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ABSTRACT

Large language models (LLMs) often exhibit flawed reasoning ability that un-
dermines reliability. Existing approaches to improving reasoning typically treat
it as a general and monolithic skill, applying broad training which is inefficient
and unable to target specific reasoning errors. We introduce Reasoning Edit-
ing, a paradigm for selectively modifying specific reasoning patterns in LLMs
while preserving other reasoning pathways. This task presents a fundamental
trade-off between Generality, the ability of an edit to generalize across differ-
ent tasks sharing the same reasoning pattern, and Locality, the ability to preserve
other reasoning capabilities. Through systematic investigation, we uncover the
Circuit-Interference Law: Edit interference between reasoning patterns is pro-
portional to the overlap of their neural circuits. Guided by this principle, we pro-
pose REdit, the first framework to actively reshape neural circuits before editing,
thereby modulating interference between reasoning patterns and mitigating the
trade-off. REdit integrates three components: (i) Contrastive Circuit Reshaping,
which directly addresses the generality-locality trade-off by disentangling over-
lapping circuits; (ii) Meta-Contrastive Learning, which extends transferability to
novel reasoning patterns; and (iii) Dual-Level Protection, which preserves preex-
isting abilities by constraining reshaping update directions and regularizing task-
level predictions. Extensive experiments with Qwen-2.5-3B on propositional
logic reasoning tasks across three difficulty levels demonstrate that REdit consis-
tently achieves superior generality and locality compared to baselines, with addi-
tional validation in mathematics showing broader potential. Our code is available
at https://anonymous.4open.science/r/REdit-DBD8.

1 INTRODUCTION

Large language models (LLMs) achieve state-of-the-art performance across various domains
such as mathematics (Liu et al., 2023a; 2024a), law (Cheong et al., 2024; Sun, 2023), and
medicine (Zhao et al., 2023; Hadi et al., 2023). The success arises from their exceptional rea-
soning ability when executing complex instructions (Lu et al., 2023; Villalobos et al., 2022;
Wang et al., 2024b). Despite this success, LLMs often produce incorrect or misleading re-
sponses (Perković et al., 2024; Huang et al., 2025) driven by spurious reasoning processes,
which significantly undermines their reliability and safety. For example, an LLM may correctly
encode the fact that “if a brain aneurysm is present, a CT scan will show
bleeding or swelling (A→B OR A→C)”, but still wrongly infer “no bleeding
implies no aneurysm (¬B → ¬A)”, risking harmful medical consequences (Sim & Chen,
2024). Addressing such gaps remains a critical challenge for researchers and practitioners alike.

To strengthen reasoning, researchers typically view it as one general, monolithic skill that calls
for broad enhancement (Wang et al., 2023; Parmar et al., 2024; Wan et al., 2024). Standard ap-
proaches include fine-tuning on large reasoning corpora (Zhang et al., 2024a; Kumar et al., 2025),
reinforcement learning from human feedback (RLHF) (Havrilla et al., 2024a; Yue et al., 2025), and
sophisticated test-time prompting (Bi et al., 2024; Zhang et al., 2022). However, treating the LLM’s
reasoning as a monolithic ability has several drawbacks. First, overall reasoning enhancement can
be difficult and expensive, demanding extensive human annotation and huge computational bud-
gets (Luo et al., 2024; Lai et al., 2025). Second, growing evidence indicates that LLMs’ reasoning
is not monolithic but can be decomposed into separable patterns (Zhang et al., 2025a; Jiang et al.,
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2025; Zhang et al., 2025c; Shao & Cheng, 2025). Indiscriminately training over every reasoning
pattern fails to distinguish between those the model already handles well and those it struggles with,
thus leading to inefficient use of resources and suboptimal correction of specific reasoning errors.
Therefore, recent approaches have shifted towards enhancement at the level of specific reasoning tra-
jectories or intermediate steps, which involve only a handful of reasoning patterns (Cui et al., 2025;
Havrilla et al., 2024b). However, these methods heavily rely on the model’s own self-verification of-
ten without the model truly mastering the correct reasoning patterns, thus failing to reliably remedy
reasoning errors. As a result, how to correct erroneous and inject new reasoning patterns without
retraining on the whole reasoning datasets still remains an open problem. Recent work has demon-
strated that specific reasoning patterns are encoded in localized parameters or neural circuits within
LLMs (Hong et al., 2024; Kim et al., 2024), mirroring the way factual knowledge is stored in model
weights (Meng et al., 2022a; Yao et al., 2024; Zhang et al., 2024c). Given the success of parameter-
based methods for editing piecewise knowledge in LLMs (De Cao et al., 2021; Meng et al., 2022b),
we propose a natural extension: If knowledge can be edited through parameter modification, can
we analogously edit LLMs to correct flawed reasoning patterns or inject new ones?

In this paper, we take an initial step toward reasoning editing, defined as the selective modification
of a certain LLM’s reasoning pattern while preserving its factual knowledge and other reasoning
pathways. To establish a rigorous foundation for this investigation, we focus on propositional logic
(PL), where reasoning patterns can be precisely defined and systematically evaluated. Although
structurally simple, reasoning editing in PL remains challenging due to two fundamental desider-
ata (Hua et al., 2024; Sun, 2025): (1) Generality, edits applied to one instance should consistently
generalize to all instances with the same reasoning pattern across domains, rather than memorizing
surface semantics. For example, editing the transitive rule “A→B,B→C⇒A→C” in math should
also hold in medicine. (2) Locality, edits must remain narrowly scoped, correcting the targeted in-
ference rule without impairing the LLMs’ performance on other reasoning patterns it already handles
correctly. For example, editing the spurious rule “¬B→¬A⇒A→B” should not affect modus tollens
“(A→B,¬B)⇒¬A”.The two desiderata constitute a trade-off as shown in Section 2.2, whereby
enhancing one dimension typically diminishes the other, thus presenting a significant dilemma.

