, dog, guitar,
and house as seen categories, while person is treated as unseen. Similarly, in DigitsDG Zhou et al.
(2020a), we use an open-set ratio of 6 : 4, with digits 0, 1, 2, 3, 4, 5 as seen and 6, 7, 8, 9 as unseen.

For evaluation, we employ three metrics. Acc measures closed-set accuracy on seen categories, while
H-score and OSCR assess open-set recognition. The H-score, dependent on a threshold from the
source domain validation set, is considered as the secondary metric. In contrast, OSCR, introduced
by MEDIC Wang et al. (2023), evaluates open-set recognition without a predefined threshold, making
it our primary metric.

The H-score is computed using a threshold ratio λ to distinguish seen from unseen samples. Pre-
dictions below λ are classified as unseen, and accuracy is separately calculated for seen (Acck) and
unseen (Accu) categories. The final H-score is given by:

Hscore =
2×Accu ×Acck
Accu +Acck

. (7)

OSCR, unlike AUROC, integrates accuracy with AUROC through dynamic thresholding, focusing
only on correctly classified samples. It combines elements from both H-score and AUROC, offering
a more comprehensive measure of confidence reliability in OSDG tasks.

D ANALYSIS OF CONFIDENCE SCORE

Fig. 2 visualizes confidence scores for seen (red) and unseen (blue) categories, computed as the
maximum Softmax probability. Our approach achieves the best separation between seen categories
and unseen categories on the test domain, while the confidence scores delivered by other listed
baselines are merged together. This visualization illustrates the superior capability of the proposed
approach when it deals with out-of-distribution categories. The proposed categorical flow matching
improves the awareness of unseen categories during the representation learning.
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(a) BadLabel (b) MLDG (c) MEDIC (d) HyProMeta (e) Ours

Figure 2: Confidence score visualization of learned representations on PACS with target domain
photo, using ResNet18 He et al. (2016) under symmetric label noise with ratio 50%.

Photo (P) Art (A) Cartoon (C) Sketch (S) Avg
Method Acc H-score OSCR Acc H-score OSCR Acc H-score OSCR Acc H-score OSCR Acc H-score OSCR

TCL Huang et al. (2023) 67.77 79.17 67.64 64.35 63.45 56.91 51.32 50.24 42.30 26.43 28.25 20.54 52.47 55.28 46.85
NPN Sheng et al. (2024) 63.97 71.61 62.53 57.22 51.43 45.95 47.65 40.11 32.85 21.86 13.01 12.71 47.68 44.04 38.51
BadLabel Zhang et al. (2024) 62.66 64.81 57.87 51.59 60.49 49.13 50.85 58.42 47.75 31.15 18.54 29.40 49.06 50.57 46.04
DISC Li et al. (2023) 66.69 71.98 65.67 54.10 29.80 41.07 53.48 41.72 40.83 34.57 16.94 24.16 52.21 40.11 42.93
LSL Kim et al. (2024) 67.04 71.46 63.82 63.10 63.42 58.01 53.27 54.92 47.14 28.44 4.37 27.51 52.96 48.54 49.12
PLM Zhao et al. (2024) 65.73 61.01 59.76 65.73 61.01 59.76 52.71 48.17 46.32 27.57 17.94 20.62 52.94 47.03 46.62

ARPL Bendale & Boult (2016) 68.09 75.04 67.31 56.91 51.96 44.50 59.93 60.98 54.02 36.46 7.36 27.55 55.35 48.84 48.35
ODGNet Bose et al. (2023) 66.48 71.17 65.60 62.44 65.75 58.60 60.50 59.99 53.54 30.14 4.05 15.68 54.89 50.24 48.36
MLDG Shu et al. (2019) 66.16 72.74 64.05 57.85 54.34 47.79 60.80 61.93 54.69 36.38 11.21 29.16 55.30 50.06 48.92
SWAD Cha et al. (2021) 63.00 72.01 62.08 64.79 66.60 60.22 56.68 59.18 51.10 29.90 20.51 22.51 53.59 54.58 48.98
MixStyle Zhou et al. (2020c) 68.42 63.75 59.88 63.23 61.42 56.49 51.99 54.34 45.19 28.36 3.13 12.79 53.00 45.66 43.59
MEDIC-cls Wang et al. (2023) 65.83 70.15 62.11 66.04 55.36 57.33 56.42 59.05 51.07 38.76 26.01 21.45 56.76 52.64 47.99
MEDIC-bcls Wang et al. (2023) 65.83 70.08 63.40 66.04 55.18 55.40 56.42 54.09 49.89 38.76 14.81 25.12 56.76 48.54 48.45
EBiL-HaDS-cls Peng et al. (2024b) 65.43 55.59 50.68 65.48 65.80 60.71 56.83 58.38 50.43 37.22 18.15 24.87 56.24 49.48 46.67
EBiL-HaDS-bcls Peng et al. (2024b) 65.43 53.39 55.16 65.48 59.68 58.33 56.83 56.59 48.76 37.22 19.38 23.75 56.24 47.26 46.50
HyProMeta Peng et al. (2024a) 68.90 80.47 68.86 68.17 70.60 63.65 61.47 62.10 55.15 40.06 27.06 32.21 59.65 60.06 54.97

Ours 94.26 80.16 81.49 86.12 72.33 80.79 72.67 64.00 61.67 39.24 27.50 21.01 73.07 61.00 61.24

Table 8: Results (%) of PACS Li et al. (2017) on ViT-Base Dosovitskiy et al. (2021). The open-set
ratio is 6:1 and symmetric label noise with ratio 20% is selected.

