© © N O O A~ W N =

22
23
24
25
26
27
28
29

30
31
32
33
34
35
36

Graph Guided Diffusion: Unified Guidance for
Conditional Graph Generation

Anonymous Author(s)
Affiliation
Address

email

Abstract

Diffusion models have emerged as powerful generative models for graph gen-
eration, yet their use for conditional graph generation remains a fundamental
challenge. In particular, guiding diffusion models on graphs under arbitrary reward
signals is difficult: gradient-based methods, while powerful, are often unsuitable
due to the discrete and combinatorial nature of graphs, and non-differentiable
rewards further complicate gradient-based guidance. We propose Graph Guided
Diffusion (GGDiff), a novel guidance framework that interprets conditional diffu-
sion on graphs as a stochastic control problem to address this challenge. GGDiff
unifies multiple guidance strategies, including gradient-based guidance (for dif-
ferentiable rewards), control-based guidance (using control signals from forward
reward evaluations), and zero-order approximations (bridging gradient-based and
gradient-free optimization). This comprehensive, plug-and-play framework enables
zero-shot guidance of pre-trained diffusion models under both differentiable and
non-differentiable reward functions, adapting well-established guidance techniques
to graph generation — a direction largely unexplored. Our formulation balances
computational efficiency, reward alignment, and sample quality, enabling practical
conditional generation across diverse reward types. We demonstrate the efficacy of
GGDiff in various tasks, including constraints on graph motifs, fairness, and link
prediction, achieving superior alignment with target rewards while maintaining
diversity and fidelity.

1 Introduction

Diffusion models have recently shown great promise for graph generation, enabling the synthesis
of realistic graph structures across diverse domains such as drug design [35]], social networks [7],
and molecular dynamics [10]. A key motivation behind these models is their ability to serve as
flexible generative priors, capturing complex dependencies in both graph topology and node features.
However, most existing graph diffusion models focus on unconditional or controllable generation
under simple objectives. Incorporating more general forms of rewards or constraints, such as
enforcing specific structural properties, functional motifs, or domain-specific validity criteria like
fairness, remains an essential and open challenge.

Recent advances in conditional graph generation typically modify the diffusion trajectory using a
conditional gradient to steer the process toward sampling from the desired conditional distribution.
DiGress [33]] combines a learnable regressor with classifier guidance [9]], while LGD [37]] adopts a
similar gradient-based strategy in a latent space instead of a discrete domain like DiGress. However,
these approaches require differentiable constraints, which limits their applicability in more complex
graph generation tasks where constraints might be black-box functions without tractable gradients or
involve discrete structures. Closer to our approach, PRODIGY [27]] enforces hard constraints through

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

37
38
39
40
41

42
43
44
45
46
47
48
49
50

51
52
53
54
55
56
57
58

59

60
61
62

63
64

65
66

67

68
69
70
71
72

G¢ , =G +kU,

LJ‘\\ U
Gr N2 I
U’

ST

air

R &

unfair

C = fair graphs
p(Gr) &

Figure 1: Illustration of GGDIff, a method that guides the generation of graphs to satisfy a set of constraints (in
this case, the constraint is fairness). The guidance Uy, is a local direction obtained via SOC, and approximated
using ZO techniques, like the multi-point estimate shown here.

projected sampling along the diffusion trajectory using the bisection method [3]]. This requires
closed-form projection operators for a time-efficient implementation, which are often unavailable
for complex constraints, necessitating expensive solvers, and limiting the applicability to more
sophisticated conditions. As a result, no existing method can flexibly and effectively handle arbitrary,
non-differentiable, or complex constraints in the sampling process for conditional graph generation.

In this work, we propose Graph Guided Diffusion (GGDiff), a general guidance framework for
graph generation that interprets conditional graph generation as a stochastic optimal control (SOC)
problem. By casting the task as a control problem, we reformulate guided diffusion as a conditional
generation process with an additional control variable defined as a linear drift term. Inspired by recent
advances in SOC for diffusion models [11} 23} [25]], we optimize this control via path integral control,
which provides an analytical yet intractable gradient. To overcome this limitation, we introduce
gradient-free approximations based on zeroth-order (ZO) optimization techniques [15} [16]. Our
formulation generalizes several gradient-free strategies introduced previously [[11]] and offers new
possibilities.

GGDiff unifies various existing guidance methods in a single framework and is plug-and-play,
allowing zero-shot guidance of pre-trained diffusion models under both differentiable and non-
differentiable reward functions. We validate the advantages of GGDiff through extensive experiments
on a wide range of constraints, including structural constraints, fairness, and link prediction. Our
results demonstrate GGDiff’s versatility in guiding graph generation not only towards constraints
previously explored in the literature (beating current state-of-the-art architectures) but also towards
arbitrary, user-defined desired outcomes (such as fair or incomplete graphs), effectively balancing
precise outcome satisfaction with the preservation of the underlying graph family’s characteristics.

To summarize, our contributions are threefold:

* We propose GGDiff, a framework for conditional graph generation that handles both differ-
entiable and non-differentiable rewards by reformulating the problem as a stochastic optimal
control (SOC) task.

* We introduce a general gradient-free ZO optimization formulation to handle non-
differentiable rewards, enabling optimization without requiring tractable gradients.

* We conduct extensive experiments on structural, fairness, and link prediction constraints,
demonstrating GGDiff’s superior performance and flexibility over existing methods.

2 Controllable Generation of Graphs With General Rewards

In Section we formulate the generation of graph conditionals as a SOC problem. Then, in
Section[2.2| we propose different approximate solutions to design the control for conditional graph
generation: first, in Section[2.2.1| we introduce our approximation for differentiable rewards; second,
in Section[2.2.2| we propose a ZO approximation, which unifies several existing guidance policies for
non-differentiable rewards. The full algorithm is provided in the appendix (Alg. [I).

73

74
75
76
77

78

79
80

81
82
83
84
85

86
87
88

89

90

91
92
93
94
95

96
97
98
99
100
101
102
103

104

105
106
107

108

109
110

111

2.1 Conditional Generation: A SOC Approach

The goal of our method is to steer a pre-trained diffusion model to sample from the posterior
distribution. Importantly, we seek an algorithm that can handle general reward functions, even
non-differentiable ones. To tackle this, we proposed to leverage SOC [32]]. In particular, given an
uncontrolled diffusion process Q (defined in Section , we define a controlled one Q€ given by

Q° 1 dGY = {—;Gf - 9(t)*Vge log p(GY) +g(t)U(Gf,t)} dt + g(t)dW,, t e [T,0]. (1)

Thus, the goal is to design the control {U(GY,t)};c[0,7] to modify the trajectory of the controlled

process Q€ such that the generated samples belong to the target distribution. We formalize this as a
SOC problem, where we solve the following optimization problem

T c 2
. U (G, 1) ||
Ir}lell’l}E l/o)\%dt —r (GS)] s.t. 9. 2)

The terminal cost in (2) represents a desired constraint for the final state G quantified by the reward
r(.), which is maximized (thus, the negative sign), while the transient term is a regularization term
that penalizes large deviation from the uncontrolled process by promoting the energy of the controller
in (I) to be small. The solution of (@) is given by the Feynman-Kac formula, a well-known result
from the optimal control theory [24], given by

* C - (Gg) C
U (G 1) = —g(t) Vg log Epmne |exp (| —— 0> (Gel. 3)
The solution in (3) is obtained as the solution of the /inear version of the Hamilton-Jacobi-Bellman
(HJB) equation [6]], obtained after the exponential transformation; we deferred to Appendix for
more details on the derivation.