To tackle this trade-off, we first probe the mechanism underlying reasoning edits. Motivated by
evidence that reasoning mechanism can be faithfully revealed by neural circuits, we conduct a
systematic investigation into the relationship of edit effects and the circuit of reasoning pattern.
Through this analysis, we discover a fundamental principle we term the Circuit-Interference Law:
the degree to which an edit to one reasoning pattern affects another is directly proportional to the
overlap between their respective neural circuits. Guided by this observation, we introduce REdit,
the first framework to actively reshape circuits prior to reasoning editing, enabling controlled mod-
ulation of interference among reasoning patterns. REdit employs three key components: At its core,
(1) Contrastive Circuit Reshaping directly addresses the generality–locality trade-off by disentan-
gling overlapping circuits to reduce cross-reasoning pattern interference which improves locality
while consolidating pattern-specific circuits to promote within-reasoning pattern generality. Build-
ing upon this foundation, (2) Meta-Contrastive Learning enhances transfer to broader reasoning
patterns beyond those observed during reshaping and (3) Dual-Level Protection safeguards preexist-
ing reasoning abilities by constraining reshaping update directions via soft null-space projection and
regularizing prediction distributions of reasoning tasks. After reshaping, widely used LoRA-based
editing (Ge et al., 2024) suffices to achieve the desired generality and locality. We conduct exten-
sive experiments on Qwen-2.5-3B across three propositional-logic difficulty levels, showing that
REdit consistently enhances generality while reinforcing locality, surpassing strong baselines. Fur-
thermore, additional evaluations in the mathematics domain highlight REdit’s potential to generalize
effectively to broader reasoning scenarios. Our contributions can be summarized as follows:

• Reasoning Editing Paradigm: We introduce the first systematic framework for reasoning
editing, extending model editing from knowledge correction to the selective modification
of logical inference patterns, and formally identify the generality-locality trade-off.

• Circuit Reshaping Methodology: We pioneer active neural circuit modulation in LLMs,
enabling principled and targeted modification of specific reasoning pathways through con-
trolled modulation rather than passive circuit analysis.

• Novel REdit Framework: We propose a unified approach that synergistically combines
contrastive circuit shaping, meta-contrastive learning, and dual-level protection to simulta-
neously achieve both broad generality and precise locality in reasoning editing.
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• Empirical Validation: We demonstrate consistent improvements on propositional logic
reasoning tasks across three difficulty levels, showing superior performance in generality
and locality compared to existing editing methods.

2 PRELIMINARIES

2.1 PROBLEM FORMULATION

We study the problem of reasoning editing for LLMs in the context of propositional logic. Our goal
is to enable precise modifications to an LLM’s reasoning behavior, ensuring it adheres to desired
logical rules while preserving its existing correct ones. To formalize this, we first introduce the
necessary components of propositional logic reasoning, then define reasoning patterns and their
neural approximations, and finally present the reasoning editing problem.

Notations. Let X = {x1, . . . , xm} be a finite set of propositional variables (PVs), each taking a
truth value in {TRUE, FALSE}. Let S denote a fixed set of logical connectives (e.g., ¬,∧,∨,→). A
premise set P is a collection of well-formed formulas over (X ,S) that we assume to be true. A goal
G is a formula over (X ,S). We use the standard entailment relation |= where P |= φ means every
model that satisfies P also satisfies φ. We write Y = {TRUE, FALSE, N/A} for the three-way status
labels for G, where N/A means “neither entailed nor refuted.”

Definition 1 (Propositional-Logic (PL) Reasoning) Given premises P and a goal G, infer the sta-
tus of G as (1) “TRUE” if P |= G, (2) “FALSE” if P |= ¬G, and (3) “N/A” otherwise.

Definition 2 (Reasoning Pattern) Let X̂ be a finite set of placeholder PVs composed of symbols
with no semantic meaning. A reasoning pattern is π = (P(X̂ , S),G(X̂ , S)), where P(X̂ , S) is a set
of premises comprising placeholders and the connectives in S and G(X̂ , S) is the goal.

A substitution σ : X̂ →X replaces each placeholder by a concrete PV, yielding the instantiated pair

πσ = (Pσ, Gσ) = (P(σ(X̂ ), S),G(σ(X̂ ), S)),
where σ(X̂ ) denotes the set of ground variables obtained by applying σ to each placeholder. Two
instances πσ and πσ′ are said to share the same reasoning pattern exactly when they both derive from
the same template π under different substitutions σ ̸= σ′. In practice, LLMs internalize reasoning
rather than executing explicit symbolic logic, formalized as neural approximation.

Definition 3 (Neural Approximation of PL) A parameterized language model fθ approximates
PL reasoning by mapping a concrete pair (Pσ,Gσ) to a predicted status, as fθ : (Pσ,Gσ) 7→ ŷ ∈ Y.

Problem 1 (Reasoning Editing) Suppose we have a fixed neural reasoner fθ with parameters θ, we
also possess a finite revision dataset D = { (P(i), G(i), ŷ(i), y∗(i))}Ni=1 in which each (P(i),G(i))
is a concrete premise–goal pair, ŷ(i) = fθ(P(i),G(i)) is the original model’s prediction on that
pair, and y∗(i) is the target status we wish the edited model fθ′ to produce instead. Our objective of
reasoning editing is to find a revised parameter vector θ′ that meets below three requirements.

(1) Edit Success. For each sample (P(i),G(i), ŷ(i), y∗(i)) in D, the edited model with parameter θ′

must predict exactly the desired status, shown as fθ′(P(i), G(i)) = y∗(i).

