
Graph Guided Diffusion: Unified Guidance for
Conditional Graph Generation

Anonymous Author(s)
Affiliation
Address
email

Abstract

Diffusion models have emerged as powerful generative models for graph gen-1

eration, yet their use for conditional graph generation remains a fundamental2

challenge. In particular, guiding diffusion models on graphs under arbitrary reward3

signals is difficult: gradient-based methods, while powerful, are often unsuitable4

due to the discrete and combinatorial nature of graphs, and non-differentiable5

rewards further complicate gradient-based guidance. We propose Graph Guided6

Diffusion (GGDiff), a novel guidance framework that interprets conditional diffu-7

sion on graphs as a stochastic control problem to address this challenge. GGDiff8

unifies multiple guidance strategies, including gradient-based guidance (for dif-9

ferentiable rewards), control-based guidance (using control signals from forward10

reward evaluations), and zero-order approximations (bridging gradient-based and11

gradient-free optimization). This comprehensive, plug-and-play framework enables12

zero-shot guidance of pre-trained diffusion models under both differentiable and13

non-differentiable reward functions, adapting well-established guidance techniques14

to graph generation — a direction largely unexplored. Our formulation balances15

computational efficiency, reward alignment, and sample quality, enabling practical16

conditional generation across diverse reward types. We demonstrate the efficacy of17

GGDiff in various tasks, including constraints on graph motifs, fairness, and link18

prediction, achieving superior alignment with target rewards while maintaining19

diversity and fidelity.20

1 Introduction21

Diffusion models have recently shown great promise for graph generation, enabling the synthesis22

of realistic graph structures across diverse domains such as drug design [35], social networks [7],23

and molecular dynamics [10]. A key motivation behind these models is their ability to serve as24

flexible generative priors, capturing complex dependencies in both graph topology and node features.25

However, most existing graph diffusion models focus on unconditional or controllable generation26

under simple objectives. Incorporating more general forms of rewards or constraints, such as27

enforcing specific structural properties, functional motifs, or domain-specific validity criteria like28

fairness, remains an essential and open challenge.29

Recent advances in conditional graph generation typically modify the diffusion trajectory using a30

conditional gradient to steer the process toward sampling from the desired conditional distribution.31

DiGress [33] combines a learnable regressor with classifier guidance [9], while LGD [37] adopts a32

similar gradient-based strategy in a latent space instead of a discrete domain like DiGress. However,33

these approaches require differentiable constraints, which limits their applicability in more complex34

graph generation tasks where constraints might be black-box functions without tractable gradients or35

involve discrete structures. Closer to our approach, PRODIGY [27] enforces hard constraints through36

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

Figure 1: Illustration of GGDiff, a method that guides the generation of graphs to satisfy a set of constraints (in
this case, the constraint is fairness). The guidance Ut is a local direction obtained via SOC, and approximated
using ZO techniques, like the multi-point estimate shown here.

projected sampling along the diffusion trajectory using the bisection method [3]. This requires37

closed-form projection operators for a time-efficient implementation, which are often unavailable38

for complex constraints, necessitating expensive solvers, and limiting the applicability to more39

sophisticated conditions. As a result, no existing method can flexibly and effectively handle arbitrary,40

non-differentiable, or complex constraints in the sampling process for conditional graph generation.41

In this work, we propose Graph Guided Diffusion (GGDiff), a general guidance framework for42

graph generation that interprets conditional graph generation as a stochastic optimal control (SOC)43

problem. By casting the task as a control problem, we reformulate guided diffusion as a conditional44

generation process with an additional control variable defined as a linear drift term. Inspired by recent45

advances in SOC for diffusion models [11, 23, 25], we optimize this control via path integral control,46

which provides an analytical yet intractable gradient. To overcome this limitation, we introduce47

gradient-free approximations based on zeroth-order (ZO) optimization techniques [15, 16]. Our48

formulation generalizes several gradient-free strategies introduced previously [11] and offers new49

possibilities.50

GGDiff unifies various existing guidance methods in a single framework and is plug-and-play,51

allowing zero-shot guidance of pre-trained diffusion models under both differentiable and non-52

differentiable reward functions. We validate the advantages of GGDiff through extensive experiments53

on a wide range of constraints, including structural constraints, fairness, and link prediction. Our54

results demonstrate GGDiff’s versatility in guiding graph generation not only towards constraints55

previously explored in the literature (beating current state-of-the-art architectures) but also towards56

arbitrary, user-defined desired outcomes (such as fair or incomplete graphs), effectively balancing57

precise outcome satisfaction with the preservation of the underlying graph family’s characteristics.58

To summarize, our contributions are threefold:59

• We propose GGDiff, a framework for conditional graph generation that handles both differ-60

entiable and non-differentiable rewards by reformulating the problem as a stochastic optimal61

control (SOC) task.62

• We introduce a general gradient-free ZO optimization formulation to handle non-63

differentiable rewards, enabling optimization without requiring tractable gradients.64

• We conduct extensive experiments on structural, fairness, and link prediction constraints,65

demonstrating GGDiff’s superior performance and flexibility over existing methods.66

2 Controllable Generation of Graphs With General Rewards67

In Section 2.1, we formulate the generation of graph conditionals as a SOC problem. Then, in68

Section 2.2 we propose different approximate solutions to design the control for conditional graph69

generation: first, in Section 2.2.1 we introduce our approximation for differentiable rewards; second,70

in Section 2.2.2 we propose a ZO approximation, which unifies several existing guidance policies for71

non-differentiable rewards. The full algorithm is provided in the appendix (Alg. 1).72

2

2.1 Conditional Generation: A SOC Approach73

The goal of our method is to steer a pre-trained diffusion model to sample from the posterior74

distribution. Importantly, we seek an algorithm that can handle general reward functions, even75

non-differentiable ones. To tackle this, we proposed to leverage SOC [32]. In particular, given an76

uncontrolled diffusion process Q (defined in Section A.1), we define a controlled one QC given by77

QC : dGC
t =

[
−1

2
GC

t − g(t)2∇GC
t
log p(GC

t) + g(t)U(GC
t , t)

]
dt+ g(t)dWt, t ∈ [T, 0]. (1)

Thus, the goal is to design the control {U(GC
t , t)}t∈[0,T] to modify the trajectory of the controlled78

process QC such that the generated samples belong to the target distribution. We formalize this as a79

SOC problem, where we solve the following optimization problem80

min
U∈U

E

[∫ T

0

λ
||U

(
GC

t , t
)
||2F

2
dt− r

(
GC

0

)]
s.t. QC . (2)

The terminal cost in (2) represents a desired constraint for the final state G0 quantified by the reward81

r(.), which is maximized (thus, the negative sign), while the transient term is a regularization term82

that penalizes large deviation from the uncontrolled process by promoting the energy of the controller83

in (1) to be small. The solution of (2) is given by the Feynman-Kac formula, a well-known result84

from the optimal control theory [24], given by85

U∗(GC
t , t) = −g(t)∇GC

t
logEppre

[
exp

(
−r(GC

0)

λ

) ∣∣∣GC
t

]
. (3)

The solution in (3) is obtained as the solution of the linear version of the Hamilton-Jacobi-Bellman86

(HJB) equation [6], obtained after the exponential transformation; we deferred to Appendix B for87

more details on the derivation.88

Given the optimal control, we now focus on how to implement it.89

2.2 Estimation of the Optimal Control: A Greedy Solution90

Although the expression for the optimal control derived from the Feynman-Kac formula (3) is91

theoretically exact, its direct computation is often intractable. Evaluating the expectation and its92

gradient would require simulating numerous trajectories of the uncontrolled process from the current93

state GC
t to the final state GC

0 at each step of the generation process to estimate ppre, and then94

backpropagating through the diffusion trajectory. This is computationally prohibitive.95

We resort to a greedy approximation strategy to overcome this. This approach simplifies the problem96

by approximating the complex gradient of the log-expectation term in (3) using primarily the current97

state information GC
t and a one-step estimate of the clean sample ĜC

0 . Such an approximation implies98

that the control decision at time t does not fully account for the entire future trajectory, potentially99

leading to suboptimal choices, especially in the early stages of the reverse diffusion process. However,100

the impact of such approximation errors may often diminish as t → 0 and the state GC
t gets closer101

to the data. We now detail this approximation for the cases of (i) differentiable rewards and (ii)102

non-differentiable counterparts.103

2.2.1 Differentiable Rewards104

When the reward function r(·) is differentiable, we can derive a tractable approximation for the105

optimal control U∗(GC
t , t).The primary challenge lies in evaluating the gradient of the log-expectation106

term. To circumvent this, we use Tweedie’s formula (see Section A.1) to compute the MMSE denoiser107

E[GC
0 |GC

t] = ĜC
0 (G

C
t) and approximate the conditional expectation in (3) as108

Eppre

[
exp

(
−r(GC

0)

λ

) ∣∣∣ ĜC
t

]
≈ exp

(
−r(ĜC

0 (Ĝ
C
t))

λ

)
, (4)

where the underlying assumption is that p(GC
0 |ĜC

t) = δ(GC
0 − ĜC

0 (Ĝ
C
t)) with δ(.) denoting a Dirac109

delta function. This approximation becomes increasingly better as t → 0 (i.e., towards the end of the110

reverse diffusion process), as ĜC
0 (Ĝ

C
t) becomes a better estimate of GC

0 .111

3

Substituting this approximation into the exact optimal control formula in (3) leads to112

U∗(ĜC
t , t) ≈

g(t)

λ
∇ĜC

t
r(ĜC

0 (Ĝ
C
t)). (5)