Given the optimal control, we now focus on how to implement it.

2.2 Estimation of the Optimal Control: A Greedy Solution

Although the expression for the optimal control derived from the Feynman-Kac formula (@) is
theoretically exact, its direct computation is often intractable. Evaluating the expectation and its
gradient would require simulating numerous trajectories of the uncontrolled process from the current
state G¢ to the final state G§ at each step of the generation process to estimate pP™, and then
backpropagating through the diffusion trajectory. This is computationally prohibitive.

We resort to a greedy approximation strategy to overcome this. This approach simplifies the problem
by approximating the complex gradient of the log-expectation term in (3) using primarily the current
state information G¢ and a one-step estimate of the clean sample Gg Such an approximation implies
that the control decision at time ¢ does not fully account for the entire future trajectory, potentially
leading to suboptimal choices, especially in the early stages of the reverse diffusion process. However,
the impact of such approximation errors may often diminish as t — 0 and the state G gets closer
to the data. We now detail this approximation for the cases of (¢) differentiable rewards and (i)
non-differentiable counterparts.

2.2.1 Differentiable Rewards

When the reward function r(-) is differentiable, we can derive a tractable approximation for the
optimal control U*(GY, ¢).The primary challenge lies in evaluating the gradient of the log-expectation
term. To circumvent this, we use Tweedie’s formula (see Section[A.T]) to compute the MMSE denoiser
E[GS|GS] = GS(GY) and approximate the conditional expectation in (3) as

By o (12 [] o (~1SHEEN), @

where the underlying assumption is that p(GS|GS) = §(GS — GE(GE)) with 6(.) denoting a Dirac
delta function. This approximation becomes increasingly better as ¢ — 0 (i.e., towards the end of the
reverse diffusion process), as G§ (G¢) becomes a better estimate of G§.

112

113
114

115
116
117
118

119

120
121
122

123
124
125
126
127
128

129
130
131
132

133
134
135
136
137
138
139
140
141

142

143
144
145

146
147

148
149
150
151

152
153

Substituting this approximation into the exact optimal control formula in (3) leads to
* [A g t - -
U (6 ~ A v een(&5 (@), B

This final expression provides a tractable, greedy approximation for the optimal control. The control
term now directly involves the gradient of the reward function r(-) evaluated at the one-step denoised

estimate G§. The term 1/ acts as a scaling factor for the guidance. This formulation resembles
guidance techniques in diffusion models, as observed by [[11, 31]]. For example, if the reward r(Gy)
is proportional to the log-likelihood of a condition C, that is, 7(Gg) x —logp(C|Gyg), then the
optimal controls boils down to the DPS approximation [3].

2.2.2 Non-differentiable Rewards

In many practical scenarios of controlled graph generation, the reward function 7(-) is non-
differentiable with respect to the generated graph G¢, rendering gradient-based approximations
like (9) intractable.

To address this, we propose to determine the control input U(Gy, t) using an approach inspired by
gradient-free optimization methods [13]] and ZO optimization [15]]. The objective at each time ¢ is
to find a control U(Gy, t) that steers the diffusion trajectory towards graphs yielding a high reward
7(GS). Similar to the differentiable case, we use Tweedie’s formula to compute a one-step denoised
version of the final graph to evaluate the reward at each time step. Given this approximation, we
formally seek to find a direction U}

U; = argmax 7 <Gg(étc + ,LLUt))) ©)
U,

Here, G¢ + U, denotes the perturbed version of G¢, which is the generated graph with the
reference model at time ¢ (before applying the guidance) following the control direction Uy, and p is
a smoothing parameter (which depends on the noise schedule of the diffusion process). To find U},
we define a general ZO estimator for the gradient of the reward that depends on evaluations of r(.) as

Vr(GY) := Ey,~p [w(Ut) r ((A}g(éf + uUt)) . Ut] , @)

where D is a distribution over directions (typically Gaussian) and w(Uy;) is a direction-dependent
weighting function. Notably, this formulation unifies several previous gradient-free estimators. How-
ever, it is important to remark that traditional ZO optimization assumes the objective is differentiable
but the gradient is inaccessible. In contrast, in our setting the reward function r(.) is inherently
non-differentiable, often defined via a discrete or combinatorial metric over generated graphs. Never-
theless, we treat the reward as a black-box function and employ randomized directional evaluations
to define a pseudo-gradient direction that can guide the controlled process. Thus, the ZO estimator
in (7) should be interpreted as a surrogate direction that correlates with improvements in the reward,
rather than an unbiased estimator of a true gradient.

We now present three practical ZO estimators that instantiate (7).
One-point (and two-point) gradient estimators. The one-point estimator samples a single pertur-

bation direction Uy ~ N(0,I) and evaluates the reward by perturbing the unconditional generated
graph with this single direction. The estimated gradient is given by

. d o

(&) = 0 (6§66 +) U ®
where ¢(d) is a scaling factor that depends on D; for D Gaussian, we have ¢(d) = 1. This control
corresponds to w(U;) = %‘i). In classical ZO, this estimator is an unbiased estimator of the

smoothed version of 7(.) over a random perturbation, i.e., Eu,~p[r(GS(GS + pU,))], but a biased
estimator of the true reward gradient (when p» = 0) and has high variance (the variance explodes as
w increases to 0) [2]. To eliminate this problem, we can use instead a two-point gradient estimator
given by

. d o o

Tr(6§) = A0 [(65065 +uu) - (65(66)] s ©

which is used in practice in general. For cases where r(.) is differentiable, the estimator in () is
unbiased w.r.t. true gradient (under the assumption that Ey,p[U¢] = 0 and when p — 0.

154

155
156

157

158
159
160

161

162
163

164
165
166

167

169
170

171

172
173
174
175
176
177
178
179
180
181

182

183
184
185

187
188
189
190
191
192

193
194
195
196
197

Best-of-NV direction (greedy Z0O). Instead of sampling a single direction, this method samples N

candidate directions {Ugl), RN UiN)} ~ N(0,I), and chooses the one that maximizes the reward
after denoising:

Ugi) = argmax r (GS(GS + uUt)) - U,. (10)

The final control is then set as U; = k- Ugi), where k is a step size or scaling factor. This corresponds

to using w(Uy) = 1(U; = Ugi)) in (7)), where 1 represents the indicator function. While this method
introduces bias, it often leads to effective and low-variance updates, especially when r(-) is highly
non-smooth or sparse.

Multi-point gradient estimator (averaged random search). This variant also samples N direc-

tions {Uﬁl), o 7UEN)} ~ N(0,I), but instead of selecting the best, it forms a weighted average of
all directions using their corresponding reward evaluations

V(G = 5 S (G665 +uul)) —r (G6GD)] - Ul (an
=1

This approach reduces variance compared to both one-point and two-point estimators while main-
taining approximate unbiasedness. It is especially useful when the reward landscape is moderately
smooth, enabling the use of reward information from all sampled directions.

