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ABSTRACT

Large language models (LLMs) have exhibited impressive capability of In-Context
Learning (ICL), where LLMs perform relatively complicated tasks beyond the
pre-training objective by conditioning on the given demonstrations. Nevertheless,
ICL introduces two gaps between pre-training and inference: label appearance
(presence of inserted labels in the demonstrations) and weak semantic relevance
(independently sampled demonstrations exhibit less semantic coherence compared
to consecutive text segments in pretraining corpora). We propose a new inference
method that only use unlabeled inputs from the test set and label space. In this
method, we extract the representations of the demonstrations inputs independently
and fuse them to reshape the representation of the test input for inference. Inter-
estingly, without access to labels, our method outperforms traditional ICL with
extra information of gold labels. Furthermore, our method allows small models
to outperform the zero-shot performance of models that are twice their size (e.g.,
GPT-Neo-2.7B surpasses Llama2-7B, and Llama2-7B outperforms Llama2-13B).
Our code will be available at this 1.

1 INTRODUCTION

One of the representative characteristics of generative large language models (LLMs), e.g., GPT-
3 (Brown et al., 2020), Llama2 (Touvron et al., 2023), and Gemini (Team et al., 2023) is their
in-context learning (ICL) capabilities. Through task-specific input-output examples, large language
models can “learn” to accomplish various tasks beyond the pre-training objective (Dong et al., 2022).
Despite the improved down-stream performance compared to zero-shot inference, ICL introduces
gaps between pre-training and inference in different aspects. The goal of LLM pre-training is to
maximize the likelihood of each next token given its preceding context tokens, while ICL inference
forces LLMs to predict the output of downstream tasks conditional on the given demonstrations that
are not involved in pre-training.

Existing works have recognized the above target discrimination between pre-training and ICL
and presented a few strategies accordingly. Chen et al. (2022) first propose meta-learning to learn
in-context examples with task instructions. Min et al. (2022a) expand the scope of the experiment
by covering more diverse tasks without task instructions. However, there are still two gaps between
pre-training and ICL that have not been fully discussed. Label appearance: Compared to the texts
that are not related to a specific task during pre-training, the input-label mapping in ICL inserts
additional task information. Weak semantic relevance: Unlike the coherent texts used in pre-training,
the ICL demonstration examples are not necessarily semantically relevant. Nevertheless, previous
ICL research focuses on what and how input-label mapping information is utilized (Kossen et al.,
2023; Pan et al., 2023), but neglects when the positive effect brought by ICL exceeds the negative
influence of pretraining-inference gaps.

Given this, we first explore the two gaps caused by demonstration examples, i.e., the aforementioned
label appearance, and the weak semantic relevance. We then calibrate when bridging these two gaps
surpasses the improvement from ICL. To eliminate the negative effects of different gaps, we propose
a new ICL paradigm: conducting in-context learning at the representation level via unlabeled texts.

1https://anonymous.github.com
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Table 1: All the datasets used in the experiments.

Dataset Source Task Test Size

RTE News, Wikipedia Natural Language Inference 277
MRPC Miscellaneous Paraphrase Detection 1, 725
COLA Miscellaneous Grammar Error Detection 1, 043
MNLI Miscellaneous Natural Language Inference 9, 815
SST2 Movie Reviews Sentiment Analysis 872
ACL Academic Papers Citation Intent Analysis 139
MUSIC Music Description Music Genre Identification 1, 010
PHRASE Financial News Sentiment Analysis 2, 264

Contributions Throughout this paper, we mainly (1) propose a new ICL paradigm that conducts
in-context learning at the representation level via unlabeled texts from the test set. (2) demonstrate
that our method outperforms zero-shot significantly over eight datasets from multiple sources and
surpasses traditional in-context learning. (3) disclose the limitations along with the potential reasons
and solutions for further performance improvement.

Important Observations Despite being at its preliminary stages, this work offers several vital
observations regarding in-context learning, which can serve as valuable references for future research.
(1) When working with specific-domain datasets, the positive impact of task-related labels outweighs
the negative effects of the label appearance gap. However, the opposite is true for general-domain
datasets. (2) The input-label mapping information provided by demonstrations is considerably more
beneficial for specific-domain datasets than general-domain datasets. (3) Conditioning in-context
learning on the independent representations of demonstration inputs proves more effective in bridging
weak semantic relevance than conditioning it on the concatenation.

In the rest of this paper, we first launch a preliminary study of the two gaps: label appearance and
weak semantic relevance in Section 2. Building on the analysis, we propose a new in-context learning
paradigm in Section 3 and extensive experiments for our method in Section 4. Section 5 provides the
background for in-context learning and the efforts put into understanding it.

2 PRELIMINARY ANALYSIS

In this section, we will first show that the absence of labels has little harm to the performance, which
implies that “unlabeled ICL” works reasonably well. Next, we analyze a potential weakness of
unlabeled ICL, and propose ideas to improve the performance with unlabeled demonstration inputs.

