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ABSTRACT

We investigate in-context learning (ICL) models from the perspective of learning to
learn. Unlike existing works understanding what exact explicit learning algorithms
can and do ICL models learn, we compare ICL models with typical meta-learners
to understand why they can work well. We theoretically prove its expressiveness as
learning algorithms and investigate its learnability and generalizability on extensive
settings. It is demonstrated that ICL with transformers can effectively learn optimal
learning algorithms data-dependently in an inclusive space containing existing
gradient-based, metric-based and amortization-based meta-learners. However, the
generalizability of these learning algorithms is identified to be a critical issue, as
the learned algorithm could be implicitly fitting the training distribution rather than
an explicit learning algorithm. Based on the above understanding, we propose to
systematically transfer deep-learning techniques which have been widely-studied
in supervised-learning to meta-learning to address their common challenges. We
demonstrate meta-level meta-learning for domain-adaptability with few data and
meta-level curriculum learning for fast convergence in pre-training as examples,
showing their empirical effectiveness.

1 INTRODUCTION

Large Language Models (LLMs) |Achiam et al.| (2023) have witnessed remarkable progress in recent
years. Apart from traditional natural language processing tasks such as machine translation as
sentiment analysis, LLMs have gained prominence in solving more complex tasks by understanding
instructions and examples from human’s input, and generate coherent, human-like text. LLMs use
in-context learning (ICL) (Brown| 2020) to understand and generate responses based on the input
text. Given a prompt containing examples (input-output pairs) from a task and a query input, ICL
allows the LLM to generate the corresponding output without altering their weights. For example,
given "happy -> positive; sad -> negative; blue ->", the model can output "negative", while given
"green -> cool; yellow -> warm; blue ->" the model can output "cool". Formally, ICL can be
formulated as given input (x(1), y( ... x( y() x(n+1)) where there is an underlying task
f that y® = f(x(), the model outputs the prediction of f(x("+1)). Through pre-training by
simulating the above behavior over a distribution over f, the ICL model can generalize to unseen
tasks.

The remarkable performance of LLMs across a wide range of applications has garnered significant
attention toward understanding how their ICL ability is acquired and executed. However, ICL has
so far been well-understood only in highly simplified settings: linear-transformer trained on linear
regression tasks. In such cases, the model is shown to precisely learn to perform pre-conditioned
gradient descent based on input examples, with explicit weights corresponding to the global minimum
during pretraining (Von Oswald et al.| 2023 Mahankali et al., 2024} /Ahn et al.| 2023; |Gatmiry et al.,
2024). However, this setting is so simplified that it is far from real-world scenarios, and no complex
setting enjoys such a transparent understanding. Towards more generalizable understanding of ICL,
there are efforts from different perspectives, including theories results of expressiveness (Wang et al.|
2024} Bai et al., |2023)), learning dynamics and convergence (Tian et al.| 2023} |Li et al., [2023b; [Huang
et al.| 2024} Zhang et al., 2024} [Sander et al.| 2024)), generalization error (Li et al., 2023a; 2024} |[Wies
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Figure 1: In this paper, we begin by proving that ICL with transformer is expressive enough to
encompass typical meta-learners in the learning algorithm space. We then demonstrate that ICL
exhibits meta-level deep learning properties, allowing deep learning techniques to be effectively
adapted to the meta-level to enhance ICL.

et al.,|2024), and observations of ICL model’s behaviors (Akyiirek et al.|[2023; Bhattamishra et al.,
2024} Zhang et al.,|2023)).