This final expression provides a tractable, greedy approximation for the optimal control. The control113

term now directly involves the gradient of the reward function r(·) evaluated at the one-step denoised114

estimate ĜC
0 . The term 1/λ acts as a scaling factor for the guidance. This formulation resembles115

guidance techniques in diffusion models, as observed by [11, 31]. For example, if the reward r(G0)116

is proportional to the log-likelihood of a condition C, that is, r(G0) ∝ − log p(C|G0), then the117

optimal controls boils down to the DPS approximation [5].118

2.2.2 Non-differentiable Rewards119

In many practical scenarios of controlled graph generation, the reward function r(·) is non-120

differentiable with respect to the generated graph GC
0 , rendering gradient-based approximations121

like (5) intractable.122

To address this, we propose to determine the control input U(Gt, t) using an approach inspired by123

gradient-free optimization methods [13] and ZO optimization [15]. The objective at each time t is124

to find a control U(Gt, t) that steers the diffusion trajectory towards graphs yielding a high reward125

r(GC
0). Similar to the differentiable case, we use Tweedie’s formula to compute a one-step denoised126

version of the final graph to evaluate the reward at each time step. Given this approximation, we127

formally seek to find a direction U∗
t128

U∗
t = argmax

Ut

r
(
ĜC

0 (Ĝ
C
t + µUt)

)
, (6)

Here, ĜC
t + µUt denotes the perturbed version of ĜC

t , which is the generated graph with the129

reference model at time t (before applying the guidance) following the control direction Ut, and µ is130

a smoothing parameter (which depends on the noise schedule of the diffusion process). To find U∗
t ,131

we define a general ZO estimator for the gradient of the reward that depends on evaluations of r(.) as132

∇̂r(ĜC
t) := EUt∼D

[
w(Ut) r

(
ĜC

0 (Ĝ
C
t + µUt)

)
·Ut

]
, (7)

where D is a distribution over directions (typically Gaussian) and w(Ut) is a direction-dependent133

weighting function. Notably, this formulation unifies several previous gradient-free estimators. How-134

ever, it is important to remark that traditional ZO optimization assumes the objective is differentiable135

but the gradient is inaccessible. In contrast, in our setting the reward function r(.) is inherently136

non-differentiable, often defined via a discrete or combinatorial metric over generated graphs. Never-137

theless, we treat the reward as a black-box function and employ randomized directional evaluations138

to define a pseudo-gradient direction that can guide the controlled process. Thus, the ZO estimator139

in (7) should be interpreted as a surrogate direction that correlates with improvements in the reward,140

rather than an unbiased estimator of a true gradient.141

We now present three practical ZO estimators that instantiate (7).142

One-point (and two-point) gradient estimators. The one-point estimator samples a single pertur-143

bation direction Ut ∼ N (0, I) and evaluates the reward by perturbing the unconditional generated144

graph with this single direction. The estimated gradient is given by145

∇̂r(ĜC
t) =

ϕ(d)

µ
r
(
ĜC

0 (Ĝ
C
t + µUt)

)
·Ut, (8)

where ϕ(d) is a scaling factor that depends on D; for D Gaussian, we have ϕ(d) = 1. This control146

corresponds to w(Ut) = ϕ(d)
µ . In classical ZO, this estimator is an unbiased estimator of the147

smoothed version of r(.) over a random perturbation, i.e., EUt∼D[r(Ĝ
C
0 (Ĝ

C
t + µUt))], but a biased148

estimator of the true reward gradient (when µ = 0) and has high variance (the variance explodes as149

µ increases to 0) [2]. To eliminate this problem, we can use instead a two-point gradient estimator150

given by151

∇̂r(ĜC
t) =

ϕ(d)

µ

[
r
(
ĜC

0 (Ĝ
C
t + µUt)

)
− r

(
ĜC

0 (Ĝ
C
t)
)]

·Ut, (9)

which is used in practice in general. For cases where r(.) is differentiable, the estimator in (9) is152

unbiased w.r.t. true gradient (under the assumption that EUt∼D[Ut] = 0 and when µ → 0.153

4

Best-of-N direction (greedy ZO). Instead of sampling a single direction, this method samples N154

candidate directions {U(1)
t , . . . ,U

(N)
t } ∼ N (0, I), and chooses the one that maximizes the reward155

after denoising:156

U
(i)
t = argmax

{U(1)
t ,...,U

(N)
t }

r
(
ĜC

0 (Ĝ
C
t + µUt)

)
·Ut. (10)

The final control is then set as Ut = k ·U(i)
t , where k is a step size or scaling factor. This corresponds157

to using w(Ut) = 1(Ut = U
(i)
t) in (7), where 1 represents the indicator function. While this method158

introduces bias, it often leads to effective and low-variance updates, especially when r(·) is highly159

non-smooth or sparse.160

Multi-point gradient estimator (averaged random search). This variant also samples N direc-161

tions {U(1)
t , . . . ,U

(N)
t } ∼ N (0, I), but instead of selecting the best, it forms a weighted average of162

all directions using their corresponding reward evaluations163

∇̂r(ĜC
t) =

1

Nµ

N∑
i=1

[
r
(
ĜC

0 (Ĝ
C
t + µU

(i)
t)
)
− r

(
ĜC

0 (Ĝ
C
t)
)]

·U(i)
t . (11)

This approach reduces variance compared to both one-point and two-point estimators while main-164

taining approximate unbiasedness. It is especially useful when the reward landscape is moderately165

smooth, enabling the use of reward information from all sampled directions.166

We defer for a quantitative analysis of variance and performance of the three estimators to Appendix C.167

Overall, these estimators offer flexible trade-offs between estimator quality and query complexity.168

In our setting, we find that the best-of-N direction yields superior performance in discrete and169

non-differentiable environments, typical of graph-based objectives.170

3 Experiments171

We evaluate the efficacy of our Graph Guided Diffusion (GGDiff) framework across several challeng-172

ing tasks. We compare its three main variants—GGDiff-G (gradient-based), GGDiff-C (Best-of-N),173

and GGDiff-Z (multi-point)—against the state-of-the-art method PRODIGY [27] and an uncon-174

strained baseline to highlight the impact of guidance. Our in-paper experiments cover constrained175

graph generation (Section 3.1), where we assess adherence to structural properties, and fair graph176

generation (Section 3.2), where we enforce fairness criteria. PRODIGY serves as a baseline only in177

the first setting, as it is unable to handle the complex reward functions required for the fairness task.178

A third major experiment, incomplete graph generation (link prediction), is presented in Appendix E.179

This appendix also contains comprehensive setup details, further use-cases and representations of the180

generated molecules for all experiments.181

3.1 Constrained Graph Generation182

We first evaluate GGDiff’s performance on constrained graph generation tasks, replicating the183

experimental setup from the PRODIGY paper [27] to enable direct comparison. For this set of184

experiments, we impose constraints on the maximum degree, edge count, and maximum number185

of triangles of the generated graphs, on the ego small, community small, and enzymes datasets,186

described in Appendix E. To evaluate performance, we use two key metrics: ∆ MMD, which is the187

metric utilized to assess PRODIGY’s performance and measures the difference between the MMD188

values of the unconstrained dataset and the constrained generated graphs (higher values indicate that189

the generated graphs are closer to the original data distribution), and ValC , representing the fraction190

of generated graphs that successfully fulfill the imposed constraint (higher values indicate better191

constraint adherence).192

The results for this set of experiments are presented in Table 1. They demonstrate that our GGDiff193

methods generally achieve superior performance compared to baselines. Specifically, GGDiff variants194

tend to exhibit higher ∆ MMD values while also showing higher ValC scores, demonstrating their195

capability to satisfy structural constraints without deviating significantly from the prior distribution196

of the datasets.197

5

Table 1: Metrics comparison across datasets and constraints.

Constraint Method Ego Small Community Small Enzymes
∆ MMD ↑ ValC ↑ ∆ MMD ↑ ValC ↑ ∆ MMD ↑ ValC ↑

Max
Degree

GGDiff-G 0.11 0.87 -0.54 0.95 -0.37 0.98
GGDiff-C 0.15 0.90 -0.73 1.00 -0.39 1.00
GGDiff-Z 0.08 0.86 -0.26 0.78 -0.36 0.89
PRODIGY 0.09 0.64 -0.16 0.98 0.07 0.95

Uncons. 0.00 0.33 0.00 0.42 0.00 0.08

Edge
Count

GGDiff-G -0.07 0.91 -0.33 0.84 -0.47 1.00
GGDiff-C 0.27 0.63 -0.17 0.91 -0.29 0.94
GGDiff-Z 0.28 0.67 -0.38 0.73 -0.12 0.69
PRODIGY 0.27 0.70 -0.39 1.00 -0.10 1.00

Uncons. 0.00 0.16 0.00 0.20 0.00 0.09

Triangle
Count

GGDiff-G 0.03 0.96 -0.31 0.95 -0.03 0.98
GGDiff-C 0.01 0.89 -1.00 1.00 -0.01 1.00
GGDiff-Z -0.07 0.88 -0.14 0.85 -0.04 1.00
PRODIGY -0.01 0.52 -0.13 0.72 0.17 0.94

Uncons. 0.00 0.62 0.00 0.19 0.00 0.50

3.2 Fair Graph Generation198

Table 2: Metrics for the fair graph generation experiment.