We defer for a quantitative analysis of variance and performance of the three estimators to Appendix|C]
Overall, these estimators offer flexible trade-offs between estimator quality and query complexity.
In our setting, we find that the best-of-N direction yields superior performance in discrete and
non-differentiable environments, typical of graph-based objectives.

3 Experiments

We evaluate the efficacy of our Graph Guided Diffusion (GGDiff) framework across several challeng-
ing tasks. We compare its three main variants—GGDiff-G (gradient-based), GGDiff-C (Best-of-N),
and GGDiff-Z (multi-point)—against the state-of-the-art method PRODIGY [27] and an uncon-
strained baseline to highlight the impact of guidance. Our in-paper experiments cover constrained
graph generation (Section [3.1)), where we assess adherence to structural properties, and fair graph
generation (Section [3.2), where we enforce fairness criteria. PRODIGY serves as a baseline only in
the first setting, as it is unable to handle the complex reward functions required for the fairness task.
A third major experiment, incomplete graph generation (link prediction), is presented in Appendix [E}
This appendix also contains comprehensive setup details, further use-cases and representations of the
generated molecules for all experiments.

3.1 Constrained Graph Generation

We first evaluate GGDiff’s performance on constrained graph generation tasks, replicating the
experimental setup from the PRODIGY paper [27] to enable direct comparison. For this set of
experiments, we impose constraints on the maximum degree, edge count, and maximum number
of triangles of the generated graphs, on the ego small, community small, and enzymes datasets,
described in Appendix [E] To evaluate performance, we use two key metrics: A MMD, which is the
metric utilized to assess PRODIGY’s performance and measures the difference between the MMD
values of the unconstrained dataset and the constrained generated graphs (higher values indicate that
the generated graphs are closer to the original data distribution), and Val¢, representing the fraction
of generated graphs that successfully fulfill the imposed constraint (higher values indicate better
constraint adherence).

The results for this set of experiments are presented in Table|l} They demonstrate that our GGDiff
methods generally achieve superior performance compared to baselines. Specifically, GGDiff variants
tend to exhibit higher A MMD values while also showing higher Val¢ scores, demonstrating their
capability to satisfy structural constraints without deviating significantly from the prior distribution
of the datasets.

198

199
200
201
202
203
204
205
206
207

209
210
211
212
213
214
215

216
217
218
219
220

221

222
223
224
225
226
227
228
229
230

Table 1: Metrics comparison across datasets and constraints.

Constraint Method Ego Small Community Small Enzymes
AMMD?t Valet AMMD?T Valet AMMD?T Valet
GGDiff-G 0.11 0.87 -0.54 0.95 -0.37 0.98
Max GGDiff-C 0.15 0.90 -0.73 1.00 -0.39 1.00
Degree GGDIffZ 0.08 086 -026 078 036 089
PRODIGY 0.09 0.64 -0.16 0.98 0.07 0.95
Uncons. 0.00 0.33 0.00 0.42 0.00 0.08
GGDiff-G -0.07 0.91 -0.33 0.84 -0.47 1.00
Edge GGDiff-C 0.27 0.63 -0.17 0.91 -0.29 0.94
Count GGDiff-Z 0.28 0.67 -0.38 0.73 -0.12 0.69
PRODIGY 0.27 0.70 -0.39 1.00 -0.10 1.00
Uncons. 0.00 0.16 0.00 0.20 0.00 0.09
GGDiff-G 0.03 0.96 -0.31 0.95 -0.03 0.98
Triangle GGDiff-C 0.01 0.89 -1.00 1.00 -0.01 1.00
Count GGDiff-Z -0.07 0.88 -0.14 0.85 -0.04 1.00
PRODIGY -0.01 0.52 -0.13 0.72 0.17 0.94
Uncons. 0.00 0.62 0.00 0.19 0.00 0.50
3.2 Fair Graph Generation
In this section, we evalu-
ate GG]_lef’S performance' on Table 2: Metrics for the fair graph generation experiment.
generating fair graphs using
metrics defined in Navarro Method A DP ADP 04e % Valid SBM

;ter?rlr.]eﬁg].welj(;; c{gf;fy . GGDiff-G 0.0026%00029 00249 £00125 1000000
D o e fh oY 85 GGDIff-C 0.0035+0.0053 0019200121 99.2188
g GGDIff-Z 0.0015 £0.0020 0.0061 +00037 953125

nodes of the graphs generated Uncons. 0.0071 +0.0145 0.0295 + 0.0218 99.2188
from the community small

dataset (for a similar experi-

ment where the communities of the nodes are assigned by a community detection algorithm, refer to
Appendix E]) We report two key fairness metrics from Navarro et al. [20]: A DP and A DP,,,4., where
lower values indicate greater dyadic parity and thus fairer graphs. To assess whether the generated
graphs maintain the underlying SBM structure of the dataset, we report the percentage of valid SBMs.
An SBM is considered valid if its estimated intra-community edge probability is at least 8 times its
inter-community edge probability; this factor was chosen such that 95% of the test graphs in the
dataset fulfill this criterion.

The results in Table [2]demonstrate that our GGDiff methods effectively reduce the fairness metrics (A
DP and A DP,o4.) and increase the number of edges between nodes with different sensitive attributes,
indicating improved fairness. Crucially, these improvements are achieved while largely maintaining
the generated graphs within the family of the prior distribution (SBMs), as reflected in the percentage
of valid SBMs.

4 Conclusions

In this paper, we introduced Graph Guided Diffusion (GGDiff), a flexible, gradient-free framework
for conditional graph generation, grounded in stochastic optimal control. By casting guidance
as a control problem, GGDiff enables plug-and-play conditioning of pre-trained diffusion models
under both differentiable and black-box constraints. GGDiff unifies a range of existing guidance
approaches, including gradient-based guidance and non-differentiable cases, under a single SOC-
based formulation. Our method supports both hard and soft constraints without requiring gradient
access or projection operators, making it broadly applicable across domains. Extensive experiments
on structural, fairness, and topology-based constraints demonstrate GGDiff’s effectiveness and
generality, outperforming prior work in handling complex, non-differentiable objectives.

239
240

241
242

243

244
245

246
247

248
249

250
251

252
253
254

255
256
257

258
259

260
261
262

263
264
265

267
268

270

271
272
273

274
275

References

[1] Austin, J., Johnson, D. D., Ho, J., Tarlow, D., and Van Den Berg, R. (2021). Structured denoising
diffusion models in discrete state-spaces. Advances in Neural Inf. Process. Syst. (NeurIPS),
34:17981-17993.

[2] Berahas, A. S., Cao, L., Choromanski, K., and Scheinberg, K. (2022). A theoretical and empirical
comparison of gradient approximations in derivative-free optimization. Foundations of Comp.
Math., 22(2):507-560.

[3] Boyd, S. P. and Vandenberghe, L. (2004). Convex optimization. Cambridge university press.

[4] Chen, X., He, J., Han, X., and Liu, L.-P. (2023). Efficient and degree-guided graph generation
via discrete diffusion modeling. Intl. Conf. on Machine Learning (ICML).

[5] Chung, H., Kim, J., Mccann, M. T., Klasky, M. L., and Ye, J. C. (2022). Diffusion posterior
sampling for general noisy inverse problems. In Intl. Conf. Learn. Repr. (ICLR).

[6] Evans, L. C. (2022). Partial differential equations, volume 19. American Mathematical Society.

