

REFORMING THE MECHANISM: EDITING REASONING PATTERNS IN LLMs WITH CIRCUIT RESHAPING

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

011 Large language models (LLMs) often exhibit flawed reasoning ability that under-
 012 dermines reliability. Existing approaches to improving reasoning typically treat
 013 it as a general and monolithic skill, applying broad training which is inefficient
 014 and unable to target specific reasoning errors. We introduce ***Reasoning Editing***,
 015 a paradigm for selectively modifying specific reasoning patterns in LLMs
 016 while preserving other reasoning pathways. This task presents a fundamental
 017 trade-off between *Generality*, the ability of an edit to generalize across different
 018 tasks sharing the same reasoning pattern, and *Locality*, the ability to preserve
 019 other reasoning capabilities. Through systematic investigation, we uncover the
 020 ***Circuit-Interference Law***: Edit interference between reasoning patterns is pro-
 021 portional to the overlap of their neural circuits. Guided by this principle, we pro-
 022 pose **REdit**, the first framework to actively reshape neural circuits before editing,
 023 thereby modulating interference between reasoning patterns and mitigating the
 024 trade-off. REdit integrates three components: (i) *Contrastive Circuit Reshaping*,
 025 which directly addresses the generality-locality trade-off by disentangling over-
 026 lapping circuits; (ii) *Meta-Contrastive Learning*, which extends transferability to
 027 novel reasoning patterns; and (iii) *Dual-Level Protection*, which preserves preex-
 028 isting abilities by constraining reshaping update directions and regularizing task-
 029 level predictions. Extensive experiments with Qwen-2.5-3B on propositional
 030 logic reasoning tasks across three difficulty levels demonstrate that REdit consis-
 031 tently achieves superior generality and locality compared to baselines, with addi-
 032 tional validation in mathematics showing broader potential. Our code is available
 033 at <https://anonymous.4open.science/r/REdit-DBD8>.

1 INTRODUCTION

036 Large language models (LLMs) achieve state-of-the-art performance across various domains
 037 such as mathematics (Liu et al., 2023a; 2024a), law (Cheong et al., 2024; Sun, 2023), and
 038 medicine (Zhao et al., 2023; Hadi et al., 2023). The success arises from their exceptional rea-
 039 soning ability when executing complex instructions (Lu et al., 2023; Villalobos et al., 2022;
 040 Wang et al., 2024b). Despite this success, LLMs often produce incorrect or misleading re-
 041 sponses (Perković et al., 2024; Huang et al., 2025) driven by spurious reasoning processes,
 042 which significantly undermines their reliability and safety. For example, an LLM may correctly
 043 encode the fact that “if a brain aneurysm is present, a CT scan will show
 044 bleeding or swelling ($A \rightarrow B$ OR $A \rightarrow C$)”, but still wrongly infer “no bleeding
 045 implies no aneurysm ($\neg B \rightarrow \neg A$)”, risking harmful medical consequences (Sim & Chen,
 046 2024). Addressing such gaps remains a critical challenge for researchers and practitioners alike.

047 To strengthen reasoning, researchers typically view it as one general, monolithic skill that calls
 048 for broad enhancement (Wang et al., 2023; Parmar et al., 2024; Wan et al., 2024). Standard ap-
 049 proaches include fine-tuning on large reasoning corpora (Zhang et al., 2024a; Kumar et al., 2025),
 050 reinforcement learning from human feedback (RLHF) (Havrilla et al., 2024a; Yue et al., 2025), and
 051 sophisticated test-time prompting (Bi et al., 2024; Zhang et al., 2022). However, treating the LLM’s
 052 reasoning as a monolithic ability has several drawbacks. First, overall reasoning enhancement can
 053 be difficult and expensive, demanding extensive human annotation and huge computational bud-
 054 getts (Luo et al., 2024; Lai et al., 2025). Second, growing evidence indicates that LLMs’ reasoning
 055 is not monolithic but can be decomposed into separable patterns (Zhang et al., 2025a; Jiang et al.,

054 2025; Zhang et al., 2025c; Shao & Cheng, 2025). Indiscriminately training over every reasoning
 055 pattern fails to distinguish between those the model already handles well and those it struggles with,
 056 thus leading to inefficient use of resources and suboptimal correction of specific reasoning errors.
 057 Therefore, recent approaches have shifted towards enhancement at the level of specific reasoning
 058 trajectories or intermediate steps, which involve only a handful of reasoning patterns (Cui et al., 2025;
 059 Havrilla et al., 2024b). However, these methods heavily rely on the model’s own self-verification of-
 060 ten without the model truly mastering the correct reasoning patterns, thus failing to reliably remedy
 061 reasoning errors. As a result, how to correct erroneous and inject new reasoning patterns without
 062 retraining on the whole reasoning datasets still remains an open problem. Recent work has demon-
 063 strated that specific reasoning patterns are encoded in localized parameters or neural circuits within
 064 LLMs (Hong et al., 2024; Kim et al., 2024), mirroring the way factual knowledge is stored in model
 065 weights (Meng et al., 2022a; Yao et al., 2024; Zhang et al., 2024c). Given the success of parameter-
 066 based methods for editing piecewise knowledge in LLMs (De Cao et al., 2021; Meng et al., 2022b),
 067 we propose a natural extension: *If knowledge can be edited through parameter modification, can*
 068 *we analogously edit LLMs to correct flawed reasoning patterns or inject new ones?*

069 In this paper, we take an initial step toward reasoning editing, defined as the selective modification
 070 of a certain LLM’s reasoning pattern while preserving its factual knowledge and other reasoning
 071 pathways. To establish a rigorous foundation for this investigation, we focus on propositional logic
 072 (PL), where reasoning patterns can be precisely defined and systematically evaluated. Although
 073 structurally simple, reasoning editing in PL remains challenging due to two fundamental desider-
 074 ata (Hua et al., 2024; Sun, 2025): (1) **Generality**, edits applied to one instance should consistently
 075 generalize to all instances with the same reasoning pattern across domains, rather than memorizing
 076 surface semantics. For example, editing the transitive rule “ $A \rightarrow B, B \rightarrow C \Rightarrow A \rightarrow C$ ” in math should
 077 also hold in medicine. (2) **Locality**, edits must remain narrowly scoped, correcting the targeted in-
 078 ference rule without impairing the LLMs’ performance on other reasoning patterns it already handles
 079 correctly. For example, editing the spurious rule “ $\neg B \rightarrow \neg A \Rightarrow A \rightarrow B$ ” should not affect modus tollens
 080 “ $(A \rightarrow B, \neg B) \Rightarrow \neg A$ ”. The two desiderata constitute a trade-off as shown in Section 2.2, whereby
 081 enhancing one dimension typically diminishes the other, thus presenting a significant dilemma.

082 To tackle this trade-off, we first probe the mechanism underlying reasoning edits. Motivated by
 083 evidence that reasoning mechanism can be faithfully revealed by neural circuits, we conduct a
 084 systematic investigation into the relationship of edit effects and the circuit of reasoning pattern.
 085 Through this analysis, we discover a fundamental principle we term the ***Circuit-Interference Law***:
 086 the degree to which an edit to one reasoning pattern affects another is directly proportional to the
 087 overlap between their respective neural circuits. Guided by this observation, we introduce **REdit**,
 088 the first framework to actively reshape circuits prior to reasoning editing, enabling controlled mod-
 089 ulation of interference among reasoning patterns. REdit employs three key components: At its core,
 090 (1) *Contrastive Circuit Reshaping* directly addresses the generality–locality trade-off by disentan-
 091 gling overlapping circuits to reduce cross-reasoning pattern interference which improves locality
 092 while consolidating pattern-specific circuits to promote within-reasoning pattern generality. Build-
 093 ing upon this foundation, (2) *Meta-Contrastive Learning* enhances transfer to broader reasoning
 094 patterns beyond those observed during reshaping and (3) *Dual-Level Protection* safeguards preexist-
 095 ing reasoning abilities by constraining reshaping update directions via soft null-space projection and
 096 regularizing prediction distributions of reasoning tasks. After reshaping, widely used LoRA-based
 097 editing (Ge et al., 2024) suffices to achieve the desired generality and locality. We conduct exten-
 098 sive experiments on Qwen-2.5-3B across three propositional-logic difficulty levels, showing that
 099 REdit consistently enhances *generality* while reinforcing *locality*, surpassing strong baselines. Fur-
 100 thermore, additional evaluations in the mathematics domain highlight REdit’s potential to generalize
 101 effectively to broader reasoning scenarios. *Our contributions can be summarized as follows:*

- 100 • **Reasoning Editing Paradigm:** We introduce the first systematic framework for reasoning
 101 editing, extending model editing from knowledge correction to the selective modification
 102 of logical inference patterns, and formally identify the generality-locality trade-off.
- 103 • **Circuit Reshaping Methodology:** We pioneer active neural circuit modulation in LLMs,
 104 enabling principled and targeted modification of specific reasoning pathways through con-
 105 trolled modulation rather than passive circuit analysis.
- 106 • **Novel REdit Framework:** We propose a unified approach that synergistically combines
 107 contrastive circuit shaping, meta-contrastive learning, and dual-level protection to simulta-
 108 neously achieve both broad generality and precise locality in reasoning editing.