(2) Generality. Let π(i) denote the underlying reasoning pattern of the example (P(i),G(i)). Once
we decide to revise f ’s behavior on one specific instantiation of π(i), we require that the edit extend
to all other premise–goal pairs arising from the same abstract pattern. Formally, for any substitution
σ that produces the pair π(i)

σ = (Pσ,Gσ), the edited model must satisfy fθ′(π
(i)
σ ) = y∗(i).

(3) Locality. Finally, let C = { (P,G) | fθ(P,G) = y∗} be the collection of all premise–goal pairs
on which the original model’s prediction fθ(P,G) already matches the ground truth. We demand
that editing θ into θ′ does not disturb any of these previously correct predictions. Equivalently, for
every (P,G) ∈ C, fθ′(P, G) = fθ(P, G).

2.2 PRELIMINARY STUDY
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Figure 1: LLM reasoning deficiencies and editing trade-off.

We begin by conducting preliminary
experiments on a subset of proposi-
tional logic dataset ContextHub (Hua
et al., 2024), where we empirically
reveal a generality–locality trade-off:
a simple edit cannot simultaneously
maximize both desiderata. Our in-
vestigation is motivated by a key ob-
servation that LLMs generally lack
logical reasoning ability. As Fig-
ure 1a shows, the accuracy of LLMs
answering propositional logical ques-
tions (Reasoning) is on average 10%
lower than tasks that merely require recalling the premise from the propositional logic (Fact-
Checking). This gap highlights a systematic weakness in basic logical inference and motivates direct
edits to correct faulty reasoning patterns.

To evaluate whether a simple edit can achieve the dual desiderata of generality and locality, we
conduct experiments to measure the two metrics. Let Π denote the index set of reasoning patterns.
For each i ∈ Π, let Si denote its instance set. Given an instance s ∈ Si, fine-tune the model on the
triple Di,s = (P(s),G(s), y∗(s)) to obtain edited parameters θ(i,s). The two metrics are defined as:

Generality =
1∑
i |Si|

∑
i

∑
s∈Si

1

|Si\{s}|
∑

(P,G)∈Si\{s}

1[fθ(i,s)(P,G) = y∗(P,G)]. (1)

Locality =
1∑
i |Si|

∑
i

∑
s∈Si

1

|Π \ {i}|
∑
j ̸=i

1

|Sj |
∑

(P,G)∈Sj

1[fθ(i,s)(P,G) = y∗(P,G)]. (2)

In practice, we approximate the last summation by randomly sampling a small subset of instances
from each Sj instead of evaluating over the entire set for efficiency. We conduct experiments on
multiple training configurations with learning rates η ∈ [1×10−5, 2×10−4]. As shown in Figure 1b,
increasing η improves generality but decreases locality, yielding a trade-off between generality and
locality. The remainder of this work therefore proposes an framework designed to mitigate the
observed trade-off, thus leading to better editing generality while preserving locality.

3 METHODOLOGY

3.1 CIRCUIT-INTERFERENCE LAW

Prior sections reveal a generality-locality trade-off: edits often fail to generalize within the intended
reasoning pattern or inadvertently spill over to other ones. To understand this gap, we turn to in-
vestigate the underlying mechanisms of reasoning editing of LLMs. Recent work in mechanistic
interpretability suggests that reasoning patterns are implemented by different neural circuits, and
that different tasks may recruit shared modular circuits (He et al.). Building on these findings, we
conjecture that the degree of overlap or separation among these circuits may govern whether edits
can generalize and remain local. Intuitively, if two reasoning patterns share substantial circuit com-
ponents, editing one should also influence the other; if their circuits are largely disjoint, edits are
expected to remain localized. This motivates our central hypothesis: circuit similarity predicts cross-
pattern editing effects, with closer circuits yielding stronger interference and more distant circuits
preserving locality. To validate this hypothesis, we design a four-step experimental procedure.

(1) Circuit Attribution via Edge Attribution Patching (EAP) (Syed et al., 2023). For each
pattern π, we sample K instantiations {(Pσk

, Gσk
)}Kk=1 as clean input dclean

k and build corrupted
input dpatch

k detailed in Appendix E. Let sθ(d) denote the log-probability of the ground-truth label
y∗(d). For an edge in the computational graph e with activation ve, its edge attribution for instance
k is an approximation of the score drop when e alone is patched:

EAPk(e) = ⟨∇vesθ(d
clean
k ), ve(d

patch
k )− ve(d

clean
k )⟩.
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Figure 2: Correlation between circuit distance and interference. (a–c) Scatter plots with regression
lines show that larger distances consistently correspond to reduced interference across different dis-
tance metrics. (d) Density plots of Pearson correlations confirm consistent negative associations.

To mitigate instance-specific noise unrelated to the reasoning pattern, we average the edge at-
tributions across K instantiations, yielding wπ(e) = − 1

K

∑K
k=1 EAPk(e). We then define the

threshold tπ(τ) = Quantile1−τ ({wπ(e)}), and construct the attributed circuit as the top–τ edges:
C(τ)π = {(e, wπ(e)) : wπ(e) ≥ tπ(τ)}.

(2) Circuit Distance. Given two patterns πi, πj with attributed circuits C(τ)i , C(τ)j , we quantify struc-
tural dissimilarity using three complementary metrics: weighted edit distance dEdit(i, j), Jaccard
distance dJaccard(i, j), and optimal transport distance dOT (i, j) detailed in Appendix B.

(3) Interference from Single-Pattern Edits. Pick a source pattern i and a small revision set Di =
{(P(n),G(n), y∗(n))}Ni

n=1, where each (P(n),G(n)) is an instance of πi and y∗(n) its ground truth.
Obtain edited parameters θedit(i) by fine-tuning fθ on Di. For any target pattern j, define accuracy
on its held-out set Sj as Accj(θ) and corresponding edit interference from i to j as ∆i→j .