[7] Grover, A., Zweig, A., and Ermon, S. (2019). Graphite: Iterative generative modeling of graphs.
In Intl. Conf. on Machine Learning (ICML), pages 2434-2444. PMLR.

[8] Ho, J., Jain, A., and Abbeel, P. (2020). Denoising diffusion probabilistic models. Advances in
Neural Inf. Process. Syst. (NeurIPS), 33:6840-6851.

[9] Ho, J. and Salimans, T. (2021). Classifier-free diffusion guidance. In NeurIPS 2021 Workshop
on Deep Generative Models and Downstream Applications.

[10] Hoogeboom, E., Satorras, V. G., Vignac, C., and Welling, M. (2022). Equivariant diffusion for
molecule generation in 3d. In Intl. Conf. on Machine Learning (ICML), pages 8867-8887. PMLR.

[11] Huang, Y., Ghatare, A., Liu, Y., Hu, Z., Zhang, Q., Sastry, C. S., Gururani, S., Oore, S., and
Yue, Y. (2024). Symbolic music generation with non-differentiable rule guided diffusion. arXiv
preprint arXiv:2402.14285.

[12] Jo, J., Lee, S., and Hwang, S. J. (2022). Score-based generative modeling of graphs via the
system of stochastic differential equations. In Intl. Conf. on Machine Learning (ICML), pages
10362-10383. PMLR.

[13] Larson, J., Menickelly, M., and Wild, S. M. (2019). Derivative-free optimization methods. Acta
Numerica, 28:287-404.

[14] Li, X., Zhao, Y., Wang, C., Scalia, G., Eraslan, G., Nair, S., Biancalani, T., Ji, S., Regev, A.,
Levine, S., et al. (2024). Derivative-free guidance in continuous and discrete diffusion models
with soft value-based decoding. arXiv preprint arXiv:2408.08252.

[15] Liu, S., Chen, P.-Y., Kailkhura, B., Zhang, G., Hero III, A. O., and Varshney, P. K. (2020). A
primer on zeroth-order optimization in signal processing and machine learning: Principals, recent
advances, and applications. IEEFE Signal Process. Mag., 37(5):43-54.

[16] Liu, S., Kailkhura, B., Chen, P.-Y., Ting, P., Chang, S., and Amini, L. (2018). Zeroth-order
stochastic variance reduction for nonconvex optimization. Advances in Neural Inf. Process. Syst.
(NeurlPS), 31.

[17] Luo, T., Mo, Z., and Pan, S. J. (2023). Fast graph generation via spectral diffusion. IEEE Trans.
on Patt. Analysis and Machine Int., 46(5):3496-3508.

[18] Madeira, M., Vignac, C., Thanou, D., and Frossard, P. (2024). Generative modelling of
structurally constrained graphs. Advances in Neural Inf. Process. Syst. (NeurIPS), 37:137218-
137262.

[19] Minello, G., Bicciato, A., Rossi, L., Torsello, A., and Cosmo, L. (2025). Generating graphs via
spectral diffusion. In Intl. Conf. Learn. Repr. (ICLR).

276
277
278
279

281
282

283

284
285

287

288
289

291
292
293

294
295

296
297
298

299
300

301
302
303

304
305
306

308

309
310

311
312

313
314

315
316
317

318
319

[20] Navarro, M., Rey, S., Buciulea, A., Marques, A. G., and Segarra, S. (2024). Fair glasso:
Estimating fair graphical models with unbiased statistical behavior. In Globerson, A., Mackey, L.,
Belgrave, D., Fan, A., Paquet, U., Tomczak, J., and Zhang, C., editors, Advances in Neural Inf.
Process. Syst. (NeurIPS), volume 37, pages 139589-139620. Curran Associates, Inc.

[21] Niu, C., Song, Y., Song, J., Zhao, S., Grover, A., and Ermon, S. (2020). Permutation invariant
graph generation via score-based generative modeling. In Int. Conf. on Artif. Intell. and Stat.,
pages 4474-4484. PMLR.

[22] Oksendal, B. (2003). Stochastic differential equations. Springer.

[23] Pandey, K., Sofian, F. M., Draxler, F., Karaletsos, T., and Mandt, S. (2025). Variational control
for guidance in diffusion models. arXiv preprint arXiv:2502.03686.

[24] Pavon, M. (1989). Stochastic control and nonequilibrium thermodynamical systems. Applied
Mathematics and Optimization, 19:187-202.

[25] Rout, L., Chen, Y., Ruiz, N., Kumar, A., Caramanis, C., Shakkottai, S., and Chu, W.-S. (2025).
Rb-modulation: Training-free personalization using stochastic optimal control. In Intl. Conf.
Learn. Repr. (ICLR).

[26] Rout, L., Raoof, N., Daras, G., Caramanis, C., Dimakis, A., and Shakkottai, S. (2024). Solving
linear inverse problems provably via posterior sampling with latent diffusion models. Advances in
Neural Inf. Process. Syst. (NeurIPS), 36.

[27] Sharma, K., Kumar, S., and Trivedi, R. (2024). Diffuse, sample, project: plug-and-play
controllable graph generation. In Intl. Conf. on Machine Learning (ICML).

[28] Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., and Ganguli, S. (2015). Deep unsupervised
learning using nonequilibrium thermodynamics. In Intl. Conf. on Machine Learning (ICML),
pages 2256-2265. PMLR.

[29] Song,J., Meng, C., and Ermon, S. (2020). Denoising diffusion implicit models. In Intl. Conf.
Learn. Repr. (ICLR).

[30] Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Ermon, S., and Poole, B. (2021).
Score-based generative modeling through stochastic differential equations. In Intl. Conf. Learn.
Repr. (ICLR).

[31] Uehara, M., Zhao, Y., Wang, C., Li, X., Regev, A., Levine, S., and Biancalani, T. (2025).
Inference-time alignment in diffusion models with reward-guided generation: Tutorial and review.
arXiv preprint arXiv:2501.09685.

[32] Van Handel, R. (2007). Stochastic calculus, filtering, and stochastic control. Course notes.,
URL http://'www. princeton. edu/rvan/acm217/ACM217. pdf, 14.

[33] Vignac, C., Krawczuk, 1., Siraudin, A., Wang, B., Cevher, V., and Frossard, P. (2023). Digress:
Discrete denoising diffusion for graph generation. In Intl. Conf. Learn. Repr. (ICLR).

[34] Vincent, P. (2011). A connection between score matching and denoising autoencoders. Neural
computation, 23(7):1661-1674.

[35] Yang, N., Wu, H., Zeng, K., Li, Y., Bao, S., and Yan, J. (2024). Molecule generation for drug
design: a graph learning perspective. Fundamental Research.

[36] You, J., Liu, B., Ying, Z., Pande, V., and Leskovec, J. (2018). Graph convolutional policy
network for goal-directed molecular graph generation. Advances in Neural Inf. Process. Syst.
(NeurlPS), 31.

[37] Zhou, C., Wang, X., and Zhang, M. (2024). Unifying generation and prediction on graphs with
latent graph diffusion. Advances in Neural Inf. Process. Syst. (NeurIPS), 37:61963-61999.