Although exactly understanding what and how do the ICL models learn from pre-training is chal-
lenging and specific to various problem setting and data distribution, basic consensuses have been
reached that: the ICL model learns a learning algorithm mapping (x(l),y(l), coex(m) y(")) to f
through pre-training, and the inference process is interpreted as first learning the function f from
(xM, y@® ... x() y()) and then applying it to x("*1). The above consensuses describe the
nature that ICL model is meta-learner (Kirsch et al., 2022 [Dai et al., [2023)), which is to learn a
learning algorithm to enable a learning system to quickly adapt to new tasks, i.e., learning to learn
(Schmidhuber, |1987}; [Thrun & Pratt, [1998)). Given tasks for meta-training (pre-training), it aims at
learning a learner function (i.e., learning algorithm) that makes inference of certain input according
to a given set of labels examples, then it can generalize to meta-testing (unseen) tasks. As typical
meta-learners have been widely studied but no one has shown successful general intelligence as LLMs
(ICL models) do, a nature question is: what distinguishes ICL models from typical meta-learners?
While existing works towards understanding ICL take efforts to answer what exact learning algorithm
ICL model learns, we try to answer:

Why can ICL models be prominent compared with typical meta-learners?

The seeming difference between ICL models and typical meta-learners is their hypothesis spaces. ICL
has been described as the outcome of meta-learning with minimal inductive bias (Kirsch et al., [ 2022).
The basic hypothesis of meta-learners is function with two inputs: a support set containing labeled
examples, and a query input, outputting the prediction of query. Meta-training such a black-box
model with sufficient tasks can lead to general ICL ability. The above difference can lead to the
prominence through the profit of data-driven expelling human-designed knowledge, as in many fields
of machine learning, the success of learning with less inductive bias, i.e., training a deep black-box
model can attribute to this (LeCun et al., 2015). Human-designed knowledge is achieved through past
experience, which can not necessarily be correct or helpful to the target problem, while data-driven
knowledge is optimized through the training data, and could work well on the target problem when
the hypothesis space is expressive enough and generalizability is certified. Such characteristics also
exists in the hypothesis of meta-learners, about knowledge to determine a learning algorithm. Typical
meta-learners exactly define, or give strong prior knowledge by human design to the algorithm
structure about, i.e., how to utilize support examples and predict the query. ICL models only keep the
basic hypothesis with a black-box model, where transformer (Vaswanil, [2017) is a feasible choice, as
each layer it permits black-box interaction among samples and can be stacked to deep architecture,
while keeping certain necessary inductive bias like being aware of the support labels and identifying
the query through tokenization, and permutation-invariance among support examples, enhancing
generalizability. Thus we conjecture that ICL models’ prominence attribute to learning optimal
learning algorithms in an inclusive space, while the optimality is data—dependentﬂ indicating risks in
generalizability.

In the sequel, we first verify above conjecture, reaching conclusions that ICL. model can, and does
learn data-dependent optimal algorithm, but has limited generalizability showing distribution-sensitive

!"The formal definition of an optimal learning algorithm and a data-dependent optimal learning algorithm is
provided in Appendix[C]
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performance when the algorithm is implicit. Then based on this understanding, we point out common
challenge and expectation of training deep-models in supervised-learning and pre-training ICL models.
Thus we provide insights to transfer mature deep-learning techniques to improve ICL through a
systematical mapping from supervised-learning to meta-learning. Related works are discussed in

Appendix [A]

Our contributions can be summarized as following:

* We investigate ICL model from a learning to learn perspective, by investigating its expres-
siveness, learnability and generalizability as a meta-learner, and achieve to provide a unified
understanding of ICL accommodating existing works.

* We theoretically prove that ICL with transformer is expressive enough to perform existing
categories of meta-learning algorithm, and show it does construct data-dependent optimal
algorithms on extensive settings, and investigate its generalizability falsifying the existing
interpretation as "algorithm selection".

* We propose to improve ICL by systemically transferring deep-learning techniques to meta-
level through a mapping between supervised-learning and meta-learning. As examples,
we practice to improve domain-adaptability of ICL model by pre-training with meta-level
meta-learning, and fast convergence by pre-training with meta-level curriculum learning,
and show their empirical effectiveness.

