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ABSTRACT

We introduce the structural self-attention (StructSA) mechanism that leverages
structural patterns of query-key correlation for visual representation learning.
StructSA generates attention by recognizing space-time structures of correlations
and performs long-range interactions across entire locations, effectively capturing
structural patterns, e.g., spatial layouts, motion, or inter-object relations in im-
ages and videos. Using StructSA as a main building block, we develop the struc-
tural vision transformer (StructViT) and evaluate its effectiveness on both image
and video classification tasks, achieving state-of-the-art results on ImageNet-1K,
Kinetics-400, Something-Something V1 & V2, Diving-48, and FineGym.

1 INTRODUCTION

How visual elements interact with each others in space and time is a crucial cue for visual under-
standing, e.g., recognizing object layouts in an image or human interactions in a video. In computer
vision, such meta-patterns are effectively captured by the structure of correlations or similarities
across visual elements in different positions (BenAbdelkader et al., 2004; Shechtman & Irani, 2007).
A correlation structure of an image reveals spatial layouts of similar patterns (Kim et al., 2017; Kang
et al., 2021) and that of a video provides bi-directional motion likelihoods (Kwon et al., 2021; Kim
et al., 2021). The ability to recognize those structural patterns allows to better generalize against
challenging appearance variations and domain shifts (Geirhos et al., 2021; Tuli et al., 2021).

In this work, we introduce a novel self-attention mechanism, named structural self-attention
(StructSA), that effectively leverages diverse structural patterns for visual representation learning.
We first show that vision transformer networks with self-attention and its convolutional variant (Wu
et al., 2021; Wang et al., 2021b; Fan et al., 2021; Liang et al., 2021) are both limited in leveraging
structural patterns. The standard self-attention mechanism uses raw query-key correlations individ-
ually and ignores their structure, whereas its variant with convolutional projection turns out to have
only limited access to the structure of query-key correlations. In contrast, the proposed StructSA
recognizes diverse structural patterns from the correlations maps between the query and local chunks
of keys. This is achieved by extending the convolution projections used with self-attention under
our new interpretation. We add a new structure dimension to the convolution projection allowing
to capture multiple patterns from a single correlation map. We then develop the structural vision
transformer (StructViT) that adopts StructSA as a main neural block, and perform extensive sets
of experiments on both image and video classification tasks, showing the effectiveness of learning
structural patterns for visual representations. Our main contributions are summarized as follows:

• We provide a new interpretation on the self-attention with convolutional projections and
show its potential to learn structural information of the correlations.

• We introduce structural self-attention (StructSA) that learns correlation structures for visual
representations with the Vision Transformer (StructViT).

• The proposed StructViT achieves new state-of-the-art results on ImageNet-1K, Kinetics-
400, Something-Something V1&V2, Diving-48, and FineGym.
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2 RELATED WORK

2.1 TRANSFORMER NETWORKS IN VISION

Since transformer networks (Vaswani et al., 2017) showed remarkable success in natural language
processing (Devlin et al., 2018; Brown et al., 2020), they have widely been adopted in various com-
puter vision tasks as an alternative to CNNs (Sun et al., 2019; Dosovitskiy et al., 2020; Arnab et al.,
2021; Carion et al., 2020; Strudel et al., 2021). Despite of their success, the pure transformer net-
works require a large amount of training data compared to CNNs where convolution operations
introduce desirable inductive biases such as locality and translation invariance allowing more ef-
ficient training (Dosovitskiy et al., 2020; Raghu et al., 2021). This incentivized several methods
to inherit the convolutional inductive biases via knowledge distillation (Touvron et al., 2021), lo-
cal self-attention (Hu et al., 2019; Ramachandran et al., 2019; Liu et al., 2021), and architectural
fusion (Dai et al., 2021; Li et al., 2022a; Guo et al., 2022; Chu et al., 2021; Wang et al., 2021b;
Wu et al., 2021; Fan et al., 2021). Methods using a convolutional projection instead of a linear
projection (Wang et al., 2021b; Wu et al., 2021; Fan et al., 2021) show that the convolutional projec-
tion effectively encodes position information achieving remarkable results for both image and video
representations. In this work, we provide a new interpretation for the self-attention with the con-
volutional projections and show its missing capability to learn structural patterns in the correlation.
We then introduce a novel self-attention mechanism that leverages such structural information for
visual representation learning.