320

321
322

323

324
325
326
327

328
329
330
331
332
333

334
335

337
338

339
340
341

342
343
344
345

346
347

348

350
351

352

353

355
356
357
358

359
360
361
362
363
364
365
366
367

A Background and Related Works

We review graph diffusion models in the continuous domain in Section and then explain how
they can be used in the context of inverse problems in Section [A.7]

A.1 Diffusion Models on Graphs

Diffusion models [28] I8, [30] are composed of two processes: i) a forward process that starts with
clean data and gradually adds noise; and ii) a reverse process that learns to generate new data by
iteratively denoising its diffused version. Graph diffusion models have been developed in both
continuous [21}112] and discrete domains [33, 4]].

Discrete diffusion was introduced in DiGress [33]] by adapting the structured diffusion framework [[1],
framing generation as edge-wise classification to mitigate combinatorial complexity. In a nutshell, the
graph is treated as a multivariate categorical variable, and the diffusion process involves perturbing
and recovering these discrete states. While discrete methods are well-suited for sparse graphs, they
often rely on mean-field approximations and lack tractable gradients, which can limit their use in
constrained generation. Given these trade-offs, we focus on the continuous setting in this work.

The continuous formulation was first introduced in EDP-GNN [21]] to diffuse the graph topology, later
extended in GDSS [12] to include node features, and further explored in the spectral domain [17,[19].
More recently, latent diffusion models have also been proposed [37]], which operate in a learned latent
space via an encoder-decoder pair. At a high level, continuous models focus on capturing global
structure.

In this paper, we follow the formulation from GDSS [[12]. We represent a graph as Gy = {Xq, Ao},
where X € RY*F are node features and Ay € RV* is the weighted adjacency matrix. The
forward diffusion process is defined by the stochastic differential equation dG; = —% (t)G¢ dt +

VB(t)dWy, t € [0,T], where 3(t) controls the noise schedule and is given by 5(¢) := Bumin +
(Bmax — ﬁmin)%. Here, W, denotes standard Brownian motion. This process is designed such
that the distribution of G converges to a standard Gaussian as ¢ — 7'. Based on this forward
process, we define the reverse process as dG; = [—1G; — g(t)*Vg, log p(G,)]dt + g(t)dWy,

where Vg, log p(Gy) is the score function, which is unknown, and g(¢t) = +/5(¢). In particular,
GDSS considers two different score functions, namely V 4, log p(A;) and Vx, log p(X;).

Since the true score functions are unknown, we approximate them with score networks €g , (A4, t) =~
—0tVa, logp(A;) and €g, (X4, t) = —0Vx, logp(X}), which are learned by minimizing the
denoising score-matching loss [34]. After training, samples are generated using samplers like
DDPM (8] and DDIM [29].

A.2 Controllable Generation of Graphs With Continuous Diffusion Models

Given a condition C and a reward function r(Gy) that quantifies how close the sample Gy is
to meeting C, our objective is to generate graphs that maximize this reward. From a Bayesian
perspective, this problem boils down to sampling from the posterior p(Go|C) x p(C|Go)p(Go),
where p(C|Gg) x exp (r(Gy)) is a likelihood term and p(Gy) is a prior given by the pre-trained
diffusion model. The approaches to solving this vary significantly based on whether the reward
function is differentiable.

Controllable generation with differentiable rewards. For differentiable rewards, a common strat-
egy in inverse problems is to compute the conditional score using Bayes’ rule: Vg, log p(G¢|C) =
Ve, p(C|Gt) + Vg, log p(G¢). While this allows the diffusion model to serve as a prior, the likeli-
hood’s score term is intractable. Approximations, such as using a Gaussian centered at the MMSE
denoiser (computed via Tweedie’s formula), have been proposed [15]. In the graph domain, methods
like DiGress [33]] and LGD [37] follow a similar principle, incorporating guidance via an extra,
learnable model (a regressor or classifier-free guidance). However, this entire paradigm remains
largely unexplored for graph inverse problems, mainly because it assumes the reward is differentiable,
a condition often not met in graph generation where constraints are combinatorial [36]].

368
369
370
371
372
373
374
375
376
377

378
379
380
381
382

383

384

385
386

387

388

389

390

391

392
393

394
395

396

397
398
399
400
401
402

Controllable generation with non-differentiable rewards. The more common case for graphs
involves non-differentiable constraints. A prominent approach here is to use projection operators.
PRODIGY [27]], for instance, alternates between an unconditional generation step and a projection
step, Ilc(+), to enforce the constraint. While efficient for simple constraints, its applicability is
severely limited by its reliance on closed-form projection operators, which are unavailable for most
complex graph properties. Furthermore, applying the projection to the noisy intermediate graph
G rather than the denoised estimate E[G(|G:| can be misaligned with the true reward domain.
Other works have explored combining projection operators with edge-absorbing models [18]], but
these methods can be computationally demanding due to their combinatorial nature, especially when
applied to discrete diffusion models.

In summary, while several methods for conditional graph generation exist, they face significant
limitations. Gradient-based approaches require differentiable rewards that are rare for graphs, while
projection-based methods are either restricted to simple constraints or are computationally prohibitive.
This highlights the need for a more general and flexible guidance framework, which is presented in
this work.

B HJB equation

In this section, we give more details on our SOC formulation. The optimal control is given by

] 9(t)]
U* (G, t) = _Tvavt (GY)
where V;*(GY) is the optimal value function [24]. For our problem, the optimal value function at
time ¢ is given by
[U*(GS. 9)l3

0
Vi (GY) =Ey; u N ds — (G | Gf] (12)

where p; denotes the optimal controlled distribution at time ¢ given by p;(G)
exp (#(G)) pY*°(G) and p}*® is the prior (uncontrolled) distributio The value function V;*
solves the stochastic Hamilton-Jacobi-Bellman (HJB) equation [6]], given by

oV (GY) = (13)

* T g t 2 * 2 1 *
+ (Ve (66) @) — 2|0V @6 + Lot Age Vi (G5,

with boundary condition V5 (G§) = r(G§), and where (G, t) = 1G§ — g(t)QVGS log p(GY).

This equation is a non-linear partial differential equation (PDE), and the solution to the non-linear

HIB equation is nontrivial. However, by applying an exponential transformation ¢;(G¢) = e‘Vf(Gtc),
we can obtain the linear HBJ equation, given by

T
~00(GS, 1) = (Veed(GE 1) w(GS 1) + §g<t>2AGg¢<Gf,t> (14)

In particular, the Feynman-Kac formula is obtained as the solution of the linearized HIB equation
in (T4) (see [22] for the proof), given by

exp (Vtic’)> = Epore {exp <_T(AG'8)) ‘GC - G} . (15)

This leads to an expression for the optimal control in terms of the reward function as given by (3).

Stochastic optimal control for zero-shot controlled generation. Recent methods have proposed
the use of SOC for controlled generation [31,|14]. In the context of music generation [[11], the authors
propose a method to generate samples when likelihoods are non-differentiable. In [26], a linear
quadratic control was proposed for style transfer in image generation. More recently, a non-linear
control formulation was introduced in [23]] for image inverse problems. However, as far as we are
concerned, the application of SOC for graph generation has not been explored yet.

'We assume here that the terminal time is 0 and the time runs backwards (so ¢ < 0).