2 PRELIMINARIES: LEARNING TO LEARN

A learning algorithm (Kirsch et al., [2022)) is considered as a mapping from a labeled dataset D =
{(x@), y(i))}?:1 and a query input x(9) to a prediction §(?). The function of a learning algorithm
can all be represented as a learner function g:

v\ =g(x'?, D). M

Learning to learn (Vilalta & Drissi, [2002; |[Hospedales et al., [2021) is also called meta-learning, which
aims to optimize a learnable g(; #) through meta-training. Training ICL models or other meta-learners
is learning to learn.

2.1 IN-CONTEXT LEARNING WITH TRANSFORMER

Generally, there is a input matrix Z, composed of D and x(9), which is fed into a M-layer transformer
TFs. Denote the collection of all model weights in TFj; as 6. ICL’s function in (I2) can be
represented as a learner function gp;:

gar (x99 D;0yr) = TF a1 (Zo; 001), 2)

where details of construction of Zy, model architecture of TF;;, and optimizing 8, are provided in

Appendix

2.2 TYPICAL META-LEARNING

Typical meta-learners are more restricted to certain learning algorithm frameworks designed by
human experts. People introduce strong inductive bias into g(; 6), i.e., how to adapt to D and make

inference of x(9). Typical meta-learners can be generally categorized into three categories (Bronskill
et al.| [2021): gradient-based, metric-based and amortization-based. The function of each category
can be summarized as follows.

Gradient-Based. Given a prediction model h : x — y and a loss function £(-, -), gradient-based
meta-learners (Finn et al.|[2017) performs gradient-descent with labeled data in D:

Gga(xD,D;0) = (x50 = > Vel(h(x";0),y)). 3)

Metric-Based. Metric-based learners (Koch et al.,[2015; Garcia & Bruna, 2018} |Sung et al., [2018)
learn to compare query with examples by optimizing a distance metric in the feature space. Denote
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a distance function dy(-, -). Pair-wise metric-based algorithm makes prediction based on pair-wise
distance between query and examples:

1 n ) .
Geim (xD D; 0) = - Zi=1 dg(x(’), X(q))y(z)_ 4)

While for classification tasks where y(*) € {cc}gzl, one can also adopt class-prototype metric-based
algorithm (Snell et al.||2017), comparing the query and prototype c. of each class c:

c 1 .
gpre(X D D50) =3 do(-—> | xD xD)e.. (5)

Amortization-Based. Amortization-based meta-learners (Garnelo et al.,[2018]) are also called as
black-box meta-learners. As it also considers to meta-train a black-box model to learn the learning
algorithm, it is much closer to ICL model as meta-learner. However, typical amortization-based
methods follows the framework of using a set encoder (Zaheer et al.,2017) to map D to a vector e as
the task context and then feed the context and the query input to a prediction model fy : (x,€) — y.
Considering the universal approximation property of neural networks, amortization-based meta-
learner can be formulated as:
@ Do)y — f,(x@ LS [x@O)]y®
gam(x 7Da0) - fg(X ) Zi:l[x |y ]) (6)

n
3 EXPRESSIVENESS OF ICL WITH TRANSFORMER AS LEARNING
ALGORITHMS

Expressiveness in deep-learning refers to a model’s ability to capture complex patterns and relation-
ships within data (LeCun et al.l |2015), which is a fundamental property that gives the chance to
deep-learning models achieving high performance in intricate tasks. We focus on expressiveness on
meta-level, about the ability to capture interaction patterns and relationships among samples in D
and x(9) rather than features, to express learning algorithms. In this section, we prove that ICL with
transformer is expressive enough that it can perform all typical categories of meta-learners.