Accj(θ) =
1

|Sj |
∑

(P,G)∈Sj

1[fθ(P,G) = y∗(P,G)], ∆i→j = |Accj(θedit(i))−Accj(θ)|.

(4) Circuit–Interference Relation. We examine the correlation between interference ∆i→j and
circuit distance d(i, j) ∈ {dJac, dEdit, dOT}, modeled as ∆i→j ≈ α+β d(i, j)+ϵ (Figure 2a–c). We
consistently find β < 0 and negative Pearson correlations, robust across edit budgets, random seeds,
and dataset subsamples as illustrated in Figure 2d. We term this finding as Circuit–Interference
Law, which posits a monotone relationship between structural proximity and cross-pattern effects
where smaller circuit distance implies larger ∆, and vice versa.

3.2 REDIT: CIRCUIT RESHAPING FOR REASONING EDITING

The Circuit–Interference Law suggests that achieving both generality and locality requires well-
structured circuits: representations of the same reasoning pattern should align closely, while those
of different patterns should remain distinct. This leads us to a bold proposition: rather than passively
analyzing existing circuits, can we actively reshape them to enforce these properties? In this paper,
we take a step in that direction with REdit, a framework that reformulates model circuits through a
contrastive meta-learning objective with dual-level protection constraints before reasoning editing,
enabling more effective and controlled reasoning edits.

Contrastive Circuit Reshaping. Directly reshaping two circuits to make them similar is challeng-
ing since (i) circuit structure is discrete and (ii) circuits are not available in closed form. We there-
fore adopt the attribution weights defined in Section 3.1 as a differentiable surrogate. Within each
minibatch, we sample multiple instantiations per pattern and compute their weights wπ . We then
normalize them as w̃π = wπ/∥wπ∥2. For each anchor example i, we construct a positive example i+
from a different group of instantiations of the same pattern, and negatives N (i) from instantiations
of other patterns. We then conduct InfoNCE (Oord et al., 2018) over attribution vectors:

Lctr(θ) = −
∑
i

log
exp(⟨w̃i, w̃i+⟩/τt)

exp(⟨w̃i, w̃i+⟩/τt) +
∑

j∈N (i) exp(⟨w̃i, w̃j⟩/τt) (3)

where τt is temperature. Optimizing equation 3 increases similarity within a reasoning pattern and
decreases similarity across patterns, shaping circuits implicitly through their attributions.
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Meta-Contrastive Learning. Training only on observed reasoning patterns may hinder transfer to
rare or unseen ones. To address this, we adopt a first-order meta-learning scheme on the contrastive
objective inspired by the Meta-Contrastive Network (Lin et al., 2021), adopting a Reptile-like frame-
work (Nichol & Schulman, 2018) that iteratively samples mini-batches, performs several inner gra-
dient steps, and updates parameters toward task-adapted weights. By aligning gradients across tasks,
this process amplifies updates along shared directions while suppressing instance-specific directions,
thereby mitigating overfitting to spurious contrastive relationships between particular reasoning pat-
terns and enabling circuits to generalize beyond those observed during training. In practice, at each
meta-iteration, we sample a batch of contrastive tuples B each regarded as a task, perform s inner
steps of adaptation, and obtain task-specific parameters ϕi = θsi . The outer update then moves the
model weights toward the mean of these task-adapted parameters:

Inner: θt+1
i = θti − α∇θL(i)

ctr(θ
t
i), θ0i = θ, Outer: θ ← θ + η · 1

|B|

∑
i∈B

(ϕi − θ). (4)

Dual-Level Protection. To preserve the model’s original behavior while enforcing correct mecha-
nisms, we impose constraints at both the (a) prediction level and the (b) optimization level.

(a) Prediction Distribution Preservation. Given a correctness set C and a frozen reference model
fθref (a pre-iteration snapshot of θ), we penalize deviations on C:

Lpred(θ) = E(P,G)∈CKL(fθref (· | P,G) ∥ fθ(· | P,G)) . (5)

(b) Null-Space Protection. At each inner step t of task i, we form an anchor group a(i,t), with
its instantiations set derived from the anchor. We compute the average prediction loss ℓθ(a(i,t)) =

1
|a(i,t)|

∑
d∈a(i,t) ℓθ(d) and the gradient is gi,t = ∇θℓθ(a

(i,t)). To prevent reshaping from impairing

reasoning task performance on the anchor, we define the rank-1 projector Πg(u) =
⟨u,g⟩

⟨g,g⟩+ε g and the

soft null-space operator P (i,t) = I−ρΠgi,t , where ρ ∈ [0, 1] controls projection strength and ε > 0
ensures numerical stability. The inner-loop gradients are then replaced by their projected versions:

∇̃θL(i)
ctr(θ

t
i) = P (i,t)∇θL(i)

ctr(θ
t
i), θt+1

i = θti − α ∇̃θL(i)
ctr(θ

t
i). (6)

When ρ = 1, the update is confined to the null space of gi,t, leaving the anchor’s loss unchanged to
first order. While prediction preservation maintains consistency in the model’s outputs, null-space
protection regulates internal parameter updates, thereby preventing catastrophic drift.

LoRA-based Edit. After circuit reshaping, we obtain the reshaped parameters θrsp. To enable fair
comparison, we then apply a widely used parameter-efficient editing method LoRA on the revision
set D, yielding the adapted parameters θedit = minθrsp

1
|D|

∑
(P,G,y∗)∈D CE

(
fθrsp(· | P,G), y∗

)
,

With circuit reshaping, this lightweight edit is expected to achieve improved generality and locality.

4 EXPERIMENTAL SETTINGS

Datasets & Metrics. We experiment on CONTEXTHUB (Hua et al., 2024) with details in Ap-
pendix A.1. We evaluate with the Generality and Locality metrics introduced in Section 2.2.