2.1 ANALYSIS SETTINGS

Datasets We conduct extensive experiments over 8 datasets, including five popular datasets of
previous ICL research (Ye et al., 2023; Cheng et al., 2023; Li et al., 2023b), i.e., MRPC (Dolan et al.,
2004), COLA (Warstadt et al., 2019), MNLI (Williams et al., 2018), RTE (Wang et al., 2018), SST2
(Socher et al., 2013), and three new datasets, i.e., ACL (Bird et al.), PHRASE (Malo et al., 2014),
MUSIC (Wu et al., 2023), to cover more scenarios. Concretely, RTE is collected from Wikipedia that
consist of universal world knowledge; MRPC, MNLI, and COLA involve miscellaneous data sources,
while the rest of the datasets are constructed from a specific domain, e.g., movie review, academic
paper, music, and finance. Hereafter, we refer datasets from general world knowledge like Wikipedia
and miscellaneous sources to the general domain category and the left specific data source as the
specific domain category. More details about the datasets and tasks are in Table 1.

Backbones The analysis experiments involve five widely acknowledged language models of different
sizes, including GPT-Neo-2.7B (Black et al., 2021), Mistral-7B (Jiang et al., 2023) Llama2-7B,
Llama2-13B (Touvron et al., 2023), and GPT3.5-Turbo-Instruct2 by OpenAI’s public API.

Evaluation According to common practices (Brown et al., 2020; Rubin et al., 2022; Ye et al.,
2023), we turn the discrete label into a description such as “The review is positive” in SST2, add
it to the beginning of the test input (e.g., “Hate it.” in the below) as different inputs to language
models, compare the LM likelihood of each choice, and choose the one with the maximum likelihood.

2https://platform.openai.com/docs/guides/text-generation
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Table 2: Results of Topk-ICL and Topk-ICL without labels. ∆ means the improvement of w/o labels.

Model Methods General-Domain Specific-Domain

MRPC COLA MNLI RTE SST2 ACL PHRASE MUSIC

GPT-Neo-2.7B

Topk-ICL 33.91 67.11 39.03 46.57 85.44 24.46 87.28 28.51
w/o labels 66.49 69.13 36.51 50.18 71.67 5.04 32.55 31.78

∆ +32.58 +2.02 −2.52 +6.14 −13.77 −19.42 −54.73 +3.27

Average +9.56 −21.16

Llama2-7B

Topk-ICL 36.35 32.89 37.12 51.26 81.42 25.9 80.79 33.56
w/o labels 66.49 35.76 34.72 50.90 62.39 12.23 68.02 36.93

∆ +30.14 +2.87 −2.40 −0.36 −19.42 −13.67 −12.77 +3.37

Average +7.56 −10.62

[The review is positive. Hate it.] =⇒ 0.3 ×
[The review is negative. Hate it.] =⇒ 0.9 ✓

We investigate the most commonly used in-context learning setting: Topk-ICL, where the test input
and candidates are encoded by a pre-trained encoder, and those with the highest cosine similarity
to the test input are selected as demonstrations. The number of demonstrations is 16, which is
well-studied in ICL, considering LLMs’ constrained context window size. The encoder here is
all-mpnet-base-v2 (Reimers & Gurevych, 2019), which is widespread and available in Huggingface
Transformers (Wolf et al., 2020)3. To ensure reproducibility, we set the random seed to 42. The
evaluation metric used is accuracy.

2.2 THE EFFECT OF LABEL-APPEARANCE

When processing specific-domain datasets, the positive effect of task-related labels exceeds the
negative influence of the label-appearance. However, for general-domain datasets, it is just the
opposite. We conduct a controlled experiment with/without labels in top-ICL to analyze the possible
effect of label-appearance. Table 2 reveals that eight datasets exhibit varying performance trends
when labels are removed from demonstrations. For instance, some datasets like MRPC benefit from
the change while others like PHRASE suffer greatly. However, when viewing datasets in groups, the
trend is clear: removing labels boosts the performance of general-domain datasets while conversely
reducing the performance of specific-domain datasets. This discovery shows that labels are far more
critical in specific-domain datasets than in general-domain.

The input-label mapping information provided by demonstrations benefits specific-domain datasets
much more than general-domain. The above analysis reveals that labels play a vital role in specific-
domain datasets while are less critical in general-domain datasets. We suppose that ICL benefits
from the input-label mapping information when processing specific-domain datasets. Following
the previous work (Min et al., 2022b; Pan et al., 2023), we study the performance difference when
shuffling labels in demonstrations to analyze the effect of the correct input-label mapping information.
According to Figure 1, when modeling random labels, the performance of four language models in all
the datasets decreases. The reduction in performance indicates that the correct input-label mapping
information benefits all the models and datasets. However, the performance drops much more in
specific-domain datasets than general-domain datasets, implying that correct input-label mapping is
much more needed in specific-domain datasets.

2.3 WEAK SEMANTIC RELEVANCE AND HOW TO BETTER UTILIZE UNLABELED INPUTS

Unlike accepting single coherent text in language models pretraining, in-context learning takes in
the concatenation of multiple demonstrations which are not necessarily relevant. This observation
leads to a new design of ICL, as we illustrate below.