Method ∆ DP ∆DPnode % Valid SBM
GGDiff-G 0.0026 ± 0.0029 0.0249 ± 0.0125 100.0000
GGDiff-C 0.0035 ± 0.0053 0.0192 ± 0.0121 99.2188
GGDiff-Z 0.0015 ± 0.0020 0.0061 ± 0.0037 95.3125
Uncons. 0.0071 ± 0.0145 0.0295 ± 0.0218 99.2188

In this section, we evalu-199

ate GGDiff’s performance on200

generating fair graphs using201

metrics defined in Navarro202

et al. [20]. For these ex-203

periments, we randomly as-204

sign sensitive attributes to the205

nodes of the graphs generated206

from the community small207

dataset (for a similar experi-208

ment where the communities of the nodes are assigned by a community detection algorithm, refer to209

Appendix E). We report two key fairness metrics from Navarro et al. [20]: ∆ DP and ∆ DPnode, where210

lower values indicate greater dyadic parity and thus fairer graphs. To assess whether the generated211

graphs maintain the underlying SBM structure of the dataset, we report the percentage of valid SBMs.212

An SBM is considered valid if its estimated intra-community edge probability is at least 8 times its213

inter-community edge probability; this factor was chosen such that 95% of the test graphs in the214

dataset fulfill this criterion.215

The results in Table 2 demonstrate that our GGDiff methods effectively reduce the fairness metrics (∆216

DP and ∆ DPnode) and increase the number of edges between nodes with different sensitive attributes,217

indicating improved fairness. Crucially, these improvements are achieved while largely maintaining218

the generated graphs within the family of the prior distribution (SBMs), as reflected in the percentage219

of valid SBMs.220

4 Conclusions221

In this paper, we introduced Graph Guided Diffusion (GGDiff), a flexible, gradient-free framework222

for conditional graph generation, grounded in stochastic optimal control. By casting guidance223

as a control problem, GGDiff enables plug-and-play conditioning of pre-trained diffusion models224

under both differentiable and black-box constraints. GGDiff unifies a range of existing guidance225

approaches, including gradient-based guidance and non-differentiable cases, under a single SOC-226

based formulation. Our method supports both hard and soft constraints without requiring gradient227

access or projection operators, making it broadly applicable across domains. Extensive experiments228

on structural, fairness, and topology-based constraints demonstrate GGDiff’s effectiveness and229

generality, outperforming prior work in handling complex, non-differentiable objectives.230

6

References231

[1] Austin, J., Johnson, D. D., Ho, J., Tarlow, D., and Van Den Berg, R. (2021). Structured denoising232

diffusion models in discrete state-spaces. Advances in Neural Inf. Process. Syst. (NeurIPS),233

34:17981–17993.234

[2] Berahas, A. S., Cao, L., Choromanski, K., and Scheinberg, K. (2022). A theoretical and empirical235

comparison of gradient approximations in derivative-free optimization. Foundations of Comp.236

Math., 22(2):507–560.237

[3] Boyd, S. P. and Vandenberghe, L. (2004). Convex optimization. Cambridge university press.238

[4] Chen, X., He, J., Han, X., and Liu, L.-P. (2023). Efficient and degree-guided graph generation239

via discrete diffusion modeling. Intl. Conf. on Machine Learning (ICML).240

[5] Chung, H., Kim, J., Mccann, M. T., Klasky, M. L., and Ye, J. C. (2022). Diffusion posterior241

sampling for general noisy inverse problems. In Intl. Conf. Learn. Repr. (ICLR).242

[6] Evans, L. C. (2022). Partial differential equations, volume 19. American Mathematical Society.243

[7] Grover, A., Zweig, A., and Ermon, S. (2019). Graphite: Iterative generative modeling of graphs.244

In Intl. Conf. on Machine Learning (ICML), pages 2434–2444. PMLR.245

[8] Ho, J., Jain, A., and Abbeel, P. (2020). Denoising diffusion probabilistic models. Advances in246

Neural Inf. Process. Syst. (NeurIPS), 33:6840–6851.247

[9] Ho, J. and Salimans, T. (2021). Classifier-free diffusion guidance. In NeurIPS 2021 Workshop248

on Deep Generative Models and Downstream Applications.249

[10] Hoogeboom, E., Satorras, V. G., Vignac, C., and Welling, M. (2022). Equivariant diffusion for250

molecule generation in 3d. In Intl. Conf. on Machine Learning (ICML), pages 8867–8887. PMLR.251

[11] Huang, Y., Ghatare, A., Liu, Y., Hu, Z., Zhang, Q., Sastry, C. S., Gururani, S., Oore, S., and252

Yue, Y. (2024). Symbolic music generation with non-differentiable rule guided diffusion. arXiv253

preprint arXiv:2402.14285.254

[12] Jo, J., Lee, S., and Hwang, S. J. (2022). Score-based generative modeling of graphs via the255

system of stochastic differential equations. In Intl. Conf. on Machine Learning (ICML), pages256

10362–10383. PMLR.257

[13] Larson, J., Menickelly, M., and Wild, S. M. (2019). Derivative-free optimization methods. Acta258

Numerica, 28:287–404.259

[14] Li, X., Zhao, Y., Wang, C., Scalia, G., Eraslan, G., Nair, S., Biancalani, T., Ji, S., Regev, A.,260

Levine, S., et al. (2024). Derivative-free guidance in continuous and discrete diffusion models261

with soft value-based decoding. arXiv preprint arXiv:2408.08252.262

[15] Liu, S., Chen, P.-Y., Kailkhura, B., Zhang, G., Hero III, A. O., and Varshney, P. K. (2020). A263

primer on zeroth-order optimization in signal processing and machine learning: Principals, recent264

advances, and applications. IEEE Signal Process. Mag., 37(5):43–54.265

[16] Liu, S., Kailkhura, B., Chen, P.-Y., Ting, P., Chang, S., and Amini, L. (2018). Zeroth-order266

stochastic variance reduction for nonconvex optimization. Advances in Neural Inf. Process. Syst.267

(NeurIPS), 31.268

[17] Luo, T., Mo, Z., and Pan, S. J. (2023). Fast graph generation via spectral diffusion. IEEE Trans.269

on Patt. Analysis and Machine Int., 46(5):3496–3508.270

[18] Madeira, M., Vignac, C., Thanou, D., and Frossard, P. (2024). Generative modelling of271

structurally constrained graphs. Advances in Neural Inf. Process. Syst. (NeurIPS), 37:137218–272

137262.273

[19] Minello, G., Bicciato, A., Rossi, L., Torsello, A., and Cosmo, L. (2025). Generating graphs via274

spectral diffusion. In Intl. Conf. Learn. Repr. (ICLR).275

7

[20] Navarro, M., Rey, S., Buciulea, A., Marques, A. G., and Segarra, S. (2024). Fair glasso:276

Estimating fair graphical models with unbiased statistical behavior. In Globerson, A., Mackey, L.,277

Belgrave, D., Fan, A., Paquet, U., Tomczak, J., and Zhang, C., editors, Advances in Neural Inf.278

Process. Syst. (NeurIPS), volume 37, pages 139589–139620. Curran Associates, Inc.279

[21] Niu, C., Song, Y., Song, J., Zhao, S., Grover, A., and Ermon, S. (2020). Permutation invariant280

graph generation via score-based generative modeling. In Int. Conf. on Artif. Intell. and Stat.,281

pages 4474–4484. PMLR.282

[22] Øksendal, B. (2003). Stochastic differential equations. Springer.283

[23] Pandey, K., Sofian, F. M., Draxler, F., Karaletsos, T., and Mandt, S. (2025). Variational control284

for guidance in diffusion models. arXiv preprint arXiv:2502.03686.285

[24] Pavon, M. (1989). Stochastic control and nonequilibrium thermodynamical systems. Applied286

Mathematics and Optimization, 19:187–202.287

[25] Rout, L., Chen, Y., Ruiz, N., Kumar, A., Caramanis, C., Shakkottai, S., and Chu, W.-S. (2025).288

Rb-modulation: Training-free personalization using stochastic optimal control. In Intl. Conf.289

Learn. Repr. (ICLR).290

[26] Rout, L., Raoof, N., Daras, G., Caramanis, C., Dimakis, A., and Shakkottai, S. (2024). Solving291

linear inverse problems provably via posterior sampling with latent diffusion models. Advances in292

Neural Inf. Process. Syst. (NeurIPS), 36.293

[27] Sharma, K., Kumar, S., and Trivedi, R. (2024). Diffuse, sample, project: plug-and-play294

controllable graph generation. In Intl. Conf. on Machine Learning (ICML).295

[28] Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., and Ganguli, S. (2015). Deep unsupervised296

learning using nonequilibrium thermodynamics. In Intl. Conf. on Machine Learning (ICML),297

pages 2256–2265. PMLR.298

[29] Song, J., Meng, C., and Ermon, S. (2020). Denoising diffusion implicit models. In Intl. Conf.299

Learn. Repr. (ICLR).300

[30] Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Ermon, S., and Poole, B. (2021).301

Score-based generative modeling through stochastic differential equations. In Intl. Conf. Learn.302

Repr. (ICLR).303

[31] Uehara, M., Zhao, Y., Wang, C., Li, X., Regev, A., Levine, S., and Biancalani, T. (2025).304

Inference-time alignment in diffusion models with reward-guided generation: Tutorial and review.305

arXiv preprint arXiv:2501.09685.306

[32] Van Handel, R. (2007). Stochastic calculus, filtering, and stochastic control. Course notes.,307

URL http://www. princeton. edu/rvan/acm217/ACM217. pdf, 14.308

[33] Vignac, C., Krawczuk, I., Siraudin, A., Wang, B., Cevher, V., and Frossard, P. (2023). Digress:309