Backbone LLM. We use Qwen2.5-3B-Instruct (Yang et al., 2025) as the backbone LLM for all
experiments unless otherwise noted. This model offers competitive reasoning capability at a modest
parameter scale compared to larger ones, which keeps memory and inference costs manageable.

Baselines. We compare REdit to two families of approaches. (i) Model Reforming: (1) BIMT (Liu
et al., 2023b) (Brain-Inspired Modular Training) encourages functional modularity for MLPs during
pretraining; we adapt it to more complex LLMs to promote separable circuits for distinct reasoning
patterns, followed by LoRA-based editing. (ii) Model Editing: (2) LoRA (Hu et al., 2022) ap-
plies low-rank adapters for parameter-efficient fine-tuning and is a widely used and simple baseline
in knowledge editing (Wang et al., 2024c; Jiang et al., 2024); (3) AlphaEdit (Fang et al., 2024)
augments editing with null-space protection to reduce collateral changes; (4) ROME (Meng et al.,
2022a) locates and updates internal representations associated with targeted knowledge. We adapt
each method to the PL setting for a fair comparison. All editing methods share same 5e−5 learning
rate for fair comparison except for ROME. For other implementation details, refer to Appendix E.
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Table 1: Main results on ContextHub evaluated with generality and locality metrics. The best and
second-best scores are highlighted in bold and underlined, respectively. Raw denotes the perfor-
mance of the unedited LLM. For BIMT, we apply the same LoRA-based editing method as in REdit.

Dataset Metric Raw BIMT LoRA ROME AlphaEdit Ours

Level 1 Generality 60.7 ± 2.3 72.2 ±1.4 63.8 ± 2.9 67.8 ±3.2 67.9 ±1.9 74.1 ± 1.6
Locality N/A 61.5 ±0.7 84.9 ± 1.6 89.8 ±3.1 87.0 ±0.9 94.3 ± 0.4

Level 2 Generality 53.2 ± 1.4 63.6 ±2.9 58.4 ± 0.1 61.3 ±1.1 58.8 ±1.5 64.8 ± 1.2
Locality N/A 59.4 ±4.1 91.5 ± 0.0 93.1 ±0.1 93.3 ±0.0 94.3 ± 0.5

Level 3 Generality 45.1 ± 1.6 52.6 ±0.4 50.1 ± 0.8 51.5 ±3.3 54.2 ±0.8 55.0 ± 1.6
Locality N/A 52.3 ±1.0 92.3 ± 2.8 94.6 ±2.7 92.2 ±0.7 94.4 ± 0.8

5 RESULTS AND ANALYSIS

In this section, we address five research questions: RQ1: How does REdit compare with existing
baselines? RQ2: What is the contribution of each component within REdit? RQ3: How effectively
can REdit reshape circuits in LLMs? RQ4: To what extent does circuit reshaping transfer to unseen
circuits? RQ5: How does REdit perform on other domains compared to baselines?

5.1 MAIN RESULTS

Level 1 Level 2 Level 30

25
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e 
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LoRA

BIMT
AlphaEdit

ROME
REdit

Figure 3: Editing success rates across meth-
ods on ContextHub. REdit achieves suc-
cess rates comparable to other approaches,
confirming that it does not compromise the
model’s fundamental editing capabilities.

In this section, we address RQ1 and present our
findings in Table 1. Our analysis yields several
key insights: (1) REdit consistently outperforms
all baselines, achieving up to at most 16.1% im-
provements in generality and 12.2% in locality com-
pared to LoRA without circuit shaping, and averag-
ing 2.0% gains over state-of-the-art methods. (2)
REdit’s advantage increases as task complexity de-
creases, though improvements persist at all difficulty
levels. This reflects that simpler tasks have more
tractable circuit structures amenable to targeted re-
shaping. (3) BIMT achieves strong generality but
poor locality due to its disruption of internal mecha-
nisms, compromising preservation of original capa-
bilities. (4) ROME and AlphaEdit exhibit compet-
itive locality but inferior generality. ROME’s focus on middle-layer MLPs inadequately captures
distributed reasoning capabilities, while AlphaEdit’s constrained editing directions limit generality
enhancement to preserve other knowledge.

To ensure our method does not compromise the model’s fundamental editing capabilities on the
target instances, we evaluate editing success rates in Figure 3. Most methods achieve comparable
performance, with ROME as a notable exception showing significantly lower success rates. This
result further validates that restricting modifications to middle-layer MLPs is insufficient, given that
reasoning capabilities in LLMs are distributed across multiple architectural components.

5.2 ADDITIONAL ANALYSIS

Ablation Study. To address RQ2, we conduct an ablation study with results presented in Table 2.
Here, w/o MCL denotes the removal of Meta-Contrastive Learning, w/o PDP indicates without Pre-
diction Distribution Preservation, and w/o NSP represents without Null Space Protection. We have
the following observations: (1) All proposed components contribute meaningfully to REdit’s overall
performance, demonstrating their individual effectiveness. (2) Removing NSP or PDP substantially
degrades performance, particularly in locality metrics, indicating that these protection mechanisms
are essential for preserving model capabilities during circuit reshaping. (3) MCL provides modest
but consistent improvements, attributable to enhanced optimization stability through meta-learning.
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Table 2: Ablation studies on ContextHub evaluated with generality and locality metrics. The best
and second-best scores are highlighted in bold and underlined, respectively.