Let us revisit the previous finding in a more mathematical way. For the standard ICL with gold
input-output pairs, the inference process of a LLM can be expressed as follows:

ŷtest = LLM(x1, y1;x2, y2; . . . ;xm, ym;xtest). (1)

3https://huggingface.co/sentence-transformers/all-mpnet-base-v2
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Figure 1: We report the reduction in the performance brought by random labels (general-domain
vs specific-domain). From left to right, they are Llama2-7B (2.02 vs 18.05), Llama2-13B

(3.36 vs 21.24), GPT-Neo-2.7B (2.93 vs 25.99), and gpt-3.5-turbo (9.46 vs 19.03).

In the absence of labels for the demonstrations, the prompt comprises demonstration inputs and a test
sample, which allows us to describe the process as follows:

ŷtest = LLM(z1, z2, . . . , zm;xtest), (2)

where z1, . . . , zm represent the unlabeled inputs. “unlabeled ICL” works well in Section 2.2.

The gap between pretraining and inference. We observed a poential weakness of the “unlabled
ICL” in equation 2. LLMs are pre-trained on “coherent text” (u1, u2, . . . , us;us+1) extracted from an
article or a file, where the inputs u1, u2, . . . , us, us+1 have strong semantic dependence. For instance,
the sentence “Apples are juicy and delicious, and many kids like to eat them” may appear in the
pre-trained corpus, and the words exhibit strong semantic dependence. In contrast, in unlabled ICL
equation 2, the inputs z1, z2, . . . , zm, xtest are (independently) sampled from a certain distribution,
instead of from an article, thus their semantic dependence is weak. For instance, when m = 1, z and
xtest can be z = “apple”, xtest = “car”, which exhibits weaker semantic dependence.

To design a better way to utilize the demonstration inputs, we briefly analyze the mechanism of
unlabeled ICL. In the equation equation 2, we suspect that the demonstration inputs (z1, . . . , zm) serve
as the contextual information that helps LLM better “understand” the query input xtest. Nevertheless,
processing the concatenation (z1, . . . , zm;xtest) by LLM may not be the best way to utilize the
context information of z1, . . . , zm since LLMs are not trained to handle m consecutive samples
drawn from an independent distribution. One possible path for design is to consider various ways
of combining demonstration inputs in the prompt (i.e., prompt design). In this paper, we aim to
explore the representation space, and develop better methods to manipulate the representations of
z1, . . . , zm, xtest, hoping that this may provide some improvement.

New Idea: Processing Representations of Demonstration Inputs and Test Input Independently
How to improve unlabled ICL? Our idea is the folloiwng: Since the demo inputs z1, . . . , zm and
xtest are not from a coherent text, they do not necessarily need to be processed as a whole by the
LLM. Instead, they can be processed indepedently by the LLM and then combined for inference.

To illustrate the idea and analyze its validity, we use an example of m = 1. When m = 1, we
consider two samples z and xtest, which are independently drawn from a certain distribution. The
unlabled ICL can be expressed as ytest = LLM(z;xtest). For notation simplicity, we denote A = xtest,
and B = z. It is not easy to analyze the effect of an LLM, and we simply analyze one layer of self-
attention. This leads to Method 1: computing the self-attention output of the concatenated sequence
(B;A) = (z;xtest). As an alternative, we anlyze another method which takes the representation of A
and B separately. Method 2: first computing the self-attention output of A and B respectively, then
applying cross-attention between A and B. We compare the final representation of all the tokens in A.

The final representation of the i-th token in Method 1:

a′i =

NA∑
j=1

αijai +

NB∑
m=1

βi,NA+mbm, (3)
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where ai and bm represent the i-th and m-th token in A and B, NA and NB represent the total length
of A and B, and α and β denote the attention score of the i-th token when attending A and B.

In the second setting, the final representation of the i-th token is computed as follows:

ãi =

NA∑
j=1

αijai, b̃j =

NB∑
m=1

δjmbm, a′′i =

NB∑
m=1

γimb̃m, (4)

where δ, γ denote the attention score in computing self-attention in B and cross-attention between A
and B. In the first setting, the weakly-relevant information from B is directly included in the attention
context for every token in A, which can add weak semantic relevance to the representation of A’s
tokens. A’s self-attention is computed independently of B, preserving A’s original context. The
cross-attention allows the i-th token to selectively incorporate information from B given the context
of A, potentially reducing the impact of weakly-relevant information from B. Thus, the second setting
mitigates weak semantic relevance better than the first.

With the above analysis, we propose representing the demonstration input and test input separately,
rather than concatenating them. Next, we briefly discuss how to combine the independent representa-
tion of the demonstration input z and the test sample xtest. The further details about how to handle
multiple demonstration inputs are provided in Section 3.

How to Utilize The Representation of Demonstration Input? There is a remaining question: how
to combine the independent representation of the demonstration input z and the test sample xtest?
We would like to utilize the context information of z to better represent xtest.

We borrow insight from the attention mechanism: we treat xtest as a “query” and z as “keys” and
“values”, and then utilize the relevant information from the “keys” to reconstruct a representation of
xtest. The reconstructed representation incorporates the contextual information of z.