108 • **Empirical Validation:** We demonstrate consistent improvements on propositional logic
 109 reasoning tasks across three difficulty levels, showing superior performance in generality
 110 and locality compared to existing editing methods.
 111

112 **2 PRELIMINARIES**
 113

114 **2.1 PROBLEM FORMULATION**
 115

116 We study the problem of reasoning editing for LLMs in the context of propositional logic. Our goal
 117 is to enable precise modifications to an LLM’s reasoning behavior, ensuring it adheres to desired
 118 logical rules while preserving its existing correct ones. To formalize this, we first introduce the
 119 necessary components of propositional logic reasoning, then define reasoning patterns and their
 120 neural approximations, and finally present the reasoning editing problem.
 121

122 **Notations.** Let $\mathcal{X} = \{x_1, \dots, x_m\}$ be a finite set of propositional variables (PVs), each taking a
 123 truth value in {TRUE, FALSE}. Let \mathcal{S} denote a fixed set of logical connectives (e.g., $\neg, \wedge, \vee, \rightarrow$). A
 124 *premise set* \mathcal{P} is a collection of well-formed formulas over $(\mathcal{X}, \mathcal{S})$ that we assume to be true. A *goal*
 125 \mathcal{G} is a formula over $(\mathcal{X}, \mathcal{S})$. We use the standard entailment relation \models where $\mathcal{P} \models \varphi$ means every
 126 model that satisfies \mathcal{P} also satisfies φ . We write $\mathcal{Y} = \{\text{TRUE}, \text{FALSE}, \text{N/A}\}$ for the three-way status
 127 labels for \mathcal{G} , where N/A means “neither entailed nor refuted.”
 128

129 **Definition 1 (Propositional-Logic (PL) Reasoning)** *Given premises \mathcal{P} and a goal \mathcal{G} , infer the status of \mathcal{G} as (1) “TRUE” if $\mathcal{P} \models \mathcal{G}$, (2) “FALSE” if $\mathcal{P} \models \neg \mathcal{G}$, and (3) “N/A” otherwise.*
 130

131 **Definition 2 (Reasoning Pattern)** *Let $\widehat{\mathcal{X}}$ be a finite set of placeholder PVs composed of symbols
 132 with no semantic meaning. A reasoning pattern is $\pi = (\mathcal{P}(\widehat{\mathcal{X}}, S), \mathcal{G}(\widehat{\mathcal{X}}, S))$, where $\mathcal{P}(\widehat{\mathcal{X}}, S)$ is a set
 133 of premises comprising placeholders and the connectives in S and $\mathcal{G}(\widehat{\mathcal{X}}, S)$ is the goal.*
 134

135 A substitution $\sigma : \widehat{\mathcal{X}} \rightarrow \mathcal{X}$ replaces each placeholder by a concrete PV, yielding the instantiated pair
 136

$$\pi_\sigma = (\mathcal{P}_\sigma, \mathcal{G}_\sigma) = (\mathcal{P}(\sigma(\widehat{\mathcal{X}}), S), \mathcal{G}(\sigma(\widehat{\mathcal{X}}), S)),$$

137 where $\sigma(\widehat{\mathcal{X}})$ denotes the set of ground variables obtained by applying σ to each placeholder. Two
 138 instances π_σ and $\pi_{\sigma'}$ are said to *share the same reasoning pattern* exactly when they both derive from
 139 the same template π under different substitutions $\sigma \neq \sigma'$. In practice, LLMs internalize reasoning
 140 rather than executing explicit symbolic logic, formalized as neural approximation.
 141

142 **Definition 3 (Neural Approximation of PL)** *A parameterized language model f_θ approximates
 143 PL reasoning by mapping a concrete pair $(\mathcal{P}_\sigma, \mathcal{G}_\sigma)$ to a predicted status, as $f_\theta : (\mathcal{P}_\sigma, \mathcal{G}_\sigma) \mapsto \hat{y} \in \mathcal{Y}$.*
 144

145 **Problem 1 (Reasoning Editing)** *Suppose we have a fixed neural reasoner f_θ with parameters θ , we
 146 also possess a finite revision dataset $\mathcal{D} = \{(\mathcal{P}^{(i)}, \mathcal{G}^{(i)}, \hat{y}^{(i)}, y^{*(i)})\}_{i=1}^N$ in which each $(\mathcal{P}^{(i)}, \mathcal{G}^{(i)})$
 147 is a concrete premise–goal pair, $\hat{y}^{(i)} = f_\theta(\mathcal{P}^{(i)}, \mathcal{G}^{(i)})$ is the original model’s prediction on that
 148 pair, and $y^{*(i)}$ is the target status we wish the edited model $f_{\theta'}$ to produce instead. Our objective of
 149 reasoning editing is to find a revised parameter vector θ' that meets below three requirements.*
 150

151 **(1) Edit Success.** *For each sample $(\mathcal{P}^{(i)}, \mathcal{G}^{(i)}, \hat{y}^{(i)}, y^{*(i)})$ in \mathcal{D} , the edited model with parameter θ'
 152 must predict exactly the desired status, shown as $f_{\theta'}(\mathcal{P}^{(i)}, \mathcal{G}^{(i)}) = y^{*(i)}$.*
 153

154 **(2) Generality.** *Let $\pi^{(i)}$ denote the underlying reasoning pattern of the example $(\mathcal{P}^{(i)}, \mathcal{G}^{(i)})$. Once
 155 we decide to revise f ’s behavior on one specific instantiation of $\pi^{(i)}$, we require that the edit extend
 156 to all other premise–goal pairs arising from the same abstract pattern. Formally, for any substitution
 157 σ that produces the pair $\pi_\sigma^{(i)} = (\mathcal{P}_\sigma, \mathcal{G}_\sigma)$, the edited model must satisfy $f_{\theta'}(\pi_\sigma^{(i)}) = y^{*(i)}$.*
 158

159 **(3) Locality.** *Finally, let $\mathcal{C} = \{(\mathcal{P}, \mathcal{G}) \mid f_\theta(\mathcal{P}, \mathcal{G}) = y^*\}$ be the collection of all premise–goal pairs
 160 on which the original model’s prediction $f_\theta(\mathcal{P}, \mathcal{G})$ already matches the ground truth. We demand
 161 that editing θ into θ' does not disturb any of these previously correct predictions. Equivalently, for
 162 every $(\mathcal{P}, \mathcal{G}) \in \mathcal{C}$, $f_{\theta'}(\mathcal{P}, \mathcal{G}) = f_\theta(\mathcal{P}, \mathcal{G})$.*
 163

164 **2.2 PRELIMINARY STUDY**
 165

We begin by conducting preliminary experiments on a subset of propositional logic dataset ContextHub (Hua et al., 2024), where we empirically reveal a *generality–locality* trade-off: a simple edit cannot simultaneously maximize both desiderata. Our investigation is motivated by a key observation that LLMs generally lack logical reasoning ability. As Figure 1a shows, the accuracy of LLMs answering propositional logical questions (*Reasoning*) is on average 10% lower than tasks that merely require recalling the premise from the propositional logic (*Fact-Checking*). This gap highlights a systematic weakness in basic logical inference and motivates direct edits to correct faulty reasoning patterns.

To evaluate whether a simple edit can achieve the dual desiderata of *generality* and *locality*, we conduct experiments to measure the two metrics. Let Π denote the index set of reasoning patterns. For each $i \in \Pi$, let \mathcal{S}_i denote its instance set. Given an instance $s \in \mathcal{S}_i$, fine-tune the model on the triple $\mathcal{D}_{i,s} = (\mathcal{P}^{(s)}, \mathcal{G}^{(s)}, y^{*(s)})$ to obtain edited parameters $\theta^{(i,s)}$. The two metrics are defined as:

$$\text{Generality} = \frac{1}{\sum_i |\mathcal{S}_i|} \sum_i \sum_{s \in \mathcal{S}_i} \frac{1}{|\mathcal{S}_i \setminus \{s\}|} \sum_{(\mathcal{P}, \mathcal{G}) \in \mathcal{S}_i \setminus \{s\}} \mathbb{1}[f_{\theta^{(i,s)}}(\mathcal{P}, \mathcal{G}) = y^*(\mathcal{P}, \mathcal{G})]. \quad (1)$$

$$\text{Locality} = \frac{1}{\sum_i |\mathcal{S}_i|} \sum_i \sum_{s \in \mathcal{S}_i} \frac{1}{|\Pi \setminus \{i\}|} \sum_{j \neq i} \frac{1}{|\mathcal{S}_j|} \sum_{(\mathcal{P}, \mathcal{G}) \in \mathcal{S}_j} \mathbb{1}[f_{\theta^{(i,s)}}(\mathcal{P}, \mathcal{G}) = y^*(\mathcal{P}, \mathcal{G})]. \quad (2)$$

In practice, we approximate the last summation by randomly sampling a small subset of instances from each \mathcal{S}_j instead of evaluating over the entire set for efficiency. We conduct experiments on multiple training configurations with learning rates $\eta \in [1 \times 10^{-5}, 2 \times 10^{-4}]$. As shown in Figure 1b, increasing η improves generality but decreases locality, yielding a trade-off between generality and locality. The remainder of this work therefore proposes a framework designed to mitigate the observed trade-off, thus leading to better editing generality while preserving locality.

3 METHODOLOGY

3.1 CIRCUIT-INTERFERENCE LAW

Prior sections reveal a generality-locality trade-off: edits often fail to generalize within the intended reasoning pattern or inadvertently spill over to other ones. To understand this gap, we turn to investigate the underlying mechanisms of reasoning editing of LLMs. Recent work in mechanistic interpretability suggests that reasoning patterns are implemented by different neural circuits, and that different tasks may recruit shared modular circuits (He et al.). Building on these findings, we conjecture that the degree of overlap or separation among these circuits may govern whether edits can generalize and remain local. Intuitively, if two reasoning patterns share substantial circuit components, editing one should also influence the other; if their circuits are largely disjoint, edits are expected to remain localized. This motivates our *central hypothesis*: circuit similarity predicts cross-pattern editing effects, with closer circuits yielding stronger interference and more distant circuits preserving locality. To validate this hypothesis, we design a four-step experimental procedure.

(1) Circuit Attribution via Edge Attribution Patching (EAP) (Syed et al., 2023). For each pattern π , we sample K instantiations $\{(\mathcal{P}_{\sigma_k}, \mathcal{G}_{\sigma_k})\}_{k=1}^K$ as clean input d_k^{clean} and build corrupted input d_k^{patch} detailed in Appendix E. Let $s_{\theta}(d)$ denote the log-probability of the ground-truth label $y^*(d)$. For an edge in the computational graph e with activation v_e , its *edge attribution* for instance k is an approximation of the score drop when e alone is patched:

$$\text{EAP}_k(e) = \langle \nabla_{v_e} s_{\theta}(d_k^{\text{clean}}), v_e(d_k^{\text{patch}}) - v_e(d_k^{\text{clean}}) \rangle.$$

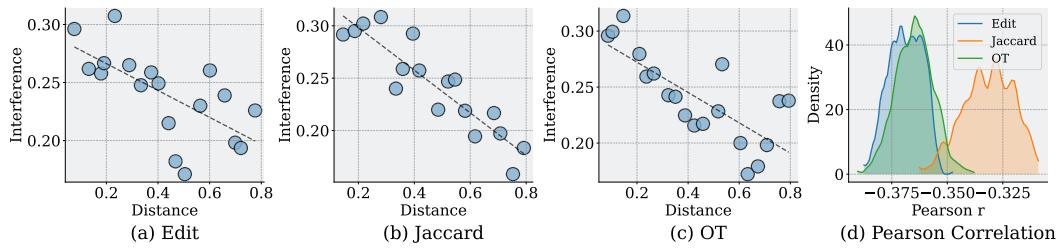


Figure 2: Correlation between circuit distance and interference. (a–c) Scatter plots with regression lines show that larger distances consistently correspond to reduced interference across different distance metrics. (d) Density plots of Pearson correlations confirm consistent negative associations.

