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Abstract
Robustness of machine learning models on001
ever-changing real-world data is critical, es-002
pecially for applications affecting human well-003
being such as content moderation. New kinds004
of abusive language continually emerge in on-005
line discussions in response to current events006
(e.g., COVID-19), and the deployed abuse de-007
tection systems should be updated regularly to008
remain accurate. In this paper, we show that009
general abusive language classifiers tend to be010
fairly reliable in detecting out-of-domain ex-011
plicitly abusive utterances but fail to detect new012
types of more subtle, implicit abuse. Next, we013
propose an interpretability technique, based on014
the Testing Concept Activation Vector (TCAV)015
method from computer vision, to quantify the016
sensitivity of a trained model to the human-017
defined concepts of explicit and implicit abu-018
sive language, and use that to explain the gen-019
eralizability of the model on new data, in this020
case, COVID-related anti-Asian hate speech.021
Extending this technique, we introduce a novel022
metric, Degree of Explicitness, for a single in-023
stance and show that the new metric is bene-024
ficial in suggesting out-of-domain unlabeled025
examples to effectively enrich the training data026
with informative, implicitly abusive texts.027

1 Introduction028

When machine learning models are deployed in the029

real world, they must be constantly monitored for030

their robustness to new and changing input data.031

One area where this is particularly important is032

in abusive language detection (Schmidt and Wie-033

gand, 2017; Fortuna and Nunes, 2018; Nakov et al.,034

2021; Vidgen and Derczynski, 2020). The con-035

tent of online conversation is constantly changing036

in response to political and social events. New037

categories of abusive language emerge, encompass-038

ing topics and vocabularies unknown to previously039

trained classifiers. Here, we tackle three main ques-040

tions: How can a human user formalize new, rele-041

vant topics or concepts in text? How do we quantify042

the sensitivity of a trained classifier to these new 043

concepts as they emerge? And how do we update 044

the classifier so that it remains reliable? 045

As a case study, we consider the rise of COVID- 046

related anti-Asian racism on social media. The 047

COVID-19 pandemic represented an entirely new 048

and unexpected situation, generating new vocab- 049

ulary (COVID-19, coronavirus, social distancing, 050

masking), new topics of conversation (dealing with 051

isolation, working from home), and – unfortunately 052

– new and renewed instances of hate speech directed 053

towards Asian communities. We imagine the case 054

of an abusive language detection algorithm which 055

had been deployed prior to the pandemic: what 056

are the new types of abusive language that have 057

emerged with the recent pandemic? To what extent 058

can deployed classifiers generalize to this new data, 059

and how can they be adapted? Although social 060

events can spark off a specific type of hate speech, 061

they are rarely the root cause of the issue. Often 062

such hateful beliefs existed before the event, and 063

are only magnified because of it (Chou and Fea- 064

gin, 2015). Therefore, we expect that the classifier 065

should detect this new variety of hate speech to 066

some extent. 067

An important factor in this study is whether the 068

text expresses explicit or implicit abuse (Waseem 069

et al., 2017; Wiegand et al., 2021). Explicit 070

abuse refers to utterances that include direct in- 071

sults or strong rudeness, often involving profanities, 072

whereas implicit abuse involves more indirect and 073

nuanced language. Since understanding the offen- 074

sive aspects of implicit abuse in our case study may 075

require some knowledge of the context (i.e., the 076

pandemic), we expect that the pretrained classifier 077

will find these data especially difficult to handle. 078

To examine a classifier’s ability to handle new 079

type of abusive text (without access to extensive 080

labeled data), we propose a technique based on the 081

Testing Concept Activation Vector (TCAV) method 082

from the interpretability literature in computer vi- 083
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sion (Kim et al., 2018). TCAV is used to explain084

whether a classifier associates a specific concept085

to a class label (e.g., the concept of stripes is as-086

sociated with class zebra in image classification).087

Similarly, we define implicit and explicit COVID-088

related anti-Asian racism with a small set of human-089

chosen textual examples, and ask whether the pre-090

trained classifier associates these concepts with the091

positive (abusive) class.092

Further, we ask whether sensitivity to human-093

defined concepts can direct data augmentation1 to094

improve generalizations. Intuitively, when updat-095

ing a classifier, data enrichment should focus on096

adding examples of concepts to which the classi-097

fier is not yet sensitive. Conventional active learn-098

ing frameworks suggest examples with the low-099

est classification confidence as the most informa-100

tive augmentation samples. However, deep neural101

networks’ inability to provide reliable uncertainty102

estimates is one of the main barriers to adopting103

confidence-based sampling techniques (Schröder104

and Niekler, 2020). We suggest that, in the case105

of abuse detection, implicitly abusive examples are106

most informative for updating a general classifier.107

However, to the best of our knowledge, there is108

no quantitative metric that can measure the degree109

of explicitness of a candidate example, given a110

trained classifier. We extend the TCAV technique111

to provide a “degree of explicitness” measure at the112

utterance level and use that for efficient data aug-113

mentation. We make the following contributions114

(Supplementary Material includes code and data):115

• We implement a variation of the TCAV frame-116

work for a RoBERTa-based classifier and show117

that it can be used to quantify the sensitivity of a118

trained classifier to a human-understandable con-119

cept, defined through examples, without access120

to the training dataset of the classifier or a large121

annotated dataset for the new category.122

• We analyse the performance of two abusive lan-123

guage classifiers and observe that they general-124

ize well to explicit COVID-related anti-Asian125

racism, but are unable to generalize to implicit126

racism of this type. We show that sensitivities to127

the concepts of implicit and explicit abuse can128

explain the observed discrepancies.129

• We adjust the TCAV method to compute the de-130

gree of explicitness, for an unlabeled instance,131

as a metric to guide data augmentation when up-132

1In this paper, we use the term augmentation to refer to
the process of enriching the training data by adding examples
from sources other than the original dataset.