Photo (P) Art (A) Cartoon (C) Sketch (S) Avg
Method Acc H-score OSCR Acc H-score OSCR Acc H-score OSCR Acc H-score OSCR Acc H-score OSCR

TCL Huang et al. (2023) 68.17 62.70 67.56 64.48 67.84 61.30 45.80 35.84 35.68 22.29 9.28 3.54 50.19 43.92 42.02
NPN Sheng et al. (2024) 27.71 10.79 8.48 39.34 33.88 32.40 40.39 44.98 34.61 20.80 26.62 19.84 32.06 29.07 23.83
BadLabel Zhang et al. (2024) 51.62 61.25 50.41 32.52 37.26 26.67 43.58 55.85 42.45 31.60 28.24 26.93 39.83 45.65 36.62
DISC Li et al. (2023) 57.35 52.08 44.73 38.02 37.36 28.09 30.84 31.69 22.68 20.72 16.32 16.20 36.73 34.36 27.93
LSL Kim et al. (2024) 65.99 68.68 62.18 55.66 49.85 44.97 49.20 44.94 36.86 29.90 6.91 19.18 50.19 42.60 40.80
PLM Zhao et al. (2024) 57.67 50.81 51.87 51.41 46.57 41.82 39.66 39.47 31.89 19.95 12.93 15.75 42.17 37.45 35.33

ARPL Bendale & Boult (2016) 57.27 62.95 53.89 39.21 37.92 29.78 51.62 53.40 45.17 33.03 2.77 17.23 45.28 39.26 36.52
ODGNet Bose et al. (2023) 68.09 76.73 67.32 64.79 64.09 59.64 53.22 52.74 47.68 34.39 20.16 18.61 55.12 53.43 48.31
MLDG Shu et al. (2019) 67.29 75.04 65.97 66.98 66.41 62.00 55.44 54.65 47.35 33.83 15.82 23.25 55.89 52.98 49.64
SWAD Cha et al. (2021) 68.58 78.86 68.33 63.29 65.39 58.28 51.68 52.20 44.65 26.48 24.19 16.84 52.51 55.16 47.03
MixStyle Zhou et al. (2020c) 54.04 53.94 46.23 52.72 46.49 39.10 37.65 29.78 22.47 20.38 2.35 13.29 41.20 33.14 30.27
MEDIC-cls Wang et al. (2023) 62.76 69.29 60.03 63.10 62.25 55.06 56.42 56.30 49.08 32.16 8.13 24.16 53.61 48.99 47.08
MEDIC-bcls Wang et al. (2023) 62.76 50.05 44.19 63.10 45.67 46.56 56.42 39.96 40.02 32.16 27.74 23.91 53.61 40.86 38.67
EBiL-HaDS-cls Peng et al. (2024b) 62.84 64.75 57.55 63.79 62.07 56.86 48.07 45.94 38.18 36.00 10.31 24.98 52.68 45.77 44.39
EBiL-HaDS-bcls Peng et al. (2024b) 62.84 45.39 40.81 63.79 56.27 51.76 48.07 43.14 34.07 36.00 10.83 16.06 52.68 38.91 35.68
HyProMeta Peng et al. (2024a) 68.80 80.58 68.72 67.60 68.10 62.07 58.95 58.32 51.68 39.37 30.30 29.16 58.68 59.33 52.91

Ours 83.20 78.55 77.30 87.43 79.11 82.34 63.43 58.69 53.91 53.12 26.82 39.28 71.80 60.79 63.21

Table 9: Results (%) of PACS on ViT-Base Dosovitskiy et al. (2021). The open-set ratio is 6:1 and
symmetric label noise with ratio 50% is selected.

E PER-TARGET-DOMAIN RESULTS ON PACS USING VIT-BASE AND
DIGITSDG USING CONVNET

We further deliver the per-target-domain performances for the experiments conducted on the PACS Li
et al. (2017) dataset using ViT-Base Dosovitskiy et al. (2021) backbone (as shown in Tab. 8, Tab. 9,
Tab. 10, and Tab. 11), and the experiments conducted on the DigitsDG Zhou et al. (2020a) dataset
using ConvNet Zhou et al. (2021) backbone (as shown in Tab. 12, Tab. 13, Tab. 14, and Tab. 15).
From the aforementioned tables, we can observe that our proposed approach consistently outperforms
the others across all the metrics and label noise settings in general, which demonstrates the superior
generalizability of our approach across different backbones, label noise settings, and datasets.
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Photo (P) Art (A) Cartoon (C) Sketch (S) Avg
Method Acc H-score OSCR Acc H-score OSCR Acc H-score OSCR Acc H-score OSCR Acc H-score OSCR

TCL Huang et al. (2023) 22.70 25.47 16.55 22.26 23.14 14.42 19.75 14.23 6.53 28.52 10.92 11.54 23.31 18.44 12.26
NPN Sheng et al. (2024) 15.27 15.29 7.9 16.07 10.88 11.29 19.96 17.19 8.06 20.48 1.12 18.43 17.95 11.12 11.42
BadLabel Zhang et al. (2024) 13.33 20.96 13.32 24.77 32.36 21.98 23.98 32.76 21.91 21.60 2.36 21.31 20.92 22.11 19.63
DISC Li et al. (2023) 22.37 1.92 11.07 24.58 19.66 12.81 24.08 13.40 14.20 20.03 4.56 12.61 22.77 9.89 12.67
LSL Kim et al. (2024) 10.02 3.64 5.89 26.27 10.83 17.29 31.87 27.63 19.75 25.39 8.09 7.83 23.39 12.55 12.69
PLM Zhao et al. (2024) 29.32 5.93 1.34 26.77 28.58 18.39 25.27 25.69 16.89 24.22 3.33 2.25 26.40 15.88 9.72