To mitigate instance-specific noise unrelated to the reasoning pattern, we average the edge attributions across K instantiations, yielding $w_\pi(e) = -\frac{1}{K} \sum_{k=1}^K \text{EAP}_k(e)$. We then define the threshold $t_\pi(\tau) = \text{Quantile}_{1-\tau}(\{w_\pi(e)\})$, and construct the attributed circuit as the top- τ edges: $\mathcal{C}_\pi^{(\tau)} = \{(e, w_\pi(e)) : w_\pi(e) \geq t_\pi(\tau)\}$.

(2) Circuit Distance. Given two patterns π_i, π_j with attributed circuits $\mathcal{C}_i^{(\tau)}, \mathcal{C}_j^{(\tau)}$, we quantify structural dissimilarity using three complementary metrics: weighted edit distance $d_{\text{Edit}}(i, j)$, Jaccard distance $d_{\text{Jaccard}}(i, j)$, and optimal transport distance $d_{\text{OT}}(i, j)$ detailed in Appendix B.

(3) Interference from Single-Pattern Edits. Pick a source pattern i and a small revision set $\mathcal{D}_i = \{(\mathcal{P}^{(n)}, \mathcal{G}^{(n)}, y^{*(n)})\}_{n=1}^{N_i}$, where each $(\mathcal{P}^{(n)}, \mathcal{G}^{(n)})$ is an instance of π_i and $y^{*(n)}$ its ground truth. Obtain edited parameters $\theta_{\text{edit}(i)}$ by fine-tuning f_θ on \mathcal{D}_i . For any target pattern j , define accuracy on its held-out set \mathcal{S}_j as $\text{Acc}_j(\theta)$ and corresponding *edit interference* from i to j as $\Delta_{i \rightarrow j}$.

$$\text{Acc}_j(\theta) = \frac{1}{|\mathcal{S}_j|} \sum_{(\mathcal{P}, \mathcal{G}) \in \mathcal{S}_j} \mathbb{1}[f_\theta(\mathcal{P}, \mathcal{G}) = y^*(\mathcal{P}, \mathcal{G})], \quad \Delta_{i \rightarrow j} = |\text{Acc}_j(\theta_{\text{edit}(i)}) - \text{Acc}_j(\theta)|.$$

(4) Circuit–Interference Relation. We examine the correlation between interference $\Delta_{i \rightarrow j}$ and circuit distance $d(i, j) \in \{d_{\text{Jac}}, d_{\text{Edit}}, d_{\text{OT}}\}$, modeled as $\Delta_{i \rightarrow j} \approx \alpha + \beta d(i, j) + \epsilon$ (Figure 2a–c). We consistently find $\beta < 0$ and negative Pearson correlations, robust across edit budgets, random seeds, and dataset subsamples as illustrated in Figure 2d. We term this finding as **Circuit–Interference Law**, which posits a monotone relationship between structural proximity and cross-pattern effects where smaller circuit distance implies larger Δ , and vice versa.

3.2 REDIT: CIRCUIT RESHAPING FOR REASONING EDITING

The **Circuit–Interference Law** suggests that achieving both generality and locality requires well-structured circuits: representations of the same reasoning pattern should align closely, while those of different patterns should remain distinct. This leads us to a bold proposition: rather than passively analyzing existing circuits, can we actively reshape them to enforce these properties? In this paper, we take a step in that direction with **REdit**, a framework that reformulates model circuits through a contrastive meta-learning objective with dual-level protection constraints before reasoning editing, enabling more effective and controlled reasoning edits.

Contrastive Circuit Reshaping. Directly reshaping two circuits to make them similar is challenging since (i) circuit structure is discrete and (ii) circuits are not available in closed form. We therefore adopt the *attribution weights* defined in Section 3.1 as a differentiable surrogate. Within each minibatch, we sample multiple instantiations per pattern and compute their weights w_π . We then normalize them as $\tilde{w}_\pi = w_\pi / \|w_\pi\|_2$. For each anchor example i , we construct a positive example i^+ from a different group of instantiations of the same pattern, and negatives $\mathcal{N}(i)$ from instantiations of other patterns. We then conduct InfoNCE (Oord et al., 2018) over attribution vectors:

$$\mathcal{L}_{\text{ctr}}(\theta) = - \sum_i \log \frac{\exp(\langle \tilde{w}_i, \tilde{w}_{i^+} \rangle / \tau_t)}{\exp(\langle \tilde{w}_i, \tilde{w}_{i^+} \rangle / \tau_t) + \sum_{j \in \mathcal{N}(i)} \exp(\langle \tilde{w}_i, \tilde{w}_j \rangle / \tau_t)} \quad (3)$$

where τ_t is temperature. Optimizing equation 3 increases similarity within a reasoning pattern and decreases similarity across patterns, shaping circuits implicitly through their attributions.

270 **Meta-Contrastive Learning.** Training only on observed reasoning patterns may hinder transfer to
 271 rare or unseen ones. To address this, we adopt a first-order meta-learning scheme on the contrastive
 272 objective inspired by the Meta-Contrastive Network (Lin et al., 2021), adopting a Reptile-like frame-
 273 work (Nichol & Schulman, 2018) that iteratively samples mini-batches, performs several inner gra-
 274 dient steps, and updates parameters toward task-adapted weights. By aligning gradients across tasks,
 275 this process amplifies updates along shared directions while suppressing instance-specific directions,
 276 thereby mitigating overfitting to spurious contrastive relationships between particular reasoning pat-
 277 terns and enabling circuits to generalize beyond those observed during training. In practice, at each
 278 meta-iteration, we sample a batch of contrastive tuples \mathcal{B} each regarded as a task, perform s inner
 279 steps of adaptation, and obtain task-specific parameters $\phi_i = \theta_i^s$. The outer update then moves the
 280 model weights toward the mean of these task-adapted parameters:

$$281 \text{Inner: } \theta_i^{t+1} = \theta_i^t - \alpha \nabla_{\theta} \mathcal{L}_{ctr}^{(i)}(\theta_i^t), \quad \theta_i^0 = \theta, \quad \text{Outer: } \theta \leftarrow \theta + \eta \cdot \frac{1}{|\mathcal{B}|} \sum_{i \in \mathcal{B}} (\phi_i - \theta). \quad (4)$$

283 **Dual-Level Protection.** To preserve the model’s original behavior while enforcing correct mecha-
 284 nisms, we impose constraints at both the *(a) prediction level* and the *(b) optimization level*.

286 **(a) Prediction Distribution Preservation.** Given a correctness set \mathcal{C} and a frozen reference model
 287 $f_{\theta^{\text{ref}}}$ (a pre-iteration snapshot of θ), we penalize deviations on \mathcal{C} :

$$288 \mathcal{L}_{\text{pred}}(\theta) = \mathbb{E}_{(\mathcal{P}, \mathcal{G}) \in \mathcal{C}} \text{KL}(f_{\theta^{\text{ref}}}(\cdot | \mathcal{P}, \mathcal{G}) \| f_{\theta}(\cdot | \mathcal{P}, \mathcal{G})). \quad (5)$$

290 **(b) Null-Space Protection.** At each inner step t of task i , we form an *anchor group* $a^{(i,t)}$, with
 291 its instantiations set derived from the anchor. We compute the average prediction loss $\ell_{\theta}(a^{(i,t)}) =$
 292 $\frac{1}{|a^{(i,t)}|} \sum_{d \in a^{(i,t)}} \ell_{\theta}(d)$ and the gradient is $g_{i,t} = \nabla_{\theta} \ell_{\theta}(a^{(i,t)})$. To prevent reshaping from impairing
 293 reasoning task performance on the anchor, we define the rank-1 projector $\Pi_g(u) = \frac{\langle u, g \rangle}{\langle g, g \rangle + \varepsilon} g$ and the
 294 soft null-space operator $P^{(i,t)} = I - \rho \Pi_{g_{i,t}}$, where $\rho \in [0, 1]$ controls projection strength and $\varepsilon > 0$
 295 ensures numerical stability. The inner-loop gradients are then replaced by their projected versions:

$$297 \tilde{\nabla}_{\theta} \mathcal{L}_{ctr}^{(i)}(\theta_i^t) = P^{(i,t)} \nabla_{\theta} \mathcal{L}_{ctr}^{(i)}(\theta_i^t), \quad \theta_i^{t+1} = \theta_i^t - \alpha \tilde{\nabla}_{\theta} \mathcal{L}_{ctr}^{(i)}(\theta_i^t). \quad (6)$$

299 When $\rho = 1$, the update is confined to the null space of $g_{i,t}$, leaving the anchor’s loss unchanged to
 300 first order. While prediction preservation maintains consistency in the model’s outputs, null-space
 301 protection regulates internal parameter updates, thereby preventing catastrophic drift.

302 **LoRA-based Edit.** After circuit reshaping, we obtain the reshaped parameters θ_{rsp} . To enable fair
 303 comparison, we then apply a widely used parameter-efficient editing method LoRA on the revision
 304 set \mathcal{D} , yielding the adapted parameters $\theta_{\text{edit}} = \min_{\theta_{rsp}} \frac{1}{|\mathcal{D}|} \sum_{(\mathcal{P}, \mathcal{G}, y^*) \in \mathcal{D}} \text{CE}(f_{\theta_{rsp}}(\cdot | \mathcal{P}, \mathcal{G}), y^*)$,
 305 With circuit reshaping, this lightweight edit is expected to achieve improved generality and locality.

307 4 EXPERIMENTAL SETTINGS

310 **Datasets & Metrics.** We experiment on CONTEXTHUB (Hua et al., 2024) with details in Ap-
 311 pendix A.1. We evaluate with the *Generality* and *Locality* metrics introduced in Section 2.2.

312 **Backbone LLM.** We use Qwen2.5-3B-Instruct (Yang et al., 2025) as the backbone LLM for all
 313 experiments unless otherwise noted. This model offers competitive reasoning capability at a modest
 314 parameter scale compared to larger ones, which keeps memory and inference costs manageable.