dating a general abusive language classifier to 133

include a new kind of abuse. We test this method 134

against a confidence-based augmentation algo- 135

rithm and show that it is able to reach higher per- 136

formance with fewer training examples, while 137

maintaining the accuracy on the original data. 138

2 Datasets and Data Analysis 139

We consider the following four English datasets, 140

summarized in Table 1: Founta2 and Wiki3 are 141

large, commonly-used datasets for general abusive 142

language detection, while EA and CH specifically 143

target COVID-related anti-Asian racism. We bi- 144

narize all datasets to two classes: positive (i.e., 145

abusive or hateful) and negative. For Founta, this 146

means combining Abusive and Hateful texts into 147

a single positive class; for EA, “Hostility against 148

an East-Asian entity” is considered positive, and 149

all other classes are negative; and for CH, all hate 150

speech is classed as positive, while counter-hate 151

and hate-neutral texts are classed as negative. 152

Differences in vocabulary: Central to our research 153

question is the issue of vocabulary change as a new 154

abusive topic emerges. As the Wiki and Founta 155

datasets were collected before the COVID-19 pan- 156

demic, they do not contain novel vocabulary such 157

as “chinavirus” or “wuhanflu”, and the contexts and 158

frequencies for words like “China” and “pandemic” 159

may have changed. As a demonstration of the dif- 160

ferences in vocabulary across the different datasets, 161

we compute the top 100 most frequent words in 162

the positive class of each dataset (after removing 163

stop words), and then calculate the overlap between 164

each pair of datasets. The complete lists of words 165

are given in the Appendix A. This analysis reveals 166

that the two COVID-related datasets share more 167

words in common, and their shared vocabulary is 168

specific to the pandemic or has found new conno- 169

tations because of the pandemic. In contrast, the 170

shared vocabulary between Wiki and Founta largely 171

consists of profanity and strongly negative words 172

such as “hate”. Interestingly, CH has a similar set 173

of profane words in common with both Wiki and 174

Founta, while the words shared between EA and 175

the general datasets are simply common words in 176

2For Founta, we discard the tweets labeled as Spam and
use the train-dev-test split as provided by (Zhou et al., 2021).

3We used a smaller version of the Wiki dataset as provided
by Nejadgholi and Kiritchenko (2020). They removed 54% of
Wikipedia-specific non-toxic instances from the training set to
mitigate the topic bias, and reported improvements in both the
classification performance and the execution time. We found
similar benefits in our preliminary experiments.
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Dataset Data Positive Class Negative Class Number (%Pos:%Neg)
Source Train Dev Test

Wikipedia
Toxicity (Wiki)
(Wulczyn et al., 2017)

Wikipedia
comments

Toxic Normal 43,737
(17:83)

32,128
(9:91)

31,866
(9:91)

Founta et al. (2018)
dataset (Founta)

Twitter
posts

Abusive; Hateful Normal 62,103
(37:63)

10,970
(37:63)

12,893
(37:63)

East-Asian
Prejudice (EA)
(Vidgen et al., 2020)

Twitter
posts

Hostility against an
East Asian entity

Criticism of an East Asian
entity; Counter speech;
Discussion of East Asian
prejudice; Non-related

16,000
(19:81)

1,200
(19:81)

2,800
(19:81)

COVID-HATE (CH)
(Ziems et al., 2020)

Twitter
posts

Anti-Asian COVID-19
hate; hate directed to
non-Asians

Pro-Asian COVID-19
Counterhate;
Hate-Neutral

– – 2,319
(43:57)

Table 1: Class descriptions, number of instances and ratio of positive to negative in percentage (%Pos:%Neg) for
the general abusive datasets (Wiki and Founta) and COVID-related Anti-Asian hate speech datasets (EA and CH).