2.2 CORRELATION STRUCTURE MODELING

Geometric structure of correlations between visual features, i.e., patterns of how they are similar
to each other, allows us to understand relational patterns in visual data for various computer vision
tasks. Spatial self-correlation in images is used for suppressing photometric variations and reveal-
ing geometric layout of objects in the image (Shechtman & Irani, 2007; Kim et al., 2017; Kang
et al., 2021). Spatial cross-correlation between different images is often used for establishing se-
mantic correspondences capturing structural similarities (Han et al., 2017; Seo et al., 2018; Min &
Cho, 2021). In the video domain, several methods exploit the structure of spatial cross-correlations
between consecutive frames to estimate optical flow (Dosovitskiy et al., 2015; Yang & Ramanan,
2019) or to learn motion features for action recognition (Wang et al., 2020; Kwon et al., 2020).
Kwon et al. (2021) propose spatio-temporal self-correlations for learning bi-directional motion fea-
tures and Kim et al. (2021) introduce relational self-attention that generates attention weights dy-
namically from the structure of the spatio-temporal self-correlations. However, these two methods
use self-correlations between the query and its local spatio-temporal neighborhoods only, thus, are
limited in learning global relational patterns between distant features. Inspired by this, we introduce
structural self-attention that capturing not only the spatio-temporal local self-correlation but also
cross-correlations between features in the distance, utilizing both motion and global spatio-temporal
inter-feature relations for learning motion-centric video representations.

3 OUR APPROACH

The query-key correlations of self-attention Vaswani et al. (2017) capture geometric structures that
can represent spatial layouts (Shechtman & Irani, 2007) or motions (Kim et al., 2021) of objects
in images or videos. However, in vanilla self-attention, individual correlation values are directly
used as weights for feature aggregation disregarding the structure within the correlation map. In
this work, we aim to develop a novel self-attention process that utilizes these geometric structures.
To this end, we first provide a novel interpretation of the self-attention with convolutional projec-
tions (ConvSA) where ConvSA generates the attention scores (Kim et al., 2021) using local geo-
metric structures in a correlation map. We then extend such a process to encode the local geometric
structures into a vector representation instead of a scalar, and call this extended attention process
structural self-attention. Finally, we propose our model architectures called Structural vision trans-
formers (StructViT), which use our structural self-attention as a basic building block.
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3.1 PRELIMINARY: SELF-ATTENTION AND CONVOLUTIONAL PROJECTION

Self-attention (SA) Vaswani et al. (2017) is the neural block for building modern transformer net-
works (Dosovitskiy et al., 2020; Touvron et al., 2021; Arnab et al., 2021). Given N input features
X = [x1, · · · ,xN ] ∈ RN×C , SA first projects the input X linearly into queries, keys and values,
and transforms each C-dimensional input feature xi into a contextualized output feature yi by

yi = σ
(
qiK

T
)
V ∈ R1×C , (1)

where σ is a softmax function and qi = xiW
Q, K = XWK, V = XWV are query, keys

and values linearly projected from the inputs by projection matrices WQ,WK ,W V ∈ RC×C ,
respectively. While computing correlations qiK

T, this self-attention uses them individually and
ignores their structure; this is easily seen by its invariance with respect to permutation of input X .

Despite its success in various tasks (Carion et al., 2020; Dosovitskiy et al., 2020; Arnab et al., 2021;
Strudel et al., 2021), pure self-attention transformers are known to suffer from data-hungry and
unstable training (Raghu et al., 2021; Chen et al., 2021). To tackle this issue, recent research (Wu
et al., 2021; Wang et al., 2021b; Fan et al., 2021; Li et al., 2022b; Guo et al., 2022) introduces
inductive biases to transformers by adopting self-attention with convolutional projections (ConvSA).
Different from SA, ConvSA projects keys and values using a convolution operation over the input
feature map X:

Kconv = [kconv
1 , · · · ,kconv

N ] = conv(X,WK) ∈ RN×C , (2)

V conv = [vconv
1 , · · · ,vconv

N ] = conv(X,WV) ∈ RN×C , (3)

where conv is a convolution operation, and WK,WV ∈ RM×C×C are kernel weights with a ker-
nel size M for key and value projections, respectively. Here, we use 1-dimensional convolution
for notational simplicity but the operation can be simply extended to convolutions with a larger
dimensionality.

In most previous methods, ConvSA is implemented with a channel-wise separable convolu-
tion (Howard et al., 2017), which consists of two factorized convolution operations, i.e., point-wise
and channel-wise convolutions (Wu et al., 2021; Wang et al., 2021b; Fan et al., 2021; Li et al., 2022b;
Guo et al., 2022). In this case, each key kconv

i and value vconv
i is computed from a local context

Xi = Xi−⌊M
2 ⌋:i+⌊M

2 ⌋ ∈ RM×C by

kconv
i = uKXiW

K = uKKi ∈ R1×C , (4)

vconv
i = uVXiW

V = uVVi ∈ R1×C , (5)

where WK,WV ∈ RC×C are weights for the linear projection that are equivalent to point-wise
convolution, and uK,uV ∈ R1×M are channel-wise convolution weights that are used to spatially
aggregate linearly projected context Ki and Vi, respectively. Note that here we assume the channel-
wise convolution weights are shared across channels for simplicity without loss of generality and
the full derivation is available in Appendix A.