315 **Baselines.** We compare REdit to two families of approaches. *(i) Model Reforming:* **(1) BIMT** (Liu
 316 et al., 2023b) (Brain-Inspired Modular Training) encourages functional modularity for MLPs during
 317 pretraining; we adapt it to more complex LLMs to promote separable circuits for distinct reasoning
 318 patterns, followed by LoRA-based editing. *(ii) Model Editing:* **(2) LoRA** (Hu et al., 2022) ap-
 319 plies low-rank adapters for parameter-efficient fine-tuning and is a widely used and simple baseline
 320 in knowledge editing (Wang et al., 2024c; Jiang et al., 2024); **(3) AlphaEdit** (Fang et al., 2024)
 321 augments editing with null-space protection to reduce collateral changes; **(4) ROME** (Meng et al.,
 322 2022a) locates and updates internal representations associated with targeted knowledge. We adapt
 323 each method to the PL setting for a fair comparison. All editing methods share same $5e - 5$ learning
 rate for fair comparison except for ROME. For other implementation details, refer to Appendix E.

324
 325 Table 1: Main results on ContextHub evaluated with generality and locality metrics. The best and
 326 second-best scores are highlighted in **bold** and underlined, respectively. *Raw* denotes the per-
 327 formance of the unedited LLM. For BIMT, we apply the same LoRA-based editing method as in REdit.

Dataset	Metric	Raw	BIMT	LoRA	ROME	AlphaEdit	Ours
Level 1	Generality	60.7 ± 2.3	<u>72.2 ± 1.4</u>	63.8 ± 2.9	67.8 ± 3.2	67.9 ± 1.9	74.1 ± 1.6
	Locality	N/A	61.5 ± 0.7	84.9 ± 1.6	<u>89.8 ± 3.1</u>	87.0 ± 0.9	94.3 ± 0.4
Level 2	Generality	53.2 ± 1.4	<u>63.6 ± 2.9</u>	58.4 ± 0.1	61.3 ± 1.1	58.8 ± 1.5	64.8 ± 1.2
	Locality	N/A	59.4 ± 4.1	91.5 ± 0.0	93.1 ± 0.1	<u>93.3 ± 0.0</u>	94.3 ± 0.5
Level 3	Generality	45.1 ± 1.6	52.6 ± 0.4	50.1 ± 0.8	51.5 ± 3.3	54.2 ± 0.8	55.0 ± 1.6
	Locality	N/A	52.3 ± 1.0	92.3 ± 2.8	94.6 ± 2.7	92.2 ± 0.7	<u>94.4 ± 0.8</u>

5 RESULTS AND ANALYSIS

In this section, we address five research questions: **RQ1**: How does REdit compare with existing baselines? **RQ2**: What is the contribution of each component within REdit? **RQ3**: How effectively can REdit reshape circuits in LLMs? **RQ4**: To what extent does circuit reshaping transfer to unseen circuits? **RQ5**: How does REdit perform on other domains compared to baselines?

5.1 MAIN RESULTS

In this section, we address **RQ1** and present our findings in Table 1. Our analysis yields several key insights: (1) REdit consistently outperforms all baselines, achieving up to at most 16.1% improvements in generality and 12.2% in locality compared to LoRA without circuit shaping, and averaging 2.0% gains over state-of-the-art methods. (2) REdit’s advantage increases as task complexity decreases, though improvements persist at all difficulty levels. This reflects that simpler tasks have more tractable circuit structures amenable to targeted reshaping. (3) BIMT achieves strong generality but poor locality due to its disruption of internal mechanisms, compromising preservation of original capabilities. (4) ROME and AlphaEdit exhibit competitive locality but inferior generality. ROME’s focus on middle-layer MLPs inadequately captures distributed reasoning capabilities, while AlphaEdit’s constrained editing directions limit generality enhancement to preserve other knowledge.

To ensure our method does not compromise the model’s fundamental editing capabilities on the target instances, we evaluate editing success rates in Figure 3. Most methods achieve comparable performance, with ROME as a notable exception showing significantly lower success rates. This result further validates that restricting modifications to middle-layer MLPs is insufficient, given that reasoning capabilities in LLMs are distributed across multiple architectural components.

5.2 ADDITIONAL ANALYSIS

Ablation Study. To address **RQ2**, we conduct an ablation study with results presented in Table 2. Here, *w/o MCL* denotes the removal of Meta-Contrastive Learning, *w/o PDP* indicates without Prediction Distribution Preservation, and *w/o NSP* represents without Null Space Protection. We have the following observations: (1) All proposed components contribute meaningfully to REdit’s overall performance, demonstrating their individual effectiveness. (2) Removing NSP or PDP substantially degrades performance, particularly in locality metrics, indicating that these protection mechanisms are essential for preserving model capabilities during circuit reshaping. (3) MCL provides modest but consistent improvements, attributable to enhanced optimization stability through meta-learning.

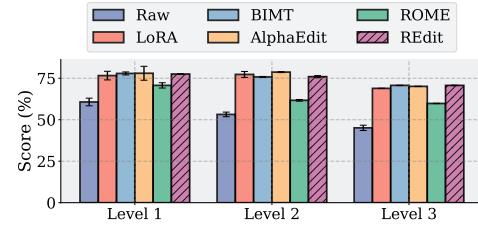


Figure 3: Editing success rates across methods on ContextHub. REdit achieves success rates comparable to other approaches, confirming that it does not compromise the model’s fundamental editing capabilities.

Table 2: Ablation studies on ContextHub evaluated with generality and locality metrics. The best and second-best scores are highlighted in **bold** and underlined, respectively.

Dataset	Metric	Raw	w/o MCL	w/o NSP	w/o PDP	Ours
Level 1	Generality	60.7 ± 2.3	72.9 ± 0.4	73.3 ± 0.2	73.4 ± 0.5	74.1 ± 1.6
	Locality	N/A	<u>90.7 ± 1.8</u>	89.5 ± 0.3	90.1 ± 2.5	94.3 ± 0.4
Level 2	Generality	53.2 ± 1.4	62.5 ± 0.3	62.4 ± 1.6	61.3 ± 2.0	64.8 ± 1.2
	Locality	N/A	94.9 ± 0.6	93.0 ± 1.8	94.0 ± 0.8	94.3 ± 0.5
Level 3	Generality	45.1 ± 1.6	53.8 ± 1.3	50.9 ± 0.6	51.8 ± 0.6	55.0 ± 1.6
	Locality	N/A	<u>93.7 ± 1.3</u>	92.8 ± 1.1	92.8 ± 1.2	94.4 ± 0.8

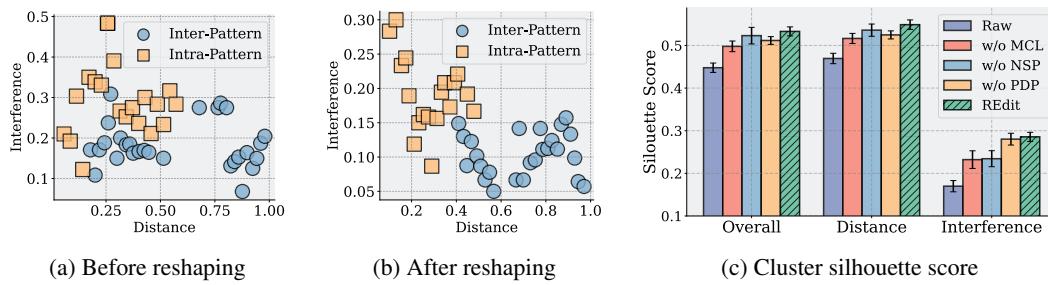


Figure 5: Circuit–interference relationship before and after circuit reshaping. (a,b) Scatter plots of intra- and inter-pattern measurements show improved separability in interference and circuit distance. (c) Silhouette scores across reasoning patterns indicate consistent gains in cluster separation.

Reshaping Effect on Circuit Distance. To address **RQ3**, we measure how circuit reshaping alters circuit distances between patterns. We visualize the circuit-interference relationship as described in Section 3.1, distinguishing measurements between circuits from the same reasoning pattern (Intra-Pattern) and different reasoning patterns (Inter-Pattern). Comparing the circuit-interference relationship before and after circuit reshaping in Figure 5, we observe that the two clusters become more separable in both interference and circuit distance dimensions. The right panel shows silhouette scores for the clusters across different reasoning pattern sets, where *Overall* indicates scores in the 2-dimensional space. Our results demonstrate that REdit and its components consistently improve circuit distance separation between different reasoning patterns while refining interference patterns: increasing intra-pattern interference (enhancing generality) and decreasing inter-pattern interference (improving locality). This validates both the effectiveness of our circuit reshaping approach and the Circuit-Interference Law.

Transferability of Reshaping. To address **RQ4**, we investigate the transfer of the effect of meta-contrastive circuit reshaping to unseen reasoning patterns. We apply REdit to partial reasoning patterns (20% – 80% ratio) and evaluate generality and locality on the remaining patterns. The results in Figure 4 show that while accuracy decreases slightly as the training ratio decreases, REdit consistently outperforms baselines without circuit reshaping (0% ratio) in both generality and locality metrics. This demonstrates the effectiveness of meta-contrastive learning in transferring learned circuit modifications to previously unseen reasoning patterns.

Evaluation on Mathematics Tasks To address **RQ5**, we broaden our evaluation beyond logical tasks by assessing REdit on TemplateGSM, a mathematical reasoning benchmark. TemplateGSM encompasses multiple math templates, where each template represents a distinct reasoning pattern analogous to propositional logic reasoning patterns (detailed in Appendix A.2). The results

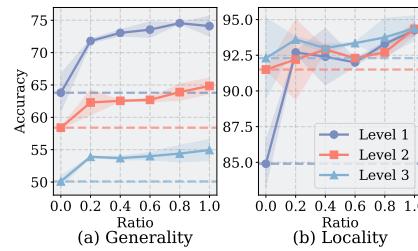


Figure 4: Performance on unseen reasoning patterns after circuit reshaping with different ratios for training. REdit consistently outperforms baselines without reshaping.

in Figure 6 show that while all methods perform worse on TemplateGSM than on propositional logic reasoning due to the intrinsic complexity of math problems, REdit consistently outperforms all baselines, demonstrating its effectiveness on a broader range of domains. BIMT fails on both generality and locality, indicating its inability to modularize LLMs for complex tasks. Additionally, AlphaEdit and ROME show limited generality improvements, highlighting the constraints of traditional knowledge editing methods on mathematical reasoning tasks.