Discrete denoising diffusion for graph generation. In Intl. Conf. Learn. Repr. (ICLR).310

[34] Vincent, P. (2011). A connection between score matching and denoising autoencoders. Neural311

computation, 23(7):1661–1674.312

[35] Yang, N., Wu, H., Zeng, K., Li, Y., Bao, S., and Yan, J. (2024). Molecule generation for drug313

design: a graph learning perspective. Fundamental Research.314

[36] You, J., Liu, B., Ying, Z., Pande, V., and Leskovec, J. (2018). Graph convolutional policy315

network for goal-directed molecular graph generation. Advances in Neural Inf. Process. Syst.316

(NeurIPS), 31.317

[37] Zhou, C., Wang, X., and Zhang, M. (2024). Unifying generation and prediction on graphs with318

latent graph diffusion. Advances in Neural Inf. Process. Syst. (NeurIPS), 37:61963–61999.319

8

A Background and Related Works320

We review graph diffusion models in the continuous domain in Section A.1, and then explain how321

they can be used in the context of inverse problems in Section A.2322

A.1 Diffusion Models on Graphs323

Diffusion models [28, 8, 30] are composed of two processes: i) a forward process that starts with324

clean data and gradually adds noise; and ii) a reverse process that learns to generate new data by325

iteratively denoising its diffused version. Graph diffusion models have been developed in both326

continuous [21, 12] and discrete domains [33, 4].327

Discrete diffusion was introduced in DiGress [33] by adapting the structured diffusion framework [1],328

framing generation as edge-wise classification to mitigate combinatorial complexity. In a nutshell, the329

graph is treated as a multivariate categorical variable, and the diffusion process involves perturbing330

and recovering these discrete states. While discrete methods are well-suited for sparse graphs, they331

often rely on mean-field approximations and lack tractable gradients, which can limit their use in332

constrained generation. Given these trade-offs, we focus on the continuous setting in this work.333

The continuous formulation was first introduced in EDP-GNN [21] to diffuse the graph topology, later334

extended in GDSS [12] to include node features, and further explored in the spectral domain [17, 19].335

More recently, latent diffusion models have also been proposed [37], which operate in a learned latent336

space via an encoder-decoder pair. At a high level, continuous models focus on capturing global337

structure.338

In this paper, we follow the formulation from GDSS [12]. We represent a graph as G0 = {X0,A0},339

where X0 ∈ RN×F are node features and A0 ∈ RN×N is the weighted adjacency matrix. The340

forward diffusion process is defined by the stochastic differential equation dGt = − 1
2β(t)Gt dt+341 √

β(t) dWt, t ∈ [0, T], where β(t) controls the noise schedule and is given by β(t) := βmin +342

(βmax − βmin)
t
T . Here, Wt denotes standard Brownian motion. This process is designed such343

that the distribution of GT converges to a standard Gaussian as t → T . Based on this forward344

process, we define the reverse process as dGt = [− 1
2Gt − g(t)2∇Gt

log p(Gt)]dt + g(t)dWt,345

where ∇Gt log p(Gt) is the score function, which is unknown, and g(t) =
√
β(t). In particular,346

GDSS considers two different score functions, namely ∇At
log p(At) and ∇Xt

log p(Xt).347

Since the true score functions are unknown, we approximate them with score networks ϵθA
(At, t) ≈348

−σt∇At log p(At) and ϵθX
(Xt, t) ≈ −σt∇Xt log p(Xt), which are learned by minimizing the349

denoising score-matching loss [34]. After training, samples are generated using samplers like350

DDPM [8] and DDIM [29].351

A.2 Controllable Generation of Graphs With Continuous Diffusion Models352

Given a condition C and a reward function r(G0) that quantifies how close the sample G0 is353

to meeting C, our objective is to generate graphs that maximize this reward. From a Bayesian354

perspective, this problem boils down to sampling from the posterior p(G0|C) ∝ p(C|G0)p(G0),355

where p(C|G0) ∝ exp (r(G0)) is a likelihood term and p(G0) is a prior given by the pre-trained356

diffusion model. The approaches to solving this vary significantly based on whether the reward357

function is differentiable.358

Controllable generation with differentiable rewards. For differentiable rewards, a common strat-359

egy in inverse problems is to compute the conditional score using Bayes’ rule: ∇Gt
log p(Gt|C) =360

∇Gt
p(C|Gt) +∇Gt

log p(Gt). While this allows the diffusion model to serve as a prior, the likeli-361

hood’s score term is intractable. Approximations, such as using a Gaussian centered at the MMSE362

denoiser (computed via Tweedie’s formula), have been proposed [5]. In the graph domain, methods363

like DiGress [33] and LGD [37] follow a similar principle, incorporating guidance via an extra,364

learnable model (a regressor or classifier-free guidance). However, this entire paradigm remains365

largely unexplored for graph inverse problems, mainly because it assumes the reward is differentiable,366

a condition often not met in graph generation where constraints are combinatorial [36].367

9

Controllable generation with non-differentiable rewards. The more common case for graphs368

involves non-differentiable constraints. A prominent approach here is to use projection operators.369

PRODIGY [27], for instance, alternates between an unconditional generation step and a projection370

step, ΠC(·), to enforce the constraint. While efficient for simple constraints, its applicability is371

severely limited by its reliance on closed-form projection operators, which are unavailable for most372

complex graph properties. Furthermore, applying the projection to the noisy intermediate graph373

Gt rather than the denoised estimate E[G0|Gt] can be misaligned with the true reward domain.374

Other works have explored combining projection operators with edge-absorbing models [18], but375

these methods can be computationally demanding due to their combinatorial nature, especially when376

applied to discrete diffusion models.377

In summary, while several methods for conditional graph generation exist, they face significant378

limitations. Gradient-based approaches require differentiable rewards that are rare for graphs, while379

projection-based methods are either restricted to simple constraints or are computationally prohibitive.380

This highlights the need for a more general and flexible guidance framework, which is presented in381

this work.382

B HJB equation383

In this section, we give more details on our SOC formulation. The optimal control is given by384

U∗(GC
t , t) = −g(t)

λ
∇GC

t
V ∗
t

(
GC

t

)
where V ∗

t (G
C
t) is the optimal value function [24]. For our problem, the optimal value function at385

time t is given by386

V ∗
t (G

C
t) = Ep∗

t

[∫ 0

t

λ
∥U∗(GC

s , s)∥22
2

ds− r(GC
0)
∣∣∣GC

t

]
(12)

where p∗t denotes the optimal controlled distribution at time t given by p∗t (G) ∝387

exp
(

−V ∗
t (G)
λ

)
ppret (G) and ppret is the prior (uncontrolled) distribution1. The value function V ∗

t388

solves the stochastic Hamilton-Jacobi-Bellman (HJB) equation [6], given by389

∂tV
∗
t (G

C
t) = (13)

+
(
∇GC

t
V ∗
t (G

C
t)
)T

µ(GC
t , t)−

g(t)2

2λ

∥∥∥∇GC
t
V ∗
t (G

C
t)
∥∥∥2
2
+

1

2
g(t)2∆GC

t
V ∗
t (G

C
t),

with boundary condition V0(G
C
0) = r(GC

0), and where µ(GC
t , t) =

1
2G

C
t − g(t)2∇GC

t
log p(GC

t).390

This equation is a non-linear partial differential equation (PDE), and the solution to the non-linear391

HJB equation is nontrivial. However, by applying an exponential transformation ϕt(G
C
t) = e−Vt(G

C
t),392

we can obtain the linear HBJ equation, given by393

−∂tϕ(G
C
t , t) =

(
∇GC

t
ϕ(GC

t , t)
)T

µ(GC
t , t) +

1

2
g(t)2∆GC

t
ϕ(GC

t , t) (14)

In particular, the Feynman-Kac formula is obtained as the solution of the linearized HJB equation394

in (14) (see [22] for the proof), given by395

exp

(
V ∗
t (G)

λ

)
= Eppre

[
exp

(
−r(GC

0)

λ

) ∣∣∣GC
t = G

]
. (15)

This leads to an expression for the optimal control in terms of the reward function as given by (3).396

Stochastic optimal control for zero-shot controlled generation. Recent methods have proposed397

the use of SOC for controlled generation [31, 14]. In the context of music generation [11], the authors398

propose a method to generate samples when likelihoods are non-differentiable. In [26], a linear399

quadratic control was proposed for style transfer in image generation. More recently, a non-linear400

control formulation was introduced in [23] for image inverse problems. However, as far as we are401

concerned, the application of SOC for graph generation has not been explored yet.402

1We assume here that the terminal time is 0 and the time runs backwards (so t < 0).

10

C Background on zeroth-order optimization403

In Section 2.2.2, we leverage zeroth-order optimization for defining a surrogate gradient of the reward404

function. We propose three estimators in particular, where each one has its own properties. In this405

section, we expand on them.406

Two-point gradient estimator. The two-point gradient estimator in (9) is the first one that we407

introduced. This estimator has a mean-squared error given by408

E[∥∇̂r(G0)−∇r((G0))∥22] = O(d)∥∇r(G0)∥22+O

(
µ2d3 + µ2d

ϕ(d)

)
(16)

The proof can be found in [16]. The error in (16) sheds light on the behavior of this estimator. First,409

the second term depends on the parameter µ: when this parameter gets smaller, the gradient estimate410

gets better. However, if µ becomes too small, then the effect of the guidance diminishes. Second, the411

first term depends on the dimension d. This imposes a variance which cannot be 0 even for small412

values of µ.413

Multi-point gradient estimator. The third estimator is based on the multi-point gradient estimate,414

which computes an average over random directions. This estimator has a mean-squared error given415

by416

E[∥∇̂r(G0)−∇r((G0))∥22] = O

(
d

N

)
∥∇f(x)∥22+O

(
µ2d3

ϕ(d)N

)
+O

(
µ2d

ϕ(d)

)
(17)

Compared to the two-point case, the error in (17) depends on the number of samples that are used417

to compute the average. In particular, the first two terms go to 0 when N → ∞; the third term is418

independent of N , and corresponds to the approximation error between the true gradient and the419

smoothed version. However, it is controlled by the smoothing parameter µ.420

A summary of each estimator is shown in Table 3.421

Table 3: Comparison of ZO estimators for control direction optimization.