Specifically, we theoretically prove that with certain parameter instantiations, ICL with transformer
gm (@) can perform gradient-based gg4q (3), pair-wise metric-based gq;m (@), class-prototype metric-
based g, (3) and amortization-based g, (6). As class-prototype metric-based methods only can be
used for classification tasks, we consider the standard C'-class classification tasks. The detail settings
of the task and mild assumptions for this part are provided in Appendix Formally, we have the
following theorems for classification problems where C' < oo:

Theorem 3.1. V6 € RI?|, 3 M € N* < 00, 36, € RIMI gy,
Theorem 3.2. V0 € RI?| 3 M € N* < 00, 30, € RIMI gy,
Theorem 3.3. V0 € RI?,, 3 M € N* < o0, 30y, € RO g3/ (x(D D3 011) = gpre(x(9, D; 0).
Theorem 3.4. V0 € RIl, 3 M € N* < 00, 30y, € RIOMI, g0/ (x(D D 03y) = gam (xD, D3 6).

Proof Sketch The proof of Theorem [3.1~3.4] are achieved by programming the functions of
typical learners into M € N* < oo conditioned steps, where each step can be achieved through one
transformer layer with the following two basic tools:

X(q)jp;gM) — ggd(x<‘Z)7D;0).
x(D,D;0nr) = goim (x\9, D; 0).
)

~—~ ~ —~

1. Universal approximation property of multi-layer perceptron (MLP) (Hornik et al.l [1989):
this allows the feed-forward layers, express a wide range of functions R#™1 — R42 n
each transformer layer, there is a module of feed-forward layers, functions on each column
of input matrix independently, thus a wide range of sample-wise transformations which exist
in every layer of the transformer, can achieve a wide range of sample-wise transformations.

2. Orthonormal label embedding in R2“: we use a set of orthonormal vectors in R as em-
beddings of the categorical labels (including the query identifier), e.g., one-hot embeddings.
This allows the attention weight matrix A € R(®*D*("+1) ip the self-attention module
in each transformer layer, which weight the interaction weights among all samples, can
be label-aware. The label-aware means {A € RO TDX(+1) | (y() — gy A (y0) =
yU)) = A, ; = Ay v}, i.e., the interaction weight between ordered sample-pair (i, j) only
depends on their labels (y(*), y()) (also aware of unknown query), and can be arbitrary
value in R*. Thus achieving the nature of learning algorithm as label-aware set function.
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The programming into finite conditioned steps is specific to each theorem are not necessarily unique.
The full proof is provided in Appendix

4 ICL MODEL DOES LEARN DATA-DEPENDENT OPTIMAL ALGORITHM

We have shown that ICL model is expressive by proving that its hypothesis space is inclusive at least
to contain hypothesis spaces of typical meta-learners. But what solution in the space does ICL model
achieve through pre-training with certain task set, i.e., what learning algorithm does ICL model
actually learn, directly determines its performance and generalizability. This must be considered to
investigate its prominence. In this section we investigate with sufficient pre-training , if ICL model
learns optimal learning algorithm on training tasks, and what generalizability it has when we do not
explicitly know what learning algorithm it is.

Algorithm Criterion. To determine if two learning algorithms are the same, specifically for
classification tasks, the classification boundary can be manifested through Monte-Carlo sampling
query inputs and observed. With multiple trials given different sets of labeled examples, if two
learners functions always shows the same classification boundary, together with observing they have
the same end-to-end performance, we can infer that they are the same learning algorithm.

Generalizability of Learning Algorithm. We use explicit/implicit optimal learning algorithm to
distinguish the generalizability of a learning algorithm. Formally, we define explicit optimal algorithm
g(; F,*) of a function family F as: when n — oo, Vf € F, Vp(x), Ep(x)[g(x(q),D;}', *)] =
f(x@), where D = {(x®, f(x))}r_,, x(9 ~ p(z), x? ~ p(x). Which is to say an explicit
learning algorithm is generalizable over any distribution constrained by a f € F. On the contrary,
implicit optimal learning algorithms are distribution-sensitive. And we denote G, as the set of all
ground truth explicit optimal algorithms for a task set £2. For example, Ordinary Least Squares is an
explicit optimal learning algorithm g(; F, %) for linear regression tasks (F = {f | f(x) = w ' x}),
while memorizing and looking-up is an implicit optimal learning algorithm for any problem.