Given query, key, and value matrices Q ∈ Rn×d, K ∈ Rm×d, and V ∈ Rm×d, the output of an
attention layer can be defined as follows, where τ is the temperature, s(·, ·) ∈ R is a scalar function,
qi, ki, vi ∈ Rd denotes the i-th row of Q, K and V, and n, m are the number of rows in Q and K.

fA(Q,K,V) =



(∑m
j=1 α1jvj

)⊤(∑m
j=1 α2jvj

)⊤

...(∑m
j=1 αnjvj

)⊤


∈ Rn×d, where αij =

exp(s(qi,kj)/τ)∑m
l=1 exp(s(qi,kl)/τ)

. (5)

For each query vector qi, the output q̂i is a weighted sum of the rows of V (i.e., a linear combination
of the rows of V). This implies that the query qi is mapped onto the vector space spanned by the
value vectors v1,v2, · · · ,vm. Intuitively, this means that the reconstructed q̂i is a new vector that
incorporates the context of the value vectors in the representation of the query.

This observation inspires the idea that we can build a new representation of the test input in the
following way. For each token in the test input, we map the representation of it onto the space spanned
by the representation of the demonstration input to obtain a new representation vector. In essence,
this method performs in-context learning at the representation level.

3 METHOD

In this section, we formally introduce the proposed new ICL paradigm that conducts in-context
learning at the representation level via unlabeled texts. The overview of our method is presented in
Figure 2. Suppose there are T test samples in the test dataset D for a certain task. The goal is to
provide a prediction for each sample in the test dataset.

5
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Stage 1: Getting Hidden States

unlabeled texts from test set

hidden states

Represent the movie review to better determine

whether it is positive or negative.\nreview:

unflinchingly bleak and desperate.

a sometimes tedious film.

prefix

prefix

Pretrained LLMs

Stage 2: Inference

Mapping

Pooling & Norm

LM_Head

negative

LLM retrieve

review: a sometimes tedious film.

PPL

Figure 2: Overview of our method.

Utilizing Other Unlabeled Samples In classical zero-shot inference, the prediction for each test
sample is independent of other test samples, and the prediction can be formulated as

ytest,i = fθ(xtest,i), i = 1, 2, . . . , T, (6)

where fθ indicates the learned neural network. In our method, the prediction for each test sample is
based on other k relevant test samples excluding itself, and the prediction can be formulated as

ytest,i = g(xtest,i;xtest,p, . . . , xtest,q︸ ︷︷ ︸
k

), i = 1, 2, . . . , T, (7)

where g is a certain process that we will describe next.

Step 1: Obtaining Feature Vector for Each Test Sample For any given task, we establish a task
description T that includes the basic input units and labels related to the dataset. For instance, the
description for SST2 Socher et al. (2013) is “Represent the movie review to better determine whether
it is positive or negative.” We concatenate the description with the test input x = (x1, x2, ..., xn)
where xi denotes the i-th token of x, and feed the concatenation into LLMs to obtain hidden states.

H1,H2, ...,Hn = LLM([T ;x]) (8)

Ht = [h
(1)
t ;h

(2)
t ; · · · ;h(L)

t ], (9)

where h
(l)
t ∈ Rd represents the hidden state of the t-th token at the l-th layer, and L represents the

number of layers in the LLM. We employ three well-known pooling strategies to attain the feature
vector from the set of hidden states, for each token. Last: pool the hidden state of the last layer;
Last-Two: pool the hidden states of the last two layers and average across the last dimension;
First-Last: pool the hidden states of the first and last layer and average across the last dimension.
Next, we will use Last pooling strategy as an example to explain our method, in which case the
feature vector for the t-th token can be denoted as ht = h

(L)
t .

Step 2: Reconstructing the Feature Vector For any test input x in the test dataset, we will
reconstruct its test feature vector as follows. First, we identify the k-th most relevant test inputs
z1, . . . , zk based on a certain retrieval algorithm (for instance, BM25). For each test sample zs =
(zs1, . . . , zsn) which consists of n tokens, 1 ≤ s ≤ k, we denote the corresponding feature vector
obtained in the previous stage as hs1,hs2, · · · ,hsn, where hsj corresponds to zsj .

Second, we reconstruct the feature vectors of x utilizing the feature vectors of the retrieved test inputs
z1, . . . , zk. Suppose the corresponding feature vectors of x = (x1, . . . , xn) are h01,h02, · · · ,h0n,
we compute new feature vectors hs;i as follows:

hs;i =

n∑
j=1

αijhsj , where αij =
exp(s(h0i,hsj)/τ)∑n
l=1 exp(s(h0i,hsl)/τ)

. (10)

Here hs;i denotes the attended result of h0i with the context of hs1, hs2, · · · , hsn, and all the score
functions s(·, ·) are listed in Table 3.

Third, for the i-th token, after obtaining k new feature vectors hs;i, s = 1, . . . , k, we take the average
of them, and then take a weighted sum of this average and the original test input feature vector.

6
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Table 3: All the mapping methods used in the experiments. x̄ represents the standard score format of
x, while ∥ · ∥2 and ∥ · ∥1 denote L2 and L1 distance.

Method Attention Cosine Pearson Euclidean Manhattan

s(qi,kj)
⟨qi,kj⟩

√
d

⟨qi,kj⟩
∥qi∥·∥kj∥

⟨q̄i,k̄j⟩
d−1

∥qi − kj∥2 ∥qi − kj∥1

(h̃0i)m = 0.4 · mean
(
(h1;i)m, (h2;i)m, · · · , (hk;i)m

)
+ 0.6 · (h0i)m, (11)

where (h̃0i)m denotes the m-th element in h̃0i. This new feature vector combines the relevant
information from the k retrieved test inputs z1, . . . , zk, and the target test input x.