Method Variance Reward evaluation

2-Point Estimator High 2
Best-of-N Direction Low N

Averaged Random Search Moderate N + 1

D Final algorithm422

We put everything together and show our proposed algorithm in Alg. 1.423

E Experimental Details424

This appendix provides detailed information regarding the experimental setup used in this paper,425

including specifics about the datasets, computational resources utilized, and a comprehensive de-426

scription of additional experiments conducted. The appendix is structured as follows: Section E.1427

includes a description of the datasets used for evaluating GGDiff’s performance. Section E.2, details428

the computational resources of the server where the experiments were run. Section E.3 presents429

additional experimental results, with subsections dedicated to further details on constrained graph430

generation (Section E.3.1), fair graph generation (Section E.3.2) and link prediction (Section E.3.3).431

E.1 Datasets432

We evaluate our proposed GGDiff framework and baselines on a selection of benchmark graph433

datasets, encompassing both generic network structures and molecular graphs. The datasets used in434

our experiments are described below:435

11

Algorithm 1 GGDiff for controllable generation on graphs

Require: T, ϵθ(Gt, t), N, k, µ, {αt}Tt=0, {σt}Tt=0, r(·)
1: Sample GC

T from p(GT).
2: for t = T − 1 to 1 do
3: ĜC

t = 1√
αt+1

(
GC

t+1 −
1−αt+1√
1−ᾱt+1

ϵθ(G
C
t+1, t+ 1)

)
(DDPM update).

4: if r is differentiable then
5: Compute ĜC

0 (Ĝ
C
t) =

1
αt

(
ĜC

t + σ2
t ϵθ(Ĝ

C
t , t)

)
.

6: Compute Ut = ∇ĜC
t
r(ĜC

0 (Ĝ
C
t)) using (5).

7: else
8: Sample N candidates {U(1)

t , . . . ,U
(N)
t } ∼ N (0, I).

9: Compute G̃
C,(i)
t = ĜC

t + kU
(i)
t for i = 1, · · · , N .

10: Compute Ĝ
C,(i)
0 = 1

αt

(
G̃

C,(i)
t + σ2

t ϵθ(G̃
C,(i)
t , t)

)
for i = 1, · · · , N .

11: Approximate ∇̂r(ĜC
t) using (9), (10), (11)

12: if Approximation of ∇̂r(ĜC
t) is (10) then

13: Set Ut = argmax
U

(i)
t

r(Ĝ
C,(i)
0).

14: else if Approximation of ∇̂r(ĜC
t) is (9) or (11) then

15: Set Ut = ∇̂r(ĜC
t).

16: end if
17: end if
18: GC

t = ĜC
t + kUt.

19: end for
20: return GC

0

1. Ego-small: This dataset comprises 200 small ego graphs extracted from the larger Citeseer436

network.437

2. Community-small: Consisting of 100 synthetic graphs, this dataset features structures438

exhibiting distinct community partitions.439

3. Enzymes: We use the protein graphs from the BRENDA enzyme database, totaling 587440

graphs.441

4. QM9: A molecular dataset containing approximately 133,000 small molecules. These442

molecules are composed of up to 9 heavy atoms, including Carbon (C), Nitrogen (N),443

Oxygen (O), and Fluorine (F).444

5. ZINC250k: This large molecular dataset includes 250,000 drug-like molecules. The graphs445

represent molecules with 6 to 38 heavy atoms, incorporating Carbon (C), Nitrogen (N),446

Oxygen (O), Fluorine (F), Phosphorus (P), Chlorine (Cl), Bromine (Br), and Iodine (I).447

E.2 Computational resources448

All experiments were conducted on a server equipped with an AMD EPYC 9634 84-Core Processor449

and 512GB of total physical memory (RAM). For accelerated computation, the server uses an450

NVIDIA GeForce RTX 4090 graphics processing units (GPUs), each featuring 24GB of dedicated451

video memory. The software environment runs on Ubuntu 24.04 LTS, with NVIDIA driver version452

560.35.03 and CUDA version 12.6.453

E.3 Additional experiments454

E.3.1 Constrained Graph Generation455

In this section, we provide additional details regarding the constrained graph generation experiments456

summarized in the main paper (see Table 1). For comparison purposes with prior work, we specifically457

focus on evaluating GGDiff’s performance on the task of guiding the generated graphs towards fulfill-458

ing the constraints previously defined and utilized in Sharma et al. [27]. These constraints, designed459

to enforce specific structural properties, are presented in Table 4, along with their descriptions and460

mathematical formulations.461

12

Table 4: Summary of Constraints from [27]
Constraint Type Limiting factor Mathematical Formulation

Edge Count Number of edges |E| |E|= 1⊤A1 ≤ B for a given constant B ≥ 0
Triangle Count Number of triangles tr(A3) ≤ T for a given constant T ≥ 0
Degree Maximum Degree maxi[A1]i ≤ D for a given constant D

Table 5: Metrics for the force stars constraint in the Ego small dataset.
Method % 1 Node % Stars % Stars & > 1 Node % Valid Egonet Edges over Star

GGDiff-G 0.78 53.12 52.34 96.09 1.08 ± 2.61
GGDiff-L 2.34 51.56 49.22 88.28 0.44 ± 0.58
PRODIGY 100.00 100.00 0.00 100.00 0.00 ± 0.00

Uncons. 0.78 24.22 23.44 99.22 1.86 ± 2.64

The values for constants B, T , and D used for each dataset are selected based on those reported in462

[27] to ensure a direct comparison of method performance under identical constraint settings, and are463

given by those values fulfilled by 10% of the graphs in the test dataset.464

The specific loss function used for each constraint is empirically selected from a pool of possibilities465

based on which yields the best performance; a comprehensive list of options can be found in the466

code associated with this submission. For differentiable guidance (Section 2.2.1), the choice is467

restricted to differentiable functions, typically involving ℓ1 or ℓ2 norms. For instance, an ℓ2 loss468

for the edge count constraint could be (1⊤ÂC
0 (A

C
t)1 − B)2. In contrast, the non-differentiable469

(zero-order) guidance (Section 2.2.2) significantly expands the available loss functions. Examples470

include utilizing non-differentiable operations in the differentiable losses, like using the quantized471

adjacency via the entry-wise indicator function 1(ÂC
0 (A

C
t) > 0.5) in lieu of the estimate ÂC

0 (A
C
t),472

or employing one-sided penalties such as max{1⊤ÂC
0 (A

C
t)1−B, 0}.473

Moving beyond the constraints explored in Sharma et al. [27], we investigate GGDiff’s ability to474

generate star graphs within the Ego small dataset. As directly enforcing a star graph structure is475

outside the standard constraints that can be achieved via projection, for PRODIGY we proxy this by476

setting the number of triangles to 0, a necessary condition for star graphs. The results are detailed in477

Table 5, where we report the percentage of graphs with 1 node, the percentage of generated graphs478

that are stars, the percentage of stars with more than one node, the percentage of valid egonets, and479

the difference in the number of edges with respect to a star graph, i.e., the ratio between the number480

of generated graphs that fulfill the condition (having one node, valid egonet, etc.) and the total481

number of generated graphs. Our findings indicate that PRODIGY generates graphs consisting of482

only a single node, as it can be appreciated in Figure 2. In contrast, our GGDiff methods successfully483

double the percentage of generated star graphs compared to the unconstrained case, while effectively484

preserving the overall data distribution, as approximately 90% of the graphs generated by GGDiff are485

valid egonets. Notice that all graphs generated by PRODIGY are valid egonets because a graph with486

a single node is considered a valid egonet. Additionally, our methods substantially reduce the number487

of excess edges beyond what is required for a star graph over the unconstrained case.488

E.3.2 Fair graph generation489

In this appendix section, we provide further details regarding the fair graph generation experiments490

introduced in the main paper. These experiments evaluate GGDiff’s ability to generate graphs that491

satisfy fairness criteria based on assigned sensitive attributes. To encourage fair graphs, we employ492

the same loss functions defined in Navarro et al. [20]. We investigate two distinct methods for493

assigning sensitive attributes to the nodes of the community small dataset:494

1. Random assignment: Sensitive attributes are assigned to nodes randomly. The quantitative495

results for the fairness metrics and SBM validity for this scenario are presented in Table 2 in496

the main paper.497

2. Community partitioning algorithm-based assignment: Sensitive attributes are assigned498

to nodes based on the community structure identified by a community partitioning algorithm.499

This represents a more challenging scenario for generating fair graphs that are also valid500

13

(a) GGDiff-C. (b) GGDiff-G. (c) PRODIGY. (d) Unconstrained.

Figure 2: Samples for the force stars constraint in the Ego small dataset.