ARPL Bendale & Boult (2016) 25.85 20.35 21.54 20.14 18.60 13.63 24.24 23.62 14.23 16.26 3.36 9.32 21.62 16.48 14.68
ODGNet Bose et al. (2023) 23.18 19.01 10.04 22.64 21.69 10.84 19.80 19.01 10.58 18.07 0.60 1.60 20.92 15.08 8.27
MLDG Shu et al. (2019) 29.08 29.84 22.82 30.08 29.62 20.16 24.24 22.37 15.85 19.66 2.34 4.11 25.77 21.04 15.74
SWAD Cha et al. (2021) 19.42 15.01 15.83 23.83 22.54 14.46 28.14 26.18 16.29 23.59 14.73 9.01 23.75 19.62 13.90
MixStyle Zhou et al. (2020c) 22.70 25.94 18.23 17.32 8.52 15.69 34.97 24.21 16.86 20.99 1.21 10.62 24.00 14.97 15.35
MEDIC-cls Wang et al. (2023) 35.70 23.85 14.91 28.46 30.78 20.50 30.22 26.39 16.88 21.51 11.08 13.13 28.97 23.03 16.36
MEDIC-bcls Wang et al. (2023) 35.70 23.85 18.53 28.46 27.55 17.87 30.22 13.99 11.18 21.54 8.32 4.81 28.98 18.43 13.10
EBiL-HaDS-cls Peng et al. (2024b) 34.89 3.49 17.80 32.02 20.65 22.32 30.84 6.28 17.64 25.71 26.60 17.09 30.87 14.26 18.71
EBiL-HaDS-bcls Peng et al. (2024b) 34.89 20.63 16.79 32.02 26.79 17.85 30.84 24.30 16.61 25.71 29.67 16.33 30.87 25.35 16.90
HyProMeta Peng et al. (2024a) 41.03 29.98 26.92 39.84 39.82 30.06 36.31 33.05 23.79 31.07 13.50 20.26 37.06 29.09 25.26

Ours 44.59 32.94 54.15 57.63 48.27 35.88 42.91 37.99 31.17 21.40 27.80 18.63 41.63 36.75 34.96

Table 10: Results (%) of PACS on ViT-Base Dosovitskiy et al. (2021). The open-set ratio is 6:1 and
symmetric label noise with ratio 80% is selected.

Photo (P) Art (A) Cartoon (C) Sketch (S) Avg
Method Acc H-score OSCR Acc H-score OSCR Acc H-score OSCR Acc H-score OSCR Acc H-score OSCR

TCL Huang et al. (2023) 51.21 56.51 48.47 46.65 51.35 40.80 31.92 30.94 22.61 25.87 20.94 12.04 38.91 39.94 30.98
NPN Sheng et al. (2024) 27.63 8.86 6.32 32.40 19.00 15.72 21.66 16.87 14.25 20.48 26.15 16.50 25.54 17.72 13.20
BadLabel Zhang et al. (2024) 46.12 58.96 45.77 35.33 34.30 34.83 26.92 39.52 26.18 20.70 31.32 20.66 32.27 41.03 31.86
DISC Li et al. (2023) 47.17 17.08 9.77 24.64 19.96 10.75 20.22 12.84 9.22 23.93 4.31 15.10 28.99 13.55 11.21
LSL Kim et al. (2024) 49.52 5.63 15.99 37.52 34.68 26.68 28.16 27.60 18.13 28.16 27.60 18.13 35.84 23.88 19.73
PLM Zhao et al. (2024) 20.51 23.01 18.15 20.17 13.41 8.08 37.85 33.88 26.43 20.59 24.16 17.26 24.78 23.62 17.48

ARPL Bendale & Boult (2016) 50.32 53.47 44.10 44.03 42.48 33.24 43.15 36.75 30.20 17.72 13.62 12.77 38.81 36.58 30.08
ODGNet Bose et al. (2023) 51.13 55.83 48.95 49.16 45.58 37.21 40.69 37.35 28.85 21.76 17.55 12.68 40.69 39.08 31.92
MLDG Shu et al. (2019) 52.99 57.10 51.53 45.90 56.06 43.93 46.11 43.18 39.17 32.98 29.49 28.18 44.50 46.46 40.70
SWAD Cha et al. (2021) 50.32 54.99 45.45 44.84 54.03 42.11 39.92 45.57 35.45 25.42 18.78 12.07 40.13 43.34 33.77
MixStyle Zhou et al. (2020c) 53.72 53.47 52.97 46.15 48.22 39.13 44.87 44.84 36.37 29.50 12.81 19.03 43.56 39.84 36.88
MEDIC-cls Wang et al. (2023) 52.10 59.31 48.42 46.47 56.57 44.42 35.69 29.04 21.31 35.42 28.01 27.79 42.42 43.23 35.49
MEDIC-bcls Wang et al. (2023) 52.10 49.72 42.70 46.47 55.52 43.88 35.69 30.26 20.16 35.42 24.54 26.48 42.42 40.01 33.31
EBiL-HaDS-cls Peng et al. (2024b) 54.60 52.92 44.98 46.97 56.52 44.29 34.66 25.52 22.48 25.71 26.60 17.09 40.49 40.39 32.21
EBiL-HaDS-bcls Peng et al. (2024b) 54.60 39.01 29.61 46.97 54.34 42.74 34.66 31.86 22.47 25.71 29.67 16.33 40.49 38.72 27.79
HyProMeta Peng et al. (2024a) 56.87 59.59 53.15 55.97 56.31 48.31 48.94 46.85 40.16 38.18 31.14 32.15 49.99 48.47 43.44

Ours 85.06 80.45 83.81 62.41 59.56 55.45 49.25 51.11 42.75 23.48 31.30 20.37 55.05 55.61 50.60

Table 11: Results (%) of PACS on ViT-Base Dosovitskiy et al. (2021). The open-set ratio is 6:1 and
asymmetric label noise with ratio 50% is selected.

mnist mnistm syn svhn Avg
Method Acc H-score OSCR Acc H-score OSCR Acc H-score OSCR Acc H-score OSCR Acc H-score OSCR

NPN Sheng et al. (2024) 82.28 29.42 70.68 32.56 28.22 22.74 21.78 22.54 14.41 17.33 11.95 9.89 38.49 23.03 29.43
BadLabel Zhang et al. (2024) 63.25 52.49 61.18 30.00 34.82 27.42 50.17 51.19 46.06 41.82 16.75 41.82 46.31 38.81 44.12