Finally, we normalize the reconstructed feature vector as follows:

pi =
h̃0i

∥h̃0i∥
. (12)

Step 3: Making Predictions When making predictions, we add the label description to the test input,
same as Section 2.1. After reconstructing the feature vector as pi for i-th token in x, we exploit the
original lm head. Then, we compute the LM likelihood for every choice based on the corresponding
logits and choose the one with the maximum likelihood.

Implementation Details We experiment with five mapping methods described in Table 3. For
every mapping method, we explore three main variables of our method: pooling strategies
∈ [Last,Last-Two,First-Last]; the number of the retrieved hidden states k ∈ [16, 32, 64]; the temper-
ature τ ∈ [1, 1.5]. We initially set k = 64, τ = 1 to identify the optimal pooling strategy. Following
that, we adjust the value of k, and finally, we tweak the value.

4 EXPERIMENTS

4.1 COMPARASION SETTINGS

Baselines Following the setting in Section 2.1, we experiment with the same datasets and language
models. Our method has no access to the training set. Thus, we first compare our method to the
zero-shot setting to validate its effectiveness. We also compare our method with traditional in-context
learning. According to the convention, we experiment with three learning-free ICL settings: random,
bm25, and topk. The number of demonstrations is 16, the same as Section 2.1. Random-ICL: the
demonstrations are selected randomly without repetition. BM25-ICL: we adopt BM25 to obtain
scores, and select k demonstrations with the highest scores. We report the best result of five score
functions in the following experiments. Our method only utilizes unlabeled texts from the test set
while traditional ICL employs input-output pairs from the training set.

4.2 COMPARISON WITH ZERO-SHOT

Broad Improvements in Comparison with Zero-Shot The results in Table 4 demonstrate that
our method outperforms zero-shot consistently, with an average improvement of 11.44% in GPT-
Neo-2.7B, 16.49% in Mistral-7B, 17.06% in Llama2-7B, and 12.84% in Llama2-13B. Somewhat
surprisingly, all the models benefit from our method, even though they vary in size and belong to
different model families. Meanwhile, the results indicate that the gains achieved by our method are
consistent across tasks and domains, showcasing its generality.

Boosting Specific-Domain via Unlabeled Texts Although our method involves no labels, the
improvements in specific-domain are remarkable. The label space information incorporated in
representing unlabeled texts accounts for the improvements, demonstrating the importance of label
space to in-context learning, consistent with the finding in Min et al. (2022b). The improvements in
specific domain suggest that our method can be applied in low-resource scenarios.

Enhancing Small Models to Beat Bigger Models hen utilizing our method, the performance of
GPT-Neo-2.7B exceeds the zero-shot performance of Llama2-7B even though Llama2-7B is more

7
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Table 4: Our method outperforms zero-shot significantly on average. We show the best improvement
over zero-shot and bold the best results. The significance level is set to 0.05 according to convention.
The p-value is shown in the bracket.

Method MRPC COLA MNLI RTE SST2 ACL PHRASE MUSIC Average

GPT-Neo-2.7B (p-value: .047)
Zero-shot 66.67 69.13 34.06 47.29 76.95 6.47 29.24 14.55 43.05
Our Method 66.49 69.13 43.75 54.87 85.44 48.92 38.60 28.71 54.49
∆(Absolute Gain) −0.18 +0 +9.69 +7.58 +8.49 +42.45 +9.36 +14.16 +11.44

Mistral-7B (p-value: .022)
Zero-shot 35.19 34.04 37.17 53.07 79.82 12.95 59.63 39.60 43.93
Our Method 66.49 69.13 52.28 52.71 85.32 51.08 63.47 42.87 60.42
∆(Absolute Gain) +31.3 +35.09 +15.11 −0.36 +5.50 +38.13 +3.84 +3.27 +16.49

Llama2-7B (p-value: .006)
Zero-shot 57.97 30.87 34.36 48.38 63.99 12.95 46.07 32.57 40.90
Our Method 66.49 69.13 40.36 53.43 87.39 43.88 62.68 40.30 57.96
∆(Absolute Gain) +9.8 +38.26 +6.00 +5.05 +23.40 +30.93 +16.61 +7.73 +17.06

Llama2-13B (p-value: .046)
Zero-shot 51.19 30.87 42.83 62.45 77.98 12.23 54.02 35.05 45.83
Our Method 66.49 69.13 48.10 57.40 86.24 43.88 54.55 43.56 58.67
∆(Absolute Gain) +15.3 +38.26 +5.27 −5.05 +8.26 +31.65 +0.53 +8.51 +12.84

than twice as large. This also holds for Llama2-7B and Llama2-13B, suggesting that our method can
enable small models to perform even better than larger models that are two times their size, indicating
the application potential in real-world problems.