Stochastic Block Models (SBMs). Since SBMs are characterized by a high density of intra-501

community edges and a low density of inter-community edges, aligning the sensitive attribute502

with community membership creates a direct tension: the fair loss function encourages503

the formation of edges between nodes with different attributes (i.e., nodes in different504

communities), while the underlying data distribution and the objective of generating valid505

SBMs favor the opposite.506

Analyzing the results for the community partitioning-based assignment presented in Table 6, our507

three GGDiff methods are still able to effectively reduce the fairness metrics compared to baselines,508

while largely maintaining a high percentage of valid SBMs. This quantitative improvement is visually509

corroborated by the sample graphs shown in Figure 3, where graphs generated by GGDiff show a510

higher density of edges connecting nodes of different sensitive attributes (indicated by node color)511

compared to the unconstrained case.512

Table 6: Metrics for the fair graph generation with community partition.
Method ∆ DP ∆DPnode % Valid SBM
Greedy 0.3389 ± 0.0763 0.1931 ± 0.0387 98.4375

Loss 0.3119 ± 0.1289 0.1892 ± 0.0720 77.3438
Zero 0.3451 ± 0.0612 0.1999 ± 0.0498 98.4375

Uncons 0.4133 ± 0.0769 0.2348 ± 0.0449 99.2188

E.3.3 Incomplete graph generation513

In this task, we evaluate GGDiff’s ability to generate graphs consistent with partially observed514

adjacency matrices. Specifically, we assume that 50% of the entries of the adjacency matrix are515

observed and should be maintained in the generated graph. We conduct these experiments on two516

molecular datasets, QM9 and ZINC250k. We evaluate performance using three metrics: Accuracy,517

which measures the percentage of observed entries that are respected in the generated graphs; and %518

Unique, the percentage of generated molecules that are novel compared to the training set.519

Table 7: Results for the incomplete graph generation experi-
ment.

Method QM9 ZINC250k
Acc. (%) % Unique Acc. (%) % Unique

GGDiff-G 91.39 73.57 98.85 100.00
GGDiff-C 67.20 94.32 95.27 100.00
GGDiff-Z 88.72 90.88 98.44 100.00
Uncons. 61.51 97.86 93.43 100.00

The results are presented in Ta-520

ble 7. Our GGDiff methods, par-521

ticularly GGDiff-G and GGDiff-Z,522

demonstrate high accuracy in re-523

specting the observed entries, both524

of them achieving almost 90% ac-525

curacy on QM9 and over 98% ac-526

curacy on ZINC250k. The uncon-527

strained case also shows relatively528

high accuracy, which is largely at-529

tributable to the high prevalence of530

zero entries (absence of edges) in531

sparse graphs. For a more challenging evaluation where we observe edges instead of entries, please532

refer to Appendix E. Across all methods, the percentage of valid generated molecules is consistently533

100%, likely aided by the partial observation of the adjacency matrix. We observe a trade-off between534

14

GG
Di

ff-
G

GG
Di

ff-
C

GG
Di

ff-
Z

Un
co

ns
.

(a) Random community assignment.

GG
Di

ff-
G

GG
Di

ff-
C

GG
Di

ff-
Z

Un
co

ns
.

(b) Community partitioning algorithm-based assignment.

Figure 3: Samples from the fair graph generation experiment.

15

accuracy and novelty in the QM9 dataset: as the accuracy in fixing observed entries increases, the535

percentage of novel molecules tends to decrease, suggesting that achieving very high fidelity to536

observed structure can lead to generating molecules highly similar to those in the test set. This537

tradeoff isn’t observed in the ZINC250k dataset, likely due to the fact that the graphs are larger and538

therefore the model has more freedom to adapt to the observed entries.539

This section provides additional details on the link prediction experiments, also referred to as540

incomplete graph generation. In this task, we evaluate GGDiff’s ability to generate graphs where541

a subset of adjacency matrix entries is observed and must be precisely replicated in the generated542

output. We investigate two scenarios for the observed entries: (i) observing a random 50% of all543

adjacency matrix entries (both existing edges and non-edges), and (ii) observing only a random544

subset of existing edges (entries equal to 1). This task is particularly relevant in domains like545

molecule generation, where there is often an interest in generating molecules that incorporate a546

specific predefined substructure (e.g., a benzene ring). Enforcing observed edges allows for the547

generation of molecules that respect such topological constraints.548

The results for the first scenario (observing random entries) are presented in Table 7 in the main paper.549

As noted, the high accuracy values observed in this case are significantly influenced by the correct550

generation of prevalent zero entries (non-edges) that were part of the observed subset. We now detail551

the second, more challenging scenario in this appendix.552

For the second scenario, we observe only a random subset of existing edges in the adjacency matrix.553

The results for this case are presented in Table 8. Here, the accuracy metric specifically measures554

how well the generated graphs reproduce the observed edges. As expected, the accuracy values drop555

significantly compared to the first scenario because correctly generating existing edges is a more556

stringent condition than correctly generating non-edges in sparse graphs. However, the effect of557

GGDiff’s guidance becomes strikingly apparent: our methods, particularly GGDiff-G and GGDiff-Z,558

achieve drastically increased accuracy in reproducing the observed edges on both the QM9 and559

ZINC250k datasets compared to the unconstrained baseline.560

Sample graphs illustrating the results of the link prediction experiment are shown in Figure 4. In these561

visualizations, we use color and line style to indicate the status of observed entries in the generated562

graphs:563

• Solid green lines: Observed edges that were successfully preserved in the generated graphs.564

• Solid red lines: Observed edges that were not preserved in the generated graphs.565

• Dotted green lines: Observed non-edge entries that were correctly preserved as non-edges.566

• Dotted red lines: Observed non-edge entries that were not preserved (i.e., incorrectly567

generated as edges).568

As observed in the figure, graphs generated by our GGDiff methods exhibit a clear prevalence of569

green lines (indicating high preservation of observed entries and edges), whereas the unconstrained570

case shows a greater number of red lines, highlighting its inability to reliably reproduce the specified571

topological constraints.572

Table 8: Results for the incomplete graph generation experiment with observed edges.

Method QM9 ZINC250k
Acc. (%) % Unique Acc. (%) % Unique

GGDiff-G 79.73 86.53 95.98 100.00
GGDiff-C 29.18 97.56 19.73 99.90
GGDiff-Z 41.66 92.71 85.59 100.00
Uncons. 23.40 97.81 8.45 100.00

F Social impacts573

The generation of graphs under constraints could lead to undesired consequences if not applied with574

care. For example, when doing graph completion. In sensitive applications like healthcare or finance,575

16

0

1 2

3

4

5
6

7

GG
Di

ff-
G

0

1 2

3

4
5

6
7

0

1 2

3

4
5

6
7

0

1 2

3

4
5

6
7

0

1 2

3

4
5

6
7

0

1 2

3

4
5

6
7

GG
Di

ff-
C

0

1 2

3

4
5

6
7

0

1 2

3

4
5

6
7

0

1 2

3

4
5

6
7

0

1 2

3

4
5

6
7

0

1 2

3

4
5

6
7

GG
Di

ff-
Z

0

1 2

3

4
5

6
7

0

1 2

3

4
5

6
7

0

1 2

3

4
5

6
7

0

1 2

3

4
5

6
7

0

1 2

3

4
5

6
7

Un
co

ns
.

0

1 2

3

4
5

6
7

0

1 2

3

4
5

6
7

0

1 2

3

4
5

6
7

0

1 2

3

4
5

6
7

0

1 2

3

4
5

6
7

(a) QM9.

0
1

2
3

4

5

6

7
8

9

10

111213
14

1516
1718

19
20

2122
23

24

25
26

27

28

GG
Di

ff-
G

0
1
2

3
4
5

6
7

8
9

10
111213

14
1516

1718

19
20

2122
2324

2526

27
28

0
1
2

3
4
5

6
7

8
9

10
111213

14
1516

1718

19
20

2122
2324

2526

27
28

0
1
2

3
4
5

6
7

8
9

10
111213

14
1516

1718

19
20

2122
2324

2526

27
28

0
1
2

3
4
5

6
7

8
9

10
111213

14
1516

1718

19
20

2122
2324

2526

27
28

0
1
2

3
4
5

6
7

8
9

10
111213

14
1516

1718

19
20

2122
2324

2526

27
28

GG
Di

ff-
C

0
1
2

3
4
5

6
7

8
9

10
111213

14
1516

1718

19
20

2122
2324

2526

27
28

0
1
2

3
4
5

6
7

8
9

10
111213

14
1516

1718

19
20

2122
2324

2526

27
28

0
1
2

3
4
5

6
7

8
9

10
111213

14
1516

1718

19
20

2122
2324

2526

27
28

0
1
2

3
4
5

6
7

8
9

10
111213

14
1516

1718

19
20

2122
2324

2526

27
28

0
1
2

3
4
5

6
7

8
9

10
111213

14
1516

1718

19
20

2122
2324

2526

27
28

GG
Di

ff-
Z

0
1
2

3
4
5

6
7

8
9

10
111213

14
1516

1718

19
20

2122
2324

2526

27
28

0
1
2

3
4
5

6
7

8
9

10
111213

14
1516

1718

19
20

2122
2324

2526

27
28

0
1
2

3
4
5

6
7

8
9

10
111213

14
1516

1718

19
20

2122
2324

2526

27
28

0
1
2

3
4
5

6
7

8
9

10
111213

14
1516

1718

19
20

2122
2324

2526

27
28

0
1
2

3
4
5

6
7

8
9

10
111213

14
1516

1718

19
20

2122
2324

2526

27
28

Un
co

ns
.