6 RELATED WORKS

LLM Reasoning. Recent advances in LLMs have been driven significantly by their improved reasoning ability (Huang & Chang, 2022; Yu et al., 2024; Chen et al., 2025a; Li et al., 2025; Ferrag et al., 2025; Zhang et al., 2024b; Wang et al., 2024d), which is the capacity for structured, logical thinking to solve complex problems such as mathematical proofs (Ahn et al., 2024; Yang et al., 2024a), causal inference (Wang, 2024; Ma, 2024), and formal logic (Wan et al., 2024; Parmar et al., 2024). Despite their impressive performance, LLMs’ reasoning abilities remain limited, especially with rigorous logical deduction (Cai et al., 2024), multi-hop inference (Yang et al., 2024b), and precise symbolic manipulation (Sullivan & Elsayed, 2024), thus prompting further improvement. Existing approaches often enhance reasoning through global strategies, such as supervised fine-tuning (Kumar et al., 2025; Zhang et al., 2025b; Luong et al., 2024) or RLHF (Hou et al., 2025; Yue et al., 2025; Wei et al., 2025). However, these methods treat reasoning as a monolithic capability rather than decomposing it into finer-grained, interpretable patterns (Havrilla et al., 2024b). As a result, they lack the precision to target and improve specific reasoning weaknesses (Chen et al., 2024). In this work, we propose a more granular reasoning editing paradigm that disentangles reasoning into distinct patterns. This enables targeted, efficient, and adaptive improvements tailored to specific reasoning challenges, moving beyond one-size-fits-all solutions.

Model Editing. Model editing modifies a pre-trained LLM’s behavior post-hoc (Wang et al., 2024c), enabling error correction (Chen et al., 2025b; Li et al., 2023), knowledge updates (Wang et al., 2024a), or task adaptation without full retraining (Qi et al., 2024). Current techniques fall into several categories: memory-based methods (Liu et al., 2024b; Hu et al., 2024; Mitchell et al., 2022), meta-learning approaches (Mitchell et al., 2021; Tan et al., 2023), and localized rank-one updates (Hase et al., 2023; Meng et al., 2022a). These methods have predominantly concentrated on editing factual knowledge, typically represented as structured knowledge tuples. In contrast, reasoning editing addresses more complex reasoning processes, which are more intricately encoded within the neural circuits of LLMs (Hong et al., 2024; Kim et al., 2024). Conventional knowledge editing techniques often fail in this setting, as they struggle to satisfy the dual desiderata of generality and locality. Moreover, no prior work has systematically investigated how to directly manipulate neural circuits to enhance reasoning capabilities. In this work, we bridge this gap by taking the first step toward reasoning editing. We introduce a novel circuit-reshaping framework designed to mitigate the inherent generality–locality trade-off, thereby enabling more effective editing of reasoning patterns.

7 CONCLUSION

In this work, we present the first systematic study of reasoning editing, extending model editing beyond factual correction to logical inference, which introduces the generality-locality trade-off. Through circuit-level analyses, we uncover the Circuit-Interference Law, showing that interference between reasoning patterns is proportional to their circuit overlap. Inspired by this principle, we propose REdit, a framework that reshapes model circuits prior to editing to mitigate the trade-off. REdit integrates contrastive circuit shaping to align within-pattern circuits while disentangling across-pattern ones, a meta-contrastive objective to enhance generalization, and dual-level protection to preserve both prediction distributions and update directions. Empirical results show that even with a simple LoRA editor, REdit consistently outperforms knowledge editing and model reforming baselines on propositional logic across three difficulty tiers using Qwen-2.5-3B. Additional experiments further demonstrate its potential across different reasoning domains.

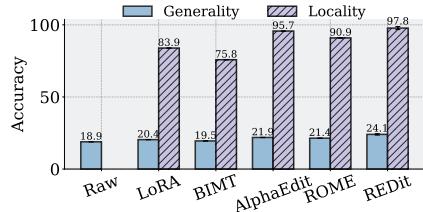


Figure 6: Evaluation on mathematical reasoning benchmark TemplateGSM.

486 REFERENCES
487

488 Janice Ahn, Rishu Verma, Renze Lou, Di Liu, Rui Zhang, and Wenpeng Yin. Large language models
489 for mathematical reasoning: Progresses and challenges. *arXiv preprint arXiv:2402.00157*, 2024.

490 Zhenni Bi, Kai Han, Chuanjian Liu, Yehui Tang, and Yunhe Wang. Forest-of-thought: Scaling
491 test-time compute for enhancing llm reasoning. *arXiv preprint arXiv:2412.09078*, 2024.

492

493 Chengkun Cai, Xu Zhao, Haoliang Liu, Zhongyu Jiang, Tianfang Zhang, Zongkai Wu, Jenq-Neng
494 Hwang, Serge Belongie, and Lei Li. The role of deductive and inductive reasoning in large
495 language models. *arXiv preprint arXiv:2410.02892*, 2024.

496

497 Qiguang Chen, Libo Qin, Jinhao Liu, Dengyun Peng, Jiannan Guan, Peng Wang, Mengkang Hu,
498 Yuhang Zhou, Te Gao, and Wanxiang Che. Towards reasoning era: A survey of long chain-of-
499 thought for reasoning large language models. *arXiv preprint arXiv:2503.09567*, 2025a.

500

501 Qizhou Chen, Taolin Zhang, Chengyu Wang, Xiaofeng He, Dakan Wang, and Tingting Liu. Attri-
502 bution analysis meets model editing: Advancing knowledge correction in vision language models
503 with visedit. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 39, pp.
504 2168–2176, 2025b.

505

506 Yulong Chen, Yang Liu, Jianhao Yan, Xuefeng Bai, Ming Zhong, Yinghao Yang, Ziyi Yang, Chen-
507 guang Zhu, and Yue Zhang. See what llms cannot answer: A self-challenge framework for un-
508 covering llm weaknesses. *arXiv preprint arXiv:2408.08978*, 2024.

509

510 Inyoung Cheong, King Xia, KJ Kevin Feng, Quan Ze Chen, and Amy X Zhang. (a) i am not a lawyer,
511 but...: engaging legal experts towards responsible llm policies for legal advice. In *Proceedings of*
512 *the 2024 ACM Conference on Fairness, Accountability, and Transparency*, pp. 2454–2469, 2024.

513

514 Yingqian Cui, Pengfei He, Jingying Zeng, Hui Liu, Xianfeng Tang, Zhenwei Dai, Yan Han, Chen
515 Luo, Jing Huang, Zhen Li, et al. Stepwise perplexity-guided refinement for efficient chain-of-
516 thought reasoning in large language models. *arXiv preprint arXiv:2502.13260*, 2025.

517

518 Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. *Advances in neural*
519 *information processing systems*, 26, 2013.

520

521 Nicola De Cao, Wilker Aziz, and Ivan Titov. Editing factual knowledge in language models. *arXiv*
522 *preprint arXiv:2104.08164*, 2021.

523

524 Junfeng Fang, Houcheng Jiang, Kun Wang, Yunshan Ma, Shi Jie, Xiang Wang, Xiangnan He, and
525 Tat-Seng Chua. Alphaedit: Null-space constrained knowledge editing for language models. *arXiv*
526 *preprint arXiv:2410.02355*, 2024.

527

528 Mohamed Amine Ferrag, Norbert Tihanyi, and Merouane Debbah. From llm reasoning to au-
529 tonomous ai agents: A comprehensive review. *arXiv preprint arXiv:2504.19678*, 2025.

530

531 Xiou Ge, Ali Mousavi, Edouard Grave, Armand Joulin, Kun Qian, Benjamin Han, Mostafa Arefiyan,
532 and Yunyao Li. Time sensitive knowledge editing through efficient finetuning. *arXiv preprint*
533 *arXiv:2406.04496*, 2024.

534

535 Muhammad Usman Hadi, Rizwan Qureshi, Abbas Shah, Muhammad Irfan, Anas Zafar, Muham-
536 mad Bilal Shaikh, Naveed Akhtar, Jia Wu, Seyedali Mirjalili, et al. A survey on large language
537 models: Applications, challenges, limitations, and practical usage. *Authorea Preprints*, 2023.

538

539 Peter Hase, Mohit Bansal, Been Kim, and Asma Ghandeharioun. Does localization inform editing?
surprising differences in causality-based localization vs. knowledge editing in language models.
Advances in Neural Information Processing Systems, 36:17643–17668, 2023.

Alex Havrilla, Yuqing Du, Sharath Chandra Raparthy, Christoforos Nalmpantis, Jane Dwivedi-Yu,
Maksym Zhuravinskyi, Eric Hambro, Sainbayar Sukhbaatar, and Roberta Raileanu. Teaching
large language models to reason with reinforcement learning. *arXiv preprint arXiv:2403.04642*,
2024a.

540 Alex Havrilla, Sharath Raparthy, Christoforus Nalmpantis, Jane Dwivedi-Yu, Maksym Zhuravinskyi, Eric Hambro, and Roberta Raileanu. Glore: When, where, and how to improve llm reasoning via global and local refinements. *arXiv preprint arXiv:2402.10963*, 2024b.

541

542

543 Yinhan He, Wendy Zheng, Yushun Dong, Yaochen Zhu, Chen Chen, and Jundong Li. Towards global-level mechanistic interpretability: A perspective of modular circuits of large language models. In *Forty-second International Conference on Machine Learning*.

544

545

546

547 Guan Zhe Hong, Nishanth Dikkala, Enming Luo, Cyrus Rashtchian, Xin Wang, and Rina Panigrahy. How transformers solve propositional logic problems: A mechanistic analysis. *arXiv preprint arXiv:2411.04105*, 2024.

548

549

550 Bairu Hou, Yang Zhang, Jiabao Ji, Yujian Liu, Kaizhi Qian, Jacob Andreas, and Shiyu Chang. Thinkprune: Pruning long chain-of-thought of llms via reinforcement learning. *arXiv preprint arXiv:2504.01296*, 2025.

551

552

553

554 Chenhui Hu, Pengfei Cao, Yubo Chen, Kang Liu, and Jun Zhao. Wilke: Wise-layer knowledge editor for lifelong knowledge editing. *arXiv preprint arXiv:2402.10987*, 2024.

555

556 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. *ICLR*, 1(2):3, 2022.

557

558

559 Wenyue Hua, Kaijie Zhu, Lingyao Li, Lizhou Fan, Shuhang Lin, Mingyu Jin, Haochen Xue, Zelong Li, JinDong Wang, and Yongfeng Zhang. Disentangling logic: The role of context in large language model reasoning capabilities. *arXiv preprint arXiv:2406.02787*, 2024.