the English language, such as “people”, “want”,177

and “need.” We expect that this vocabulary shift178

between the different datasets will have a consider-179

able impact on the generalizability.180

Differences in explicitness: Another important181

factor in our study is generalization with respect182

to explicit and implicit types of abusive language.183

Above, we observed that CH shares many profane184

words with the general datasets and, therefore, we185

anticipate it contains more explicitly abusive texts186

than EA does. Unfortunately, neither of the datasets187

has originally been annotated for explicitness of188

abuse. We manually annotate instances from the189

positive class in the CH dataset and the EA dev190

set using the following rule: instances that include191

profanity, insult or rudeness that could be correctly192

identified as abusive without general knowledge193

about the COVID-19 pandemic are labeled as ex-194

plicitly abusive; the remaining instances (e.g., ‘it is195

not covid 19 but wuhanvirus’) are labeled as implic-196

itly abusive. We find that 85% of the CH-positive197

class is categorized as explicit, whereas only 8% of198

the EA-positive class in the EA dev set is labeled as199

explicit. Thus, CH and EA share COVID-related200

vocabulary, but are very different in terms of ex-201

plicitness of abuse (CH containing mostly explicit202

abuse while EA containing mostly implicit abuse),203

which makes them suitable test beds for assessing204

the generalizability of classifiers to a new type of205

abusive language and the impact of new vocabulary206

on the classification of implicit and explicit abuse.207

3 Cross-Dataset Generalization208

We start by assessing the robustness of a general-209

purpose abusive language classifier on a new do-210

main of abusive language. Specifically, we analyze 211

the performance of classifiers trained on the Wiki 212

and Founta datasets (expected to detect general 213

toxicity and abuse) on COVID-related anti-Asian 214

racism data. In addition, we want to assess the 215

impact of the change of vocabulary on the gen- 216

eralizibility of the classifiers to implicit and ex- 217

plicit abuse in the new domain. We train binary 218

RoBERTa-based classifiers on the Wiki, Founta, 219

EA and CH datasets (referred to hereafter as the 220

Wiki, Founta, EA and CH classifiers), and test them 221

on the EA as the mostly implicit COVID-related 222

dataset and CH as the mostly explicit COVID- 223

related dataset. (The training details are provided 224

in Appendix C.) Note that CH is small, so it is used 225

either as a training dataset when testing on EA or a 226

test dataset for all other classifiers. For comparison, 227

we also train an “explicit general abuse” classifier 228

with only explicit examples of the Wiki dataset and 229

the class balance similar to the original Wiki dataset. 230

This classifier is referred to as Wiki-exp.4 231

Table 2 presents the Area Under the ROC Curve 232

(AUC) and F1-scores for all the classifiers; preci- 233

sion, recall, and average precision score are pro- 234

vided in Appendix B. We first consider whether 235

class imbalances can explain our results. Note 236

that while abusive language is a relatively rare phe- 237

nomenon in online communications, most abusive 238

language datasets are collected through boosted 239

sampling and therefore are not subject to extreme 240

class imbalances. The percentage of positive in- 241

4For Wiki-exp, the examples of the positive class are taken
from the ‘explicit abuse’ topic, which contains texts with
explicitly toxic words, from (Nejadgholi and Kiritchenko,
2020), and negative examples are randomly sampled from the
Wiki-Normal class.
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Domain Train Set AUC F1-score
EA CH EA CH

COVID EA 0.94 0.82 0.74 0.66
CH 0.86 - 0.62 -

pre-COVID
Founta 0.69 0.73 0.29 0.65
Wiki 0.64 0.74 0.27 0.69
Wiki-exp 0.58 0.71 0.15 0.56

Table 2: Cross-dataset generalization on EA (mostly
implicit) and CH (mostly explicit) datasets.

