Reinforcement Learning as One Big Sequence Modeling Problem

Michael Janner

Abstract

Reinforcement learning (RL) is typically con-
cerned with estimating single-step policies or
single-step models, leveraging the Markov prop-
erty to factorize the problem in time. However, we
can also view RL as a sequence modeling problem,
with the goal being to predict a sequence of actions
that leads to a sequence of high rewards. Viewed
in this way, it is tempting to consider whether pow-
erful, high-capacity sequence prediction models
that work well in other domains, such as natural-
language processing, can also provide simple and
effective solutions to the RL problem. To this
end, we explore how RL can be reframed as “one
big sequence modeling” problem, using state-of-
the-art Transformer architectures to model dis-
tributions over sequences of states, actions, and
rewards. Addressing RL as a sequence modeling
problem significantly simplifies a range of design
decisions: we no longer require separate behavior
policy constraints, as is common in prior work on
offline model-free RL, and we no longer require
ensembles or other epistemic uncertainty estima-
tors, as is common in prior work on model-based
RL. All of these roles are filled by the same Trans-
former sequence model. In our experiments, we
demonstrate the flexibility of this approach across
long-horizon dynamics prediction, imitation learn-
ing, goal-conditioned RL, and offline RL.

1. Introduction

The standard treatment of reinforcement learning relies on
decomposing a long-horizon problem into smaller, more
local subproblems. In model-free algorithms, this takes the
form of the principle of optimality (Bellman, 1957), an ele-
gant recursion that leads naturally to the class of dynamic
programming methods like ()-learning. In model-based al-
gorithms, this decomposition takes the form of single-step
predictive models, which reduce the problem of predict-
ing high-dimensional, policy-dependent state trajectories to
that of estimating a comparatively simpler, policy-agnostic
transition distribution.

UC Berkeley. Correspondence to: janner @berkeley.edu.

Qiyang Li

Sergey Levine

However, we can also view reinforcement learning as analo-
gous to a sequence generation problem, with the goal being
to produce a sequence of actions that, when enacted in an
environment, will yield a sequence of high rewards. In
this paper, we consider the logical extreme of this analogy:
does the toolbox of contemporary sequence modeling it-
self provide a viable reinforcement learning algorithm? We
investigate this question by treating trajectories as unstruc-
tured sequences of states, actions, and rewards. We model
the distribution of these trajectories using a Transformer ar-
chitecture (Vaswani et al., 2017), the current tool of choice
for capturing long-horizon dependencies. In place of the tra-
jectory optimizers common in model-based control, we use
beam search (Reddy, 1997), a heuristic decoding scheme
ubiquitous in natural language processing, as a planning
algorithm.

Posing reinforcement learning, and more broadly data-
driven control, as a sequence modeling problem handles
many of the considerations that typically require distinct
solutions: actor-critic algorithms require separate actors and
critics, model-based algorithms require predictive dynamics
models, and offline RL methods often require estimation of
the behavior policy (Fujimoto et al., 2019). These compo-
nents estimate different densities or probability distributions,
such as that over actions in the case of actors and behavior
policies, or that over states in the case of dynamics models.
Even value functions can be viewed as performing inference
in a graphical model with auxiliary optimality variables,
amounting to estimation of the distribution over future re-
wards (Levine, 2018). All of these problems can be unified
under a single sequence model, which treats states, actions,
and rewards as simply a stream of data. The advantage
of this perspective is that high-capacity sequence model
architectures can be brought to bear on the problem, result-
ing in a more streamlined approach that could benefit from
the same scalability underlying large-scale unsupervised
learning results (Brown et al., 2020).

We refer to our model and approach as a Trajectory Trans-
former. We show that the Trajectory Transformer is a sub-
stantially more reliable long-horizon predictor than conven-
tional dynamics models, even in Markovian environments
for which the standard model parameterization is in princi-
ple sufficient. When combined with a modified beam search
procedure that decodes trajectories with high reward, rather

Reinforcement Learning as One Big Sequence Modeling Problem

than just high likelihood, Trajectory Transformers can attain
results on offline reinforcement learning benchmarks that
are competitive with state-of-the-art prior methods designed
specifically for that setting. Additionally, we describe how
variations on the same decoding procedure can produce a
model-based imitation learning method and, with a form
of anti-casual conditioning, a goal-reaching method. Our
results suggest that the algorithms and architectural motifs
that have been widely applicable in unsupervised learning
carry similar benefits in reinforcement learning.

2. Related Work

Recent advances in sequence modeling with deep net-
works have led to rapid improvement in the effectiveness
of such models, from LSTMs and sequence-to-sequence
models (Hochreiter & Schmidhuber, 1997; Sutskever et al.,
2014) to Transformer architectures with self-attention
(Vaswani et al., 2017). In light of this, it is tempting to
consider how such sequence models can lead to improved
performance in RL, which is also concerned with sequential
processes (Sutton, 1988). Indeed, a number of prior works
have studied applying sequence models of various types to
represent components in standard RL algorithms, such as
policies, value functions, and models (Bakker, 2002; Heess
et al., 2015a; Chiappa et al., 2017; Parisotto et al., 2020;
Parisotto & Salakhutdinov, 2021; Kumar et al., 2020b).
While such works demonstrate the importance of such mod-
els for representing memory (Oh et al., 2016), they still rely
on standard RL algorithmic advances to improve perfor-
mance. The goal in our work is different: we specifically
aim to replace as much of the RL pipeline as possible with
sequence modeling, so as to produce a simpler method
whose effectiveness is determined by the representational
capacity of the sequence model rather than algorithmic so-
phistication.