ODGNet Bose et al. (2023) 90.33 50.84 71.38 59.28 26.10 43.83 70.11 53.83 49.54 55.81 32.71 39.54 68.88 40.87 51.07
MLDG Chen et al. (2022) 90.67 27.60 80.46 57.89 48.38 42.77 60.33 39.95 41.30 53.75 6.08 35.20 65.66 30.50 49.93
MEDIC-cls Wang et al. (2023) 22.08 8.71 5.89 21.33 20.09 9.94 23.24 9.83 13.28 13.72 10.29 6.63 20.09 12.23 8.94
MEDIC-bcls Wang et al. (2023) 22.08 12.31 5.57 21.33 16.19 10.11 23.24 12.64 5.41 13.72 13.47 5.94 20.09 13.65 6.76
EBiL-HaDS-cls Peng et al. (2024b) 88.28 48.19 78.11 42.86 33.81 29.72 72.36 54.16 51.49 52.33 39.08 38.24 63.96 43.81 49.39
EBiL-HaDS-bcls Peng et al. (2024b) 88.28 59.51 61.82 42.86 34.27 30.03 72.36 53.55 49.29 52.33 35.23 40.31 63.96 45.64 45.36
HyProMeta Peng et al. (2024a) 93.47 55.15 82.35 61.69 41.43 43.40 74.02 53.88 53.10 58.83 22.64 42.52 72.00 43.28 55.34

Ours 95.19 57.92 86.41 67.67 50.97 51.76 78.44 60.49 58.85 65.08 41.98 48.32 76.60 52.84 61.34

Table 12: Results (%) of DigitsDG on ConvNet Zhou et al. (2021), where symmetric label noise with
ratio 20% is selected.

mnist mnistm syn svhn Avg
Method Acc H-score OSCR Acc H-score OSCR Acc H-score OSCR Acc H-score OSCR Acc H-score OSCR

NPN Sheng et al. (2024) 68.11 25.80 49.14 28.31 28.29 18.65 45.78 32.17 31.15 28.42 1.38 16.37 42.66 21.91 28.83
BadLabel Zhang et al. (2024) 63.31 35.12 57.47 42.28 42.69 38.44 21.36 25.07 18.30 19.83 4.88 19.28 36.70 26.94 33.37

ODGNet Bose et al. (2023) 71.25 22.26 49.81 59.22 36.88 44.86 61.39 43.65 42.41 51.75 19.70 35.38 60.90 30.62 43.12
MLDG Shu et al. (2019) 62.72 54.21 50.52 48.94 41.54 35.35 43.53 33.15 29.09 24.61 6.48 14.29 44.95 33.85 32.31
MEDIC-cls Wang et al. (2023) 22.39 0.17 2.81 25.89 22.88 12.16 12.78 12.10 4.73 7.61 5.70 2.35 17.17 10.21 5.51
MEDIC-bcls Wang et al. (2023) 22.39 12.08 3.26 25.89 20.73 11.88 12.78 11.26 3.97 7.61 7.13 2.02 17.17 12.80 5.28
EBiL-HaDS-cls Peng et al. (2024b) 77.19 31.34 62.64 42.78 34.74 32.69 51.92 39.84 31.75 43.81 23.45 30.23 53.93 32.34 39.33
EBiL-HaDS-bcls Peng et al. (2024b) 77.19 47.43 47.86 42.78 30.28 22.24 51.92 18.79 22.75 43.81 30.42 20.81 53.93 31.73 28.42
HyProMeta Peng et al. (2024a) 82.39 31.35 63.53 60.41 46.23 46.37 55.33 41.29 34.72 47.64 24.29 31.79 61.44 35.79 44.10

Ours 85.97 64.79 69.88 60.31 49.11 47.34 56.61 41.60 39.64 48.22 24.26 31.89 62.78 44.94 47.19

Table 13: Results (%) of DigitsDG on ConvNet Zhou et al. (2021), where symmetric label noise with
ratio 50% is selected.

F ABLATION OF UNSUPERVISED CLUSTERING FOR CLEAN-NOISY PARTITION

In Tab. 19, we present ablation experiments on the unsupervised clustering approach for label-
clean/noisy set partitioning. Separation correctness is evaluated using accuracy, where a binary
indicator serves as ground truth, denoting whether the current label matches the original unperturbed

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

mnist mnistm syn svhn Avg
Method Acc H-score OSCR Acc H-score OSCR Acc H-score OSCR Acc H-score OSCR Acc H-score OSCR

NPN Sheng et al. (2024) 16.67 0.01 9.65 18.61 13.38 10.15 17.78 18.12 9.29 16.67 0.55 8.21 17.43 8.02 9.33
BadLabel Zhang et al. (2024) 18.58 5.84 7.39 17.39 15.13 8.99 16.67 0.41 8.36 17.11 0.22 8.44 17.44 5.40 8.30

ODGNet Bose et al. (2023) 16.19 1.51 10.37 17.28 11.80 10.64 18.47 17.04 8.49 16.72 14.89 8.59 17.17 11.31 9.52
MLDG Shu et al. (2019) 16.06 6.70 9.69 18.58 3.26 9.27 16.94 6.81 8.20 17.33 6.88 8.84 17.23 5.91 9.00
MEDIC-cls Wang et al. (2023) 21.17 3.51 11.37 18.75 16.52 7.77 15.81 4.48 7.54 17.11 4.86 8.64 18.21 7.34 8.83
MEDIC-bcls Wang et al. (2023) 21.17 7.21 8.32 16.83 13.25 8.81 15.81 4.44 7.70 17.11 4.96 8.38 17.73 7.47 8.30
EBiL-HaDS-cls Peng et al. (2024b) 12.72 7.25 5.36 16.14 12.10 8.46 16.92 12.83 8.17 16.44 5.27 7.79 15.56 9.36 7.45
EBiL-HaDS-bcls Peng et al. (2024b) 12.72 7.15 5.62 16.14 8.64 7.43 16.92 15.29 8.34 16.44 7.00 7.83 15.56 9.52 7.31
HyProMeta Peng et al. (2024a) 22.28 20.94 12.23 21.58 16.92 11.73 19.31 18.47 9.77 18.11 15.55 8.78 20.32 17.97 10.63