4.1 GENERATING TASKS WITH EXPLICIT OPTIMAL ALGORITHMS

To show if ICL with transformer does learn the optimal learning algorithm, we consider generating
tasks whose optimal prediction can be exactly achieved by some explicit learning algorithms. For
specific algorithms, we consider a representative from each categories of typical meta-learners,
Jsims> 9prt and gam. Specifically, denoting a set of tasks 2 = {DT}Zzl, we generate three types
of tasks: pair-wise metric-based tasks €2;,, where MatchNet |Vinyals et al. (2016)) (€ gsim) is the
optimal learner, class-prototype metric-based tasks €2, where ProtoNet Snell et al.| (2017) (€ gprt)
is the optimal learner, amortization-based tasks €2,,,, where CNPs |Garnelo et al.| (2018) (€ gqm)
is the optimal learner. We do not consider g4q for two reasons: it is hard to define a family of
classification tasks and the corresponding / to guarantee the optimum; proving ICL can express gq4q
is not considered as contribution of this paper as it is trivial by applying the result from [Bai et al.
(2023)); Wang et al.|(2024). The details of generating tasks and experiment settings are provided in

Appendix [E|

4.2 ICL MODEL LEARNS EXPLICIT OPTIMAL ALGORITHM ON SIMPLE TASKS
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(a) Pair-wise metric-based.  (b) Class-prototype metric-based. (¢) Amortization-based.

Figure 2: Meta-testing performance of learners meta-trained and tested on the same single type of
tasks.



Under review as a conference paper at ICLR 2025

First to verify that ICL with transformer does learn the optimal algorithm, we perform meta-training
with single type of tasks corresponding to one explicit optimal algorithm, thus we can draw the
conclusion by comparing the classification boundaries of trained ICL model and the optimal algorithm.
We also add parameterized feed-forward layers in the above-mentioned optimal meta-learners, to
meta-train them together with ICL model, so that we can compare their end-to-end performance. We
investigate with the above three types of tasks respectively.

Figure shows the end-to-end performance of learners trained on €2, and testing on
Q' (unseen), where we can find ICL’s end-to-end performance is only marginally different with
MatchNet, the parameterized optimal meta-learner through meta-training. We also visualize how ICL
classifies each sample given few fixed labeled examples and show an example in Figure [3(a)] and [3(b)|
(more cases are provided in Appendix [FI), verifying ICL model does learn the same algorithm as
MatchNet, which is optimal for £2,;,,. So does that ICL model learns ProtoNet on £2,,,; which is
optimal, shown as from Figure 2(b)} B(c) and [3(d)] and ICL model learns CNPs on €2,,, which is
optimal, shown as from [2(c)} [B(e)|and Thus we have: pre-training with Qg , Qpre O Qg
respectively, ICL model learns explicit optimal algorithm.

(a) True label of (b) ICL predic-(c) True label of (d) ICL predic-(e) True label of (f) ICL prediction
task 71 € Q.,,,,. tionof 7. task 72 € €,,,. tion of To. task 73 € Q,,. of 3.

Figure 3: Comparing ICL’s predictions and true labels on pair-wise metric-based, class-prototype
metric-based and amortization-based tasks. Results of more trials are provided in Appendix

4.3 ICL MODEL LEARNS IMPLICIT OPTIMAL ALGORITHM ON MIXED TASKS
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(a) Pair-wise metric-based tasks. (b) Class-prototype metric-based. (c) Amortization-based.

Figure 4: Meta-testing performance of learners meta-trained on hybrid tasks (testing on each seen
type of tasks respectively).

More close to the real world scenario which is complex, the pre-training tasks are from various types
that they do not share an optimal explicit learning algorithm. We investigate what learning algorithm
does ICL model learn under this setting. Note that though we can always define an implicit algorithm
that is optimal for all pre-training tasks (e.g., memorization and looking up), such data-dependent
optimal algorithm would show very limited generalizability and raise challenge to the expressiveness
of ICL model.