Estimation of probability distributions and densities arises in
many places in learning-based control. The most obvious is
model-based RL, where it is used to train predictive models
that can then be used for planning or policy learning (Sut-
ton, 1990; Silver et al., 2008; Fairbank, 2008; Deisenroth
& Rasmussen, 2011; Lampe & Riedmiller, 2014; Heess
et al., 2015b; Chua et al., 2018; Wang & Ba, 2020; Amos
et al., 2020). However, it also figures heavily in offline
RL, where it is used to estimate conditional distributions
over actions that serve to constrain the learned policy to
avoid out-of-distribution behavior that is not supported un-
der the dataset (Fujimoto et al., 2019; Kumar et al., 2019a;
Ghasemipour et al., 2020); imitation learning, where it is
used to fit an expert’s actions to obtain a policy (Ross &
Bagnell, 2010; Ross et al., 2011); and other areas such as
hierarchical RL (Peng et al., 2017; Co-Reyes et al., 2018;
Jiang et al., 2019). In our method, we train a single high-

capacity sequence model to represent the joint distribution
over sequences of states, actions, and rewards. This serves
as both a predictive model and a behavior policy (for imi-
tation) or behavior constraint (for offline RL). Our model
treats states, actions, and rewards interchangeably, and does
not require separate components for policies or models.

Our approach to RL is most closely related to prior model-
based RL methods that plan with a learned model (Chua
et al., 2018; Wang & Ba, 2020), in that we also use an op-
timization procedure, based on the standard beam search
algorithm typically used with sequence models, to select ac-
tions. However, while these prior methods typically require
additional machinery to work well, such as ensembles (in
the online setting) (Chua et al., 2018; Kurutach et al., 2018;
Buckman et al., 2018; Malik et al., 2019) or conservatism
or pessimism mechanisms (in the offline setting) (Yu et al.,
2020; Kidambi et al., 2020; Argenson & Dulac-Arnold,
2020), our method does not require explicit handling of
these components. Modeling the states and actions jointly
already provides a bias toward generating in-distribution
actions, which avoids the need for explicit pessimism (Fuji-
moto et al., 2019; Kumar et al., 2019a; Ghasemipour et al.,
2020; Nair et al., 2020; Jin et al., 2020; Yin et al., 2021;
Dadashi et al., 2021). In the context of recently proposed
offline RL algorithms, our method can be interpreted as a
combination of model-based RL and policy constraints (Ku-
mar et al., 2019a; Wu et al., 2019), though, again, it does
not require introducing such constraints explicitly — they
emerge from our choice to jointly model trajectories and
decode via beam search. In the context of model-free RL,
our method also resembles recently proposed work on goal
relabeling (Andrychowicz et al., 2017; Rauber et al., 2019;
Ghosh et al., 2021) and reward-conditioning (Schmidhuber,
2019; Srivastava et al., 2019; Kumar et al., 2019b) to rein-
terpret all past experience as useful demonstrations with
proper contextualization.

Concurrently with our work, Chen et al. (2021) also pro-
posed a reinforcement learning approach centered around
sequence prediction with Transformers. This work further
supports the possibility that a high-capacity sequence model
can be applied to reinforcement learning problems with-
out the need for the components usually associated with
reinforcement learning algorithms.

3. Reinforcement Learning and Control as
Sequence Modeling

In this section, we describe the training procedure for our
sequence model and discuss how it can be used for control
and reinforcement learning. We refer to the model as a Tra-
jectory Transformer for brevity, but emphasize that at the
implementation level, both our model and search strategy
are nearly identical to those common in natural language

Reinforcement Learning as One Big Sequence Modeling Problem

processing. As a result, modeling considerations are con-
cerned less with architecture design and more with how to
represent trajectory data — consisting of continuous states
and actions — for processing by a discrete-token architecture.

3.1. Trajectory Transformers

At the core of our approach is the treatment of trajectory data
as an unstructured sequence for modeling by a Transformer
architecture. A trajectory 7 consists of N-dimensional
states, M -dimensional actions, and scalar rewards:

0 o1 N-1 _0 _1 M—1 T-1
T=A{s{,8;,...,8, ,a;,a;,...,8 ,Ti}i_g

Subscripts on all tokens denote timestep and superscripts on
states and actions denote dimension (i.e., si is the 3™ dimen-
sion of the state at time ¢). In the case of continuous states
and actions, we must additionally discretize each dimension;
we do so using a regular grid with a fixed number of bins
per dimension. Assuming s! € [¢*, r?), the tokenization of
st is defined as

. _p
Si—{ViZ_ZJJFVZ (1)

in which | -] denotes the floor function and V is the size of
the per-dimension vocabulary V. We offset state tokens by
V'@ to ensure that different state dimensions are represented
by disjoint sets of tokens; action tokens a] must analogously
be offset by V' x (N + j) and discretized rewards 7; must be
offset by V' x (N + M). Note that each step in the sequence
therefore corresponds to a dimension of the state, action,
or reward, such that a trajectory with 7" time steps would
correspond to a sequence of length 7' x (N + M +1). While
this choice may seem inefficient, it allows us to model the
distribution over trajectories with more expressivity, without
simplifying assumptions such as Gaussian transitions.

Our model is a Transformer decoder mirroring the GPT
architecture (Radford et al., 2018). We use a smaller ar-
chitecture than those typically used in large-scale language
modeling, consisting of four layers and six self-attention
heads. A full architectural description is provided in Ap-
pendix A.

Training is performed with the standard teacher-forcing pro-
cedure (Williams & Zipser, 1989) used to train recurrent
models. Denoting the parameters of the Trajectory Trans-
former as 6 and induced conditional probabilities as Py, the

objective maximized during training is:

T—-1 N-1
£ =3

-1

log Py (5 | 85", 7<t)
=0

+
irr
o

long(at | at St77—<t)

(=)

+ log Py (7 | ét7ét77_—<t))7

in which we use 7, as a shorthand for a tokenized trajectory
from timesteps 0 through ¢ — 1. For brevity, probabilities
are written as conditional on all preceding tokens in a tra-
jectory, but due to the quadratic complexity of self-attention
(Kitaev et al., 2020) we must limit the maximum number of
conditioning tokens to 512, corresponding to a horizon of
m transitions. We use the Adam optimizer (Kingma
& Ba, 2015) with a learning rate of 2.5 x 10~ to train
parameters 6.