Ours 25.33 23.82 14.14 18.64 20.03 10.85 21.89 12.67 12.02 17.17 15.94 9.26 20.76 18.12 11.57

Table 14: Results (%) of DigitsDG on ConvNet Zhou et al. (2021), where symmetric label noise with
ratio 80% is selected.

mnist mnistm syn svhn Avg
Method Acc H-score OSCR Acc H-score OSCR Acc H-score OSCR Acc H-score OSCR Acc H-score OSCR

NPN Sheng et al. (2024) 71.08 24.46 61.45 54.58 41.21 38.79 55.92 42.95 35.03 51.97 11.28 34.23 58.39 29.98 42.38
BadLabel Zhang et al. (2024) 53.00 38.77 43.34 33.94 27.79 30.06 37.64 44.59 33.47 27.61 20.90 26.18 38.05 33.01 33.26

ODGNet Bose et al. (2023) 53.67 48.23 41.31 39.36 27.19 28.08 51.17 24.92 34.91 39.64 5.51 25.32 45.96 26.46 32.41
MLDG Shu et al. (2019) 68.17 23.34 55.68 56.47 40.89 40.97 56.31 41.94 38.02 47.81 11.35 31.60 57.19 29.38 41.57
MEDIC-cls Wang et al. (2023) 19.86 14.41 11.22 19.75 15.93 8.03 9.83 8.28 2.88 16.31 5.78 7.36 16.44 11.10 7.37
MEDIC-bcls Wang et al. (2023) 19.86 21.31 11.22 19.75 14.66 6.73 9.83 8.82 2.58 16.31 13.40 7.39 16.44 14.55 6.98
EBiL-HaDS-cls Peng et al. (2024b) 67.39 36.21 53.76 44.14 35.30 29.61 60.86 46.15 38.81 51.89 25.34 31.35 56.07 35.75 38.38
EBiL-HaDS-bcls Peng et al. (2024b) 67.39 44.88 50.01 44.14 36.20 37.31 60.86 48.40 41.70 51.89 23.25 36.46 56.07 38.18 41.37
HyProMeta Peng et al. (2024a) 73.53 50.23 61.08 60.42 46.38 46.23 69.81 54.72 50.39 57.28 18.84 37.45 65.26 42.54 48.79

Ours 84.80 56.59 71.81 62.44 47.95 47.72 67.36 51.08 47.78 55.55 12.27 36.56 67.54 41.97 50.97

Table 15: Results (%) of DigitsDG on ConvNet Zhou et al. (2021), where asymmetric label noise
with ratio 50% is selected.

20% sym 50% sym 80% sym 50% asym
Method Acc H-score OSCR Acc H-score OSCR Acc H-score OSCR Acc H-score OSCR

HyProMeta Peng et al. (2024a) 56.61 37.75 28.86 47.90 18.56 30.64 34.72 20.82 24.14 36.77 15.19 24.71

Ours 58.47 37.86 30.25 50.10 33.99 33.50 49.55 22.89 32.40 40.73 37.49 28.50

Table 16: Experimental results on TerriaINC dataset from DomainBed.

label. We compare our method with two variants, i.e., GMM and FINCH, where we directly apply
GMM and FINCH on the recorded loss to achieve binary clustering. From the experimental results,
we can observe that our approach generally outperforms those two variants. FINCH Sarfraz et al.
(2019) shows comparable performance with our approach on the symmetric label noise ratio of
20%, while our approach outperforms FINCH by large margins on the other label noise settings,
demonstrating that the combination of the FINCH and GMM classifier is more robust to severe
label noise. We further deliver more analysis for the sensitivity of the proposed HyProMeta to
the clean/noisy partition. On PACS with art painting as the target domain and 50% label noise,
reducing clustering accuracy from 92.25% to 42.76% and leading to a smaller OSCR drop from
59.58% to 46.97%. While performance is affected, the method remains robust due to selective clean
sample usage, evidential pseudo-labeling, and meta-learning regularization. Although DBSCAN and
KMEANS are also applied to loss trajectories, they remain highly sensitive to density assumptions
and centroid initialization, which often leads to unstable cluster boundaries when loss patterns vary
across domains and categories. In contrast, FINCH produces data-driven hierarchical partitions
that do not require predefined density thresholds or cluster numbers, allowing it to better adapt
to the heterogeneous and noisy loss dynamics characteristic of OSDG-NL. The subsequent GMM
refinement further models the aggregated loss statistics with a probabilistic mixture, yielding a
smoother and more discriminative clean/noisy separation than the rigid partitions produced by
DBSCAN or KMEANS. Consequently, our FINCH+GMM pipeline delivers a more reliable clean
subset, which directly strengthens the downstream residual-flow meta-learning process and leads
to superior overall performance. We further provide the t-SNE visualizations where blue points
denote correctly identified noisy samples and red points denote misclassified ones. On PACS (Photo
as the target domain, 50% symmetric noise), our method achieves 92.25% label-noise detection
accuracy, compared with 72.46% for HyProMeta Peng et al. (2024a), demonstrating a substantially
more reliable separation in Figure 3 left hand side. The ablation of the epochs required for UTS-ELC
is proposed in Figure 3 right hand side.
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20% sym 50% sym 80% sym 50% asym
Method Acc H-score OSCR Acc H-score OSCR Acc H-score OSCR Acc H-score OSCR

MEDIC-cls Wang et al. (2023) 41.74 0.42 32.57 24.46 6.54 16.93 10.06 3.52 6.44 27.30 9.83 19.35
MEDIC-bcls Wang et al. (2023) 41.74 37.58 31.60 24.46 23.38 17.38 10.06 12.69 6.52 27.30 27.87 20.01
HyProMeta Peng et al. (2024a) 42.32 40.35 33.86 25.58 28.91 20.11 12.40 16.00 8.76 27.55 28.25 21.60

Ours 44.07 42.71 36.27 41.61 40.53 32.51 20.08 22.43 13.07 37.65 34.75 28.11

Table 17: Experimental results on OfficeHome dataset.