Specifically, we mix the above gy, ¢ and Q,,, to form meta-training task set €25, i.e.,
Gq,..., = {MatchNet, ProtoNet, CNPs}. We meta-train ICL model, MatchNet, ProtoNet and CNPs
with £2,,,;,, and evaluate their performance on unseen €2, ., €, and Q;,, respectively. Figure

shows the results. We also compare with the performafllcrzré of data-dependent optimal algorithm
(D.-Dpt. Optimal) about each type of testing tasks respectively: D.-Dpt. Optimal in Figure [(a)|
means MatchNet trained with €2, testing with €2’ . : in Figure means ProtoNet trained with

sim?
Q¢ testing with €, in Figure means CNPs trained with €, testing with €/, . We also

visualize ICL’s classification boundaries on testing tasks, which show they are the same with the
optimal ones, like the patterns shown in Figure [IOnI2] provided in Appendix
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Observing the above results, we have following conclusions: (i) meta-learners trained on €2,,,;;
(MatchNet, ProtoNet, CNPs) all fail to reach the data-dependent optimal (D.-Dpt. Optimal) perfor-
mance on ;.. ., or £, which means none of the above explicit learning algorithm can be
optimal for €24y, {2y, and £, simultaneously; (ii) ICL model trained on £2,,,;, (ICL) has very
similar performance with data-dependent optimal (D.-Dpt. Optimal) ones, together with the same
classification boundary in Appendix we can infer that ICL model does learn data-dependent
optimal learning algorithm on €2,,,,; (iii) the above conclusions (i) and (ii) together show that ICL
model learns a data-dependent optimal algorithm which ¢ G, But we do not know what

kind of learning algorithm it is yet.

mix *

We concern about the question that if the data-dependent optimal learning algorithm on £2,,;, is
implicit or explicit, which is directly related to the generalizability of ICL model. Existing works have
studied ICL model traied with mixed type of tasks to perform "algorithm selection" (Li et al.,2023aj
Bai et al.|[2023; Bhattamishra et al.,|2024; |Wang et al.,2024). "Algorithm selection" means among
all algorithms which are explicit optimal to certain pre-training tasks, ICL choosing the most suitable
algorithm which is optimal based on the specific task context, which can be formally described as
trained with €2,,,;:

gu (@, D 0r) = " (x'V, D), @
sty " = argmingeﬂmiz ZD/ cp Z(x(i),y(ﬁ)ep/e(g(x(i)a D/D/» y(i))v

which is an explicit optimal algorithm end-to-end.

However, we question that ICL model learns the above "algorithm selection" algorithm trained on
mixed type of tasks. Though this interpretation seems to be reasonable from existing empirical results,
it brings questionable generalizability to unseen type of tasks, and out-of-distribution data, which has
not been investigated in literature. First, If ICL model trained with £2,,,;, exactly follows (7)), it would
be a catastrophe for it to handle tasks from novel type which can not be solved by any g € Gq_,. -
Second, if it does learn an explicit optimal algorithm, for any tasks from seen types, i.e., it would not
be distribution-sensitive that can handle tasks from seen types with data from different distribution
consistently well. Following results show that ICL is not "algorithm selection"'.

(a) True label of (b) ICL predic-(c) True label of (d) ICL predic-(e) True label of (f) ICL prediction
task 71 € Q... tionof 1. task 72 € Q... tion of 2. task 73 € Q... of 13.

Figure 5: Comparing ICL’s predictions and true labels on radial distance tasks.
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Figure 6: Comparing ICL with ideal "algorithm selection".