3.2. Transformer Trajectory Optimization

We now describe how sequence generation with the Trajec-
tory Transformer can be repurposed for control, focusing
on three settings: imitation learning, goal-conditioned re-
inforcement learning, and offline reinforcement learning.
These settings are listed in increasing amount of required
modification on top of the sequence model decoding algo-
rithms routinely used in natural language processing. We
refer to all of the below variations collectively as Trans-
former trajectory optimization (TTO).

Imitation learning. When the goal is to reproduce the
distribution of trajectories in the training data, we can opti-
mize directly for the probability of a trajectory T beginning
from a starting state sy. This situation matches the goal of
sequence modeling exactly, and as such we may use beam
search without modification. We describe this procedure in
Algorithm 1.

The result of this procedure is a tokenized trajectory T,
beginning from a current state s,, that has high probability
under the data distribution. If the first action a; in the
sequence is enacted and the process is repeated, we have
a receding horizon-controller. This approach is a model-
based variant of behavior cloning, in which both actions and
states are selected in order to produce a probable trajectory
from the reference behavior instead of the usual strategy of
selecting only a probable action given a current state or state
history. If we set the predicted sequence length to be the
action dimension, our approach corresponds exactly to the
simplest form of behavior cloning with an autoregressive
policy.

Reinforcement Learning as One Big Sequence Modeling Problem

Algorithm 1 Beam search

Require State s, vocabulary V
Require Sequence length L, beam width B
Discretize s to s (Equation 1)
Initialize 7o = {([8],0)} and T1., = 0
fori e {1,--- ,L} do
for (T;—1,q1-1) € Ti-1,v € V do
Ty < Ti—1 + [v]
@ < q—1 +1og Py(v | 71—1)
T« TV (7, a1)
10: end for
// Select B most probable sequences
1: Ti « arg maxycy;, |17=8 E(iq)eT{Q}
12: end for
13: Return arg max; |z ,ye7; {4}

R A A S ol

Goal-conditioned reinforcement learning. Transformer
architectures feature a “causal” attention mask to ensure that
predictions only depend on previous tokens in a sequence.
In the context of natural language, this design corresponds
to generating sentences in the linear order in which they
are spoken as opposed to an ordering reflecting their hier-
archical syntactic structure (see, however, Gu et al. (2019)
for a discussion of non-left-to-right sentence generation
with autoregressive models). In the context of trajectory
prediction, this choice instead reflects physical causality,
disallowing future events to affect the past. However, the
conditional probabilities of the past given the future are still
well-defined, allowing us to condition samples not only on
the preceding states, actions, and rewards that have already
been observed, but also any future context that we wish to
occur. If the future context is a state at the end of a trajectory,
we decode trajectories with probabilities of the form:

P(gi ‘ §t<i777—<t7§7"71>

We can use this directly as a goal-reaching method by con-
ditioning on a desired final state. If we always condition
sequences on a final goal state, we can leave the lower-
diagonal attention mask intact and simply permute the input
trajectory to {Sy_1,80,S1,...,S7—2}. By prepending the
goal state to the beginning of a sequence, we ensure that
all other predictions may attend to it without modifying the
standard attention implementation. This procedure for goal-
conditioning resembles prior methods that use supervised
learning to train goal-conditioned policies (Ghosh et al.,
2021) and is also related to relabeling techniques in model-
free RL (Andrychowicz et al., 2017). In our framework, it
is identical to the standard subroutine in sequence modeling:
inferring the most likely sequence given available evidence.

Offline reinforcement learning. The beam search
method described in Algorithm 1 optimizes sequences

for their probability under the data distribution. By re-
placing the log-probabilities of token predictions with the
predicted reward signal, we can use the same Trajectory
Transformer and search strategy for reward-maximizing
behavior. Appealing to the control as inference graphical
model (Levine, 2018), we are in effect replacing a transi-
tion’s log-probability in beam search with its log-probability
of optimality, which corresponds to the sum of rewards.

Using beam-search as a reward-maximizing procedure has
the risk of leading to myopic behavior. To address this issue,
we augment each transition in the training trajectories with
reward-to-go:

T-1

Ry = Z 7 e

t'=t

and include it as an additional quantity, discretized iden-
tically to the others, to be predicted alongside immediate
rewards. During planning, we then have access to value esti-
mates from our model to add to cumulative rewards. While
acting greedily with respect to such Monte Carlo value es-
timates is known to suffer from poor sample complexity
and convergence to suboptimal behavior when online data
collection is not allowed, we only use this reward-to-go
estimate as a heuristic to guide beam search, and hence our
method does not require the estimated values to be particu-
larly accurate. Note also that, in the offline RL case, these
reward-to-go quantities estimate the value of the behavior
policy and will not, in general, match the values achieved
by TTO. Of course, it is much simpler to learn the value
function of the behavior policy than that of the optimal pol-
icy, since we can simply use Monte Carlo estimates without
relying on Bellman updates. A proper value estimator for
the TTO policy could plausibly give us an even better search
heuristic, though it would require invoking the tools of dy-
namic programming. In contrast, augmenting trajectories
with reward-to-go and predicting with a discretized model
is as simple as training a classifier with full supervision.

Because our Transformer predicts reward and reward-to-go
only every N + M + 1 tokens, we sample all intermediate
tokens using log-probabilities, as in the imitation learning
and goal-reaching settings. More specifically, we sample
full transitions (S;, a;, 74, Ry) using likelihood-maximizing
beam search, treat these transitions as our vocabulary, and
filter sampled trajectories by those with the highest cumula-
tive reward plus reward-to-go estimate.