3.2 ANALYSIS OF CONVSA

In this section, we provide a novel interpretation of ConvSA with a lens of a dynamic kernel (Kim
et al., 2021) and show its potential for learning structures from query-key correlations. From Eq. (1)
combined with Eq. (4) and (5), a transformed output yi in ConvSA is obtained by

yi =

N∑
j=1

σj

(
qik

conv
j

T
)
vconv
j =

N∑
j=1

σj

(
qiK

T
j u

KT
)
uVVj =

N∑
j=1

κconv
i,j Vj , (6)

where σj is jth entry of the softmax over N tokens. This reveals that an attention score σj(qik
conv
j

T)

is computed by projecting a local correlation map qiK
T
j ∈ R1×M by uK, and a dynamic kernel

κconv
i,j for the final feature aggregation of Vj is obtained by weighting the aggregation pattern pre-

sented in uV using the computed attention map. Given that correlation map qiK
T
j represents a

structural pattern, we can interpret that uK acts as a pattern detector that extracts a specific correla-
tion pattern from qiK

T
j , whereas uV plays a role as a context aggregator that performs a weighted

pooling of local context Vj . Due to the presence of this pattern detector uK and its corresponding
context aggregator uV, ConvSA can leverage a structural pattern of input for context aggregation.
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Figure 1: Visualization of ConvSA and StructSA on ImageNet-1K. The query location i and the
kernel size M are set to the center location and 3 × 3. Given the left image as input, we compare
ConvSA (D = 1) and StructSA (D = 8) in terms of (a) D attention maps σjD(qiK

T
j U

KT
), (b)

local feature aggregation patterns learned in UV , and (c) the combinations of (a) and (b). Note
that each location j has an aggregation map of the kernel size M = 3 × 3 resulting and thus we
additionally show enlarged images for four different sample locations j.

Limitation of ConvSA. Although ConvSA can learn, unlike SA, a structural pattern over correla-
tion maps by uK, it only learns a single pattern and encodes various shapes in correlation maps into
a scalar value representing the similarity against the learned pattern; as the result, the final dynamic
kernel κconv

i,j for every j reduces to the identical pattern of uV with different weighting only. This
lack of expressiveness in uK and uV prevents ConvSA from capturing diverse structural patterns
and generating diverse dynamic kernels.

3.3 STRUCTURAL SELF-ATTENTION

We propose a novel self-attention mechanism, named structural self-attention (StructSA). The core
idea of StructSA is to encode correlations qiKT

j into a D-dimensional vector, rather than a scalar,
that recognizes richer structural patterns to produce a dynamic kernel. Note that we call this new
vector dimension with D a structure dimension. To compute StructSA, we extend the pattern detec-
tor uK and the context aggregator uV to matrices UK,UV ∈ RD×M resulting in

Kstruct
i = UKKi ∈ RD×C , (7)

V struct
i = UVVi ∈ RD×C . (8)

Plugging Eq. (7) and (8) into kconv
j and vconv

j of Eq. (6), the output yi of StructSA is computed by

yi =

N∑
j=1

σj

(
qiK

struct
j

T
)
V struct
j =

N∑
j=1

σj

(
qiK

T
j U

KT
)
UVVj =

N∑
j=1

κstruct
i,j Vj (9)

where the softmax function σj returns a D-dimensional output for jth location. Note that this
softmax is taken over all ND entries in the input matrix as we observe it is empirically more stable
compared to D individual softmax operations over N entries.

Compared to ConvSA where only a single structural pattern is learned by the pattern extractor uK,
StructSA learns D different pattern extractors in UK and represents various local correlation shapes
by a set of D similarity scores. These scores are then combined with the D context aggregators in
UV; different combinations of these context aggregators result in diverse dynamic kernels κstruct

i,j
for different locations j. In the case of i = j, the correlation map corresponds to the local self-
similarity (Shechtman & Irani, 2007) that is known to capture geometric structures such as spatial
layout (Shechtman & Irani, 2007) or spatio-temporal motion (Kwon et al., 2021), meaning that when
i = j, the pattern detector UK reduces to capturing a self-similarity pattern as in (Kim et al., 2021).

We illustrate this dynamic kernel computation process with an example input image from ImageNet-
1K (Deng et al., 2009) in Figure 1. We compare ConvSA and StructSA (D = 8) show how structural
patterns are used in these methods. Given a query-key correlation map, ConvSA generates a single
attention map shown in column (a). Then these scores are combined with the context aggregator uV
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(column (b)), that represents a single aggregation pattern. As the result, local features are aggregated
with the identical pattern in uV for every location and the only differences are their scales as shown
in column (c). In contrast, StructSA generates multiple attention maps using D pattern detectors
each capturing different structures in the query-key correlation maps (column (a)), and combines
them with different context aggregators shown in column (b) resulting in diverse aggregation pat-
terns for different locations j as illustrated in column (c).