4.3.1 ICL CAN SOLVE TASKS FROM UNSEEN TYPE

We still consider the ICL model trained with the above €2,,;., but introduce a novel type of tasks
for testing: radial distance tasks €,,4. We generate a task by sampling a » € R from p(7), as
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the classification boundary. Then sample {x(") € R?} | from p(x), and assign label by: y(*) =
{07 x| <7

L [x® > r
balanced in each task. Such radial distance task could not be solved following "algorithm selection",
because a radial distance D could not be learned by any g € Gq,,,, = {MatchNet, ProtoNet, CNPs}
atall,i.e., Vg € Ga,... Bp(r) p(a) [ (w0 yyep Lg(x, D/ (xD, y D)), y@)] = I, where L is the
expectation of loss of making predictions by random guess. Following the "algorithm selection”
interpretation (7), no g* could be determined. Even if an arbitrary g* is selected and performed, the
performance would not grow with the growth of example number.

. Note that we especially control p(z) according to r to make sure the labels are

However, we find that ICL model trained with €2,,,;, can handle radials distance tasks effectively.
Although exemplar tasks in Figure[5|shows that ICL model does not solve them optimally, the growing
accuracy with the growth of example number in Figure[6(a)]indicates that it does effectively learn
task-specific information, while "algorithm selector” can not. We conjecture that when g € €2, is
inclusive, the pre-trained ICL could be generalized to diverse tasks even from novel type, contributing
to LLM’s success by approaching the ideal "learning to learn".

4.3.2 ICL SHOWS DISTRIBUTION-SENSITIVE GENERALIZABILITY

Another result is it has limited generalizability on tasks even from seen types, being sensitive to the
data distribution, while "algorithm selector" would not as an explicit optimal algorithm. Figure [6(b)|
shows the ICL’s performance on hybrid tasks from seen type. The ICL model is trained with £2,,,;,
from with input distribution p(x), while we test with £/ . from a shifted distribution p’(z). The
performance obviously decreases with the distribution shift between training and testing (x-axis),
although the tasks are all from seen types. This result directly answers our question that though ICL
model trained with €2,,,;,. does learn a data-dependent optimal learning algorithm, it is implicit.
This gives ICL model limited generalizability that the meta-testing performance is sensitive to data
distribution, showing deep-learning characteristic about generalizability at meta-level.

5 IMPROVING ICL THROUGH TRANSFERRING DEEP-LEARNING TECHNIQUES
TO META-LEVEL

It is demonstrated that ICL with transformers, can effectively learn optimal learning algorithms
data-dependently in an inclusive space. However, the generalizability of these learning algorithms
is identified to be a critical issue, as their learned algorithms, as the learned algorithm could be
only "implicit" optimal on training tasks. Conceptually, this is isomorphic with the widely studied
deep-learning characteristics. In this section, we discuss the chance if we can transfer mature deep-
learning techniques which have been widely studied in supervised-learning, to meta-level to improve
ICL performance, by applying the techniques through a direct conceptual mapping from supervised-
learning to meta-learning, e.g., sample to task, sample-wise loss to task-wise auto-regressive loss,
epoch to episode.

From a motivational perspective, due to the shared deep-learning characteristics, the training of
supervised deep-learning model and ICL model faces the same basic challenge: with very large
parameter size it requires more inclusive training data to generalize and perform well, but the training
data is always limited in real world. We also have common expectations of them, like improving
generalizability, accelerating convergence, equipped with fast adaptation ability. So techniques in
supervised-learning utilizing the deep-learning characteristics might also be effective for ICL. From a
technical perspective, many effective techniques in deep-learning to achieve the above aims do not
have strict requirement on loss function or model architecture, where a differentiable supervision
signal is enough. Thus at least they can be implemented to perform at meta-level through the mapping.
Here we discuss two exemplar practices: meta-level meta-learning, which successfully improve ICL’s
performance on specific domain with very limited data for adaptation; meta-level curriculum-learning,
which successfully make the pre-training process converge faster.