We have taken a sequence-modeling route to what could be
described as a fairly simple-looking model-based planning
algorithm, in that we sample candidate action sequences,
evaluate their effects using a predictive model, and select
the reward-maximizing trajectory. This conclusion is in part
due to the close relation between sequence modeling and
trajectory optimization. There is one dissimilarity, however,

Reinforcement Learning as One Big Sequence Modeling Problem

Transformer Reference

Feedforward

Figure 1. (Prediction visualization) A qualitative comparison of length-100 trajectories generated by the Trajectory Transformer and a
feedforward Gaussian dynamics model from PETS, a state-of-the-art planning algorithm (Chua et al., 2018). Both models were trained on
trajectories collected by a single policy, for which a true trajectory is shown for reference. Compounding errors in the single-step model
lead to physically implausible predictions, whereas the Transformer-generated trajectory is visually indistinguishable from those produced
by the policy acting in the actual environment. The paths of the feet and head are traced through space for depiction of the movement

between rendered frames.

that is worth highlighting: by modeling actions jointly with
states and sampling them using the same procedure, we can
prevent the model from being queried on out-of-distribution
actions. The alternative, of treating action sequences as
unconstrained optimization variables that do not depend
on state (Nagabandi et al., 2018), can more readily lead to
model exploitation, as the problem of maximizing reward
under a learned model closely resembles that of finding ad-
versarial examples for a classifier (Goodfellow et al., 2014).

4. Experiments

Our experimental evaluation focuses on (1) the accuracy of
the Trajectory Transformer as a long-horizon predictor com-
pared to standard dynamics model parameterizations and
(2) the utility of sequence modeling tools — namely beam
search — as a control algorithm in the context of offline rein-
forcement learning, imitation learning, and goal-reaching.

4.1. Model Analysis

We begin by evaluating the Trajectory Transformer as a long-
horizon policy-conditioned predictive model. The usual
strategy for predicting trajectories given a policy is to rollout
with a single-step model, with actions supplied by the policy.
Our protocol differs from the standard approach not only in

that the model is not Markovian, but also in that it does not
require access to a policy to make predictions — the outputs
of the policy are modeled alongside the states encountered
by that policy. Here, we focus only on the quality of the
model’s predictions; we use actions predicted by the model
for an imitation learning method in the next subsection.

Trajectory predictions. Figure 1 depicts a visualization
of predicted 100-timestep trajectories from our model after
having trained on a dataset collected by a trained humanoid
policy. Though model-based methods have been applied
to the humanoid task, prior works tend to keep the horizon
intentionally short to prevent the accumulation of model
errors (Janner et al., 2019; Amos et al., 2020). The refer-
ence model is the probabilistic ensemble implementation
of PETS (Chua et al., 2018); we tuned the number of mod-
els within the ensemble, the number of layers, and layer
sizes, but were unable to produce a model that predicted
accurate sequences for more than a few dozen steps. In con-
trast, we see that the Trajectory Transformer’s long-horizon
predictions are substantially more accurate, remaining vi-
sually indistinguishable from the ground-truth trajectories
even after 100 predicted steps. To our knowledge, no prior
model-based RL algorithm has demonstrated predicted roll-
outs of such accuracy and length on tasks of comparable
dimensionality.

Reinforcement Learning as One Big Sequence Modeling Problem

Humanoid
10—
~ 80
o I
S \
=60
o)
= 40
20
@]
= 20
0
10 20 30 40 5
timestep

—— Transformer

—— Markovian Transformer

Partially-Observed Humanoid

70
<
g

= 60

=0 50
<

40

10 20 30 40 50
timestep

—— Feedforward === Discrete oracle

Figure 2. (Compounding model errors) We compare the accuracy of the Trajectory Transformer to that of the probabilistic feedforward
model ensemble (Chua et al., 2018) over the course of a planning horizon in the humanoid environment, corresponding to the trajectories
visualized in Figure 1. We find that the trajectory Transformer has substantially better error compounding with respect to prediction
horizon than the feedforward model. The discrete oracle is the maximum log likelihood attainable given the discretization size; see

Appendix B for a discussion.

St
ag

St45
a¢ts

St
ag

St+5

ag45

Figure 3. (Attention patterns) We observe two distinct types of attention masks during trajectory prediction. In the first, both states and
actions are dependent primarily on the immediately preceding transition, corresponding to a model that has learned the Markov property.
The second strategy has a striated appearance, with state dimensions depending most strongly on the same dimension of multiple previous
timesteps. Surprisingly, actions depend more on past actions than they do on past states, reminiscent of the action smoothing used in some
trajectory optimization algorithms (Nagabandi et al., 2019). Masks are produced by a first- and third-layer attention head during sequence
prediction on the hopper benchmark; reward dimensions are omitted for this visualization.

Error accumulation. A quantitative account of the same
finding is provided in Figure 2, in which we evaluate the
model’s accumulated error versus prediction horizon. Stan-
dard predictive models tend to have excellent single-step
errors but poor long-horizon accuracy, so instead of eval-
uating a test-set single-step likelihood, we sample 1000
trajectories from a fixed starting point to estimate the per-
timestep state marginal predicted by each model. We then

report the likelihood of the states visited by the reference
policy on a held-out set of trajectories under these predicted
marginals. To evaluate the likelihood under our discretized
model, we treat each bin as a uniform distribution over its
specified range; by construction, the model assigns zero
probability outside of this range.

To better isolate the source of the Transformer’s improved
accuracy over standard single-step models, we also evaluate

Reinforcement Learning as One Big Sequence Modeling Problem

HalfCheetah Hopper Walker2d
120 N
100
100
100
80 80
80
60 60
60
40
40 40
medium mixed med-expert medium mixed med-expert medium mixed med-expert

] BC B MOPO B MBOP [CQL

Bl TTO (ours)

Figure 4. (Offline reinforcement learning): TTO performs on par with or better than the best prior offline reinforcement learning
algorithms on the D4RL benchmark suite. Results for TTO correspond to the mean over 15 random seeds (5 independently trained
Transformers and 3 trajectories per Transformer), with error bars depicting standard deviation between runs. We detail the sources of the
performance for other methods in Appendix C. A listing of these results in tabular form is provided in Appendix E.

a Markovian variant of our same architecture. This abla-
tion has a truncated context window that prevents it from
attending to more than one timestep in the past. We find
that this model performs similarly to the trajectory Trans-
former on fully-observed environments, suggesting that ar-
chitecture differences and increased expressivity from the
autoregressive state discretization play a large role in the tra-
jectory Transformer’s long-horizon accuracy. We construct
a partially-observed version of the same humanoid environ-
ment, in which each dimension of every state is masked
out with 50% probability (Figure 2 right), and find that, as
expected, the long-horizon conditioning plays a larger role
in the model’s accuracy in this setting.