stances in our datasets ranges from 9% to 43%242

(Table 1). We observe similar performances for the243

Wiki and Founta classifiers despite different class244

ratios in their training sets, and different perfor-245

mances for Wiki and EA classifiers despite their246

similar training class ratios. We also observe better247

performance from CH classifier compared to the248

Wiki or Founta classifiers despite the very small size249

of the CH dataset. Based on previous research, we250

argue that cross-dataset generalization in abusive251

language detection is often governed by the compat-252

ibility of the definitions and sampling strategies of253

training and test labels rather than class sizes (Yin254

and Zubiaga, 2021). Instead, we explain the results255

presented in Table 2 in terms of implicit/explicit256

types of abuse and the change of vocabulary.257

Cross-dataset generalization is better when258

datasets share similar vocabulary. The classifiers259

trained on the EA and CH datasets perform better260

than all the classifiers trained on the pre-COVID261

datasets (Wiki and Founta). Interestingly, the per-262

formance of the CH classifier on the EA dataset is263

higher than the performance of all the general clas-264

sifiers, despite the CH dataset being very small and265

containing mostly explicit abuse. This observation266

confirms that general classifiers need to be updated267

to learn the new vocabulary.268

General-purpose classifiers generalize better to269

explicit than implicit examples in the new do-270

main. The Wiki and Founta classifiers, which have271

been exposed to large amounts of generally ex-272

plicit abuse, perform well on the mostly explicit CH273

dataset, but experience difficulty with the COVID-274

specific implicit abuse in the EA dataset. For exam-275

ple, the tweet ‘the chinavirus is a biological attack276

initiated by china’ is misclassified as non-abusive.277

We observe that Wiki-exp performs relatively sim-278

ilar to the Wiki classifier on CH, despite its small279

size (only 1,294 positive examples) but is worse280

than Wiki classifier on EA. This means that the ad-281

ditional 35K instances (of which, 9K are positive282

examples) of the Wiki compared to the Wiki-exp,283

only moderately improve the classification of the 284

implicit examples in the new domain. This obser- 285

vation indicates that generalization mostly occurs 286

between the explicit type of the pre-COVID abuse 287

and the explicit type of the COVID-related abuse. 288

Therefore, a general-purpose classifier should be 289

specifically updated to learn implicit abuse in the 290

new domain. 291

4 Sensitivity to Implicit and Explicit 292

Abuse to Explain Generalizability 293

In Section 3, we showed that when a new do- 294

main emerges, the change in vocabulary mostly 295

affects the classification of implicitly expressed 296

abuse. This observation is in line with findings by 297

Fortuna et al. (2021), and suggests that generaliza- 298

tion should be evaluated on implicit and explicit 299

abuse separately. However, due to complexities 300

of annotation of abusive content, curating separate 301

implicit and explicit test sets is too costly (Wiegand 302

et al., 2021). Instead, we propose to adapt the Test- 303

ing Concept Activation Vector (TCAV) algorithm, 304

originally developed for image classification (Kim 305

et al., 2018), to calculate the classifiers’ sensitivity 306

to explicit and implicit COVID-related racism, us- 307

ing only a small set of examples. Then, we show 308

how these sensitivities can explain the generaliza- 309

tions observed in Table 2. 310

4.1 TCAV background and implementation 311

TCAV is a post-training interpretability method to 312

measure how important a user-chosen concept is 313

for a prediction, even if the concept was not used as 314

a feature during the training. Similarly to how Kim 315

et al. (2018) suggest “stripes” as a visual concept 316

relevant to the class “zebra”, and then operationally 317

define the “stripes” concept by collecting exam- 318

ples of images containing stripes, in our language- 319

based TCAV method a concept is defined by a set 320

of manually chosen textual examples. Here, we 321

consider concepts such as COVID-19, hate speech, 322

and anti-Asian abuse, but the approach generalizes 323

to any concept that can be defined through a set of 324

example texts. Using these examples, a Concept 325

Activation Vector (CAV) is learned to represent 326

the concept in the activation space of the classifier. 327

Then, directional derivatives are used to calculate 328

the sensitivity of predictions to changes in inputs 329

towards the direction of the concept, at the neural 330

activation layer. 331

We adapt the TCAV procedure for a binary 332
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Non-coherent concept: random tweets collected with stop
words as queries
COVID-19: tweets collected with words covid, corona,
covid-19, pandemic as query words
Explicit anti-Asian abuse: tweets labeled as explicit from
EA dev and CH
Implicit abuse (EA): tweets labeled as implicit from EA dev
Implicit abuse (CH): tweets labeled as implicit from CH
Generic hate: tweets from the Hateful class of Founta dev

Table 3: Human-defined concepts and the sources of the
tweets used as concept examples.

RoBERTa-based classifier to measure the impor-333

tance of a concept to the positive class. For any334

input text, x ∈ Rk×n, with k words in the n-335

dimensional input space, we consider the RoBERTa336

encoder of the classifier as femb : Rk×n → Rm,337

which maps the input text to its RoBERTa rep-338

resentation (the representation for [CLS] token),339

r ∈ Rm. For each concept, C, we collect NC con-340

cept examples, and map them to RoBERTa repre-341

sentations rjC , j = 1, ..., NC . To represent C in the342

activation space, we calculate P number of CAVs,343

υpC , by averaging5 the RoBERTa representations of344

Nυ randomly chosen concept examples:345

υp
C =

1

Nυ

Nυ∑
j=1

rjC p = 1, .., P (1)346

where Nυ < NC . The conceptual sensitivity of the347

positive class to the υpC , at input x can be computed348

as the directional derivative SC,p(x):349

SC,p(x) = lim
ϵ→0

h(femb(x)+ϵυp
C)−h(femb(x))
ϵ350

= ▽h(femb(x)).υ
p
C (2)351

where h : Rm → R is the function that maps the352

RoBERTa representation to the logit value of the353

positive class. In Equation 2, SC,p(x) measures354

the changes in class logit, if a small vector in the355

direction of C is added to the input example, in356

the RoBERTa-embedding space. For a set of input357

examples X , we calculate the TCAV score as the358

fraction of inputs for which small changes in the359

direction of C increase the logit:360

TCAVC,p =
|x ∈ X : SC,p(x) > 0|

|X|
(3)361

5In the original TCAV algorithm, a linear classifier is
trained to separate representations of concept examples and
random examples. Then, the vector orthogonal to the decision
boundary of this classifier is used as the CAV. We experi-
mented with training a linear classifier and found that the
choice of random utterances has a huge impact on the results
to the point that the results are not reproducible. More stable
results are obtained when CAVs are produced by averaging
the RoBERTa representations.

A TCAV score close to one indicates that for the 362

majority of input examples the logit value increases. 363

Equation 3 defines a distribution of scores for the 364

concept C; we compute the mean and standard de- 365

viation of this distribution to determine the overall 366

sensitivity of the classifier to the concept C. 367

4.2 Classifier’s Sensitivity to a Concept 368

We define each concept C with NC = 100 man- 369

ually chosen examples, and experiment with six 370

concepts described in Table 3. To set a baseline, we 371

start with a set of random examples to form a non- 372

coherent concept. Next, we define a non-hateful 373

COVID-related concept using random tweets with 374

COVID-related keywords covid, corona, covid-19, 375

pandemic. For the explicit anti-Asian abuse con- 376

cept, we include all 14 explicitly abusive examples 377

from the EA dev set and 86 explicitly abusive ex- 378

amples from CH class. We define two implicit 379

anti-Asian concepts with examples from EA and 380

CH, to assess whether selecting the examples from 381

two different datasets affects the sensitivities. We 382

also define the generic hate concept with examples 383

of pre-COVID general hateful utterances, not di- 384

rected at Asian people or entities, from the Founta 385

dev set. 386

We calculate P = 1000 CAVs for each concept, 387

where each CAV is the average of Nυ = 5 ran- 388

domly chosen concept examples. We use 2000 389

random tweets collected with stopwords as input 390

examples X (see Equation 3).6 Table 4 presents 391

the means and standard deviations of the TCAV 392

score distributions for the classifiers trained on 393

Wiki, Founta, EA, and CH datasets, respectively. 394

First, we observe that all TCAV scores calculated 395

for a random, non-coherent set of examples are 396

zero; i.e., as expected, the TCAV scores do not 397

indicate any association between a non-coherent 398

concept and the positive class. Also, as expected, 399

none of the classifiers associate the non-hateful 400

COVID-related concept to the positive class. Note 401

that a zero TCAV score can be due to the absence of 402

that concept in the training data (e.g., the COVID 403

concept for the Wiki and Founta classifiers), in- 404

significance of the topic for predicting the positive 405

label (e.g., the COVID concept for the EA classi- 406

6Unlike the original TCAV algorithm, we do not restrict
the input examples from the target class. In our experiments,
we observed that, for this binary classification set-up, the
choice of input examples has little impact on the TCAV scores.
Intuitively, we assess whether adding the concept vector to
a random input would increase the likelihood of it being as-
signed to the positive class.
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Concept
Classifier non-coherent COVID-19 explicit anti-Asian implicit (EA) implicit (CH) generic hate