4.3 COMPARISON WITH TRADITIONAL IN-CONTEXT LEARNING

Conducting ICL at Representation and Text Level We compare the performance of ICL when
conditioned on the concatenation of multiple demonstrations (text level) to independent representa-
tions (representation level). As illustrated in Table 5, five untrained mapping strategies all surpass
the concatenation way, indicating that our proposed method can mitigate weak semantic relevance
better as discussed in Section 2.3, thus leading to improved performance. Interestingly, the cosine and
pearson perform almost the same, for they care about the similar relationship. The experimental re-
sults suggest that when conditioned on the independent representations of demonstrations, in-context
learning more effectively bridges weak semantic relevance compared to when conditioned on the
concatenation of multiple demonstrations.

Surpassing In-Context Learning in General-Domain We summarize the results of comparing
our method with traditional ICL in Table 6. The results demonstrate that our method outperforms
traditional in-context learning for all the models in three different settings. Our method with no labels
beats traditional in-context learning with input-label pairs from the training set. The considerable
enhancement suggests that conducting in-context learning at the representation level works too, apart
from the traditional text level.

Partly Worse than In-Context Learning in Specific-Domain We also compare our method with
ICL in specific-domain datasets. Table 6 illustrates that our method performs partly worse than
traditional ICL in specific-domain datasets especially in PHRASE. This drop is foreseeable since we

Table 5: Results of ICL at text and representation level with unlabeled texts from the test set. We
report the improvement brought by different mapping methods.

Model Method General-Domain Specific-Domain Avg

MRPC COLA MNLI RTE SST2 ACL PHRASE MUSIC

GPT-Neo-2.7B

Text 66.49 69.03 35.67 48.38 61.35 5.04 29.81 32.87 —
Attention +0 +0.1 +7.2 +6.49 +20.19 +36.69 +0.49 −7.62 +7.94

Cosine +0 +0.1 +5.3 +5.41 +24.09 +43.88 +1.29 −6.14 +9.24
Pearson +0 +0.1 +5.31 +5.41 +24.09 +43.88 +1.29 −6.14 +9.24

Euclidean +0 +0.1 +8.08 +6.85 +23.40 +42.44 +0.98 −8.02 +9.23
Manhattan +0 +0.1 +7.29 +6.13 +23.51 +42.44 +8.79 −4.16 +10.51

Llama2-7B

Text 66.49 35.19 34.18 49.82 70.53 6.47 64.66 40.89 —
Attention +0 +33.94 +5.19 +3.61 +15.59 +30.22 −2.03 −1.98 +10.57

Cosine +0 +33.94 +6.18 +3.61 +16.63 +34.54 −1.23 −1.88 +11.47
Pearson +0 +33.94 +6.17 +3.61 +16.63 +34.54 −1.23 −1.88 +11.47

Euclidean +0 +33.94 +5.22 +3.61 +16.28 +30.22 −1.98 −0.59 +10.84
Manhattan +0 +33.94 +5.42 +3.25 +16.86 +37.41 −1.98 −1.19 +11.71
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Table 6: Our method, utilizing unlabeled texts from the test set, outperforms traditional in-context
learning that relies on gold input-output pairs from the training set on average. We show the
improvement over traditional ICL and bold the best results. Note that our approach exclusively
employs BM25 without incorporating topk retrieval for practical use.

Method MRPC COLA MNLI RTE SST2 ACL PHRASE MUSIC Average

GPT-Neo-2.7B
Our Method 66.49 69.13 43.75 54.87 85.44 48.92 38.60 28.71 —
∆random +32.87 +1.15 +10.15 +6.86 +20.53 +34.53 −2.04 +7.42 +13.93
∆bm25 +32.63 +2.78 +6.60 +4.33 +8.72 +15.83 −34.77 −0.30 +4.48
∆topk +32.58 +2.02 +4.72 +8.3 +0.00 +24.46 −48.68 +0.20 +2.95

Mistral-7B
Our Method 66.49 69.13 52.28 52.71 85.32 51.08 63.47 42.87 —
∆random +32.81 +35.76 +17.52 +5.42 +4.13 +35.25 +7.11 +1.38 +17.42
∆bm25 +32.63 +30.01 +7.97 +5.06 +7.11 +19.43 −13.16 −5.55 +10.44
∆topk +32.63 +30.78 +7.92 +5.42 −1.26 +19.43 −22.48 −1.09 +8.92

Llama2-7B
Our Method 66.49 69.13 40.36 53.43 87.39 43.88 62.68 40.30 —
∆random +31.94 +37.3 +7.49 +3.97 +33.61 +27.33 +18.02 +6.34 +20.75
∆bm25 +30.08 +34.33 +4.99 +1.44 +19.27 +12.94 −3.75 +9.8 +13.64
∆topk +30.14 +36.24 +3.24 +2.17 +5.97 +17.98 −18.11 +6.74 +10.55

Llama2-13B
Our Method 66.49 69.13 48.10 57.40 86.24 43.88 54.55 43.56 —
∆random +32.69 +35.48 +12.94 +9.39 +5.05 +27.33 +11.84 +6.13 +17.61
∆bm25 +31.88 +27.9 +10.06 +6.14 +4.13 +11.51 −8.44 +6.23 +11.18
∆topk +31.82 +28.77 +8.78 +5.78 −2.41 +13.66 −23.06 +3.66 +8.38

have found that the input-label mapping information provided by demonstrations benefits specific-
domain datasets much more than general-domain in Section 2.2. Additionally, our method relies more
heavily on the intrinsic capabilities of LLMs, as it does not incorporate input-label information. For
GPT-Neo-2.7B, which is trained on the Pile (Biderman et al., 2022), financial news constitutes a small
proportion of the Pile, resulting in the most significant performance decline. Thus, for datasets with
which LLMs are unfamiliar, our method is likely to fail due to the absence in input-label information.