3.4 STRUCTURAL VISION TRANSFORMER (STRUCTVIT)

Finally, we introduce Structural Vision Transformers (StructViT) that use our StructSA as the basic
building block; our StructViT has unified network configurations for both image and video classi-
fication tasks. For image input, we simply set the temporal sizes in both input shape and operation
parameters (e.g., convolution kernel and stride) are set to 1. We extend the state-of-the-art method
Uniformer (Li et al., 2022a) by replacing all vanilla self-attention with StructSA. Note that when
we employ StructSA, we use multi-head configurations and do not share weights across channels
for the channel-wise convolutions. Our network takes a video clip or an image X̃ ∈ RT× H×W×3

as input, where T , H , and W represent spatiotemporal resolutions of the video clip (T = 1 for an
image input). We tokenize an input video clip into overlapping 3D tublets of size 3× 4× 4× 3 with
a stride of 2 × 4 × 4 (non-overlapping 2D patches of size 4 × 4 × 3 for image) to feed them into
our network. Our network comprises four stages, each of which has multiple neural blocks, and it
leverages a hierarchical design to produce feature maps with decreasing resolutions and increasing
number of channels from early to late stages following (Li et al., 2022a). For the first two stages,
each block consists of a conditional positional encoding layer, a convolutional layer, and an MLP,
whereas the convolutional layer is replaced with a StructSA layer in the blocks in the last two stages.
For the detailed network design for each block at different stages, please refer to (Li et al., 2022a).
We build three different StructViT architectures where the number of channels and blocks for each
stage are defined as follows:

• StructViT-S: # channels ={64,128,320,512}, # blocks = {3,4,8,3}
• StructViT-B: # channels ={64,128,320,512}, # blocks = {5,8,20,7}
• StructViT-L: # channels ={128,192,448,640}, # blocks = {5,10,24,7}.

In practice, StructSA introduces additional FLOPs for processing instances compared to the vanilla
SA. One way of building an efficient StructSA is to adopt a larger stride in the key/value projections,
which effectively reduces the number of keys and values. We test a few variants with a larger stride
to see the performances of StructViT with matching FLOPs with their corresponding Uniformer
architectures. We denote each model with StructViT-X-D-S where X , D, and S represent the
architecture size, the structure dimension, and the stride, respectively.

4 EXPERIMENTS

To validate the effectiveness of the proposed method on visual representation learning, we conduct
extensive experiments on image and video classification benchmarks.

4.1 IMAGE CLASSIFICATION

4.1.1 EXPERIMENTAL SETUP

We conduct image classification experiments on ImageNet-1K (Deng et al., 2009). We follow the
training strategy of DeiT (Touvron et al., 2021) adopting random clipping, random horizontal flip-
ping, mixup (Zhang et al., 2017), cutmix (Yun et al., 2019), random erasing (Zhong et al., 2020)
and label-smoothing (Müller et al., 2019) to augment the input images for training. We train all
models from scratch for 300 epochs using AdamW optimizer (Loshchilov & Hutter, 2017) with a
cosine learning rate schedule including 5 warm-up epochs. The batch size, learning rate, and weight
decay are set to 1024, 1e-3, and 0.05, respectively. We also use stochastic depth (Huang et al.,
2016) with the probability of 0.1/0.3/0.4 for StructViT-S/B/L, respectively. We use 8 NVIDIA A100
GPUs for training StructViT-S/B and 16 GPUs for StructViT-L. Our model should be comparable to

5



Under review as a conference paper at ICLR 2023

Uniformer Li et al. (2022a) in the same sizes as our model configurations are based on Uniformer’s;
adding the structure dimension D in StructSA introduces few additional parameters.

4.1.2 RESULTS

Table 1: Comparisons to the state-of-the-art methods on
ImageNet-1K. *Trained with token labeling (Jiang et al.,
2021).