10

403

404

406

407
408

410
411
412
413

414
415
416

417
418
419
420

421

422

423

424

425
426
427
428
429
430
431

432

434
435

C Background on zeroth-order optimization

In Section[2.2.2] we leverage zeroth-order optimization for defining a surrogate gradient of the reward
function. We propose three estimators in particular, where each one has its own properties. In this
section, we expand on them.

Two-point gradient estimator. The two-point gradient estimator in () is the first one that we
introduced. This estimator has a mean-squared error given by

(16)

y 2 73 2
E[|Vr(Go) = Vr((Go)) 3] = O@)||Vr(Go)3+0 (udﬂwf)

¢(d)

The proof can be found in [16]. The error in (I6) sheds light on the behavior of this estimator. First,
the second term depends on the parameter p: when this parameter gets smaller, the gradient estimate
gets better. However, if p becomes too small, then the effect of the guidance diminishes. Second, the
first term depends on the dimension d. This imposes a variance which cannot be 0 even for small
values of p.

Multi-point gradient estimator. The third estimator is based on the multi-point gradient estimate,
which computes an average over random directions. This estimator has a mean-squared error given
by

~ 213 2
ElI9r(Go) - Vi)l = 0 (5) IVseal0 (L) +o (B5) an

Compared to the two-point case, the error in depends on the number of samples that are used
to compute the average. In particular, the first two terms go to O when N — oo; the third term is
independent of N, and corresponds to the approximation error between the true gradient and the
smoothed version. However, it is controlled by the smoothing parameter pt.

A summary of each estimator is shown in Table[3]

Table 3: Comparison of ZO estimators for control direction optimization.

Method ‘ Variance ‘ Reward evaluation
2-Point Estimator High 2
Best-of-N Direction Low N
Averaged Random Search | Moderate N+1

D Final algorithm

We put everything together and show our proposed algorithm in Alg. [T}

E Experimental Details

This appendix provides detailed information regarding the experimental setup used in this paper,
including specifics about the datasets, computational resources utilized, and a comprehensive de-
scription of additional experiments conducted. The appendix is structured as follows: Section [E.T]
includes a description of the datasets used for evaluating GGDiff’s performance. Section[E.2] details
the computational resources of the server where the experiments were run. Section presents
additional experimental results, with subsections dedicated to further details on constrained graph
generation (Section|[E.3.T), fair graph generation (Section|[E.3.2) and link prediction (Section[E.3.3).

E.1 Datasets

We evaluate our proposed GGDiff framework and baselines on a selection of benchmark graph
datasets, encompassing both generic network structures and molecular graphs. The datasets used in
our experiments are described below:

11

436
437

438
439

440
441

442
443
444

445
446
447

448

449
450
451
452
453

454

455

456
457
458

460
461

Algorithm 1 GGDiff for controllable generation on graphs
Require: T, €9(Gy,t), N, k, p, {ozt};‘,rzo, {Ut}tT:o, r()

1: Sample G% from p(Gr).
2: fort =T —1to1do
A -
3 G = = (G - g eo(GY.y t + 1)) (DDPM update).
4 if r is differentiable then
5 Compute G§ (GY) = a% (Gtc +otea(GY, t))
U (AL .
6 Compute U; = Vger(Gg (Gt)) using ®.
7 else
8 Sample N candidates {U'" ..., U™} ~ N(0,1).
9: Compute Gf’“) =G¢ +kU§1) fori =1,---,N.
10: Compute Gg’(i) = a% (éf,(i) + a?ee(éf’(i),t)) fori=1,---,N.
11: Approximate Vr(GY) using @), (T0), (TT)
12: if Approximation of Vr(GY) is (T0) then
13: Set Uy = argmax_ (i) T(Gg‘“)).
t
14: else if Approximation of Vr(G¥) is (9 or (TT) then
15: Set U; = Vr(GY).
16: end if
17: end if
18: Gf = Gf + kU,
19: end for

20: return G§

1. Ego-small: This dataset comprises 200 small ego graphs extracted from the larger Citeseer
network.

2. Community-small: Consisting of 100 synthetic graphs, this dataset features structures
exhibiting distinct community partitions.

3. Enzymes: We use the protein graphs from the BRENDA enzyme database, totaling 587
graphs.

4. QM9: A molecular dataset containing approximately 133,000 small molecules. These
molecules are composed of up to 9 heavy atoms, including Carbon (C), Nitrogen (N),
Oxygen (O), and Fluorine (F).

5. ZINC250k: This large molecular dataset includes 250,000 drug-like molecules. The graphs
represent molecules with 6 to 38 heavy atoms, incorporating Carbon (C), Nitrogen (N),
Oxygen (O), Fluorine (F), Phosphorus (P), Chlorine (Cl), Bromine (Br), and Iodine (I).

E.2 Computational resources

All experiments were conducted on a server equipped with an AMD EPYC 9634 84-Core Processor
and 512GB of total physical memory (RAM). For accelerated computation, the server uses an
NVIDIA GeForce RTX 4090 graphics processing units (GPUs), each featuring 24GB of dedicated
video memory. The software environment runs on Ubuntu 24.04 LTS, with NVIDIA driver version
560.35.03 and CUDA version 12.6.

E.3 Additional experiments
E.3.1 Constrained Graph Generation

In this section, we provide additional details regarding the constrained graph generation experiments
summarized in the main paper (see Table[T). For comparison purposes with prior work, we specifically
focus on evaluating GGDiff’s performance on the task of guiding the generated graphs towards fulfill-
ing the constraints previously defined and utilized in Sharma et al. [27]. These constraints, designed
to enforce specific structural properties, are presented in Table[d] along with their descriptions and
mathematical formulations.

12

462
463
464

465
466
467
468

469
470
471
472

473

474
475
476
477
478
479
480
481
482

484
485
486
487
488

489

490
491
492
493
494

495
496
497

499
500

Table 4: Summary of Constraints from [27]]

Constraint Type \ Limiting factor \ Mathematical Formulation

Edge Count Number of edges || |€|]= 1" A1 < B for a given constant B > 0
Triangle Count Number of triangles tr(A®) < T for a given constant T > 0
Degree Maximum Degree max;[A1]; < D for a given constant D

Table 5: Metrics for the force stars constraint in the Ego small dataset.
Method % 1 Node % Stars Y% Stars & >1Node % Valid Egonet Edges over Star

GGDift-G 0.78 53.12 52.34 96.09 1.08 +£2.61
GGDiff-L 2.34 51.56 49.22 88.28 0.44 +£0.58
PRODIGY 100.00 100.00 0.00 100.00 0.00 £ 0.00

Uncons. 0.78 2422 23.44 99.22 1.86 +2.64

The values for constants B, T', and D used for each dataset are selected based on those reported in
[27] to ensure a direct comparison of method performance under identical constraint settings, and are
given by those values fulfilled by 10% of the graphs in the test dataset.

The specific loss function used for each constraint is empirically selected from a pool of possibilities
based on which yields the best performance; a comprehensive list of options can be found in the
code associated with this submission. For differentiable guidance (Section 2.2.1), the choice is
restricted to differentiable functions, typically involving ¢; or /5 norms. For instance, an /5 loss

for the edge count constraint could be (1T AS(A$)1 — B)2. In contrast, the non-differentiable
(zero-order) guidance (Section [2.2.2)) significantly expands the available loss functions. Examples
include utilizing non-differentiable operations in the differentiable losses, like using the quantized
adjacency via the entry-wise indicator function 1(AS(AS) > 0.5) in lieu of the estimate AS(A¢),
or employing one-sided penalties such as max{1T AS(A¢)1 — B,0}.