Dataset Metric Raw w/o MCL w/o NSP w/o PDP Ours

Level 1 Generality 60.7 ± 2.3 72.9 ± 0.4 73.3 ± 0.2 73.4 ± 0.5 74.1 ± 1.6
Locality N/A 90.7 ± 1.8 89.5 ± 0.3 90.1 ± 2.5 94.3 ± 0.4

Level 2 Generality 53.2 ± 1.4 62.5 ± 0.3 62.4 ± 1.6 61.3 ± 2.0 64.8 ± 1.2
Locality N/A 94.9 ± 0.6 93.0 ± 1.8 94.0 ± 0.8 94.3 ± 0.5

Level 3 Generality 45.1 ± 1.6 53.8 ± 1.3 50.9 ± 0.6 51.8 ± 0.6 55.0 ± 1.6
Locality N/A 93.7 ± 1.3 92.8 ± 1.1 92.8 ± 1.2 94.4 ± 0.8
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Figure 5: Circuit–interference relationship before and after circuit reshaping. (a,b) Scatter plots of
intra- and inter-pattern measurements show improved separability in interference and circuit dis-
tance. (c) Silhouette scores across reasoning patterns indicate consistent gains in cluster separation.

Reshaping Effect on Circuit Distance. To address RQ3, we measure how circuit reshaping alters
circuit distances between patterns. We visualize the circuit-interference relationship as described in
Section 3.1, distinguishing measurements between circuits from the same reasoning pattern (Intra-
Pattern) and different reasoning patterns (Inter-Pattern). Comparing the circuit-interference rela-
tionship before and after circuit reshaping in Figure 5, we observe that the two clusters become
more separable in both interference and circuit distance dimensions. The right panel shows silhou-
ette scores for the clusters across different reasoning pattern sets, where Overall indicates scores
in the 2-dimensional space. Our results demonstrate that REdit and its components consistently
improve circuit distance separation between different reasoning patterns while refining interference
patterns: increasing intra-pattern interference (enhancing generality) and decreasing inter-pattern
interference (improving locality). This validates both the effectiveness of our circuit reshaping
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Figure 4: Performance on unseen rea-
soning patterns after circuit reshap-
ing with different ratios for training.
REdit consistently outperforms base-
lines without reshaping.

approach and the Circuit-Interference Law.

Transferability of Reshaping. To address RQ4, we in-
vestigate the transfer of the effect of meta-contrastive cir-
cuit reshaping to unseen reasoning patterns. We apply
REdit to partial reasoning patterns (20% − 80% ratio)
and evaluate generality and locality on the remaining pat-
terns. The results in Figure 4 show that while accuracy
decreases slightly as the training ratio decreases, REdit
consistently outperforms baselines without circuit reshap-
ing (0% ratio) in both generality and locality metrics.
This demonstrates the effectiveness of meta-contrastive
learning in transferring learned circuit modifications to
previously unseen reasoning patterns.

Evaluation on Mathematics Tasks To address RQ5, we broaden our evaluation beyond logical
tasks by assessing REdit on TemplateGSM, a mathematical reasoning benchmark. TemplateGSM
encompasses multiple math templates, where each template represents a distinct reasoning pat-
tern analogous to propositional logic reasoning patterns (detailed in Appendix A.2). The results
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Figure 6: Evaluation on mathematical
reasoning benchmark TemplateGSM.

in Figure 6 show that while all methods perform worse
on TemplateGSM than on propositional logic reasoning
due to the intrinsic complexity of math problems, REdit
consistently outperforms all baselines, demonstrating its
effectiveness on a broader range of domains. BIMT fails
on both generality and locality, indicating its inability
to modularize LLMs for complex tasks. Additionally,
AlphaEdit and ROME show limited generality improve-
ments, highlighting the constraints of traditional knowl-
edge editing methods on mathematical reasoning tasks.

6 RELATED WORKS

LLM Reasoning. Recent advances in LLMs have been driven significantly by their improved
reasoning ability (Huang & Chang, 2022; Yu et al., 2024; Chen et al., 2025a; Li et al., 2025; Ferrag
et al., 2025; Zhang et al., 2024b; Wang et al., 2024d), which is the capacity for structured, logical
thinking to solve complex problems such as mathematical proofs (Ahn et al., 2024; Yang et al.,
2024a), causal inference (Wang, 2024; Ma, 2024), and formal logic (Wan et al., 2024; Parmar et al.,
2024). Despite their impressive performance, LLMs’ reasoning abilities remain limited, especially
with rigorous logical deduction (Cai et al., 2024), multi-hop inference (Yang et al., 2024b), and
precise symbolic manipulation (Sullivan & Elsayed, 2024), thus prompting further improvement.
Existing approaches often enhance reasoning through global strategies, such as supervised fine-
tuning (Kumar et al., 2025; Zhang et al., 2025b; Luong et al., 2024) or RLHF (Hou et al., 2025; Yue
et al., 2025; Wei et al., 2025). However, these methods treat reasoning as a monolithic capability
rather than decomposing it into finer-grained, interpretable patterns (Havrilla et al., 2024b). As a
result, they lack the precision to target and improve specific reasoning weaknesses (Chen et al.,
2024). In this work, we propose a more granular reasoning editing paradigm that disentangles
reasoning into distinct patterns. This enables targeted, efficient, and adaptive improvements tailored
to specific reasoning challenges, moving beyond one-size-fits-all solutions.

Model Editing. Model editing modifies a pre-trained LLM’s behavior post-hoc (Wang et al.,
2024c), enabling error correction (Chen et al., 2025b; Li et al., 2023), knowledge updates (Wang
et al., 2024a), or task adaptation without full retraining (Qi et al., 2024). Current techniques fall
into several categories: memory-based methods (Liu et al., 2024b; Hu et al., 2024; Mitchell et al.,
2022), meta-learning approaches (Mitchell et al., 2021; Tan et al., 2023), and localized rank-one
updates (Hase et al., 2023; Meng et al., 2022a). These methods have predominantly concentrated on
editing factual knowledge, typically represented as structured knowledge tuples. In contrast, reason-
ing editing addresses more complex reasoning processes, which are more intricately encoded within
the neural circuits of LLMs (Hong et al., 2024; Kim et al., 2024). Conventional knowledge editing
techniques often fail in this setting, as they struggle to satisfy the dual desiderata of generality and
locality. Moreover, no prior work has systematically investigated how to directly manipulate neural
circuits to enhance reasoning capabilities. In this work, we bridge this gap by taking the first step to-
ward reasoning editing. We introduce a novel circuit-reshaping framework designed to mitigate the
inherent generality–locality trade-off,thereby enabling more effective editing of reasoning patterns.