EA 0.00 (0.00) 0.00 (0.00) 0.90 (0.26) 0.87 (0.30) 0.70 (0.42) 0.00 (0.00)
CH 0.00 (0.00) 0.00 (0.00) - 0.35 (0.44) - 0.21 (0.12)

Founta 0.00 (0.02) 0.00 (0.01) 0.92 (0.22) 0.00 (0.06) 0.19 (0.32) 0.60 (0.44)
Wiki 0.00 (0.03) 0.00 (0.05) 0.96 (0.16) 0.00 (0.03) 0.28 (0.43) 0.75 (0.41)

Wiki-exp 0.00 (0.05) 0.00 (0.07) 0.78 (0.12) 0.00 (0.02) 0.00 (0.05) 0.59 (0.40)

Table 4: Means and standard deviations of TCAV score distributions for the positive class of the five classifiers with
respect to six human-defined concepts. Scores statistically significantly different from random are in bold.

fier), or the lack of coherence among the concept407

examples (such as the concept defined by random408

examples). A TCAV score close to 1, on the other409

hand, indicates the importance of a concept for410

positive prediction. These observations set a solid411

baseline for interpreting the TCAV scores, calcu-412

lated for other concepts. Here we ask whether the413

generated TCAV scores can explain the generaliza-414

tion performances observed in Table 2.415

We consider a classifier to be sensitive to a con-416

cept if its average TCAV score is significantly dif-417

ferent (according to the t-test with p < 0.001) from418

the average TCAV score of a non-coherent ran-419

dom concept. First, we observe that the general420

classifiers are only sensitive to the explicit type of421

COVID-related abusive language. This confirms422

that the classifiers generalize better to the explicit423

type of an emerging domain of abusive language.424

We also note that Wiki-exp, is sensitive to the ex-425

plicit anti-Asian concept.426

Second, the classifier trained with mostly ex-427

plicit COVID-related data (CH) is not sensitive to428

the implicit abuse concept.7 The only classifier429

that is sensitive to the explicit and both implicit430

COVID-related abusive concepts is the EA clas-431

sifier. Classifiers trained on the COVID datasets432

are also not sensitive to the generic hate concept,433

which encompasses a much broader range of target434

groups. Overall, these findings stress the impor-435

tance of including implicitly abusive examples in436

the training data for better generalizability within437

and across domains.438

5 Degree of Explicitness439

Here, we suggest that implicit examples are more440

informative (less redundant) for updating a gen-441

eral classifier and provide a quantitative metric to442

guide the data augmentation process. We extend443

the TCAV methodology to estimate the Degree of444

7We do not measure the sensitivity of this classifier to the
explicit anti-Asian and implicit CH concepts, since their con-
cept examples are included in the training set of the classifier.

Explicitness or DoE of an utterance. We showed 445

that the average TCAV score of the positive class 446

for the explicit concept is close to 1. DoE is based 447

on the idea that adding one example to an explicit 448

concept will not affect its average TCAV score (i.e., 449

it will still be close to 1), if the added example is 450

explicitly abusive. However, adding an implicit ex- 451

ample presumably will change the direction of all 452

CAVs and reduce the sensitivity of the classifier to 453

this modified concept. Here, we modify Equation 1 454

and calculate each CAV by averaging the RoBERTa 455

representations of Nυ − 1 explicit concept exam- 456

ples, and the new utterance for which we want the 457

degree of explicitness, xnew, with representation 458

rnew. Thus, 459

υpnew =
1

Nυ
(

Nυ−1∑
j=1

rjC + rnew), p = 1, .., P 460

461We then calculate the average TCAV score for each 462

xnew as its DoE score. If the new utterance, xnew, 463

is explicitly abusive, υpnew will represent an ex- 464

plicit concept, and the average TCAV score, i.e., 465

mean(TCAVC,p) will remain close to 1. However, 466

the less explicit the new example is, the more υpnew 467

will diverge from representations of explicit abuse, 468

and the average score will drop. We use Nυ = 3 in 469

the following experiments. 470

DoE analysis on COVID-related abusive data: 471

We validate the utility of DoE in terms of separating 472

implicit and explicit abusive examples. For the Wiki 473

and Founta classifiers, we calculate the DoE score 474

of the implicit and explicit examples from CH and 475

the EA dev set (described in Section 3), excluding 476

the examples used to define the Explicit anti-Asian 477

abuse concept. Given that low classification con- 478

fidence could indicate that the model struggles to 479

predict an example correctly, one might expect that 480

implicit examples are classified with less classifi- 481

cation confidence than explicit examples. Figure 1 482

shows the comparison of DoE with classification 483

confidence in distinguishing between implicit and 484

explicit examples. We observe that for both clas- 485

sifiers, the distribution of DoE scores of implicit 486

6



Figure 1: Comparison of classification confidence and
DoE score for distinguishing between implicit and ex-
plicit abusive utterances.