4.4 ABLATION STUDIES

We conduct ablation studies on our method for better understanding. Although several mapping
methods are involved in the experiments, their phenomena are similar. Thus, we discuss the effect of
pooling strategies and the number of the retrieved hidden states only with cross-attention.

On the Effect of Pooling Strategies The choice of pooling strategies plays a role in the quality of the
reconstructed representation. Thus, we first compare three popular pooling strategies in Table 7. For
GPT-Neo-2.7B, most datasets obtain notable improvement (≥ 3%) by choosing the correct pooling
strategy, whereas the pooling strategies have a weak influence on the performance of the remaining
three models. Additionally, for GPT-Neo-2.7B, pooling the last layer is the optimal strategy, whereas
pooling the first and last layers is the most effective approach for the remaining three models. This
suggests that larger LLMs might benefit from the low-level information present in the first layer.

Table 7: Results of choosing different pooling strategies with k = 64, τ = 1.

Strategy MRPC COLA MNLI RTE SST2 ACL PHRASEBANK MUSIC Average
GPT-Neo-2.7B
Last Layer 66.49 69.13 42.35 54.51 60.89 38.85 29.77 25.15 48.39
First Last Layer 66.49 69.13 38.31 54.87 81.54 17.99 30.08 24.55 47.87
Last Two Layers 66.49 69.13 35.69 50.54 73.28 7.19 24.12 17.43 42.98

Mistral-7B
Last Layer 66.49 69.13 51.14 52.71 76.83 51.08 59.32 41.68 58.55
First Last Layer 66.49 69.13 51.96 52.71 82.11 51.08 62.99 42.18 59.83
Last Two Layers 66.49 69.13 51.9 52.71 81.65 51.08 62.32 42.48 59.72

Llama2-7B
Last Layer 66.49 69.13 37.79 53.43 80.96 31.65 61.57 37.62 54.83
First Last Layer 66.49 69.13 39.26 53.43 86.12 36.69 62.59 38.81 56.57
Last Two Layers 66.49 69.13 38.73 53.43 85.21 32.37 62.28 38.81 55.81

Llama2-13B
Last Layer 66.49 69.13 44.58 56.32 77.29 33.81 54.51 40.0 55.31
First Last Layer 66.49 69.13 45.01 56.68 81.54 31.65 51.77 42.18 55.64
Last Two Layers 66.49 69.13 43.28 55.23 86.01 43.88 45.10 38.12 54.83
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On the Effect of the Number of the Retrieved Hidden States We next compare the number of the
retrieved hidden states. According to the results in Table 8, the number of the retrieved hidden states
exhibits minimal influence on performance. We hypothesize that as the number increases, the more
irrelevant instances are retrieved for the test set is diverse. This explains why increasing the number
of retrieved hidden states does not result in significant improvement.

On the Effect of Mapping Methods We compare different mapping methods, which are essential
in reconstructing the test hidden state. The results presented in Table 9 indicate that the choice of
datasets and models significantly influences the preference for different mapping methods. Even with
the same dataset, different models prefer different mapping methods. The underlying reason for this
observation is that different mapping methods capture distinct aspects of semantic information.

5 RELATED WORK

Large language models (LLMs) such as GPT-3 (Brown et al., 2020) exhibit the ability to do in-context
learning (ICL), where the model performs a downstream task simply by conditioning on a prompt
made up of input-output examples.

Understanding How ICL Works Xie et al. (2021); Jiang (2023); Wang et al. (2023); Zhang et al.
(2023); Han et al. (2023) propose that ICL can be formulated as the Bayesian inference. Min et al.
(2022b); Wies et al. (2023) observe ICL is more about identifying the task than learning it, recovering
the capacity obtained in pretraining. However, Kossen et al. (2023) argue that ICL almost always
depends on in-context labels, and can learn novel semantics about tasks. Chan et al. (2022); Hahn &
Goyal (2023); Raventos et al. (2023) investigate the factors affecting the emergence of ICL. Razeghi
et al. (2022) discover that term frequencies in the pretraining data affect the performance of ICL.
Some studies explore the relationship between gradient descent and conducting ICL (Dai et al., 2023;
Akyurek et al., 2022; Von Oswald et al., 2023; Shen et al., 2023). Yan et al. (2023) empirically
establish a principle that strengthens the relationship between two tokens based on their contextual
co-occurrences by investigating the role of surface features in text generation.

ICL Free of Demonstrations at Instance Level It is hard to get access to the demonstrations pool for
ICL in real-world scenarios. Kim et al. (2022); Chen et al. (2023); Li et al. (2023a) bootstrap LLMs
to generate pseudo demonstrations. This approach does alleviate the dependency on demonstrations.
However, generation may be uncontrollable and unstable, easily accumulating biases when generating
multiple demonstrations. Also, generating pseudo demonstrations is often expensive and slow. In
the study by Lyu et al. (2023), the approach involves initially retrieving k unlabeled test instances,
assigning random labels to them, and subsequently conducting in-context learning. Both Kossen et al.
(2023) and our finding demonstrate that ICL indeed depends on in-context labels, thus assigning
random labels can be risky, especially for datasets coming from specific-domain.