7 CONCLUSION

In this work, we present the first systematic study of reasoning editing, extending model editing
beyond factual correction to logical inference, which introduces the generality-locality trade-off.
Through circuit-level analyses, we uncover the Circuit-Interference Law, showing that interference
between reasoning patterns is proportional to their circuit overlap. Inspired by this principle, we pro-
pose REdit, a framework that reshapes model circuits prior to editing to mitigate the trade-off. REdit
integrates contrastive circuit shaping to align within-pattern circuits while disentangling across-
pattern ones, a meta-contrastive objective to enhance generalization, and dual-level protection to
preserve both prediction distributions and update directions. Empirical results show that even with a
simple LoRA editor, REdit consistently outperforms knowledge editing and model reforming base-
lines on propositional logic across three difficulty tiers using Qwen-2.5-3B. Additional experiments
further demonstrate its potential across different reasoning domains.
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A DATASET DETAILS

A.1 PROPOSITIONAL LOGIC: CONTEXTHUB

ContextHub (Hua et al., 2024) is a benchmark for propositional logical reasoning, built on top of
formal logic templates generated by DyVal (Zhu et al., 2023). It dynamically instantiated these tem-
plates into natural language questions across 11 real-world domains drawn from Wikipedia (e.g.,
culture, health, technology) along with an abstract form, thereby ensuring both diversity and robust-
ness of reasoning scenarios.

Statistics. ContextHub consists of a total of 256 formal logic templates, spanning several difficulty
levels. Each template is instantiated across 12 domains with 5 variations per domain. This yields
360 samples for level-1 logic, 600 for level-2 logic, and 2,880 for level-3 logic types. Each sample
is balanced across the three answer labels (True, False, N/A). In this work, we treat each logic
template as a distinct reasoning pattern.

Example. Table 3 illustrates both an abstract and a contextual instantiation of the same level-1
template. The abstract form substitutes propositional variables with arbitrary character sequences,
while the contextual form grounds them in a concrete domain.

Abstract Instance Contextual Instance
(vxkgr ∨ caunc) → ybyz. Given ybyz
is False, what is the value of caunc?

If an area of land has experienced significant
uplift or been shaped by powerful erosional
forces, then the terrain will feature tall, steep
mountains. Given that the area does not have
tall, steep mountains, can it be determined
if powerful erosional forces have shaped the
land?

Table 3: Level-1 example instantiations in ContextHub.

A.2 MATHEMATICS: TEMPLATEGSM

TemplateGSM (Zhang, 2024) is a large-scale benchmark for mathematical reasoning, constructed
using the Template-based Data Generation (TDG) paradigm. Frontier LLMs (e.g., GPT-4) are em-
ployed to author parameterized meta-templates, which are then instantiated into natural language
problems paired with programmatically verifiable solutions. This ensures not only linguistic and
structural diversity but also guarantees correctness at scale.

Statistics. TemplateGSM comprises 7,473 GPT-4-authored templates, instantiated into approxi-
mately 7.47 million grade-school math problems spanning arithmetic, fractions, percentages, and
elementary algebra. Problem lengths range from 18–636 tokens. In this work, we experiment on a
curated subset of 600 problems, each restricted to a single numerical answer (integer or float).

Example. Table 4 illustrates a GPT-4-authored template alongside one instantiated problem, high-
lighting how TDG generates diverse mathematical reasoning tasks.

Math Template Instantiated Problem
[NAME] sold [NUM1] [ITEM] to
[her/his/their] friends in April at a
[LOCATION] in [COUNTY], [STATE].
In May, [PRONOUN] sold [NUM2]
[ITEM]. How many [ITEM] did [NAME]
sell altogether in April and May?

Rosy Plascencia sold 238 air fryers to her
friends in April at a yoga studio boutique
in Bracken County, Kentucky. In May, they
sold 119 air fryers. How many air fryers did
Rosy Plascencia sell altogether in April and
May?

Table 4: Example instantiations in TemplateGSM.
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B CIRCUIT DISTANCE METRIC

Given two patterns πi, πj and their attributed circuits as the sets of top–τ edges ranked by attribution
scores: C(τ)π = {(e, wπ(e)) : wπ(e) ≥ tπ(τ)}, we quantify structural dissimilarity between πi and
πj using three complementary metrics.

(a) Weighted Jaccard Distance (Real & Vargas, 1996).

dJac(i, j) = 1 −

∑
e∈C(τ)

πi
∪C(τ)

πj

min{wi(e), wj(e)}∑
e∈C(τ)

πi
∪C(τ)

πj

max{wi(e), wj(e)}+ ε
. (7)

This emphasizes overlap of influential edges in the two attributed circuits.

(b) Edit Distance (Yujian & Bo, 2007).

dEdit(i, j) =

∑
e∈C(τ)

πi
∪C(τ)

πj

|wi(e)− wj(e) |∑
e∈C(τ)

πi
∪C(τ)

πj

max{wi(e), wj(e)}+ ε
. (8)

This captures the minimal “edit cost” required to reconcile the two circuits.

(c) Optimal-Transport (OT) Distance (Cuturi, 2013). Normalize edge weights in each attributed
circuit to probability masses

pπ(e) =
wπ(e)∑

e′∈C(τ)
π

wπ(e′)
, e ∈ C(τ)π .