examples is different from the distribution of DoE487

scores of explicit examples, but the distributions488

of their classification confidences are indistinguish-489

able. Therefore, we conclude that DoE is more490

effective at separating implicit abuse from explicit491

abuse than classification confidence. We further492

analyze DoE scores for the positive and negative493

classes separately in Appendix D.494

6 Data Augmentation with DoE score495

We now use the DoE score to direct data augmen-496

tation. We consider a scenario where a general497

classifier should be re-trained with an augmented498

dataset to include emerging types of abusive lan-499

guage. As we showed, general classifiers are al-500

ready sensitive to explicit abuse. Therefore, we501

hypothesize that implicit examples are more benefi-502

cial for updating the classifier. Here, we describe a503

novel DoE-based augmentation approach and con-504

trast it with the conventional process of choosing505

augmentation examples based on the classification506

confidence (Zhu et al., 2008; Chen et al., 2019).507

We consider the general Wiki classifier. Our goal508

is to find a small but sufficient portion of the EA509

train set to augment the original Wiki train set, so510

that the classifier is able to handle COVID-related511

anti-Asian hate speech. We calculate the DoE and512

confidence scores for all the examples in the EA513

train set and add the N examples with the lowest514

scores to the original Wiki train set. We vary N515

from 1K to 6K, with a 1K step. After the augmen-516

tation data size reaches 6K, the classifier perfor-517

mance on the original Wiki test set drops substan-518

tially for both techniques. Also, note that as the519

size of the augmentation dataset increases, the two520

Figure 2: F1-score of the augmented Wiki classifier on
the EA and Wiki test sets. Solid lines show the baseline.

methods converge to the same performance. 521

6.1 Results 522

Figure 2 shows the F1-score of the classifiers up- 523

dated using the DoE and confidence-based augmen- 524

tation methods on the original test set (Wiki) and 525

the new test set (EA) for different augmentation 526

sizes. (Precision and recall figures are provided in 527

Appendix E.) Since only EA is used for augmenta- 528

tion, we evaluate the classifiers on this dataset to 529

find the optimum size for the augmented training 530

set and only evaluate the best performing classifiers 531

on CH. We expect that an efficient augmentation 532

should maintain the performance on Wiki and reach 533

acceptable results on EA test set. 534

DoE is better at learning the new type of abuse: 535

On the EA dataset, DoE achieves better results than 536

the confidence-based augmentation method for all 537

augmentation sizes, except for N= 5K, where the 538

performances of the two methods are comparable. 539

DoE is better at maintaining performance on the 540

original dataset: DoE outperforms the confidence- 541

based method on the Wiki dataset. For all augmenta- 542

tion sizes, the performance of the DoE-augmented 543

classifier on this class stays within 2% of the base- 544

line (the F1-score of the classifier trained just on 545

the Wiki data), whereas for the confidence-based 546

augmentation, we observe up to 6% drop depend- 547

ing on the size of the added data. 548

DoE is better overall: Table 5 presents the best 549

results achieved by the two augmentation methods 550

on the EA test set: AUC score of 0.81 for the DoE- 551

based augmentation obtained with 3K added ex- 552

amples, and AUC score of 0.69 for the confidence- 553

based augmentation obtained with 4K added exam- 554

ples. For comparison, we also show the baseline 555

results for the original Wiki classifier and the classi- 556

fier trained on the combined Wiki and full EA train 557

sets. Although we did not optimize the augmenta- 558

tion for the CH dataset, our evaluation shows that 559

DoE performs favourably on this dataset, as well. 560

We conclude that the new DoE-based augmentation 561

7



F1-score AUC
Method Aug. set EA CH Wiki EA CH Wiki
DoE 3K EA 0.61 0.73 0.82 0.81 0.78 0.96
Conf. 4K EA 0.54 0.71 0.79 0.69 0.75 0.94
Merging EA 0.58 0.72 0.78 0.72 0.75 0.94
baseline - 0.27 0.69 0.82 0.64 0.74 0.96

Table 5: AUC and F1-scores for the best performing
classifiers updated with various augmentation methods,
as well as the original Wiki classifier as baseline.