method #param FLOPs IN1K
(M) (G) Top-1

RegNetY-4G (Radosavovic et al., 2020) 21 4.0 80.0
EffcientNet-B4 (Tan & Le, 2019) 19 4.2 82.9
EffcientNet-B5 (Tan & Le, 2019) 30 9.9 83.6
DeiT-S (Touvron et al., 2021) 22 4.6 79.9
PVT-S (Wang et al., 2021b) 25 3.8 79.8
T2T-14 (Yuan et al., 2021) 22 5.2 80.7
Swin-T (Liu et al., 2021) 29 4.5 81.3
Focal-T (Yang et al., 2021) 29 4.9 82.2
CSwin-T (Dong et al., 2022) 23 4.3 82.7
CvT-13 (Wu et al., 2021) 20 4.5 81.6
CoAtNet-0 (Dai et al., 2021) 25 4.2 81.6
LV-ViT-S Jiang et al. (2021) 26 6.6 83.3
Uniformer-S (Li et al., 2022a) 22 3.6 82.9
StructViT-S-4-2 (ours) 23 3.6 82.9
StructViT-S-4-1 (ours) 23 4.3 83.2
StructViT-S-8-1 (ours) 24 5.4 83.3
RegNetY-8G (Radosavovic et al., 2020) 39 8.0 81.7
EffcientNet-B7 (Tan & Le, 2019) 66 39.2 84.3
PVT-L (Wang et al., 2021b) 61 9.8 81.7
T2T-24 (Yuan et al., 2021) 64 13.2 82.2
Swin-S (Liu et al., 2021) 50 8.7 83.0
Focal-S (Yang et al., 2021) 51 9.1 83.5
CSwin-S (Dong et al., 2022) 35 6.9 83.6
CvT-21 (Wu et al., 2021) 32 7.1 82.5
Container (Gao et al., 2021) 22 8.1 82.7
CoAtNet-1 (Dai et al., 2021) 42 8.4 83.3
LV-ViT-M (Jiang et al., 2021) 56 16.0 84.1
Uniformer-B (Li et al., 2022a) 50 8.3 83.8
StructViT-B-4-2 (ours) 51 8.3 84.0
StructViT-B-4-1 (ours) 51 9.9 84.2
StructViT-B-8-1 (ours) 52 12.0 84.3
RegNetY-16G (Radosavovic et al., 2020) 84 16.0 82.9
EfficientNetV2-L (Tan & Le, 2021) 121 52 85.7
Swin-B (Liu et al., 2021) 88 15.4 83.3
Focal-B (Yang et al., 2021) 90 16.0 83.8
CSwin-B (Dong et al., 2022) 78 15.0 84.2
CoAtNet-3 (Dai et al., 2021) 168 34.7 84.5
LV-ViT-L ↑288 (Jiang et al., 2021) 150 59.0 85.3
VOLO-D3 (Yuan et al., 2022) 86 20.6 85.4
Uniformer-L* (Li et al., 2022a) 100 12.6 85.6
StructViT-L-4-1* (ours) 103 15.4 86.0

In Table 1, we compare StructViT
with other state-of-the-art CNNs,
ViTs, and hybrid models. The re-
sults show that StructViT outper-
forms other methods in all sizes.
Compared to EfficientNets (Tan &
Le, 2019; 2021) that are obtained
by extensive architecture search, our
models show comparable or even
better performances in both base
and large configurations, requiring
much less amount of computational
cost. Compared to our baseline,
Uniformers, StructViTs consistently
bring gains in top-1 accuracy re-
gardless of its size, demonstrating
the benefits of learning geometric
structures in image understanding.
While StructSA introduces some ad-
ditional FLOPs, we also test vari-
ants whose stride for key/value con-
volutions is set to 2 (S-4-2 and B-
4-2) to match its FLOPs to that of
the baselines; We still observe some
gain with the base model (B-4-2)
without additional FLOPs while the
small model (S-4-2) shows compa-
rable performance.

4.2 VIDEO CLASSIFICATION

4.2.1 EXPERIMENTAL SETUP

We conduct experiments for video
classification on Kinetics-400 (Kay
et al., 2017), Something-Something
V1&V2 (Goyal et al., 2017; Mahdis-
oltani et al., 2018), Diving48 (Li
et al., 2018), and FineGym (Shao
et al., 2020). For training, we fol-
low the strategy in MViT (Fan et al.,
2021). For Kinetics, we sample 16
or 32 frames using the dense sam-
pling strategy (Wang et al., 2018).
We use random cropping and hor-
izontal flipping for data augmentation. We temporally inflate the model weights pretrained
on ImageNet-1K and finetune it for 110 epochs including 10 warm-up epochs. We use
AdamW (Loshchilov & Hutter, 2017) optimizer with cosine learning rate schedule. We set the
total batch size, learning rate, weight decay, and stochastic depth rate to 64, 2e-4, 0.05, and 0.1,
respectively. For Something-Something V1&V2, Diving48, and FineGym, we utilize the segment-
based sampling strategy (Wang et al., 2016). We only use random cropping for data augmentation.
We initialize the model with the weights pretrained on Kinetics-400 and finetune the model for for
60 epochs including 5 warm-up epochs. Other training hyperparameters are the same as those for
Kinetics-400. For testing, we sample multiple clips by sampling different temporal indices for each
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Table 2: Comparisons to the state-of-the-art methods on Kinetics-400.