Moving beyond the constraints explored in Sharma et al. [27], we investigate GGDiff’s ability to
generate star graphs within the Ego small dataset. As directly enforcing a star graph structure is
outside the standard constraints that can be achieved via projection, for PRODIGY we proxy this by
setting the number of triangles to 0, a necessary condition for star graphs. The results are detailed in
Table[5] where we report the percentage of graphs with 1 node, the percentage of generated graphs
that are stars, the percentage of stars with more than one node, the percentage of valid egonets, and
the difference in the number of edges with respect to a star graph, i.e., the ratio between the number
of generated graphs that fulfill the condition (having one node, valid egonet, etc.) and the total
number of generated graphs. Our findings indicate that PRODIGY generates graphs consisting of
only a single node, as it can be appreciated in Figure 2] In contrast, our GGDiff methods successfully
double the percentage of generated star graphs compared to the unconstrained case, while effectively
preserving the overall data distribution, as approximately 90% of the graphs generated by GGDiff are
valid egonets. Notice that all graphs generated by PRODIGY are valid egonets because a graph with
a single node is considered a valid egonet. Additionally, our methods substantially reduce the number
of excess edges beyond what is required for a star graph over the unconstrained case.

E.3.2 Fair graph generation

In this appendix section, we provide further details regarding the fair graph generation experiments
introduced in the main paper. These experiments evaluate GGDiff’s ability to generate graphs that
satisfy fairness criteria based on assigned sensitive attributes. To encourage fair graphs, we employ
the same loss functions defined in Navarro et al. [20]. We investigate two distinct methods for
assigning sensitive attributes to the nodes of the community small dataset:

1. Random assignment: Sensitive attributes are assigned to nodes randomly. The quantitative
results for the fairness metrics and SBM validity for this scenario are presented in Table[2]in
the main paper.

2. Community partitioning algorithm-based assignment: Sensitive attributes are assigned
to nodes based on the community structure identified by a community partitioning algorithm.
This represents a more challenging scenario for generating fair graphs that are also valid

13

501
502
503
504
505
506

507
508
509

511
512

513

514
515

517
518
519

520
521
522
523
524

526
527
528
529
530
531

533
534

(a) GGDIff-C.

(b) GGDIff-G.

(c) PRODIGY.

L
SR
ETA
FeX e
A=A

(d) Unconstrained.

Figure 2: Samples for the force stars constraint in the Ego small dataset.

Stochastic Block Models (SBMs). Since SBMs are characterized by a high density of intra-
community edges and a low density of inter-community edges, aligning the sensitive attribute
with community membership creates a direct tension: the fair loss function encourages
the formation of edges between nodes with different attributes (i.e., nodes in different
communities), while the underlying data distribution and the objective of generating valid
SBMs favor the opposite.

Analyzing the results for the community partitioning-based assignment presented in Table [our
three GGDiff methods are still able to effectively reduce the fairness metrics compared to baselines,
while largely maintaining a high percentage of valid SBMs. This quantitative improvement is visually
corroborated by the sample graphs shown in Figure[3] where graphs generated by GGDiff show a
higher density of edges connecting nodes of different sensitive attributes (indicated by node color)
compared to the unconstrained case.

Table 6: Metrics for the fair graph generation with community partition.

Method A DP ADPode % Valid SBM

Greedy 0.3389 +0.0763 0.1931 +£ 0.0387 98.4375
Loss 0.3119 £0.1289 0.1892 £ 0.0720 77.3438
Zero 0.3451 £0.0612 0.1999 -+ 0.0498 98.4375

Uncons 0.4133 £0.0769 0.2348 £ 0.0449 99.2188

E.3.3 Incomplete graph generation

In this task, we evaluate GGDiff’s ability to generate graphs consistent with partially observed
adjacency matrices. Specifically, we assume that 50% of the entries of the adjacency matrix are
observed and should be maintained in the generated graph. We conduct these experiments on two
molecular datasets, QM9 and ZINC250k. We evaluate performance using three metrics: Accuracy,
which measures the percentage of observed entries that are respected in the generated graphs; and %
Unique, the percentage of generated molecules that are novel compared to the training set.

The results are presented in Ta-

ble[/} Our GGDiff methods, par- Taple 7: Results for the incomplete graph generation experi-

ticularly GGDiff-G and GGDiff-Z, ment.

demonstrate high accuracy in re-

specting the observed entries, both QM9 ZINC250k

of them achieving almost 90% ac- Method - -

curacy on QMO and over 98% ac- Acc. (%) % Unique Acc. (%) % Unique

curacy on ZINC250k. The uncon- GGDift-G 91.39 73.57 98.85 100.00

strained case also shows relatively GGDiff-C =~ 67.20 94.32 95.27 100.00

high accuracy, which is largely at- GGDiff-Z 88.72 90.88 98.44 100.00
Uncons. 61.51 97.86 93.43 100.00

tributable to the high prevalence of
zero entries (absence of edges) in
sparse graphs. For a more challenging evaluation where we observe edges instead of entries, please
refer to Appendix[E] Across all methods, the percentage of valid generated molecules is consistently
100%, likely aided by the partial observation of the adjacency matrix. We observe a trade-off between

14

GGDiff-Z GGDiff-C GGDiff-G

Uncons.

¥

¥

=

2
* | |4

(a) Random community assignment.

GGDiff-Z GGDiff-C GGDiff-G

e aH Nl

Uncons.

#

X

&

===

0N e

b= @% @%M% =
g s B | &

(b) Community partitioning algorithm-based assignment.

Figure 3: Samples from the fair graph generation experiment.

15

535
536
537
538
539

540
541
542

544
545
546
547
548

549
550
551

553
554
555
556
557
558
559
560

561

562

563

564

565

566

567

568

569
570
571
572

573

574
575

accuracy and novelty in the QM9 dataset: as the accuracy in fixing observed entries increases, the
percentage of novel molecules tends to decrease, suggesting that achieving very high fidelity to
observed structure can lead to generating molecules highly similar to those in the test set. This
tradeoff isn’t observed in the ZINC250k dataset, likely due to the fact that the graphs are larger and
therefore the model has more freedom to adapt to the observed entries.

This section provides additional details on the link prediction experiments, also referred to as
incomplete graph generation. In this task, we evaluate GGDiff’s ability to generate graphs where
a subset of adjacency matrix entries is observed and must be precisely replicated in the generated
output. We investigate two scenarios for the observed entries: (i) observing a random 50% of all
adjacency matrix entries (both existing edges and non-edges), and (ii) observing only a random
subset of existing edges (entries equal to 1). This task is particularly relevant in domains like
molecule generation, where there is often an interest in generating molecules that incorporate a
specific predefined substructure (e.g., a benzene ring). Enforcing observed edges allows for the
generation of molecules that respect such topological constraints.

The results for the first scenario (observing random entries) are presented in Table[7]in the main paper.
As noted, the high accuracy values observed in this case are significantly influenced by the correct
generation of prevalent zero entries (non-edges) that were part of the observed subset. We now detail
the second, more challenging scenario in this appendix.