method maintains the classification performance562

on the original dataset, while outperforming the563

other method on the new data.564

We also qualitatively assess the classifier’s out-565

put before and after data augmentation with DoE.566

While explicitly abusive utterances (e.g., “f*ck you567

china and your chinese virus”) are often correctly568

classified both before and after re-training, many569

implicitly abusive examples (e.g., “it is not covid570

19 but wuhanvirus”) are handled correctly by the571

classifier only after re-training.572

7 Related Work573

Generalizability has been an active research area in574

NLP (Ettinger et al., 2017; Hendrycks et al., 2020).575

Several studies evaluated generalizability in abuse576

detection through cross-dataset evaluation (Swamy577

et al., 2019; Wiegand et al., 2019), direct dataset578

analysis (Fortuna et al., 2020) or topic modeling579

on the training data (Nejadgholi and Kiritchenko,580

2020). Fortuna et al. (2021) showed that the lack581

of generalizability is rooted in the imbalances be-582

tween implicit and explicit examples in training583

data. In a recent review, Yin and Zubiaga (2021)584

discussed the challenges for building generalizable585

hate speech detection systems and recommended586

possible future directions.587

The distinction between explicit and implicit588

abuse has been recognized as an important factor589

in abuse detection (Waseem et al., 2017). Wiegand590

et al. (2019) showed that lexicon-based sampling591

strategies fail to collect implicit abuse and most592

of the annotated datasets are overwhelmed with593

explicit examples. Breitfeller et al. (2019) showed594

that inter-annotation agreement is low when label-595

ing the implicit abuse utterances, as sometimes596

specific knowledge is required in order to under-597

stand the implicit statements. For better detection598

of implicitly stated abuse, large annotated datasets599

with hierarchical annotations are needed (Sap et al.,600

2020), so that automatic detection systems can601

learn from a wide variety of such training exam-602

ples. Field and Tsvetkov (2020) proposed propen- 603

sity matching and adversarial learning to force the 604

model to focus on signs of implicit bias. Wiegand 605

et al. (2021) created a novel dataset for studying 606

implicit abuse and presented a range of linguistic 607

features for contrastive analysis of abusive content. 608

Data augmentation has been used to improve 609

the robustness of abuse detection classifiers. To 610

mitigate biases towards specific terms (e.g., iden- 611

tity terms), one strategy is to add benign examples 612

containing the biased terms to the training data 613

(Dixon et al., 2018; Park, 2018; Badjatiya et al., 614

2019). Other works combined multiple datasets to 615

achieve better generalizations, using a set of prob- 616

ing instances (Han and Tsvetkov, 2020), multi-task 617

training (Waseem et al., 2018), and domain adapta- 618

tion (Karan and Šnajder, 2018). In contrast to these 619

works, we take an interpretability-based approach 620

and guide the data collection process by mapping 621

the new data on the implicit vs. explicit spectrum. 622

8 Conclusion 623

As real-world data evolves, we would like to be 624

able to query a trained model to determine whether 625

it generalizes to the new data, without the need for 626

a large, annotated test set. We adopted the TCAV al- 627

gorithm to quantify the sensitivity of text classifiers 628

to human-chosen concepts, defined with a small set 629

of examples. We used this technique to compare 630

the generalizations of abusive language classifiers, 631

trained with pre-pandemic data, to explicit and im- 632

plicit COVID-related anti-Asian racism. 633

We then proposed a sensitivity-based data aug- 634

mentation approach, to improve generalizability to 635

emerging categories. We showed that in the case 636

of abuse detection, the most informative examples 637

are implicitly abusive utterances from the new cate- 638

gory. Our approach collects implicit augmentation 639

examples and achieves higher generalization to the 640

new category compared to confidence-based sam- 641

pling. Strategies for choosing the optimal set of 642

concept examples should be explored in the future. 643

While we examined abusive language detection 644

as a case study, similar techniques can be applied 645

to different NLP applications. For example, the 646

TCAV method could be used to measure the sen- 647

sitivity of a sentiment analysis system to a new 648

product, or a stance detection algorithm’s sensi- 649

tivity to an important new societal issue. As lan- 650

guage evolves, methods of monitoring and explain- 651

ing classifier behaviour over time will be essential. 652
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Ethical Considerations653

Content moderation is a critical application with654

potential of significant benefits, but also harms to655

human well-being. Therefore, ethics-related issues656

in content moderation have been actively studied657

in NLP and other disciplines (Vidgen et al., 2019;658

Wiegand et al., 2019; Kiritchenko et al., 2021; Vid-659

gen and Derczynski, 2020). These include sam-660

pling and annotation biases in data collection, al-661

gorithmic bias amplification, user privacy, system662

safety and security, and human control of technol-663

ogy, among others. Our work aims to address the664

aspects of system safety and fairness by adapting665

the model to newly emerged or not previously cov-666

ered types of online abuse, often directed against667

marginalized communities. We employ existing668

datasets (with all their limitations) and use them669

only for illustration purposes and preliminary eval-670

uation of the proposed methodology. When de-671

ploying the technology care should be taken to672

adequately address other ethics-related issues.673
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A Change of Vocabulary866