Attention patterns. We visualize the attention maps dur-
ing model predictions in Figure 3. We find two primary
attention patterns. The first is a discovered Markovian strat-
egy, in which a state prediction attends overwhelmingly to
the previous transition. The second is qualitatively striated,
with the model attending to specific dimensions in multiple
prior states for each state prediction. Simultaneously, the
action predictions attend to prior actions more than they do
prior states. This contrasts with the usual formulation of
behavior cloning, in which actions are a function of only
past states, but is reminiscent of the action filtering tech-
nique used in some planning algorithm to produce smoother
action sequences (Nagabandi et al., 2019).

4.2. Reinforcement Learning and Control

Offline reinforcement learning. We evaluate TTO on the
D4RL offline RL benchmark suite, with results shown in

Figure 4. This evaluation is the most difficult of our con-
trol settings, as reward-maximizing behavior is the most
qualitatively dissimilar from the types of behavior that are
normally associated with unsupervised modeling — namely,
imitative behavior. We compare against four other methods:
(1) conservative (Q-learning (CQL; (Kumar et al., 2020a)),
(2) model-based offline policy optimization (MOPO; (Yu
et al., 2020)), model-based offline planning (MBOP; (Ar-
genson & Dulac-Arnold, 2020)), and behavior cloning (BC).
The first two comprise the current state-of-the-art in model-
free and model-based offline reinforcement learning. MBOP
provides a point of comparison for a planning algorithm that
uses a single-step dynamics model as opposed to a Trans-
former. We find that on the hopper and walker benchmarks,
across all dataset types, TTO performs on par with or better
than the best prior offline RL methods. On the halfchee-
tah environment, TTO matches the performance of prior
methods except on the medium-expert dataset, possibly due
to the increased range of the velocities in the expert data
causing the state discretization to become too coarse.

Imitation and goal-reaching. We additionally run TTO
using standard likelihood-maximizing, as opposed to return-
maximizing, beam search. We find that after training the
Trajectory Transformer on datasets collected by expert poli-
cies (Fu et al., 2020), using beam search as a receding-
horizon controller achieves an average normalized return of
104% and 109% in the hopper and walker2d environments,
respectively. While this result is perhaps unsurprising, as
behavior cloning with standard feedforward architectures is
already able to reproduce the behavior of the expert policies,
it demonstrates that a decoding algorithm used for language

Reinforcement Learning as One Big Sequence Modeling Problem

Figure 5. (Goal-reaching) Trajectories collected by TTO with anti-causal goal-state conditioning in a continuous variant of the four
rooms environment. Trajectories are visualized as curves passing through all encountered states, with color becoming more saturated as
time progresses. Note that these curves depict real trajectories collected by the controller and not sampled sequences. The starting state is

depicted by @® and the goal state by @®. Best viewed in color.

modeling can be effectively repurposed for control.

Finally, we evaluate the goal-reaching variant of likelihood-
maximizing TTO, which conditions on a future desired
state alongside previously encountered states. We use a
continuous variant of the classic four rooms environment as
a testbed (Sutton et al., 1999). Our training data consists of
trajectories collected by a pretrained goal-reaching agent,
with start and goal states sampled uniformly at random
across the state space. Figure 5 depicts routes taken by
TTO; we see that anti-causal conditioning on a future state
allows for beam search to be used as a goal-reaching method.
No reward shaping, or rewards of any sort, are required; the
planning method relies entirely on goal relabeling.

5. Discussion

We have presented a sequence modeling view on reinforce-
ment learning that enables us to derive a single algorithm
for a diverse range of problem settings, unifying many of
the standard components of reinforcement learning algo-
rithms (such as policies, models, and value functions) under
a single sequence model. The algorithm involves training a
sequence model jointly on states, actions, and rewards and
sampling from it using a minimally modified beam search.
Despite drawing from the tools of large-scale language mod-
eling instead of those normally associated with control, we
find that this approach is effective in imitation learning,
goal-reaching, and offline reinforcement learning.

The simplicity and flexibility of TTO do come with limi-
tations. Prediction with Transformers is slower and more
resource-intensive than prediction with the types of single-
step models often used in model-based control. While
real-time control with Transformers for most dynamical

systems is currently out of reach, growing interest in
computationally-efficient Transformer architectures (Tay
et al., 2021) could cut runtimes down substantially. Further,
in TTO we have chosen to discretize continuous data to fit a
standard architecture instead of modifying the architecture
to handle continuous inputs. While we found this design to
be much more effective than conventional continuous dy-
namics models, it does in principle impose an upper bound
on prediction precision. More sophisticated discretization
approaches such as adaptive grids (Sinclair et al., 2019) or
learned discretizations (Maddison et al., 2016; Jang et al.,
2016; van den Oord et al., 2017) could alleviate these issues.

One of the interesting implications of our results is that rein-
forcement learning problems can be reframed as supervised
learning tasks with an appropriate choice of model. This can
allow bringing to bear high-capacity models trained with
stable and reliable algorithms. While we are not the first to
make this observation, our results are perhaps an especially
extreme illustration of this principle: TTO dispenses with
many of the standard assumptions in reinforcement learning,
including the Markov property, and still attains results on
a range of offline reinforcement learning benchmarks that
are competitive with the best prior methods. A particularly
exciting direction for future work is to investigate whether
further increasing model size and devising more effective
representations can further simplify learning-based control
methods.