560

561

562 Jie Huang and Kevin Chen-Chuan Chang. Towards reasoning in large language models: A survey. *arXiv preprint arXiv:2212.10403*, 2022.

563

564

565 Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong, Zhangyin Feng, Haotian Wang, Qianglong Chen, Weihua Peng, Xiaocheng Feng, Bing Qin, et al. A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. *ACM Transactions on Information Systems*, 43(2):1–55, 2025.

566

567

568

569 Gangwei Jiang, Yahui Liu, Zhaoyi Li, Qi Wang, Fuzheng Zhang, Linqi Song, Ying Wei, and Defu Lian. What makes a good reasoning chain? uncovering structural patterns in long chain-of-thought reasoning. *arXiv preprint arXiv:2505.22148*, 2025.

570

571

572 Yuxin Jiang, Yufei Wang, Chuhan Wu, Wanjun Zhong, Xingshan Zeng, Jiahui Gao, Liangyou Li, Xin Jiang, Lifeng Shang, Ruiming Tang, et al. Learning to edit: Aligning llms with knowledge editing. *arXiv preprint arXiv:2402.11905*, 2024.

573

574

575

576 Geonhee Kim, Marco Valentino, and André Freitas. A mechanistic interpretation of syllogistic reasoning in auto-regressive language models. *arXiv preprint arXiv:2408.08590*, 2024.

577

578 Komal Kumar, Tajamul Ashraf, Omkar Thawakar, Rao Muhammad Anwer, Hisham Cholakkal, Mubarak Shah, Ming-Hsuan Yang, Phillip HS Torr, Fahad Shahbaz Khan, and Salman Khan. Llm post-training: A deep dive into reasoning large language models. *arXiv preprint arXiv:2502.21321*, 2025.

579

580

581

582 Yuxiang Lai, Jike Zhong, Ming Li, Shitian Zhao, and Xiaofeng Yang. Med-r1: Reinforcement learning for generalizable medical reasoning in vision-language models. *arXiv preprint arXiv:2503.13939*, 2025.

583

584

585

586 Zhong-Zhi Li, Duzhen Zhang, Ming-Liang Zhang, Jiaxin Zhang, Zengyan Liu, Yuxuan Yao, Haotian Xu, Junhao Zheng, Pei-Jie Wang, Xiuyi Chen, et al. From system 1 to system 2: A survey of reasoning large language models. *arXiv preprint arXiv:2502.17419*, 2025.

587

588

589

590 Zhoubo Li, Ningyu Zhang, Yunzhi Yao, Mengru Wang, Xi Chen, and Huajun Chen. Unveiling the pitfalls of knowledge editing for large language models. *arXiv preprint arXiv:2310.02129*, 2023.

591

592 Yuanze Lin, Xun Guo, and Yan Lu. Self-supervised video representation learning with meta-contrastive network. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 8239–8249, 2021.

593

594 Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
 595 Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. *arXiv preprint*
 596 *arXiv:2412.19437*, 2024a.

597 Jiateng Liu, Pengfei Yu, Yuji Zhang, Sha Li, Zixuan Zhang, and Heng Ji. Evedit: Event-based
 598 knowledge editing with deductive editing boundaries. *arXiv preprint arXiv:2402.11324*, 2024b.

600 Wentao Liu, Hanglei Hu, Jie Zhou, Yuyang Ding, Junsong Li, Jiayi Zeng, Mengliang He, Qin
 601 Chen, Bo Jiang, Aimin Zhou, et al. Mathematical language models: A survey. *arXiv preprint*
 602 *arXiv:2312.07622*, 2023a.

603 Ziming Liu, Eric Gan, and Max Tegmark. Seeing is believing: Brain-inspired modular training for
 604 mechanistic interpretability. *Entropy*, 26(1):41, 2023b.

606 Sheng Lu, Irina Bigoulaeva, Rachneet Sachdeva, Harish Tayyar Madabushi, and Iryna Gurevych.
 607 Are emergent abilities in large language models just in-context learning? *arXiv preprint*
 608 *arXiv:2309.01809*, 2023.

609 Liangchen Luo, Yinxiao Liu, Rosanne Liu, Samrat Phatale, Meiqi Guo, Harsh Lara, Yunxuan Li,
 610 Lei Shu, Yun Zhu, Lei Meng, et al. Improve mathematical reasoning in language models by
 611 automated process supervision. *arXiv preprint arXiv:2406.06592*, 2024.

613 Trung Quoc Luong, Xinbo Zhang, Zhanming Jie, Peng Sun, Xiaoran Jin, and Hang Li. Reft: Rea-
 614 soning with reinforced fine-tuning. *arXiv preprint arXiv:2401.08967*, 3, 2024.

615 Jing Ma. Causal inference with large language model: A survey. *arXiv preprint arXiv:2409.09822*,
 616 2024.

618 Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual
 619 associations in gpt. *Advances in neural information processing systems*, 35:17359–17372, 2022a.

620 Kevin Meng, Arnab Sen Sharma, Alex Andonian, Yonatan Belinkov, and David Bau. Mass-editing
 621 memory in a transformer. *arXiv preprint arXiv:2210.07229*, 2022b.

623 Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea Finn, and Christopher D Manning. Fast model
 624 editing at scale. *arXiv preprint arXiv:2110.11309*, 2021.

625 Eric Mitchell, Charles Lin, Antoine Bosselut, Christopher D Manning, and Chelsea Finn. Memory-
 626 based model editing at scale. In *International Conference on Machine Learning*, pp. 15817–
 627 15831. PMLR, 2022.

629 Alex Nichol and John Schulman. Reptile: a scalable metalearning algorithm. *arXiv preprint*
 630 *arXiv:1803.02999*, 2(3):4, 2018.

631 Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predic-
 632 tive coding. *arXiv preprint arXiv:1807.03748*, 2018.

634 Mihir Parmar, Nisarg Patel, Neeraj Varshney, Mutsumi Nakamura, Man Luo, Santosh Mashetty,
 635 Arindam Mitra, and Chitta Baral. Logicbench: Towards systematic evaluation of logical reasoning
 636 ability of large language models. *arXiv preprint arXiv:2404.15522*, 2024.

637 Gabrijela Perković, Antun Drobnjak, and Ivica Botički. Hallucinations in llms: Understanding
 638 and addressing challenges. In *2024 47th MIPRO ICT and Electronics Convention (MIPRO)*, pp.
 639 2084–2088. IEEE, 2024.

641 Siyuan Qi, Bangcheng Yang, Kailin Jiang, Xiaobo Wang, Jiaqi Li, Yifan Zhong, Yaodong Yang, and
 642 Zilong Zheng. In-context editing: Learning knowledge from self-induced distributions. *arXiv*
 643 *preprint arXiv:2406.11194*, 2024.

644 Raimundo Real and Juan M Vargas. The probabilistic basis of jaccard’s index of similarity. *System-
 645 atic biology*, 45(3):380–385, 1996.

646 Jintian Shao and Yiming Cheng. Cot is not true reasoning, it is just a tight constraint to imitate: A
 647 theory perspective. *arXiv preprint arXiv:2506.02878*, 2025.

648 Shamus Sim and Tyrone Chen. Critique of impure reason: Unveiling the reasoning behaviour of
 649 medical large language models. *arXiv preprint arXiv:2412.15748*, 2024.

650

651 Rob Sullivan and Nelly Elsayed. Can large language models act as symbolic reasoners? *arXiv*
 652 *preprint arXiv:2410.21490*, 2024.

653 Alan Sun. Circuit stability characterizes language model generalization. *arXiv preprint*
 654 *arXiv:2505.24731*, 2025.

655

656 Zhongxiang Sun. A short survey of viewing large language models in legal aspect. *arXiv preprint*
 657 *arXiv:2303.09136*, 2023.

658

659 Aaquib Syed, Can Rager, and Arthur Conmy. Attribution patching outperforms automated circuit
 660 discovery. *arXiv preprint arXiv:2310.10348*, 2023.

661

662 Chemmien Tan, Ge Zhang, and Jie Fu. Massive editing for large language models via meta learning.
 663 *arXiv preprint arXiv:2311.04661*, 2023.

664

665 Pablo Villalobos, Anson Ho, Jaime Sevilla, Tamay Besiroglu, Lennart Heim, and Marius Hobbahn.
 666 Will we run out of data? limits of llm scaling based on human-generated data. *arXiv preprint*
 667 *arXiv:2211.04325*, 2022.

668

669 Yuxuan Wan, Wenxuan Wang, Yiliu Yang, Youliang Yuan, Jen-tse Huang, Pinjia He, Wenxiang Jiao,
 670 and Michael R Lyu. Logicasker: Evaluating and improving the logical reasoning ability of large
 671 language models. *arXiv preprint arXiv:2401.00757*, 2024.

672

673 Boshi Wang, Xiang Yue, and Huan Sun. Can chatgpt defend its belief in truth? evaluating llm
 674 reasoning via debate. *arXiv preprint arXiv:2305.13160*, 2023.

675

676 Peng Wang, Zexi Li, Ningyu Zhang, Ziwen Xu, Yunzhi Yao, Yong Jiang, Pengjun Xie, Fei Huang,
 677 and Huajun Chen. Wise: Rethinking the knowledge memory for lifelong model editing of large
 678 language models. *Advances in Neural Information Processing Systems*, 37:53764–53797, 2024a.

679

680 Qineng Wang, Zihao Wang, Ying Su, Hanghang Tong, and Yangqiu Song. Rethinking the bounds
 681 of llm reasoning: Are multi-agent discussions the key? *arXiv preprint arXiv:2402.18272*, 2024b.

682

683 Song Wang, Yaochen Zhu, Haochen Liu, Zaiyi Zheng, Chen Chen, and Jundong Li. Knowledge
 684 editing for large language models: A survey. *ACM Computing Surveys*, 57(3):1–37, 2024c.

685

686 Yiqi Wang, Wentao Chen, Xiaotian Han, Xudong Lin, Haiteng Zhao, Yongfei Liu, Bohan Zhai,
 687 Jianbo Yuan, Quanzeng You, and Hongxia Yang. Exploring the reasoning abilities of multimodal
 688 large language models (mllms): A comprehensive survey on emerging trends in multimodal rea-
 689 soning. *arXiv preprint arXiv:2401.06805*, 2024d.

690

691 Zeyu Wang. Causalbench: A comprehensive benchmark for evaluating causal reasoning capabilities
 692 of large language models. In *Proceedings of the 10th SIGHAN Workshop on Chinese Language*
 693 *Processing (SIGHAN-10)*, pp. 143–151, 2024.