method pretrain #frame×#crop×#clipFLOPs (G) K400
top-1top-5

TDNEN (Wang et al., 2021a) IN-1K (8+16)×3×10 5940 79.4 94.4
SlowFast(Feichtenhofer et al., 2019) - 8×3×10 3180 77.9 93.2
SlowFast+NL(Feichtenhofer et al., 2019)- 16×3×10 7020 79.8 93.9
ip-CSN(Tran et al., 2019) Sports1M32×3×10 3270 79.2 93.8
CorrNet(Wang et al., 2020) Sports1M32×3×10 6720 81.0 -
X3D-M(Feichtenhofer, 2020) - 16×3×10 186 76.0 92.3
X3D-XL(Feichtenhofer, 2020) - 16×3×10 1452 79.1 93.9
MoViNet-A5(Kondratyuk et al., 2021) - 120×1×1 281 80.9 94.9
MoViNet-A6(Kondratyuk et al., 2021) - 120×1×1 386 81.5 95.3
ViT-B-VTN (Neimark et al., 2021) IN-21K 250×1×1 3992 78.6 93.7
TimeSformer-HR(Bertasius et al., 2021) IN-21K 16×3×1 5109 79.7 94.4
TimeSformer-L(Bertasius et al., 2021) IN-21K 96×3×1 7140 80.7 94.7
X-ViT(Bulat et al., 2021) IN-21K 16×3×1 850 80.2 94.7
Mformer-HR(Patrick et al., 2021) IN-21K 16×3×10 28764 81.1 95.2
ViViT-L(Arnab et al., 2021) IN-21K 16×3×4 17352 80.6 94.7
Swin-B(Liu et al., 2022) IN-1K 32×3×4 3384 80.6 94.6
MTV-B (Yan et al., 2022) IN-21K 32×3×4 4790 81.8 95.0
MViT-B,16×4(Fan et al., 2021) - 16×1×5 353 78.4 93.5
MViT-B,32×3(Fan et al., 2021) - 32×1×5 850 80.2 94.4
Dualformer-S (Liang et al., 2021) IN-1K 32×1×4 636 80.6 94.9
Dualformer-B (Liang et al., 2021) IN-1K 32×1×4 1072 81.1 95.0
Uniformer-S (Li et al., 2022a) IN-1K 16×1×4 167 80.8 94.7
Uniformer-B (Li et al., 2022a) IN-1K 32×1×4 1036 82.9 95.4
StructViT-S-4-2 (ours) IN-1K 16×1×4 169 81.1 95.5
StructViT-S-4-1 (ours) IN-1K 16×1×4 327 81.4 95.7
StructViT-S-8-1 (ours) IN-1K 16×1×4 541 81.6 95.8
StructViT-B-4-2 (ours) IN-1K 32×1×4 1045 83.1 95.5
StructViT-B-4-1 (ours) IN-1K 32×1×4 2658 83.3 95.6
StructViT-B-4-1 (ours) IN-1K 32×3×4 7974 83.4 95.8

clip or cropping different spatial regions and then obtain the final score by computing an average
over the scores for each clip. We train all models once using 8 to 16 NVIDIA A100 GPUs.

4.2.2 RESULTS ON KINETICS-400

Table 2 compares our method with previous state-of-the-art methods on Kinetics-400. Each block
in the table groups methods based on their network structures: CNNs, ViTs, and hybrid methods.
We first observe that our best model (B-4-1) achieves the state-of-the-art performance. Our method
outperforms CNN based approaches even with less computational cost (S-4-2) in most cases. Com-
pared to MoViNets (Kondratyuk et al., 2021) that are the most advanced CNNs obtained by an
extensive NAS, our method shows comparable scores with fewer FLOPs (S-4-1).

When we compare our model to the ViT-based ones, our model outperforms them by large margins
while using significantly fewer compute. For instance, StructViT-B-4-1 with single crop (second last
row in Table 2) shows 1.6% absolute accuracy gain while using only 55% of computes compared to
MTV-B, the best performing ViT-based model. Note also that our model is pretrained on ImageNet-
1K, which is much smaller than ImageNet-21K on which the ViT-based models are pretrained.

Finally, our best models (S-8-1 and B-4-1) show 0.5% to 0.8% absolute gains over the baseline
Uniformer models in different size configurations. When we use larger strides (S-4-2 and B-4-2) to
match the FLOPs of the baselines, we still observe some absolute gains ranging from 0.2% to 0.3%.

4.2.3 RESULTS ON SOMETHING-SOMETHING, DIVING-48 AND FINEGYM

Table 3a summarizes the results on Something-Something V1&V2. We observe the same trends as
on Kinetics-400. Our full model sets a new state-of-the-art performances on both V1 and V2 while
the gains are slightly smaller when tested with matching FLOPs compared to the Uniformer models.

Table 3b and Table 3c show the results on Diving-48 (Li et al., 2018) and FineGym (Shao et al.,
2020). Our model sets new state-of-the-art performances with large margins (4.1% on Diving-48;
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Table 3: Comparisons to the state-of-the-art methods on three motion-centric video classifi-
cation benchmarks. Our StructViT achieves new state-of-the-art on all the benchmarks. For Fin-
eGym, we measure averaged per-class accuracy while top-k accuracy is measured for Something-
Something and Diving-48. *Trained with additional bounding box annotations.