References

Amos, B., Stanton, S., Yarats, D., and Wilson, A. G. On
the model-based stochastic value gradient for continuous
reinforcement learning. arXiv preprint arXiv:2008.12775,
2020.

Reinforcement Learning as One Big Sequence Modeling Problem

Andrychowicz, M., Wolski, F., Ray, A., Schneider, J., Fong,
R., Welinder, P., McGrew, B., Tobin, J., Abbeel, P.,, and
Zaremba, W. Hindsight experience replay. In Advances
in Neural Information Processing Systems. 2017.

Argenson, A. and Dulac-Arnold, G. Model-based offline
planning. arXiv preprint arXiv:2008.05556, 2020.

Bakker, B. Reinforcement learning with long short-term
memory. Neural Information Processing Systems, 01
2002.

Bellman, R. Dynamic Programming. Dover Publications,
1957.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan,
J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.
arXiv preprint arXiv:2005.14165, 2020.

Buckman, J., Hafner, D., Tucker, G., Brevdo, E., and
Lee, H. Sample-efficient reinforcement learning with
stochastic ensemble value expansion. arXiv preprint
arXiv:1807.01675, 2018.

Chen, L., Lu, K., Rajeswaran, A., Lee, K., Grover, A.,
Laskin, M., Abbeel, P., Srinivas, A., and Mordatch, I. De-
cision Transformer: Reinforcement learning via sequence
modeling. arXiv preprint arXiv:2106.01345, 2021.

Chiappa, S., Racaniere, S., Wierstra, D., and Mohamed, S.
Recurrent environment simulators. 2017.

Chua, K., Calandra, R., McAllister, R., and Levine, S. Deep
reinforcement learning in a handful of trials using proba-
bilistic dynamics models. In Advances in Neural Infor-
mation Processing Systems. 2018.

Co-Reyes, J., Liu, Y., Gupta, A., Eysenbach, B., Abbeel, P,,
and Levine, S. Self-consistent trajectory autoencoder: Hi-
erarchical reinforcement learning with trajectory embed-
dings. In International Conference on Machine Learning,
pp- 1009-1018. PMLR, 2018.

Dadashi, R., Rezaeifar, S., Vieillard, N., Hussenot, L.,
Pietquin, O., and Geist, M. Offline reinforcement
learning with pseudometric learning. arXiv preprint
arXiv:2103.01948, 2021.

Deisenroth, M. and Rasmussen, C. E. PILCO: A model-
based and data-efficient approach to policy search. In
International Conference on Machine Learning, 2011.

Fairbank, M. Reinforcement learning by value gradients.
arXiv preprint arXiv:0803.3539, 2008.

Fu, J., Kumar, A., Nachum, O., Tucker, G., and Levine,
S. D4RL: Datasets for deep data-driven reinforcement
learning, 2020.

Fujimoto, S., Meger, D., and Precup, D. Off-policy deep
reinforcement learning without exploration. In Interna-
tional Conference on Machine Learning, pp. 2052-2062.
PMLR, 2019.

Ghasemipour, S. K. S., Schuurmans, D., and Gu, S. S. Emaq:
Expected-max g-learning operator for simple yet effective
offline and online rl. arXiv preprint arXiv:2007.11091,
2020.

Ghosh, D., Gupta, A., Reddy, A., Fu, J., Devin, C. M.,
Eysenbach, B., and Levine, S. Learning to reach goals via
iterated supervised learning. In International Conference
on Learning Representations, 2021. URL https://
openreview.net/forum?id=rALA0Xo6yNJ.

Goodfellow, I. J., Shlens, J., and Szegedy, C. Explain-
ing and harnessing adversarial examples. arXiv preprint
arXiv:1412.6572, 2014.

Gu, J., Liu, Q., and Cho, K. Insertion-based Decoding with
Automatically Inferred Generation Order. Transactions
of the Association for Computational Linguistics, 2019.

Heess, N., Hunt, J. J., Lillicrap, T., and Silver, D. Memory-
based control with recurrent neural networks. ArXiv,
abs/1512.04455, 2015a.

Heess, N., Wayne, G., Silver, D., Lillicrap, T., Tassa, Y., and
Erez, T. Learning continuous control policies by stochas-
tic value gradients. In Advances in Neural Information
Processing Systems, 2015b.

Hochreiter, S. and Schmidhuber, J. Long short-term memory.
Neural computation, 9(8):1735-1780, 1997.

Jang, E., Gu, S., and Poole, B. Categorical repa-
rameterization with gumbel-softmax. arXiv preprint
arXiv:1611.01144, 2016.

Janner, M., Fu, J., Zhang, M., and Levine, S. When to trust
your model: Model-based policy optimization. In Ad-
vances in Neural Information Processing Systems, 2019.

Jiang, Y., Gu, S., Murphy, K., and Finn, C. Language as an
abstraction for hierarchical deep reinforcement learning.
arXiv preprint arXiv:1906.07343, 2019.

Jin, Y., Yang, Z., and Wang, Z. Is pessimism provably
efficient for offline r1? arXiv preprint arXiv:2012.15085,
2020.

Kidambi, R., Rajeswaran, A., Netrapalli, P., and Joachims,
T. Morel: Model-based offline reinforcement learning.
arXiv preprint arXiv:2005.05951, 2020.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. In International Conference on Learning
Representations, 2015.

https://openreview.net/forum?id=rALA0Xo6yNJ
https://openreview.net/forum?id=rALA0Xo6yNJ

Reinforcement Learning as One Big Sequence Modeling Problem

Kitaev, N., Kaiser, L., and Levskaya, A. Reformer: The
efficient transformer. arXiv preprint arXiv:2001.04451,
2020.

Kumar, A., Fu, J., Tucker, G., and Levine, S. Stabilizing
off-policy g-learning via bootstrapping error reduction.
In Advances in Neural Information Processing Systems,
2019a.