694

695 Yuxiang Wei, Olivier Duchenne, Jade Copet, Quentin Carbonneaux, Lingming Zhang, Daniel Fried,
 696 Gabriel Synnaeve, Rishabh Singh, and Sida I Wang. Swe-rl: Advancing llm reasoning via rein-
 697 forcement learning on open software evolution. *arXiv preprint arXiv:2502.18449*, 2025.

698

699 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
 700 Chang Gao, Chengan Huang, Chenxu Lv, et al. Qwen3 technical report. *arXiv preprint*
 701 *arXiv:2505.09388*, 2025.

702

703 Kaiyu Yang, Gabriel Poesia, Jingxuan He, Wenda Li, Kristin Lauter, Swarat Chaudhuri, and Dawn
 704 Song. Formal mathematical reasoning: A new frontier in ai. *arXiv preprint arXiv:2412.16075*,
 705 2024a.

706

707 Sohee Yang, Elena Gribovskaya, Nora Kassner, Mor Geva, and Sebastian Riedel. Do large language
 708 models latently perform multi-hop reasoning? *arXiv preprint arXiv:2402.16837*, 2024b.

709

710 Yunzhi Yao, Ningyu Zhang, Zekun Xi, Mengru Wang, Ziwen Xu, Shumin Deng, and Huajun Chen.
 711 Knowledge circuits in pretrained transformers. *arXiv preprint arXiv:2405.17969*, 2024.

702 Fei Yu, Hongbo Zhang, Prayag Tiwari, and Benyou Wang. Natural language reasoning, a survey.
 703 *ACM Computing Surveys*, 56(12):1–39, 2024.

704
 705 Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai Wang, Shiji Song, and Gao Huang. Does re-
 706 inforcement learning really incentivize reasoning capacity in llms beyond the base model? *arXiv*
 707 *preprint arXiv:2504.13837*, 2025.

708 Li Yujian and Liu Bo. A normalized levenshtein distance metric. *IEEE transactions on pattern*
 709 *analysis and machine intelligence*, 29(6):1091–1095, 2007.

710 Biao Zhang, Zhongtao Liu, Colin Cherry, and Orhan Firat. When scaling meets llm finetuning: The
 711 effect of data, model and finetuning method. *arXiv preprint arXiv:2402.17193*, 2024a.

712 Lin Zhang, Lijie Hu, and Di Wang. Mechanistic unveiling of transformer circuits: Self-influence as
 713 a key to model reasoning. *arXiv preprint arXiv:2502.09022*, 2025a.

714 Tianjun Zhang, Xuezhi Wang, Denny Zhou, Dale Schuurmans, and Joseph E Gonzalez. Tempera:
 715 Test-time prompting via reinforcement learning. *arXiv preprint arXiv:2211.11890*, 2022.

716 Xinlu Zhang, Zhiyu Zoey Chen, Xi Ye, Xianjun Yang, Lichang Chen, William Yang Wang, and
 717 Linda Ruth Petzold. Unveiling the impact of coding data instruction fine-tuning on large language
 718 models reasoning. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 39,
 719 pp. 25949–25957, 2025b.

720 Yadong Zhang, Shaoguang Mao, Tao Ge, Xun Wang, Adrian de Wynter, Yan Xia, Wenshan Wu,
 721 Ting Song, Man Lan, and Furu Wei. Llm as a mastermind: A survey of strategic reasoning with
 722 large language models. *arXiv preprint arXiv:2404.01230*, 2024b.

723 Yifan Zhang. Training and evaluating language models with template-based data generation. *arXiv*
 724 *preprint arXiv:2411.18104*, 2024.

725 Yufeng Zhang, Xuepeng Wang, Lingxiang Wu, and Jinqiao Wang. Enhancing chain of thought
 726 prompting in large language models via reasoning patterns. In *Proceedings of the AAAI Conference*
 727 *on Artificial Intelligence*, volume 39, pp. 25985–25993, 2025c.

728 Zhuoran Zhang, Yongxiang Li, Zijian Kan, Keyuan Cheng, Lijie Hu, and Di Wang. Locate-then-edit
 729 for multi-hop factual recall under knowledge editing. *arXiv preprint arXiv:2410.06331*, 2024c.

730 Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min,
 731 Beichen Zhang, Junjie Zhang, Zican Dong, et al. A survey of large language models. *arXiv*
 732 *preprint arXiv:2303.18223*, 1(2), 2023.

733 Kaijie Zhu, Jiaao Chen, Jindong Wang, Neil Zhenqiang Gong, Dyi Yang, and Xing Xie. Dyval: Dy-
 734 namic evaluation of large language models for reasoning tasks. *arXiv preprint arXiv:2309.17167*,
 735 2023.

741 742 ETHICS & REPRODUCIBILITY STATEMENT

743 We use only public, anonymized datasets. No human subjects or sensitive data are involved. The
 744 work aims to improve LLM reliability, aligning with the ICLR Code of Ethics.

745 For reproducibility, datasets, settings, and metrics are detailed in the paper and appendix. Code and
 746 instructions are released in the anonymous repository.

747 748 THE USE OF LARGE LANGUAGE MODELS

749 In this study, we mainly leverage LLMs to enhance the clarity and polish of the manuscript. All
 750 conceptual development and methodology design were conducted by the authors.

756 **A DATASET DETAILS**
757758 **A.1 PROPOSITIONAL LOGIC: CONTEXTHUB**
759760 ContextHub (Hua et al., 2024) is a benchmark for propositional logical reasoning, built on top of
761 formal logic templates generated by DyVal (Zhu et al., 2023). It dynamically instantiated these tem-
762 plates into natural language questions across 11 real-world domains drawn from Wikipedia (e.g.,
763 culture, health, technology) along with an abstract form, thereby ensuring both diversity and robust-
764 ness of reasoning scenarios.765 **Statistics.** ContextHub consists of a total of 256 formal logic templates, spanning several difficulty
766 levels. Each template is instantiated across 12 domains with 5 variations per domain. This yields
767 360 samples for level-1 logic, 600 for level-2 logic, and 2,880 for level-3 logic types. Each sample
768 is balanced across the three answer labels (True, False, N/A). In this work, we treat each logic
769 template as a distinct reasoning pattern.770 **Example.** Table 3 illustrates both an abstract and a contextual instantiation of the same level-1
771 template. The abstract form substitutes propositional variables with arbitrary character sequences,
772 while the contextual form grounds them in a concrete domain.
773

774 Abstract Instance	775 Contextual Instance
776 $(vxkgr \vee caunc) \rightarrow ybyz$. Given $ybyz$ 777 is False, what is the value of $caunc$?	778 If an area of land has experienced significant 779 uplift or been shaped by powerful erosional 780 forces, then the terrain will feature tall, steep 781 mountains. Given that the area does not have 782 tall, steep mountains, can it be determined 783 if powerful erosional forces have shaped the 784 land?

785 Table 3: Level-1 example instantiations in ContextHub.
786787 **A.2 MATHEMATICS: TEMPLATEGSM**788 TemplateGSM (Zhang, 2024) is a large-scale benchmark for mathematical reasoning, constructed
789 using the Template-based Data Generation (TDG) paradigm. Frontier LLMs (e.g., GPT-4) are em-
790 ployed to author parameterized meta-templates, which are then instantiated into natural language
791 problems paired with programmatically verifiable solutions. This ensures not only linguistic and
792 structural diversity but also guarantees correctness at scale.793 **Statistics.** TemplateGSM comprises 7,473 GPT-4-authored templates, instantiated into approxi-
794 mately 7.47 million grade-school math problems spanning arithmetic, fractions, percentages, and
795 elementary algebra. Problem lengths range from 18–636 tokens. In this work, we experiment on a
796 curated subset of 600 problems, each restricted to a single numerical answer (integer or float).797 **Example.** Table 4 illustrates a GPT-4-authored template alongside one instantiated problem, high-
798 lighting how TDG generates diverse mathematical reasoning tasks.
799

800 Math Template	801 Instantiated Problem
802 [NAME] sold [NUM1] [ITEM] to 803 [her/his/their] friends in April at a 804 [LOCATION] in [COUNTY], [STATE]. 805 In May, [PRONOUN] sold [NUM2] 806 [ITEM]. How many [ITEM] did [NAME] 807 sell altogether in April and May?	808 Rosy Plascencia sold 238 air fryers to her 809 friends in April at a yoga studio boutique in Bracken County, Kentucky. In May, they sold 119 air fryers. How many air fryers did Rosy Plascencia sell altogether in April and May?

810 Table 4: Example instantiations in TemplateGSM.
811

810 **B CIRCUIT DISTANCE METRIC**
811812
813 Given two patterns π_i, π_j and their *attributed circuits* as the sets of top- τ edges ranked by attribution
814 scores: $\mathcal{C}_{\pi}^{(\tau)} = \{(e, w_{\pi}(e)) : w_{\pi}(e) \geq t_{\pi}(\tau)\}$, we quantify structural dissimilarity between π_i and
815 π_j using three complementary metrics.816 **(a) Weighted Jaccard Distance (Real & Vargas, 1996).**
817

818
819
$$d_{\text{Jac}}(i, j) = 1 - \frac{\sum_{e \in \mathcal{C}_{\pi_i}^{(\tau)} \cup \mathcal{C}_{\pi_j}^{(\tau)}} \min\{w_i(e), w_j(e)\}}{\sum_{e \in \mathcal{C}_{\pi_i}^{(\tau)} \cup \mathcal{C}_{\pi_j}^{(\tau)}} \max\{w_i(e), w_j(e)\} + \varepsilon}. \quad (7)$$

820
821

822 This emphasizes overlap of influential edges in the two attributed circuits.
823824 **(b) Edit Distance (Yujian & Bo, 2007).**
825

826
827
$$d_{\text{Edit}}(i, j) = \frac{\sum_{e \in \mathcal{C}_{\pi_i}^{(\tau)} \cup \mathcal{C}_{\pi_j}^{(\tau)}} |w_i(e) - w_j(e)|}{\sum_{e \in \mathcal{C}_{\pi_i}^{(\tau)} \cup \mathcal{C}_{\pi_j}^{(\tau)}} \max\{w_i(e), w_j(e)\} + \varepsilon}. \quad (8)$$

828
829

830 This captures the minimal “edit cost” required to reconcile the two circuits.
831832 **(c) Optimal-Transport (OT) Distance (Cuturi, 2013).** Normalize edge weights in each attributed
833 circuit to probability masses