20% sym 50% sym 80% sym 50% asym
Method Acc H-score OSCR Acc H-score OSCR Acc H-score OSCR Acc H-score OSCR

MEDIC-cls Wang et al. (2023) 89.51 60.33 71.33 51.75 0.00 30.48 21.68 10.44 9.46 58.04 21.15 31.70
MEDIC-bcls Wang et al. (2023) 89.51 67.44 72.23 51.75 31.04 24.74 21.68 15.85 9.78 58.04 14.16 31.82
HyProMeta Peng et al. (2024a) 90.81 54.35 56.34 74.83 67.92 63.33 23.78 24.39 16.22 72.73 34.20 36.48

Ours 95.80 65.56 81.53 80.42 65.94 66.99 29.37 30.31 21.11 76.92 44.79 47.77

Table 18: Experimental results on VLCS dataset.

Method 20% sym 50% sym 80% sym 50% asym
GMM 72.11 87.83 54.56 50.49
FINCH 90.39 85.29 50.02 38.71

DBSCAN 82.42 54.45 20.12 24.71
KMEANS 80.05 50.08 20.12 24.71

Representation 54.80 49.74 45.32 25.07

Ours 90.04 92.25 56.05 52.91

Table 19: Ablation experiments on PACS art painting using ResNet18 He et al. (2016) as backbone for
the unsupervised clustering approach regarding the label-clean/noisy sets partition. The performance
is evaluated by the accuracy computed over the partitioned sample set using a binary indicator of
whether the uncleaned label matches the original label for each sample.

PACS (Photo) DigitsDG (mnist)
Method #Params Acc H-score OSCR Acc H-score OSCR

DiT-S 30.98M 77.71 75.29 70.07 74.86 4.45 63.42
DiT-B 129.60M 82.39 81.52 78.68 85.97 64.79 69.88
DiT-L 435.90M 77.46 65.01 63.65 78.83 22.96 66.43

Table 20: Ablation regarding the scalability of DC-CRFM using different sizes of DiT. Experiments
are conducted on PACS dataset (test domain: Photo) and DigitsDG dataset (test domain: MNIST).

G TRAINING OVERHEAD AND COMPUTATION COST OF DC-CRFM

The number of parameters of our method is ∼ 215.6M during training, where DC-CRFM takes
∼ 129.6M due to its encoder-decoder structure for the generation of residuals, and ∼ 86.0M
during testing when we use ViT-Base Dosovitskiy et al. (2021) as backbone, since DC-CRFM only
participates in training. The whole training procedure takes ∼ 5h on PACS when we use one A100
GPU and ViT-Base as backbone.

H FURTHER CLARIFICATION REGARDING THE GENERALIZABILITY TO OTHER
DATASETS

We conduct further experiments on TerraInc dataset Beery et al. (2018) from DomainBed Peng et al.
(2019) with open-set ratio (8:2). The results are reported in Tab. 16, where we find our approach still
outperforms the current best approach, HyProMeta. Across all noise conditions, the proposed method
(Ours) outperforms HyProMeta in all metrics. Notably, under 50% symmetric noise, it achieves
a significant H-score gain of 15.43% and OSCR gain of 2.86%, indicating improved robustness
in separating clean/noisy samples and generalizing to unseen categories. Even under high-noise
settings (80% symmetric and 50% asymmetric), our method maintains superior OSCR and H-score,
validating its effectiveness in tackling the OSDG-NL task.
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(a) Ours (b) HyProMeta

ACC:92.25 ACC: 72.46

(c) Ablation of number of epochs

Figure 3: (a) T-SNE visualizations of the clean/noisy partition performance of our approach, where the
red dot denotes false separation and the blue dot denotes correct separation. (b) TSNE visualization
of the clean/noisy partition performance of HyProMeta. (c) Ablation of the hyperparameter Ne on
PACS and OfficeHome dataset, where Photo and Clipart are chosen as target domains and label noise
ratio is selected as 50% symmetric.

(a) Categorical and domain aware residuals of MixUp

(c) Categorical and domain aware residuals of our method

(b) Categorical and domain aware residuals of FACT

Figure 4: Visualization of domain and categorical residuals. The comparison is made between (a)
categorical and domain-aware residuals of the MixStyle Zhou et al. (2020c) method, (b) categorical
and domain-aware residuals of FACT Xu et al. (2021), and (c) categorical and domain-aware residuals
of our proposed DC-CRFM. For each row, the first four figures follow the setting: (source domain:
Sketch, target domain: Art Painting, source class: Dog, target class: House), while the rest four
figures follow the setting: (source domain: Cartoon, target domain: Art Painting, source class: Horse,
target class: Guitar).

I SCALING OF DIT

We provide the scalability evaluation in Tab. 20, where we find that DiT-B Peebles & Xie (2023)
works the best compared to DIT-S/L across different datasets, and we also adopt DiT-B in our
experiments. For PACS on the test domain Photo, DiT-B achieves the best results (Acc: 82.39%,
H-score: 81.52%, OSCR: 78.68%), showing that scaling from DiT-S to DiT-B improves performance.
However, further increasing the model size to DiT-L results in performance degradation, especially in
H-score and OSCR.