Kumar, A., Peng, X. B., and Levine, S. Reward-conditioned
policies. arXiv preprint arXiv:1912.13465, 2019b.

Kumar, A., Zhou, A., Tucker, G., and Levine, S. Conserva-
tive g-learning for offline reinforcement learning. arXiv
preprint arXiv:2006.04779, 2020a.

Kumar, S., Parker, J., and Naderian, P. Adaptive transform-
ers in RL. arXiv preprint arXiv:2004.03761, 2020b.

Kurutach, T., Clavera, 1., Duan, Y., Tamar, A., and Abbeel, P.
Model-ensemble trust-region policy optimization. arXiv
preprint arXiv:1802.10592, 2018.

Lampe, T. and Riedmiller, M. Approximate model-assisted
neural fitted Q-iteration. In International Joint Confer-
ence on Neural Networks, 2014.

Levine, S. Reinforcement learning and control as proba-
bilistic inference: Tutorial and review. arXiv preprint
arXiv:1805.00909, 2018.

Maddison, C. J., Mnih, A., and Teh, Y. W. The concrete
distribution: A continuous relaxation of discrete random
variables. arXiv preprint arXiv:1611.00712, 2016.

Malik, A., Kuleshov, V., Song, J., Nemer, D., Seymour, H.,
and Ermon, S. Calibrated model-based deep reinforce-
ment learning. In International Conference on Machine
Learning, pp. 4314-4323. PMLR, 2019.

Nagabandi, A., Kahn, G., S. Fearing, R., and Levine, S.
Neural network dynamics for model-based deep rein-
forcement learning with model-free fine-tuning. In Inter-
national Conference on Robotics and Automation, 2018.

Nagabandi, A., Konoglie, K., Levine, S., and Kumar, V.
Deep Dynamics Models for Learning Dexterous Manipu-
lation. In Conference on Robot Learning, 2019.

Nair, A., Dalal, M., Gupta, A., and Levine, S. Accelerating
online reinforcement learning with offline datasets. arXiv
preprint arXiv:2006.09359, 2020.

Oh, J., Chockalingam, V., Lee, H., et al. Control of memory,
active perception, and action in minecraft. In Interna-
tional Conference on Machine Learning, pp. 2790-2799.
PMLR, 2016.

Parisotto, E. and Salakhutdinov, R. Efficient transformers in
reinforcement learning using actor-learner distillation. In
International Conference on Learning Representations,
2021.

Parisotto, E., Song, F., Rae, J., Pascanu, R., Gulcehre, C.,
Jayakumar, S., Jaderberg, M., Kaufman, R. L., Clark, A.,
Noury, S., et al. Stabilizing transformers for reinforce-
ment learning. In International Conference on Machine
Learning, 2020.

Peng, X. B., Berseth, G., Yin, K., and Van De Panne, M.
Deeploco: Dynamic locomotion skills using hierarchi-
cal deep reinforcement learning. ACM Transactions on
Graphics (TOG), 36(4):1-13, 2017.

Radford, A., Narasimhan, K., Salimans, T., and Sutskever,
I. Improving language understanding by generative pre-
training. 2018.

Rauber, P., Ummadisingu, A., Mutz, F., and Schmidhuber, J.
Hindsight policy gradients. In International Conference
on Learning Representations, 2019. URL https://
openreview.net/forum?id=Bkg2viA5FQ.

Reddy, R. Speech understanding systems: Summary of
results of the five-year research effort at Carnegie Mellon
University, 1997.

Ross, S. and Bagnell, D. Efficient reductions for imitation
learning. In Proceedings of the thirteenth international
conference on artificial intelligence and statistics, pp.
661-668. JMLR Workshop and Conference Proceedings,
2010.

Ross, S., Gordon, G., and Bagnell, D. A reduction of imita-
tion learning and structured prediction to no-regret online
learning. In Proceedings of the fourteenth international
conference on artificial intelligence and statistics, pp.
627-635. JMLR Workshop and Conference Proceedings,
2011.

Schmidhuber, J. Reinforcement learning upside down:
Don’t predict rewards—just map them to actions. arXiv
preprint arXiv:1912.02875, 2019.

Silver, D., Sutton, R. S., and Miiller, M. Sample-based
learning and search with permanent and transient memo-
ries. In Proceedings of the International Conference on
Machine Learning, 2008.

Sinclair, S. R., Banerjee, S., and Yu, C. L. Adaptive dis-
cretization for episodic reinforcement learning in metric
spaces. Proceedings of the ACM on Measurement and
Analysis of Computing Systems, 3(3):1-44, 2019.

https://openreview.net/forum?id=Bkg2viA5FQ
https://openreview.net/forum?id=Bkg2viA5FQ

Reinforcement Learning as One Big Sequence Modeling Problem

Srivastava, R. K., Shyam, P., Mutz, F., Jaskowski, W., and
Schmidhuber, J. Training agents using upside-down re-
inforcement learning. arXiv preprint arXiv:1912.02877,
2019.

Sutskever, 1., Vinyals, O., and Le, Q. V. Sequence to
sequence learning with neural networks. In Ghahra-
mani, Z., Welling, M., Cortes, C., Lawrence, N.,
and Weinberger, K. Q. (eds.), Advances in Neural
Information Processing Systems, volume 27. Curran As-
sociates, Inc., 2014. URL https://proceedings.
neurips.cc/paper/2014/file/

aldach5a4f27472c5d89%4eclc3c743d2-Paper.

pdf.

Sutton, R. S. Learning to predict by the methods of temporal
differences. Machine Learning, 3:9, 1988.

Sutton, R. S. Integrated architectures for learning, planning,
and reacting based on approximating dynamic program-
ming. In International Conference on Machine Learning,

1990.

Sutton, R. S., Precup, D., and Singh, S. Between MDPs
and semi-MDPs: A framework for temporal abstraction
in reinforcement learning. Artificial Intelligence, 112(1):
181 - 211, 1999.