834
835
$$p_{\pi}(e) = \frac{w_{\pi}(e)}{\sum_{e' \in \mathcal{C}_{\pi}^{(\tau)}} w_{\pi}(e')}, \quad e \in \mathcal{C}_{\pi}^{(\tau)}.$$

836
837

838 Let $c(e, e') \geq 0$ denote a ground cost between edges (e.g., based on layer/head/type and token-span
839 offsets). The optimal transport distance is then

840
841
$$d_{\text{OT}}(i, j) = \min_{T \in \Pi(p_i, p_j)} \sum_{e \in \mathcal{C}_{\pi_i}^{(\tau)}} \sum_{e' \in \mathcal{C}_{\pi_j}^{(\tau)}} T_{e, e'} c(e, e'), \quad (9)$$

842
843
$$\Pi(p_i, p_j) = \{T \geq 0 : \sum_{e'} T_{e, e'} = p_i(e), \sum_e T_{e, e'} = p_j(e')\}.$$

844
845

846 This explicitly accounts for circuit geometry by measuring the minimal mass transport needed to
847 align the two attributed circuits.
848849 **C BONUS EFFECT OF REDIT**
850851 In this section, we compare the performance of the original LLMs with that of the unedited models
852 after undergoing REdit circuit reshaping in Figure 7. Surprisingly, we observe that even without ex-
853 plicit editing, REdit consistently yields modest accuracy gains across three difficulty levels of logical
854 reasoning tasks, with the largest improvements occurring on the easier problems. We attribute this
855 phenomenon to circuit reshaping’s ability to reorganize the model’s internal mechanisms, where it
856 might suppresses noisy or erroneous circuits while preserving task-critical ones, thereby enhancing
857 the model’s overall reasoning performance. We will explore this phenomenon further in the future.
858860 **D ALGORITHM**
861862 In this section, we provide the algorithm of REdit circuit reshaping in Algorithm 1.
863

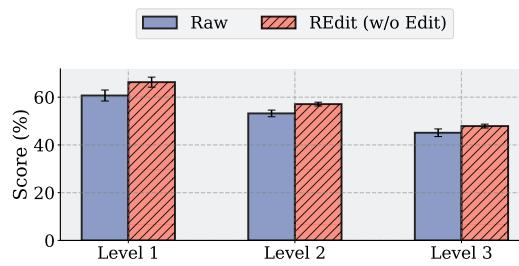


Figure 7: Comparison of accuracy between the original LLMs (*Raw*) and the unedited models after REdit circuit reshaping (*REdit (w/o Edit)*) across three difficulty levels of logical reasoning tasks. REdit consistently provides modest gains, with the most notable improvements at Level 1.

Algorithm 1 REdit Circuit Reshaping

```

1: procedure REDIT( $\theta, \Pi_{\text{train}}, \eta, \alpha, s, \rho$ )
2:   Input: LLM  $\theta$ ; training patterns  $\Pi_{\text{train}}$ ; rates  $\eta, \alpha$ ; steps  $s$ ; ratio  $\rho$ .
3:   Output: Reshaped LLM  $\theta'$ 
4:   Contrastive Circuit Shaping:
5:   Derive attribution scores  $\tilde{w}_\pi = w_\pi / \|w_\pi\|_2$ ; define InfoNCE loss  $\mathcal{L}_{\text{ctr}}(\theta)$  as in Eq. equation 3
6:   Meta-Contrastive Learning with Dual Protection:
7:   for each meta-iteration do
8:     Sample batch  $\mathcal{B} \subset \Pi_{\text{train}}$ 
9:     for each  $i \in \mathcal{B}$  do ▷ Inner loop (equation 4)
10:    Initialize  $\theta_i^0 \leftarrow \theta$ 
11:    for  $t = 0, 1, \dots, s - 1$  do
12:      Compute preservation loss  $\mathcal{L}_{\text{pred}}(\theta_i^t)$  as in Eq. equation 5
13:      Inner objective:  $\mathcal{L}_{\text{inner}}^{(i)} = \mathcal{L}_{\text{ctr}}^{(i)} + \lambda \mathcal{L}_{\text{pred}}$ 
14:      Derive gradient of inner objective:  $g_{i,t} \leftarrow \nabla_{\theta} \mathcal{L}_{\text{inner}}^{(i)}(\theta_i^t)$ 
15:      Form projector  $P^{(i,t)} = I - \rho \Pi_{g_{i,t}}$  ▷ Null-space protection
16:      Update  $\theta_i^{t+1} \leftarrow \theta_i^t - \alpha P^{(i,t)} g_{i,t}$  ▷ Protected update (6)
17:    end for
18:    Set  $\phi_i \leftarrow \theta_i^s$ 
19:  end for
20:  Outer update:  $\theta \leftarrow \theta + \eta \cdot \frac{1}{|\mathcal{B}|} \sum_{i \in \mathcal{B}} (\phi_i - \theta)$  ▷ Meta update, Eq. equation 4
21: end for
22: return  $\theta_{\text{REdit}}$ 
23: end procedure

```

E IMPLEMENTATION DETAILS

For *circuit reshaping*, we set the inner learning rate to $\alpha = 1 \times 10^{-6}$ and the outer learning rate to $\eta = 1 \times 10^{-6}$, running for 200 steps with an inner update step size of $s = 5$. In each iteration, we sample $|\mathcal{B}| = 2$ contrastive pairs of reasoning patterns in a batch. The temperature for *contrastive circuit shaping* is fixed at $\tau_t = 1$. The *null-space protection* coefficient is set to $\rho = 0.5$, and the *prediction distribution preservation* weight is $\lambda = 0.1$. When computing attribution scores, we use $K = 10$ instantiations for circuit distance calculation and $K = 2$ instantiations for REdit circuit reshaping due to computational restricts. For experiments validating Circuit-Interference Law, we construct circuits with top- $\tau = 5\%$ edges. During editing, we modify one instance per sample. For *LoRA-based editing*, we use a learning rate of 5×10^{-5} for 10 steps. Unless otherwise specified, the same learning rate of 5×10^{-5} is adopted for other baselines to ensure fair comparison. All experiments are conducted on four A100 GPUs; each REdit meta-iteration consumes ≈ 1 minute.

Corrupt Dataset. To construct the corrupt dataset, we modify the final question to query the status of the first propositional variable in the premise \mathcal{P} (fact-checking), instead of the status of the goal \mathcal{G} , while keeping all other components unchanged.

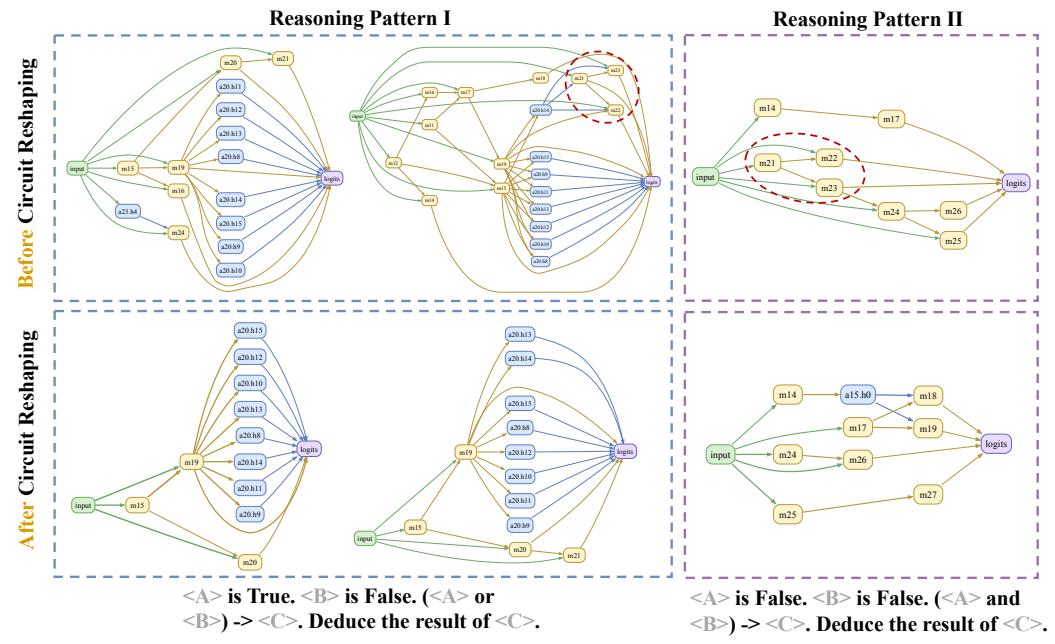


Figure 8: Case study of circuits from reasoning patterns I and II before and after REdit circuit reshaping. REdit enhances intra-pattern consistency while eliminating inter-pattern overlap.

Prompts. For the propositional logic dataset, we append the instruction: (Answer only in True, False, or N/A (Neither)). Answer: to each question. For the mathematical dataset, we append: Answer with only the final numeric result. Answer: to ensure precise and standardized responses.

F CASE STUDY

In this section, we present a case study illustrating the circuits of two reasoning patterns before and after REdit circuit reshaping. As shown in Figure 8, prior to reshaping, circuits from different instantiations of reasoning pattern I exhibit substantial overlap, though discrepancies remain, most notably around node $a23.h4$ and the tree structure formed by $m21$, $m22$, and $m23$. Circuits from reasoning pattern II share slight overlap with those of pattern I, particularly within the same tree structure. After circuit reshaping, circuits from different instantiations of reasoning pattern I become more consistent and exhibit stronger alignment, with noisy nodes and edges effectively pruned. At the same time, overlap between circuits of reasoning patterns I and II is almost completely eliminated. This case study highlights the effectiveness of REdit: it reshapes circuits to achieve greater separation across different reasoning patterns while producing more coherent and centralized structures within the same reasoning pattern.

G GENERALITY-LOCALITY TRADE-OFF OF REDIT

In this section, we compare the generality-locality trade-off before and after applying circuit reshaping with REdit. As shown in Figure 9, across different learning rates, LLMs trained with REdit consistently achieve a superior Pareto frontier compared to raw LLMs, highlighting the effectiveness of our approach.

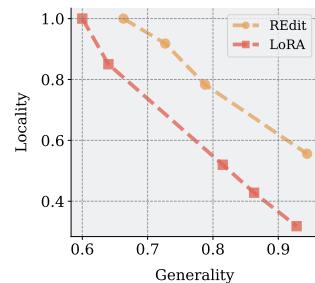


Figure 9: Trade-off of REdit