6 LIMITATIONS & CONCLUSION

Limitations To begin with, every step requires prediction in text generation problems, which
accumulates latency in adopting our method. Therefore, our work currently only involves text
classification problems in the experiment, leaving a gap in text generation. Second, our method is
partly worse than traditional in-context learning in specific-domain datasets, showing there is still
room for improvement in exploring the relationship between unlabeled texts and the label space
information. Last but not least, our method does not incorporate any training; thus the potential of
our approach has not been fully explored. We leave all the above for future work.

Conclusion We first analyze the effects of label appearance and weak semantic relevance in traditional
in-context learning. Building on the analysis, we propose a new ICL paradigm, which conducts
in-context learning at the representation level via unlabeled texts. Results over eight datasets coming
from general and specific domain and four language models demonstrate that our method exhibits
broad and significant improvements compared to zero-shot. Besides, our method with unlabeled texts
from the test set surpasses traditional in-context learning with demonstrations from the training set.
Furthermore, our method enables small models to perform even better than larger models that are
two times their size. Also, our method boosts specific-domain scenarios only with unlabeled texts,
showing the potential in real-world problems, which deserves more attention in the future.
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A APPENDIX

Table 8: Results of various numbers of the retrieved hidden states with the best pooling strategy
observed in Table 7.

Model MRPC COLA MNLI RTE SST2 ACL PHRASEBANK MUSIC Average

GPT-Neo-2.7B
k = 16 66.49 69.13 42.65 54.15 81.31 41.73 30.3 25.15 51.36
k = 32 66.49 69.13 42.39 54.87 81.42 38.85 30.08 25.25 51.06
k = 64 66.49 69.13 42.35 54.87 81.54 38.85 30.08 25.15 51.06

Mistral-7B
k = 16 66.49 69.13 52.07 52.71 82.22 51.08 62.63 41.78 59.76
k = 32 66.49 69.13 52.03 52.71 82.22 51.08 63.21 41.98 59.86
k = 64 66.49 69.13 51.96 52.71 82.11 51.08 62.99 42.48 59.87

Llama2-7B
k = 16 66.49 69.13 39.35 53.43 85.44 35.97 62.37 38.91 56.39
k = 32 66.49 69.13 39.29 53.43 85.78 36.69 62.54 38.71 56.51
k = 64 66.49 69.13 39.26 53.43 86.12 36.69 62.59 38.81 56.57

Llama2-13B
k = 16 66.49 69.13 44.9 57.04 86.24 43.17 54.46 41.98 57.16
k = 32 66.49 69.13 44.98 57.04 86.12 42.45 54.46 41.98 56.88
k = 64 66.49 69.13 45.01 56.68 86.01 43.88 54.51 42.18 57.0

Table 9: Results of different mapping methods.

Model MRPC COLA MNLI RTE SST2 ACL PHRASEBANK MUSIC Average

GPT-Neo-2.7B
Attention 66.49 69.13 42.87 54.87 81.54 41.73 30.3 25.25 51.52
Cosine 66.49 69.13 40.97 53.79 85.44 48.92 31.1 26.73 52.82
Pearson 66.49 69.13 40.98 53.79 85.44 48.92 31.1 26.73 52.82
Euclidean 66.49 69.13 43.75 55.23 84.75 47.48 30.79 24.85 52.81
Manhattan 66.49 69.13 42.96 54.51 84.86 47.48 38.6 28.71 54.09

Mistral-7B
Attention 66.49 69.13 52.07 52.71 82.22 51.08 63.21 42.57 59.93
Cosine 66.49 69.13 52.31 52.71 82.68 51.08 63.47 42.18 60.01
Pearson 66.49 69.13 52.28 52.71 82.68 51.08 63.47 42.18 60.00
Euclidean 66.49 69.13 52.01 52.71 83.26 51.08 62.37 42.57 59.95
Manhattan 66.49 69.13 52.09 52.71 85.32 51.08 63.25 42.87 60.37

Llama2-7B
Attention 66.49 69.13 39.37 53.43 86.12 36.69 62.63 38.91 56.6
Cosine 66.49 69.13 40.36 53.43 87.16 41.01 63.43 39.01 57.5
Pearson 66.49 69.13 40.35 53.43 87.16 41.01 63.43 39.01 57.5
Euclidean 66.49 69.13 39.4 53.43 86.81 36.69 62.68 40.30 56.87
Manhattan 66.49 69.13 39.6 53.07 87.39 43.88 62.68 39.7 57.74

Llama2-13B
Attention 66.49 69.13 45.01 57.04 86.24 43.88 54.51 42.18 57.65
Cosine 66.49 69.13 46.05 56.32 77.98 39.57 53.89 43.56 56.4
Pearson 66.49 69.13 46.05 56.32 77.98 39.57 53.89 43.56 56.4
Euclidean 66.49 69.13 48.10 57.40 79.47 38.85 53.22 42.97 56.95
Manhattan 66.49 69.13 46.79 57.04 81.88 35.25 54.55 42.67 56.73
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