For the second scenario, we observe only a random subset of existing edges in the adjacency matrix.
The results for this case are presented in Table[§] Here, the accuracy metric specifically measures
how well the generated graphs reproduce the observed edges. As expected, the accuracy values drop
significantly compared to the first scenario because correctly generating existing edges is a more
stringent condition than correctly generating non-edges in sparse graphs. However, the effect of
GGDiff’s guidance becomes strikingly apparent: our methods, particularly GGDiff-G and GGDiff-Z,
achieve drastically increased accuracy in reproducing the observed edges on both the QM9 and
ZINC250k datasets compared to the unconstrained baseline.

Sample graphs illustrating the results of the link prediction experiment are shown in Figure[d] In these
visualizations, we use color and line style to indicate the status of observed entries in the generated
graphs:

* Solid green lines: Observed edges that were successfully preserved in the generated graphs.

* Solid red lines: Observed edges that were not preserved in the generated graphs.

* Dotted green lines: Observed non-edge entries that were correctly preserved as non-edges.

* Dotted red lines: Observed non-edge entries that were not preserved (i.e., incorrectly
generated as edges).

As observed in the figure, graphs generated by our GGDiff methods exhibit a clear prevalence of
green lines (indicating high preservation of observed entries and edges), whereas the unconstrained
case shows a greater number of red lines, highlighting its inability to reliably reproduce the specified
topological constraints.

Table 8: Results for the incomplete graph generation experiment with observed edges.

Method QM9 ZINC250k
Acc. (%) % Unique Acc. (%) % Unique
GGDiff-G 79.73 86.53 95.98 100.00
GGDiff-C 29.18 97.56 19.73 99.90
GGDiff-Z 41.66 92.71 85.59 100.00
Uncons. 23.40 97.81 8.45 100.00

F Social impacts

The generation of graphs under constraints could lead to undesired consequences if not applied with
care. For example, when doing graph completion. In sensitive applications like healthcare or finance,

16

GGDiff-G

GGDiff-C

GGDiff-Z

Uncons.

GGDiff-G

GGDiff-C

GGDiff-Z

Uncons.

(b) ZINC250k.

Figure 4: Samples generated for the incomplete graph generation experiment. The graph on the left
is the test graph from which we observe the entries in its adjacency matrix. The generated graphs are
represented in the rows, one for each of the methods. In the generated graphs, the solid green (red)
lines are observed edges that were (not) preserved in the generated graphs, while dotted green (red)
lines are observed entries not corresponding to an edge that were (not) preserved in the generated
graphs.

17

576
577
578
579
580

these prediction inaccuracies can have serious repercussions, including misdiagnosis or financial
losses. Moreover, misusing these models in social network analysis might inadvertently reinforce
biases or invade privacy if not handled ethically. Therefore, it is crucial to apply GGDiff and any other
graph inference algorithm using diffusion models with a thorough understanding of their limitations
and to validate results rigorously to mitigate these risks.

18

581

582
583
584
585
586

587
588

589

590
591

592

593
594
595
596

597
598
599
600
601
602
603
604
605

606

607

608

609

610

611
612

613

614
615
616
617
618

619
620
621
622
623
624
625
626
627
628

629

NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

¢ You should answer [Yes], ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", it is perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.

* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract reflects the paper’s content. We claim that we propose a framework
for controllable generation using diffusion models for non-differentiable constraints. In
particular, we define the guidance via stochastic optimal control, and we approximate the
optimal control using zeroth-order optimization. We support the benefits of our algorithm
with comparisons against other benchmarks and with ablation studies.

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

 The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations

19

630

631

632

633

634

635

636

637
638
639
640
641

642

644

645
646
647
648
649

650
651

652
653

654
655
656

658
659

660

661
662

663

665

666

667

668
669

670

671
672
673

674
675

676

677

678

680

681

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See Section [

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and

a complete (and correct) proof?

Answer: [Yes]

Justification: We provide all the necessary proofs in the Appendix. And when we do not

provide, we cite the corresponding work.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented

by formal proofs provided in appendix or supplemental material.
* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions

of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

20

682
683
684
685

686

687
688
689
690
691
692

693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
71
712
713
714
715
716
717

718

719
720
721

722

723
724
725

726

727

728
729
730
731
732
733
734
735
736

Justification: Our algorithm is clearly described in Algorithm I} and all the hyperparameters
and datasets used are explicitly reported (see Section [3|and Appendix [E). The source code is
also provided in the submission (it will be publicly available on GitHub if the paper gets
accepted).

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Out supplementary material includes both Appendix [Ef where the details for
the experimental evaluation are provided, as well as the code used for the experimental
results, with the hyperparameters clearly organized in YAML files.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

21

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

737
738

739
740
741

742
743

744
745
746

747
748
749

751

752

754
755

757

758

759
760

761

762
763

764

765
766
767
768
769
770
771
772
773

774

775
776
777
778
779
780
781
782
783
784

785

787
788

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We describe the setup and all the details in Section[3]and Appendix
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The standard deviations are provided in the corresponding tables whenever
possible.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

22

789

791

792

794

805
806

807

808
809
810
811
812

813

814
815

816

817

818

819

820
821

822
823
824
825

826
827
828

830
831
832

833
834
835
836
837
838
839
840

10.

Answer: [Yes]

Justification: The computer resources are included in the supplementary material, more
precisely in Appendix [E.2]
Guidelines:
* The answer NA means that the paper does not include experiments.
* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.
* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.
* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have read the NeurIPS Code of Ethics and ensured the paper satisfies every
aspect.

Guidelines:

» The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We discuss the societal impact in Appendix [F|
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

23

https://neurips.cc/public/EthicsGuidelines

841

842
843
844

846

847

848

849
850
851
852

853
854

855
856
857

858

859
860
861

862

863

865

866

867
868

869
870

871

872
873

874
875

877

878
879

880
881

882

883
884

885

886
887

888

889

890
891
892

11.

12.

13.

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Our paper do not pose any risk.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: The only assets that are not ours and were used in this work are the code for

the unconditional diffusion model (credited when citing the original papers), and the public
datasets (credited in Section [3)).

Guidelines:

* The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Well-documented source code is submitted and will be available on GitHub if
the paper is accepted.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

24

paperswithcode.com/datasets

893
894

895
896

897

898
899
900

901

902

903

904

905
906

908
909
910
911

912
913

914
915
916
917

918

919

920

921

922

923
924
925
926
927
928
929
930

931

932
933
934
935

936

938
939
940

941
942

14.

15.

16.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: We did not do experiments with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: Our method does not involve LLMs in any of the core modules.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

25

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Controllable Generation of Graphs With General Rewards
	Conditional Generation: A SOC Approach
	Estimation of the Optimal Control: A Greedy Solution
	Differentiable Rewards
	Non-differentiable Rewards

	Experiments
	Constrained Graph Generation
	Fair Graph Generation

	Conclusions
	Background and Related Works
	Diffusion Models on Graphs
	Controllable Generation of Graphs With Continuous Diffusion Models

	HJB equation
	Background on zeroth-order optimization
	Final algorithm
	Experimental Details
	Datasets
	Computational resources
	Additional experiments
	Constrained Graph Generation
	Fair graph generation
	Incomplete graph generation

	Social impacts