0
1
2

3
4
5

6
7

8
9

10
111213

14
1516

1718

19
20

2122
2324

2526

27
28

0
1
2

3
4
5

6
7

8
9

10
111213

14
1516

1718

19
20

2122
2324

2526

27
28

0
1
2

3
4
5

6
7

8
9

10
111213

14
1516

1718

19
20

2122
2324

2526

27
28

0
1
2

3
4
5

6
7

8
9

10
111213

14
1516

1718

19
20

2122
2324

2526

27
28

0
1
2

3
4
5

6
7

8
9

10
111213

14
1516

1718

19
20

2122
2324

2526

27
28

(b) ZINC250k.

Figure 4: Samples generated for the incomplete graph generation experiment. The graph on the left
is the test graph from which we observe the entries in its adjacency matrix. The generated graphs are
represented in the rows, one for each of the methods. In the generated graphs, the solid green (red)
lines are observed edges that were (not) preserved in the generated graphs, while dotted green (red)
lines are observed entries not corresponding to an edge that were (not) preserved in the generated
graphs.

17

these prediction inaccuracies can have serious repercussions, including misdiagnosis or financial576

losses. Moreover, misusing these models in social network analysis might inadvertently reinforce577

biases or invade privacy if not handled ethically. Therefore, it is crucial to apply GGDiff and any other578

graph inference algorithm using diffusion models with a thorough understanding of their limitations579

and to validate results rigorously to mitigate these risks.580

18

NeurIPS Paper Checklist581

The checklist is designed to encourage best practices for responsible machine learning research,582

addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove583

the checklist: The papers not including the checklist will be desk rejected. The checklist should584

follow the references and follow the (optional) supplemental material. The checklist does NOT count585

towards the page limit.586

Please read the checklist guidelines carefully for information on how to answer these questions. For587

each question in the checklist:588

• You should answer [Yes] , [No] , or [NA] .589

• [NA] means either that the question is Not Applicable for that particular paper or the590

relevant information is Not Available.591

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).592

The checklist answers are an integral part of your paper submission. They are visible to the593

reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it594

(after eventual revisions) with the final version of your paper, and its final version will be published595

with the paper.596

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.597

While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a598

proper justification is given (e.g., "error bars are not reported because it would be too computationally599

expensive" or "we were unable to find the license for the dataset we used"). In general, answering600

"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we601

acknowledge that the true answer is often more nuanced, so please just use your best judgment and602

write a justification to elaborate. All supporting evidence can appear either in the main paper or the603

supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification604

please point to the section(s) where related material for the question can be found.605

IMPORTANT, please:606

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",607

• Keep the checklist subsection headings, questions/answers and guidelines below.608

• Do not modify the questions and only use the provided macros for your answers.609

1. Claims610

Question: Do the main claims made in the abstract and introduction accurately reflect the611

paper’s contributions and scope?612

Answer: [Yes]613

Justification: The abstract reflects the paper’s content. We claim that we propose a framework614

for controllable generation using diffusion models for non-differentiable constraints. In615

particular, we define the guidance via stochastic optimal control, and we approximate the616

optimal control using zeroth-order optimization. We support the benefits of our algorithm617

with comparisons against other benchmarks and with ablation studies.618

Guidelines:619

• The answer NA means that the abstract and introduction do not include the claims620

made in the paper.621

• The abstract and/or introduction should clearly state the claims made, including the622

contributions made in the paper and important assumptions and limitations. A No or623

NA answer to this question will not be perceived well by the reviewers.624

• The claims made should match theoretical and experimental results, and reflect how625

much the results can be expected to generalize to other settings.626

• It is fine to include aspirational goals as motivation as long as it is clear that these goals627

are not attained by the paper.628

2. Limitations629

19

Question: Does the paper discuss the limitations of the work performed by the authors?630

Answer: [Yes]631

Justification: See Section 4632

Guidelines:633

• The answer NA means that the paper has no limitation while the answer No means that634

the paper has limitations, but those are not discussed in the paper.635

• The authors are encouraged to create a separate "Limitations" section in their paper.636

• The paper should point out any strong assumptions and how robust the results are to637

violations of these assumptions (e.g., independence assumptions, noiseless settings,638

model well-specification, asymptotic approximations only holding locally). The authors639

should reflect on how these assumptions might be violated in practice and what the640

implications would be.641

• The authors should reflect on the scope of the claims made, e.g., if the approach was642

only tested on a few datasets or with a few runs. In general, empirical results often643

depend on implicit assumptions, which should be articulated.644

• The authors should reflect on the factors that influence the performance of the approach.645

For example, a facial recognition algorithm may perform poorly when image resolution646

is low or images are taken in low lighting. Or a speech-to-text system might not be647

used reliably to provide closed captions for online lectures because it fails to handle648

technical jargon.649

• The authors should discuss the computational efficiency of the proposed algorithms650

and how they scale with dataset size.651

• If applicable, the authors should discuss possible limitations of their approach to652

address problems of privacy and fairness.653

• While the authors might fear that complete honesty about limitations might be used by654

reviewers as grounds for rejection, a worse outcome might be that reviewers discover655

limitations that aren’t acknowledged in the paper. The authors should use their best656

judgment and recognize that individual actions in favor of transparency play an impor-657

tant role in developing norms that preserve the integrity of the community. Reviewers658

will be specifically instructed to not penalize honesty concerning limitations.659

3. Theory assumptions and proofs660

Question: For each theoretical result, does the paper provide the full set of assumptions and661

a complete (and correct) proof?662

Answer: [Yes]663

Justification: We provide all the necessary proofs in the Appendix. And when we do not664

provide, we cite the corresponding work.665

Guidelines:666

• The answer NA means that the paper does not include theoretical results.667

• All the theorems, formulas, and proofs in the paper should be numbered and cross-668

referenced.669

• All assumptions should be clearly stated or referenced in the statement of any theorems.670

• The proofs can either appear in the main paper or the supplemental material, but if671

they appear in the supplemental material, the authors are encouraged to provide a short672

proof sketch to provide intuition.673

• Inversely, any informal proof provided in the core of the paper should be complemented674

by formal proofs provided in appendix or supplemental material.675

• Theorems and Lemmas that the proof relies upon should be properly referenced.676

4. Experimental result reproducibility677

Question: Does the paper fully disclose all the information needed to reproduce the main ex-678

perimental results of the paper to the extent that it affects the main claims and/or conclusions679

of the paper (regardless of whether the code and data are provided or not)?680

Answer: [Yes]681

20

Justification: Our algorithm is clearly described in Algorithm 1, and all the hyperparameters682

and datasets used are explicitly reported (see Section 3 and Appendix E). The source code is683

also provided in the submission (it will be publicly available on GitHub if the paper gets684

accepted).685

Guidelines:686

• The answer NA means that the paper does not include experiments.687

• If the paper includes experiments, a No answer to this question will not be perceived688

well by the reviewers: Making the paper reproducible is important, regardless of689

whether the code and data are provided or not.690

• If the contribution is a dataset and/or model, the authors should describe the steps taken691

to make their results reproducible or verifiable.692

• Depending on the contribution, reproducibility can be accomplished in various ways.693

For example, if the contribution is a novel architecture, describing the architecture fully694

might suffice, or if the contribution is a specific model and empirical evaluation, it may695

be necessary to either make it possible for others to replicate the model with the same696

dataset, or provide access to the model. In general. releasing code and data is often697

one good way to accomplish this, but reproducibility can also be provided via detailed698

instructions for how to replicate the results, access to a hosted model (e.g., in the case699

of a large language model), releasing of a model checkpoint, or other means that are700

appropriate to the research performed.701

• While NeurIPS does not require releasing code, the conference does require all submis-702

sions to provide some reasonable avenue for reproducibility, which may depend on the703

nature of the contribution. For example704

(a) If the contribution is primarily a new algorithm, the paper should make it clear how705

to reproduce that algorithm.706

(b) If the contribution is primarily a new model architecture, the paper should describe707

the architecture clearly and fully.708

(c) If the contribution is a new model (e.g., a large language model), then there should709

either be a way to access this model for reproducing the results or a way to reproduce710

the model (e.g., with an open-source dataset or instructions for how to construct711

the dataset).712

(d) We recognize that reproducibility may be tricky in some cases, in which case713

authors are welcome to describe the particular way they provide for reproducibility.714

In the case of closed-source models, it may be that access to the model is limited in715

some way (e.g., to registered users), but it should be possible for other researchers716

to have some path to reproducing or verifying the results.717

5. Open access to data and code718

Question: Does the paper provide open access to the data and code, with sufficient instruc-719

tions to faithfully reproduce the main experimental results, as described in supplemental720

material?721

Answer: [Yes]722

Justification: Out supplementary material includes both Appendix E where the details for723

the experimental evaluation are provided, as well as the code used for the experimental724

results, with the hyperparameters clearly organized in YAML files.725

Guidelines:726

• The answer NA means that paper does not include experiments requiring code.727

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/728

public/guides/CodeSubmissionPolicy) for more details.729

• While we encourage the release of code and data, we understand that this might not be730

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not731

including code, unless this is central to the contribution (e.g., for a new open-source732

benchmark).733

• The instructions should contain the exact command and environment needed to run to734

reproduce the results. See the NeurIPS code and data submission guidelines (https:735

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.736

21

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The authors should provide instructions on data access and preparation, including how737

to access the raw data, preprocessed data, intermediate data, and generated data, etc.738

• The authors should provide scripts to reproduce all experimental results for the new739

proposed method and baselines. If only a subset of experiments are reproducible, they740

should state which ones are omitted from the script and why.741

• At submission time, to preserve anonymity, the authors should release anonymized742

versions (if applicable).743

• Providing as much information as possible in supplemental material (appended to the744

paper) is recommended, but including URLs to data and code is permitted.745

6. Experimental setting/details746

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-747

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the748

results?749

Answer: [Yes]750

Justification: We describe the setup and all the details in Section 3 and Appendix E.751