(a) Something-Something V1 & V2

method pretrain #frame× FLOPs Something V1 Something V2
#crop×#clip (G) top-1 top-5 top-1 top-5

TSN(Wang et al., 2016) IN-1K 16×1×1 66 19.9 47.3 30.0 60.5
TSM(Lin et al., 2019) IN-1K 16×1×1 66 47.2 77.1 - -
GST(Luo & Yuille, 2019) IN-1K 16×1×1 59 48.6 77.9 62.6 87.9
TEA(Li et al., 2020) IN-1K 16×1×1 70 51.9 80.3 - -
MSNet(Kwon et al., 2020) IN-1K 16×1×1 101 52.1 82.3 64.7 89.4
CT-Net(Li et al., 2021) IN-1K 16×1×1 75 52.5 80.9 64.5 89.3
TDN(Wang et al., 2021a) IN-1K 16×1×1 72 53.9 82.1 65.3 89.5
SELFYNet (Kwon et al., 2021) IN-1K 16×1×1 77 54.3 82.9 65.7 89.8
RSANet (Kim et al., 2021) IN-1K 16×1×1 72 54.0 81.1 66.0 89.9
TimeSformer-HR(Bertasius et al., 2021) IN-21K 16×3×1 5109 - - 62.5 -
TimeSformer-L(Bertasius et al., 2021) IN-21K 96×3×1 7140 - - 62.3 -
ViViT-L(Arnab et al., 2021) K400 16×3×4 11892 - - 65.4 89.8
X-ViT(Bulat et al., 2021) IN-21K 16×3×1 850 - - 65.2 90.6
X-ViT(Bulat et al., 2021) IN-21K 32×3×1 1270 - - 65.4 90.7
Mformer-HR(Patrick et al., 2021) K400 16×3×1 2876 - - 67.1 90.6
Mformer-L(Patrick et al., 2021) K400 32×3×1 3555 - - 68.1 91.2
Swin-B(Liu et al., 2022) K400 32×3×1 963 - - 69.6 92.7
MViT-B,64×3(Fan et al., 2021) K400 64×1×3 1365 - - 67.7 90.9
MViT-B-24,32×3(Fan et al., 2021) K600 32×1×3 708 - - 68.7 91.5
Uniformer-S (Li et al., 2022a) K400 16×3×1 125 57.2 84.9 67.7 91.4
Uniformer-B (Li et al., 2022a) K400 32×3×1 777 60.9 87.3 71.2 92.8
StructViT-S-4-2 (ours) K400 16×3×1 126 57.2 85.0 67.9 91.3
StructViT-S-4-1 (ours) K400 16×3×1 246 57.5 85.3 68.2 91.8
StructViT-S-8-1 (ours) K400 16×3×1 405 57.6 85.5 68.4 92.0
StructViT-B-4-2 (ours) K400 32×3×1 784 61.1 87.7 71.1 92.7
StructViT-B-4-1 (ours) K400 32×3×1 1963 61.3 87.8 71.5 93.1

(b) Diving-48

model top-1
SlowFast-R101 (Feichtenhofer et al., 2019) 77.6
TimeSformer (Bertasius et al., 2021) 75.0
TimeSformer-HR (Bertasius et al., 2021) 78.0
TimeSformer-L (Bertasius et al., 2021) 81.0
RSANet-R50 (Kim et al., 2021) 84.2
ORViT* (Herzig et al., 2022) 88.0
StructViT-B-4-1 88.3

(c) FineGym

model Gym288Gym99
TRN (Zhou et al., 2018) 33.1 68.7
I3D (Carreira & Zisserman, 2017) 27.9 63.2
TSM (Lin et al., 2019) 34.8 70.6
TSMTwo-stream (Lin et al., 2019) 46.5 81.2
RSANet-R50 (Kim et al., 2021) 50.9 86.4
StructViT-B-4-1 54.2 89.5

3.3% and 3.1% on FineGym) over the previous methods without additional box annotations on both
datasets. Note that ORViT Herzig et al. (2022) uses additional object bounding box annotations to
train an object detector.

4.3 ABLATION STUDIES

We conduct ablation studies to investigate the impact of different parameters of StructSA. We test
StructViT-S on ImageNet-1K and Something-Something V1 while varying the structure dimension
D and the kernel size M . For ImageNet-1K, we train our model from scratch whereas we initialize
the model with weights pretrained on ImageNet-1K when testing on Something-Something V1. We
use 16 frames as input for video experiments.

Table 4a shows the effect of the structure dimension D. When simply applying ConvSA (D = 1) to
our baseline with SA (D = 0), both methods show similar performances on both datasets whereas
StructSA (D > 1) clearly brings large improvements. This confirms the limitation of ConvSA and
the effectiveness of StructSA. As we increase D, the model shows larger improvements on both
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Table 4: Ablation studies on ImageNet-1K and Something-Something V1. Top-1 and top-5
accuracies (%) are shown. For (b), we fix the structure dimension D to 4.

(a) Structure dimension D.

D
ImageNet-1K Something V1
top-1 top-5 top-1 top-5

0 82.9 96.2 52.0 80.2
1 82.9 96.3 52.1 80.2
2 83.1 96.4 52.5 80.9
4 83.2 96.6 52.7 81.2
8 83.3 96.6 52.9 81.3

(b) Kernel size M .