Tay, Y., Dehghani, M., Abnar, S., Shen, Y., Bahri, D., Pham,
P, Rao, J., Yang, L., Ruder, S., and Metzler, D. Long
range arena : A benchmark for efficient transformers. In
International Conference on Learning Representations,
2021. URL https://openreview.net/forum?
id=gqVyeW-grC2k.

van den Oord, A., Vinyals, O., and kavukcuoglu, k.
Neural discrete representation learning. In Guyon, L.,
Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R., Vish-
wanathan, S., and Garnett, R. (eds.), Advances in Neural
Information Processing Systems, volume 30. Curran As-
sociates, Inc., 2017. URL https://proceedings.
neurips.cc/paper/2017/file/

7a98afl7¢63a0ac09ce2e96d03992fbc—-Paper.

pdf.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I. Atten-
tion is all you need. In Advances in Neural Information
Processing Systems, 2017.

Wang, T. and Ba, J. Exploring model-based planning with
policy networks. In International Conference on Learning
Representations, 2020. URL https://openreview.
net/forum?id=Hlexf64KwH.

Williams, R. J. and Zipser, D. A learning algorithm for con-
tinually running fully recurrent neural networks. Neural
computation, 1(2):270-280, 1989.

Wu, Y., Tucker, G., and Nachum, O. Behavior regu-
larized offline reinforcement learning. arXiv preprint
arXiv:1911.11361,2019.

Yin, M., Bai, Y., and Wang, Y.-X. Near-optimal offline rein-
forcement learning via double variance reduction. arXiv
preprint arXiv:2102.01748, 2021.

Yu, T., Thomas, G., Yu, L., Ermon, S., Zou, J., Levine, S.,
Finn, C., and Ma, T. Mopo: Model-based offline policy
optimization. arXiv preprint arXiv:2005.13239, 2020.

https://proceedings.neurips.cc/paper/2014/file/a14ac55a4f27472c5d894ec1c3c743d2-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/a14ac55a4f27472c5d894ec1c3c743d2-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/a14ac55a4f27472c5d894ec1c3c743d2-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/a14ac55a4f27472c5d894ec1c3c743d2-Paper.pdf
https://openreview.net/forum?id=qVyeW-grC2k
https://openreview.net/forum?id=qVyeW-grC2k
https://proceedings.neurips.cc/paper/2017/file/7a98af17e63a0ac09ce2e96d03992fbc-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/7a98af17e63a0ac09ce2e96d03992fbc-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/7a98af17e63a0ac09ce2e96d03992fbc-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/7a98af17e63a0ac09ce2e96d03992fbc-Paper.pdf
https://openreview.net/forum?id=H1exf64KwH
https://openreview.net/forum?id=H1exf64KwH

Reinforcement Learning as One Big Sequence Modeling Problem

A. Model and training specification

Architecture and optimization details. In all environments, we use a Transformer architecture with four layers and six
self-attention heads. The total input vocabulary of the model is V' x (N + M + 2) to account for states, actions, rewards, and
rewards-to-go, but the output linear layer produces logits only over a vocabulary of size V'; output tokens can be interpreted
unambiguously because their offset is uniquely determined by that of the previous input. The dimension of each token
embedding is 192. Dropout is applied at the end of each block with probability 0.1.

We follow the learning rate scheduling of (Radford et al., 2018), increasing linearly from 0 to 2.5 x 10~ over the course of
2000 updates. We use a batch size of 64 for most experiments, but increase this up to 256 when GPU memory allows (for
example, in low-dimensional environments like four rooms).

Hardware. Model training took place on NVIDIA Tesla V100 GPUs (NCv3 instances on Microsoft Azure) for 80 epochs,
taking approximately 6-12 hours (varying with dataset size) per model on one GPU.

B. Discrete oracle

The discrete oracle in Figure 2 is the maximum log-likelihood attainable by a model under our discretization granularity.
For a single state dimension ¢, this maximum is achieved by a model that places all probability mass on the correct token,
corresponding to a uniform distribution over an interval of size

7‘2'—51'
% .

The total log-likelihood over the entire state is then given by:

al 1%
Z log .
o nih

C. Baseline performance sources
Imitation learning The performance of the behavior cloning (BC) baseline is taken from Kumar et al. (2020a).
Offline reinforcement learning The performance of MOPO is taken from Table 1 in Yu et al. (2020). The performance

of MBOP is taken from Table 1 in Argenson & Dulac-Arnold (2020). The performance of BC and CQL are taken from
Table 1 in Kumar et al. (2020a).

D. Datasets

The D4RL (Fu et al., 2020) dataset that we used in our experiments is under the Creative Commons Attribution 4.0 License
(CC BY). The license information can be found at

https://github.com/rail-berkeley/d4rl/blob/master/README.md

under the “Licenses” section.

https://github.com/rail-berkeley/d4rl/blob/master/README.md

Reinforcement Learning as One Big Sequence Modeling Problem

E. Offline Reinforcement Learning Results

Environment | Dataset type | BC | TTO (ours) | CQL | MOPO | MBOP
halfcheetah medium 36.1 440412 44 4 423+ 16 44.6 +0.8
halfcheetah mixed 38.4 44.1 +£355 46.2 53.1 £20 423 409
halfcheetah med-expert 35.8 40.8 £8.7 624 | 63.34+380 | 10594178
hopper medium 29.0 67.4 £113 58.0 | 28.0 £ 124 48.8 £26.8
hopper mixed 11.8 99.4 + 12.6 48.6 | 67.5 £247 124 +538
hopper med-expert 111.9 106 £1.1 | 111.0 | 23.7+60 55.1 £443
walker2d medium 6.6 81.3 £8.0 79.2 | 17.8 £193 41.0 £294
walker2d mixed 11.3 79.4 +12.8 26.7 39.0 £96 9.7+53
walker2d med-expert 11.3 91.0 + 10.8 98.7 | 44.6 £ 129 70.2 +36.2
Table 1. Offline reinforcement learning results from Figure 4 in tabular form.