For DigitsDG on the test domain MNIST, the gap is even more pronounced. DiT-B again performs
the best (Acc: 85.97%, H-score: 64.79%, OSCR: 69.88%), whereas DiT-L suffers a sharp drop in
H-score (22.96%) despite having the highest parameter count. This indicates that DiT-B offers the
best balance between model complexity and generalization for DC-CRFM.
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Method 20% sym 50% sym 80% sym 50% asym
ACC H-Score OSCR ACC H-Score OSCR ACC H-Score OSCR ACC H-Score OSCR

HyProMeta (mean) 65.37 73.6 63.45 59.72 62.64 54.44 51.44 44.64 40.68 54.82 59.89 50.53
HyProMeta (var) ± 0.44 ± 2.24 ± 0.36 ± 2.17 ± 7.11 ± 5.43 ± 0.78 ± 6.95 ± 1.46 ± 4.11 ± 1.29 ± 2.20

Ours (mean) 83.87 80.24 79.28 80.55 77.85 76.82 53.7 53.15 46.78 69.91 65.98 65.28
Ours (var) ± 1.43 ± 0.68 ± 3.09 ± 0.84 ± 2.98 ± 1.57 ± 2.47 ± 3.48 ± 1.45 ± 0.98 ± 1.33 ± 1.71

Table 21: Statistical significance Results of our method and HyProMeta Peng et al. (2024a) on the
PACS dataset when we select Photo as the target domain.

J VISUALIZATIONS OF LEARNED RESIDUALS

We further provide the visualizations of cross-domain and -category residuals in Figure 4. The
categorical and domain residuals calculated based on the linear interpotation method proposed by
MixStyle produces only linear transfer paths between pairs of samples, resulting in abrupt and visually
incoherent transitions that can not capture more diverse and smooth domain or category shifts, while
this limitation also exits for FACT Xu et al. (2021) as it achieves data augmentation by using linear
interpolation in frequency domain, which does not explicitly model diverse and smooth transfer
paths among diverse categories and domains. Note that we visualized the cross category and domain
residuals, while during training only cross domain augmentation is used for MixStyle in our main
experiments to ensure consistency with their original approach for domain generalization.

Because linear interpolation method directly depends on the finite set of available training samples,
the types of residuals it can generate are fundamentally limited by the dataset scale, restricting
the diversity and richness of cross-domain transformations. In contrast, our DC-CRFM learns
structured residual distributions conditioned on domain and category labels, enabling smooth, soft,
and semantically coherent transitions that better reflect true domain- and category-level variations.
This benefit becomes especially important under label noise, where the clean/noisy separation cannot
be perfectly accurate; in such cases, hard linear mixup method, e.g., MixStyle Zhou et al. (2020c),
often amplifies label corruption, while our flow-based residuals provide smooth and diverse image
space transfers. By modeling continuous probability-flow trajectories rather than relying on linear
interpolation, our method generates diverse and robust residuals that remain informative even when
supervision is imperfect. Overall, DC-CRFM advances Mixstyle Zhou et al. (2020c) by offering
smoother, more expressive, and distribution-level residual transformations that substantially improve
domain generalization in noisy-label settings.

K PRELIMINARIES

In this section, we further provide an overview of the foundational components leveraged in our
proposed method, including FINCH Sarfraz et al. (2019), Gaussian Mixture Models (GMMs), and
vanilla Flow Matching.

K.1 FINCH BASED UNSUPERVISED CLUSTERING METHOD

First Integer Neighbor Clustering (FINCH) Sarfraz et al. (2019) is a parameter-free clustering method
which is built based on the following rules: each sample is linked to its first nearest neighbor, and
clusters emerge as the connected components of this induced graph.

Given a set of embeddings {xi}Ni=1, let d(xi,xj) denote the cosine distance between the embeddings.
FINCH Sarfraz et al. (2019) constructs a directed graph by assigning to each embedding xi its first
nearest neighbor according to Eq. 8.

NN(i) = argmin
j ̸=i

d(xi,xj). (8)

A cluster assignment is achieved through grouping samples according to the transitive closure of
this relation. Formally, two embeddings xi and xj belong to the same cluster Ck if there exists a
sequence according to Eq. 9.

xi → xa1 → · · · → xam → xj , (9)
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such that each arrow represents a first-neighbor link according to Eq. 10.

NN(i) = a1, NN(a1) = a2, . . . , NN(am) = j. (10)

Clusters {Ck}Kk=1 are therefore the connected components of the graph by Eq. 11,

G = (V,E), V = {1, . . . , N}, E = {(i,NN(i))}. (11)

FINCH Sarfraz et al. (2019) applies this procedure hierarchically. Once the first-level clusters are
obtained, each cluster Ck is represented by its centroid:

µk =
1

|Ck|
∑

xi∈Ck

xi, (12)

and the algorithm repeats the nearest-neighbor linking step on the set of cluster centroids. This
produces a sequence of increasingly coarse partitions

[
C(1), C(2), . . . , C(L)

]
until all samples merge

into a single cluster.

Because FINCH Sarfraz et al. (2019) does not require the number of clusters nor density thresholds,
and because its hierarchical structure naturally reveals coarse and fine partitions, it is well-suited for
our clean/noisy separation based on evidential-loss trajectories.

K.2 GAUSSIAN MIXTURE MODELS

Gaussian Mixture Models (GMMs) are probabilistic models that represent the feature distribution as
a weighted sum of K Gaussian components, as shown in Eq. 13

p(x) =

K∑
k=1

πkN (x |µk,Σk), (13)

where πk are weights for the mixture, and N (·) denotes a Gaussian distribution with mean µk

and covariance Σk. The parameters are usually learned using the Expectation-Maximization (EM)
algorithm. GMMs provide soft probabilistic assignments, allowing us to refine clean/noisy separation
by modeling uncertainty and distribution overlap in evidential-loss trajectories.

K.3 FLOW MATCHING

Flow Matching (FM) is a generative method that learns a continuous-time velocity field which can
transport samples from a source distribution to a target distribution. Instead of learning a score
function or a diffusion procedure, FM directly estimates the vector field that describes how samples
should move over time.