Let c(e, e′)≥0 denote a ground cost between edges (e.g., based on layer/head/type and token-span
offsets). The optimal transport distance is then

dOT(i, j) = min
T∈Π(pi,pj)

∑
e∈C(τ)

πi

∑
e′∈C(τ)

πj

Te,e′ c(e, e
′),

Π(pi, pj) = {T ≥0 :
∑
e′

Te,e′ =pi(e),
∑
e

Te,e′ =pj(e
′)}.

(9)

This explicitly accounts for circuit geometry by measuring the minimal mass transport needed to
align the two attributed circuits.

C BONUS EFFECT OF REDIT

In this section, we compare the performance of the original LLMs with that of the unedited models
after undergoing REdit circuit reshaping in Figure 7. Surprisingly, we observe that even without ex-
plicit editing, REdit consistently yields modest accuracy gains across three difficulty levels of logical
reasoning tasks, with the largest improvements occurring on the easier problems. We attribute this
phenomenon to circuit reshaping’s ability to reorganize the model’s internal mechanisms, where it
might suppresses noisy or erroneous circuits while preserving task-critical ones, thereby enhancing
the model’s overall reasoning performance. We will explore this phenomenon further in the future.

D ALGORITHM

In this section, we provide the algorithm of REdit circuit reshaping in Algorithm 1.
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Figure 7: Comparison of accuracy between the original LLMs (Raw) and the unedited models after
REdit circuit reshaping (REdit (w/o Edit)) across three difficulty levels of logical reasoning tasks.
REdit consistently provides modest gains, with the most notable improvements at Level 1.

Algorithm 1 REdit Circuit Reshaping

1: procedure REDIT(θ,Πtrain, η, α, s, ρ)
2: Input: LLM θ; training patterns Πtrain; rates η, α; steps s; ratio ρ.
3: Output: Reshaped LLM θ′

4: Contrastive Circuit Shaping:
5: Derive attribution scores w̃π = wπ/∥wπ∥2; define InfoNCE loss Lctr(θ) as in Eq. equation 3
6: Meta-Contrastive Learning with Dual Protection:
7: for each meta-iteration do
8: Sample batch B ⊂ Πtrain
9: for each i ∈ B do ▷ Inner loop (equation 4)

10: Initialize θ0i ← θ
11: for t = 0, 1, . . . , s− 1 do
12: Compute preservation loss Lpred(θ

t
i) as in Eq. equation 5

13: Inner objective: L(i)
inner = L

(i)
ctr + λLpred

14: Derive gradient of inner objective: gi,t ← ∇θL(i)
inner(θ

t
i)

15: Form projector P (i,t) = I − ρΠgi,t ▷ Null-space protection
16: Update θt+1

i ← θti − αP (i,t)gi,t ▷ Protected update (6)
17: end for
18: Set ϕi ← θsi
19: end for
20: Outer update: θ ← θ + η · 1

|B|
∑

i∈B(ϕi − θ) ▷ Meta update, Eq. equation 4
21: end for
22: return θREdit
23: end procedure

E IMPLEMENTATION DETAILS

For circuit reshaping, we set the inner learning rate to α = 1 × 10−6 and the outer learning rate to
η = 1 × 10−6, running for 200 steps with an inner update step size of s = 5. In each iteration, we
sample |B| = 2 contrastive pairs of reasoning patterns in a batch. The temperature for contrastive
circuit shaping is fixed at τt = 1. The null-space protection coefficient is set to ρ = 0.5, and the
prediction distribution preservation weight is λ = 0.1. When computing attribution scores, we use
K = 10 instantiations for circuit distance calculation and K = 2 instantiations for REdit circuit
reshaping due to computational restricts. For experiments validating Circuit-Interference Law, we
construct circuits with top-τ = 5% edges. During editing, we modify one instance per sample. For
LoRA-based editing, we use a learning rate of 5 × 10−5 for 10 steps. Unless otherwise specified,
the same learning rate of 5 × 10−5 is adopted for other baselines to ensure fair comparison. All
experiments are conducted on four A100 GPUs; each REdit meta-iteration consumes ≈ 1 minute.

Corrupt Dataset. To construct the corrupt dataset, we modify the final question to query the status
of the first propositional variable in the premise P (fact-checking), instead of the status of the goal
G, while keeping all other components unchanged.
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Figure 8: Case study of circuits from reasoning patterns I and II before and after REdit circuit
reshaping. REdit enhances intra-pattern consistency while eliminating inter-pattern overlap.

Prompts. For the propositional logic dataset, we append the instruction: (Answer only in
True, False, or N/A (Neither)). Answer: to each question. For the mathematical
dataset, we append: Answer with only the final numeric result. Answer: to
ensure precise and standardized responses.

F CASE STUDY

In this section, we present a case study illustrating the circuits of two reasoning patterns be-
fore and after REdit circuit reshaping. As shown in Figure 8, prior to reshaping, circuits from
different instantiations of reasoning pattern I exhibit substantial overlap, though discrepancies
remain, most notably around node a23.h4 and the tree structure formed by m21, m22, and
m23. Circuits from reasoning pattern II share slight overlap with those of pattern I, particu-
larly within the same tree structure. After circuit reshaping, circuits from different instantia-
tions of reasoning pattern I become more consistent and exhibit stronger alignment, with noisy
nodes and edges effectively pruned. At the same time, overlap between circuits of reason-
ing patterns I and II is almost completely eliminated. This case study highlights the effective-
ness of REdit: it reshapes circuits to achieve greater separation across different reasoning pat-
terns while producing more coherent and centralized structures within the same reasoning pattern.
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Figure 9: Trade-off of REdit

G GENERALITY-LOCALITY TRADE-OFF OF REDIT

In this section, we compare the generality–locality trade-off before
and after applying circuit reshaping with REdit. As shown in Fig-
ure 9, across different learning rates, LLMs trained with REdit con-
sistently achieve a superior Pareto frontier compared to raw LLMs,
highlighting the effectiveness of our approach.
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