To examine the change of vocabulary, from general867

to COVID, we look at the most frequent words in868

the positive class of our datasets. Table A.1 shows869

the common words between the 100 most frequent870

words of the positive classes of our datasets af-871

ter removing stop words. We used the stop word872

list from the scikitlearn package. We observe that873

COVID-related datasets share more words, and874

their shared vocabulary is specific to the pandemic.875

In other cases, fewer words are shared, and the876

shared words are either related to profanity and877

violence or are commonly used English terms.878

B Additional Results for Cross-Dataset879

Generalization880

In table B.1, we present additional metrics for the881

generalizibility experiments described in Section 3.882

Besides the commonly used metrics, precision and883

recall, we measure averaged precision score to884

count for potential threshold adjustments. Aver-885

aged precision score summarizes a precision-recall886

curve as the weighted mean of precisions at each887

threshold, weighted by the increase in recall from888

the previous threshold. The results are consistent889

with AUC and F1-scores reported in Table 2.890

C Model Specifications891

All of our models are binary RoBERTa-based892

classifiers trained with the default settings of the893

Trainer module from the Huggingface library 8894

with 3 training epochs, on a Tesla V100-SXM2895

GPU machine, batch size of 16, warm-up steps of896

500 and weight decay of 0.01. We use Roberta-897

base model, which includes 12-layer, 768 hidden898

nodes, 12 head nodes, 125M parameters, and add899

a linear layer with two nodes for binary classifica-900

tion. Training these classifiers takes several hours901

depending on the size of the training dataset.902

D DoE Analysis on the EA Train Set903

With the DoE score, we want to distinguish be-904

tween implicit and explicit examples of abuse.905

However, when used for data selection, the true la-906

bels of the selected examples are not available. We907

investigate what low DoE scores mean in terms of908

‘being challenging to classify’. With both Founta909

and Wiki classifiers, we calculate the DoE score for910

8https://huggingface.co/transformers/
main_classes/trainer.html

all instances of the EA train set, sort the negative 911

and positive examples separately based on DoE 912

and look at the classification accuracies in bins of 913

size 100 of sorted DoEs. Figure D.1 shows that low 914

DoE examples are correctly classified if negative 915

and misclassified if positive (implicit abuse). In 916

contrast, high DoE examples are misclassified if 917

negative and correctly classified if positive (explicit 918

abuse). 919

Figure D.1: Recall per class for varying DoE scores on
the EA train set

E Comparing DoE and Confidence-Based 920

Augmentation Using Precision and 921

Recall 922

In Section 6, we compare the classifiers updated 923

with DoE and confidence-based methods using clas- 924

sification F1-score. Here, we provide a more fine- 925

grained analysis based on recall and precision. 926

Figure E.1 shows the recall and precision of the 927

updated classifiers on the EA dataset. This fig- 928

ure indicates that the classifiers updated with DoE 929

are much more successful in recognizing abusive 930

utterances than the classifiers updated with confi- 931

dence, but misclassify more non-abusive sentences, 932

which results in substantially higher recall scores, 933

but slightly lower precision scores. Note that in 934

computer-assisted content moderation, recall is 935

more important than precision, since automatically 936

flagged posts are assessed by human moderators to 937

make the final decision. 938

We argue that the higher recall and lower pre- 939

cision of classifiers updated with DoE is due to 940

the discrepancies in the definitions of the negative 941

classes for the Wiki and EA datasets. Previous work 942

has commented on the difficulty of aligning annota- 943

tions of abusive, offensive, hateful, and toxic speech 944

across different datasets (Swamy et al., 2019; Kol- 945

hatkar et al., 2019; Fortuna et al., 2021). Here, we 946
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Datasets Num.
of
Words

Common Words

EA - CH 50 racist, ccp, came, want, country, 19, communist, calling, come, does, spread, like, pan-
demic, amp, media, coronavirus, eating, covid19, did, human, chinesevirus, infected,
world, covid, know, chinese, chinavirus, government, say, started, think, corona, wuhan-
virus, need, blame, evil, time, people, wuhan, don, new, let, news, china, stop, countries,
virus, just, spreading, make

Wiki - Founta 37 ass, oh, dont, want, way, going, come, does, bitch, like, look, life, idiot, niggas, did, eat,
sex, know, dick, fucking, fuck, say, think, shit, man, need, hell, time, hate, people, stupid,
said, stop, really, just, make, tell

Founta - EA 19 racist, want, calling, come, does, like, did, world, know, say, think, need, time, people,
trying, let, stop, just, make

Wiki - EA 15 people, want, did, say, think, good, need, come, does, stop, just, know, like, make, time
Founta - CH 35 racist, ass, want, way, going, calling, come, does, bitch, like, got, look, did, eat, world,

know, fucking, fuck, say, think, shit, man, trump, need, time, people, hate, stupid, said,
fucked, let, stop, really, just, make

Wiki - CH 33 ass, want, way, going, come, does, bitch, like, look, did, eat, right, know, fucking, fuck,
die, say, think, shit, man, need, time, people, hate, don, stupid, said, kill, stop, really,
shut, just, make

Table A.1: Common words between 100 most frequent words of the positive classes of the datasets.

Train Set Precision Recall Ave. Prec.
EA CH EA CH EA CH

EA 0.72 0.77 0.73 0.58 0.80 0.80
CH 0.58 - 0.66 - 0.64 -
Founta 0.46 0.57 0.23 0.73 0.35 0.65
Wiki 0.39 0.61 0.21 0.78 0.31 0.66
Wiki-exp 0.37 0.64 0.10 0.51 0.26 0.64

Table B.1: Additional metrics for cross-dataset general-
ization results presented in Table 2.

also observe that the definitions of positive (abu-947

sive) and negative classes differ significantly be-948

tween the generalized and COVID-related data. In949

the Wiki and Founta datasets, the positive class950

encompasses a wide range of offensive language,951

while in the EA and CH datasets, the positive class952

is restricted to hate speech and other more intense953

cases of expressed negativity. Further, the negative954

class in Wiki and Founta datasets comprise non-955

abusive, neutral, or friendly instances while in the956

EA and CH datasets the negative class may also957

include rude and offensive texts as long as they do958

not constitute hate speech against Asian people or959

entities.960

In Appendix D, we observe that low DoE ex-961

amples are correctly classified if negative and mis-962

classified if positive (implicit abuse). In contrast,963

high DoE examples are misclassified if negative964

and correctly classified if positive (explicit abuse).965

We use this observation to explain higher recall of966

the confidence-based method in comparison with967

the DoE-based method for the EA-negative class.968

As mentioned before, while EA-positive fits under969

the definition of ‘toxicity’ in Wiki-positive, the def-970

inition of EA-negative is inconsistent with the defi- 971

nition of Wiki-negative. In other words, DoE tends 972

to choose negative examples that the Wiki classi- 973

fier already recognizes as negative, whereas the 974

confidence-based data augmentation selects neg- 975

ative examples that are unknown to the classifier. 976

Therefore, the classifier augmented with low confi- 977

dence scores adapts better to the new definition of 978

negative examples than the classifier updated with 979

low DoE scores. In a real-life scenario, we do not 980

expect the definition of the negative class to change 981

over time, so precision for DoE-base augmentation 982

should not suffer. 983

Figure E.1: Precision and recall of the augmented Wiki
classifier on the EA test set.
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