Given a pair of distributions p0(x) (source) and p1(x) (target), Flow Matching defines a family of
intermediate distributions pt(x) generated by a time-dependent ordinary differential equation (ODE),
according to Eq. 14.

dx(t)

dt
= vγ(x(t), t), t ∈ [0, 1], (14)

where vγ is a learnable velocity field parameterized by γ. A solution trajectory x(t) of this ODE
connects a source sample to a target sample, according to Eq. 15.

x(0) ∼ p0, x(1) ∼ p1. (15)

To train the velocity field, FM constructs synthetic training trajectories using a straight-line path
interpolation by Eq. 16.

xt = (1− t)x0 + tx1, (16)
where x0 ∼ p0 and x1 ∼ p1. The true (oracle) velocity associated with this path is as Eq. 17.

ut(x0,x1) = x1 − x0, (17)
which is constant along the trajectory.
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Figure 5: Ablation results for UTS-ELC for different label noise ratios on PACS dataset when we
select Photo as the target domain.

The FM objective minimizes the squared error between the predicted velocity field and this oracle
velocity as in Eq. 18.

LFM(γ) = Ex0∼p0,x1∼p1, t∼U(0,1)

[
∥vγ(xt, t)− (x1 − x0)∥2

]
. (18)

Once trained, the velocity field defines a generative mapping. New samples can harvested by
integrating the learned ODE according to Eq. 19.

x(1) = x(0) +

∫ 1

0

vγ(x(t), t) dt. (19)

L ANALYSIS OF ERROR PROPOGATION

In this section, we provide a detailed analysis of the error propagation behavior in our proposed
framework. Understanding how misclassification between clean and noisy sets affects different
components of the training pipeline is essential for explaining both the robustness and the limitations
of UTS-ELC.

When a clean sample is mistakenly assigned to the noisy set, its impact on training is relatively
mild. Such a sample is excluded from the meta-train pool, reducing its direct influence on the inner-
loop optimization. However, it still participates in the meta-test stage, where its label information
is utilized through both the original annotation and the evidential pseudo-label. As a result, the
sample continues to contribute useful gradient signals during meta-test correction. Although this
misplacement introduces some inconsistency, the meta-test supervision largely compensates for
it, preventing substantial degradation. Consequently, this type of error leads to only limited error
propagation throughout the training process.

A more detrimental situation arises when the opposite misclassification occurs—that is, when a
noisy sample is incorrectly included in the clean set. In this scenario, the incorrect label is treated as
reliable and is fed directly into the meta-train step. This is problematic because the meta-train stage
lies at the core of the inner-loop optimization, meaning any erroneous gradient signals generated
here will propagate through multiple updates. These corrupted gradients influence not only the
immediate optimization but also subsequent meta-updates, amplifying their negative impact. This
failure mode becomes particularly pronounced under extremely high noise rates, where the proportion
of mislabeled samples in the clean set increases, causing unreliable supervision to dominate the
learning process. This explains the noticeable performance degradation observed in such extreme
noise conditions.

Despite these challenges, UTS-ELC remains consistently more robust than all baseline methods.
Its dual-stage supervision, evidential modeling, and unified training scheme allow it to tolerate a
considerable amount of noise before significant degradation occurs. Even under highly adverse

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

scenarios, the interplay between meta-test correction and evidential uncertainty estimation prevents
catastrophic collapse, demonstrating the inherent resilience of the framework.

M ANALYSIS OF STATISTICS SIGNIFICANCE

In order to validate the statistic significance of our proposed approach, we further provide mean and
standard error of five different runs of HyProMeta Peng et al. (2024a) and our proposed approach in
Table 21. The results show that EReLiFM generally achieves the highest mean OSCR with smaller
fluctuations of OSCR, even under strong label noise. In contrast, HyProMeta exhibits much larger
variance, especially at higher noise ratios.

N ANALYSIS OF PSEUDO LABEL QUALITY

We further provide the analysis of the pseudo-label accuracy on PACS when Photo domain is used as
the target domain. The pseudo-label accuracy and the corresponding final OSCR values are shown in
Table.

From these results, we can see a clear observation: when the pseudo-label accuracy drops significantly,
e.g., under 80% symmetric noise or 50% asymmetric noise, the final OSCR also decreases. In contrast,
when the pseudo-label accuracy stays reasonably high (around 77% or above, as in the 20% and
50% symmetric noise settings), its impact on OSCR is quite small. For example, these settings still
achieve 78.68% and 77.52% OSCR, respectively.

Overall, this shows that the final performance is closely tied to the quality of pseudo-labels: once their
accuracy falls extremly lower, the errors start to propagate during meta-testing and lead to noticeable
performance drops. We acknowledge it as an open challenge for OSDG-NL and the above analysis is
added into our revised paper.

Method 20% sym 50% sym 80% sym 50% asym
ypseudo ACC 90.34 77.23 32.90 75.48
Final OSCR 78.68 77.52 47.16 64.07

Table 22: Accuracy of the pseudo label prediction and the corresponding OSCR. Performances are
reported on PACS dataset when Photo is selected as target domain.

O FURTHER JUSTIFICATION OF THE META LEARNING DESIGN

Our work mainly targets OSDG scenarios with significant and realistic label noise, where separating
clean and noisy samples is both necessary and effective. Nevertheless, our UTS-ELC is designed to
remain stable even when the noise level approaches 0%. As shown in Figure 5 of the appendix, the
UTS-ELC drives the clean–noisy separation to naturally match the underlying noise ratio: when the
noise ratio becomes small, the predicted noisy set also shrinks accordingly. On a fully clean dataset,
the evidential-loss trajectories converge rapidly to low and stable values, causing almost all samples
to be assigned to the clean set while the noisy set vanishes, as you said.

This behavior also ensures that meta-learning remains well-posed in the clean-data regime. The
meta-test step is used only for label-correction under noisy supervision; thus, when the noisy set tends
to zero, the optimization reduces to using the meta-train step alone. In this case, the model effectively
collapses to standard supervised open-set domain generalization approach, which is sufficient for
providing fully correct supervision.

However, the main focus of this work is on achieving reliable meta-learning under significant label
noise and on mitigating the effect of severe label corruption during training as much as possible. We
acknowledge that jointly achieve OSDG and OSDG-NL is important, and we are willing to consider
it as future work.
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