Guidelines:752

• The answer NA means that the paper does not include experiments.753

• The experimental setting should be presented in the core of the paper to a level of detail754

that is necessary to appreciate the results and make sense of them.755

• The full details can be provided either with the code, in appendix, or as supplemental756

material.757

7. Experiment statistical significance758

Question: Does the paper report error bars suitably and correctly defined or other appropriate759

information about the statistical significance of the experiments?760

Answer: [Yes]761

Justification: The standard deviations are provided in the corresponding tables whenever762

possible.763

Guidelines:764

• The answer NA means that the paper does not include experiments.765

• The authors should answer "Yes" if the results are accompanied by error bars, confi-766

dence intervals, or statistical significance tests, at least for the experiments that support767

the main claims of the paper.768

• The factors of variability that the error bars are capturing should be clearly stated (for769

example, train/test split, initialization, random drawing of some parameter, or overall770

run with given experimental conditions).771

• The method for calculating the error bars should be explained (closed form formula,772

call to a library function, bootstrap, etc.)773

• The assumptions made should be given (e.g., Normally distributed errors).774

• It should be clear whether the error bar is the standard deviation or the standard error775

of the mean.776

• It is OK to report 1-sigma error bars, but one should state it. The authors should777

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis778

of Normality of errors is not verified.779

• For asymmetric distributions, the authors should be careful not to show in tables or780

figures symmetric error bars that would yield results that are out of range (e.g. negative781

error rates).782

• If error bars are reported in tables or plots, The authors should explain in the text how783

they were calculated and reference the corresponding figures or tables in the text.784

8. Experiments compute resources785

Question: For each experiment, does the paper provide sufficient information on the com-786

puter resources (type of compute workers, memory, time of execution) needed to reproduce787

the experiments?788

22

Answer: [Yes]789

Justification: The computer resources are included in the supplementary material, more790

precisely in Appendix E.2.791

Guidelines:792

• The answer NA means that the paper does not include experiments.793

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,794

or cloud provider, including relevant memory and storage.795

• The paper should provide the amount of compute required for each of the individual796

experimental runs as well as estimate the total compute.797

• The paper should disclose whether the full research project required more compute798

than the experiments reported in the paper (e.g., preliminary or failed experiments that799

didn’t make it into the paper).800

9. Code of ethics801

Question: Does the research conducted in the paper conform, in every respect, with the802

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?803

Answer: [Yes]804

Justification: We have read the NeurIPS Code of Ethics and ensured the paper satisfies every805

aspect.806

Guidelines:807

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.808

• If the authors answer No, they should explain the special circumstances that require a809

deviation from the Code of Ethics.810

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-811

eration due to laws or regulations in their jurisdiction).812

10. Broader impacts813

Question: Does the paper discuss both potential positive societal impacts and negative814

societal impacts of the work performed?815

Answer: [Yes]816

Justification: We discuss the societal impact in Appendix F.817

Guidelines:818

• The answer NA means that there is no societal impact of the work performed.819

• If the authors answer NA or No, they should explain why their work has no societal820

impact or why the paper does not address societal impact.821

• Examples of negative societal impacts include potential malicious or unintended uses822

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations823

(e.g., deployment of technologies that could make decisions that unfairly impact specific824

groups), privacy considerations, and security considerations.825

• The conference expects that many papers will be foundational research and not tied826

to particular applications, let alone deployments. However, if there is a direct path to827

any negative applications, the authors should point it out. For example, it is legitimate828

to point out that an improvement in the quality of generative models could be used to829

generate deepfakes for disinformation. On the other hand, it is not needed to point out830

that a generic algorithm for optimizing neural networks could enable people to train831

models that generate Deepfakes faster.832

• The authors should consider possible harms that could arise when the technology is833

being used as intended and functioning correctly, harms that could arise when the834

technology is being used as intended but gives incorrect results, and harms following835

from (intentional or unintentional) misuse of the technology.836

• If there are negative societal impacts, the authors could also discuss possible mitigation837

strategies (e.g., gated release of models, providing defenses in addition to attacks,838

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from839

feedback over time, improving the efficiency and accessibility of ML).840

23

https://neurips.cc/public/EthicsGuidelines

11. Safeguards841

Question: Does the paper describe safeguards that have been put in place for responsible842

release of data or models that have a high risk for misuse (e.g., pretrained language models,843

image generators, or scraped datasets)?844

Answer: [NA]845

Justification: Our paper do not pose any risk.846

Guidelines:847

• The answer NA means that the paper poses no such risks.848

• Released models that have a high risk for misuse or dual-use should be released with849

necessary safeguards to allow for controlled use of the model, for example by requiring850

that users adhere to usage guidelines or restrictions to access the model or implementing851

safety filters.852

• Datasets that have been scraped from the Internet could pose safety risks. The authors853

should describe how they avoided releasing unsafe images.854

• We recognize that providing effective safeguards is challenging, and many papers do855

not require this, but we encourage authors to take this into account and make a best856

faith effort.857

12. Licenses for existing assets858

Question: Are the creators or original owners of assets (e.g., code, data, models), used in859

the paper, properly credited and are the license and terms of use explicitly mentioned and860

properly respected?861

Answer: [Yes]862

Justification: The only assets that are not ours and were used in this work are the code for863

the unconditional diffusion model (credited when citing the original papers), and the public864

datasets (credited in Section 3).865

Guidelines:866

• The answer NA means that the paper does not use existing assets.867

• The authors should cite the original paper that produced the code package or dataset.868

• The authors should state which version of the asset is used and, if possible, include a869

URL.870

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.871

• For scraped data from a particular source (e.g., website), the copyright and terms of872

service of that source should be provided.873

• If assets are released, the license, copyright information, and terms of use in the874

package should be provided. For popular datasets, paperswithcode.com/datasets875

has curated licenses for some datasets. Their licensing guide can help determine the876

license of a dataset.877

• For existing datasets that are re-packaged, both the original license and the license of878

the derived asset (if it has changed) should be provided.879

• If this information is not available online, the authors are encouraged to reach out to880

the asset’s creators.881

13. New assets882

Question: Are new assets introduced in the paper well documented and is the documentation883

provided alongside the assets?884

Answer: [Yes]885

Justification: Well-documented source code is submitted and will be available on GitHub if886

the paper is accepted.887

Guidelines:888

• The answer NA means that the paper does not release new assets.889

• Researchers should communicate the details of the dataset/code/model as part of their890

submissions via structured templates. This includes details about training, license,891

limitations, etc.892

24

paperswithcode.com/datasets

• The paper should discuss whether and how consent was obtained from people whose893

asset is used.894

• At submission time, remember to anonymize your assets (if applicable). You can either895

create an anonymized URL or include an anonymized zip file.896

14. Crowdsourcing and research with human subjects897

Question: For crowdsourcing experiments and research with human subjects, does the paper898

include the full text of instructions given to participants and screenshots, if applicable, as899

well as details about compensation (if any)?900

Answer: [NA]901

Justification: We did not do experiments with human subjects.902

Guidelines:903

• The answer NA means that the paper does not involve crowdsourcing nor research with904

human subjects.905

• Including this information in the supplemental material is fine, but if the main contribu-906

tion of the paper involves human subjects, then as much detail as possible should be907

included in the main paper.908

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,909

or other labor should be paid at least the minimum wage in the country of the data910

collector.911

15. Institutional review board (IRB) approvals or equivalent for research with human912

subjects913

Question: Does the paper describe potential risks incurred by study participants, whether914

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)915

approvals (or an equivalent approval/review based on the requirements of your country or916

institution) were obtained?917

Answer: [NA]918

Justification: The paper does not involve crowdsourcing nor research with human subjects.919

Guidelines:920

• The answer NA means that the paper does not involve crowdsourcing nor research with921

human subjects.922

• Depending on the country in which research is conducted, IRB approval (or equivalent)923

may be required for any human subjects research. If you obtained IRB approval, you924

should clearly state this in the paper.925

• We recognize that the procedures for this may vary significantly between institutions926

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the927

guidelines for their institution.928

• For initial submissions, do not include any information that would break anonymity (if929

applicable), such as the institution conducting the review.930

16. Declaration of LLM usage931

Question: Does the paper describe the usage of LLMs if it is an important, original, or932

non-standard component of the core methods in this research? Note that if the LLM is used933

only for writing, editing, or formatting purposes and does not impact the core methodology,934

scientific rigorousness, or originality of the research, declaration is not required.935

Answer: [NA]936

Justification: Our method does not involve LLMs in any of the core modules.937

Guidelines:938

• The answer NA means that the core method development in this research does not939

involve LLMs as any important, original, or non-standard components.940

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)941

for what should or should not be described.942

25

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Controllable Generation of Graphs With General Rewards
	Conditional Generation: A SOC Approach
	Estimation of the Optimal Control: A Greedy Solution
	Differentiable Rewards
	Non-differentiable Rewards

	Experiments
	Constrained Graph Generation
	Fair Graph Generation

	Conclusions
	Background and Related Works
	Diffusion Models on Graphs
	Controllable Generation of Graphs With Continuous Diffusion Models

	HJB equation
	Background on zeroth-order optimization
	Final algorithm
	Experimental Details
	Datasets
	Computational resources
	Additional experiments
	Constrained Graph Generation
	Fair graph generation
	Incomplete graph generation

	Social impacts