M
ImageNet-1K Something V1
top-1 top-5 top-1 top-5

1× 1 (×1) 83.0 96.2 52.2 80.4
3× 3 (×3) 83.2 96.6 52.7 81.2
5× 5 (×5) 83.1 96.5 52.8 81.2
7× 7 (×7) 83.1 96.5 52.6 81.0

Figure 2: Visualization of dynamic kernels κstruct
i,j in StructSA on Something-Something V1.

The top row shows the input frames that contain the input spatiotemporal local context (indicated
by green boxes) used in the dynamic kernel computation. The bottom row presents the resulting
dynamic kernels κstruct

i,j for a StructSA head when i = j. Note that the computed dynamic kernels
are computed with self-similarity map (i = j) to illustrate its effectiveness in capturing motions in
videos. We use StructViT-S-4-1 with M = 5× 5× 5.

datasets. In Table 4b, we also investigate different kernel sizes M . Compared to the baseline,
enlarging kernel size to M = 3 × 3 × 3 improves the accuracy on both datasets; this validates the
effectiveness of learning geometric structures. The performance saturates as the kernel size gets
larger than 5× 5× 5.

4.4 VISUALIZATIONS OF STRUCTSA

Figure 2 visualize example dynamic kernels κstruct
i,j computed from self-similarity map (i = j) on

Something-Something V1. We observe that StructSA builds kernels for spatiotemporal gradient
filters that are similar to those that are already known to be effective for capturing different types
of motions (Szeliski, 2010), e.g., Sobel filters (first example) or Laplacian filters (second and third),
over local contexts similarly to Kim et al. (2021).

5 CONCLUSION

We introduce a novel self-attention mechanism, named structural self-attention (StructSA), that ex-
ploits structural patterns of the pixel-wise correlations for visual representation learning. Instead
of using a correlation individual to aggregate each feature element, StructSA leverages spatial
(and temporal) structures of local correlations and aggregates chunks of local features globally
across entire locations, effectively capturing relational information, e.g., spatial layouts, motion,
or inter-object relations in images and videos. Based on StructSA, we present a new architecture,
named Structural Vision Transformer (StructViT), and demonstrate its effectiveness on both im-
age and video classification tasks, achieving state-of-the-art results on ImageNet-1K, Kinetics-400,
Something-Something V1 & V2, Diving-48, and FineGym.
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APPENDIX A FULL DERIVATION OF CONVSA AND STRUCTSA

APPENDIX A.1 CONVSA

In this section, we provide a full derivation of ConvSA with a conventional channel-wise convolu-
tion, of which weights are not shared across channels. Given the channel-wise convolution weights
HK,HV ∈ RC×M , c-th channel of each key kconvi and value vconvi is computed as,

kconv
i,c = HK

c Ki,:,c ∈ R, (10)

vconv
i,c = HV

c Vi,:,c ∈ R, (11)

where Ki,:,c and Vi,:,c indicates M elements of cth dfdf. Plugging Eqs. 10 and 11 into Eq. 6, each
channel of ConvSA output is computed as,

yi,c =

N∑
j=1

σj

(
qik

conv
j

T
)
vconv
j (12)

=

N∑
j=1

σj

(
C∑

c=1

qi,cH
K
c Kj,:,c

)
vconv
j (13)

=

N∑
j=1

σj

(
M∑

m=1

C∑
c=1

qi,cH
K
c,mKi,m,c

)
vconv
j (14)

=

N∑
j=1

σj

(
vec (1qi ⊙Kj) vec

(
HK

))
HV

c Vj,:,c, (15)

where 1 ∈ RM×1 is column-wise one vector.

APPENDIX A.2 STRUCTSA

HK,HV ∈ RC×M To compute StructSA, we extend the pattern detector HK and the context
aggregator HV to matrices HK, HV and compute keys Kstruct

i,c and values V struct
i,c , as,

HK = [HK
1 , · · · ,HK

D ] ∈ RD×C×M (16)

HV = [HV
1 , · · · ,HV

D] ∈ RD×C×M (17)

Kstruct
i,c = HK

:,cKi,:,c ∈ RD, (18)

V struct
i,c = HV

:,cVi,:,c ∈ RD, (19)

From Eq. 18, 19 and 9, each channel of StructSA output can be formulated as,

yi,c =

N∑
j=1

σj

(
qiK

struct
j

T
)
V struct
j (20)

=

N∑
j=1

σj

(
C∑

c=1

qi,cHK
:,cKj,:,c

)
V struct
j (21)

=

N∑
j=1

σj

(
M∑

m=1

C∑
c=1

qi,cHK
:,c,mKi,m,c

)
V struct
j (22)

=

N∑
j=1

σj

(
vec (1qi ⊙Kj) f

(
HK
)T)

HV
c Vj,:,c, (23)

where f
(

HK
)T

∈ RD×MC . (24)
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