5.1 META-LEVEL META-LEARNING

While general ICL model can be directly applied, it is also a usual practice to build domain-specific
artificial intelligence through adapting general ICL model with domain-specific data. However,
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compared with the general pre-training, the domain-specific data is very limited and can easily cause
over-fitting. Such few-task problem is similar to the few-shot problem in supervised learning. It has
been widely studied how to adapt ICL models efficiently to avoid over-fitting, e.g., LORA (Hu et al.}
2021)), prefix-tuning (Li & Liang| 2021)). Existing works all address the few-task problem assuming
that a general ICL model pre-trained by (I3) is given. We consider a setting where the ICL model is
pre-trained for adaptation rather than directly applied, i.e., only expect the performance of ICL model
after adapting with few task from unknown domain. This can be considered as meta meta-learning,
and could be addressed by transferring meta-learning methods through the mapping to one more meta
level, i.e., solving a bi-level optimization problem by mimicking few-task domain adaptation during
pre-training. This is practical as real-world pre-training tasks can be naturally divided into different
domains according to semantics.

Consider a domain distribution p(¢). Each domain § determines a distribution of tasks ps(7) where

a domain-specific task set {25 = {DT}Z‘;l can be drawn. During pre-training, we manually split
Qs into two disjoint task sets: a training (support) task set Qf = {D,.}._; to and a validation

(query) task set ol = {DT}Z“:t 1+1- Denote a meta meta-leaner as G/(g, €2; A)., i.e., a domain adapter
adapting meta-leaner g with task set £2. Denote a meta loss function evaluating meta-leaner g with
{D, DY} as £yetq (T, g). Meta meta-training is performing:

. 1 tr,
mAln ]EP(5) [W ZTEQ:;‘I Emeta <T7 G(g(7 9)7 967 A))] (8)

Specifically for adopting meta meta-learning to improve the pre-training of ICL model:
9;0) = gum(;0Onm); and we choose transfer MAML as G(g(;0),9Q5;A) = g6 —
V@ﬁ ETEQ% Lrneta(T,9(;0))), because of MAML’s model-agnostic property to avoid design-

ing additional learnable A.
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(a) Given 64 tasks for adaptation. (b) Given 256 tasks for adaptation. (c) Given 1024 tasks for adaptation.

Figure 7: Performance of meta-trained ICL model and meta meta-trained ICL model on unseen
domain given few tasks for adaptation.

We conduct experiments on linear regression tasks where the distribution of linear weights, ps(7) =
N(us, Xs), where (us,Xs) ~ p(d). More details are provided in Appendix [G] We denote such
meta meta-trained ICL model as M2-ICL. After pre-training, we test on unseen domains drawn
from p(8). Each domain providing QY = {D,}!_, that can be used for adaptation, and Q3 =

(D1, .1 to evaluate the performance. The performance is shown in Figure Note that reasonable

solutions include ICL w/ adpt, ICL w/o adpt, and M2-IC1 w/ adpt, while M2-IC1 w/o adpt is only the
intermediate product of meta-level meta-learning. Though without adaptation, M2-ICL performs
not necessarily perform better than ICL, we find that with carefully tuning the hyper-parameters of
the adaptation process, M2-ICL w/ adpt performs better than both ICL w/ adpt and ICL w/o adpt as
expected. Especially when the adaptation tasks are very few (64, Figure[7(a)). The advantage brought
by adaptation increases with the task number. With 1024 tasks for adaptation (Figure [7(c)), the
advantage of meta meta-training is marginal. Note although in this experiment the adaptation strategy
is fine-tuning all parameters with gradient descent, i.e., G is transferred from MAML with inner-
update as full-parameter fine-tuning, any differentiable adaptation strategy can be adopted to replace
the inner-update. The comparison between ICL and M2-ICL is isomorphic with the comparison
between a model trained following standard supervised learning and a model meta-trained following
MAML.
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5.2 META-LEVEL CURRICULUM LEARNING

Curriculum meta-learning strategy is intuitive that meta-learner should progressively learn tasks from
simple to complex for better convergence (Bengio et al.| 2009). It has been investigated to be effective
for gradient-based (Chen et al.| 2021} |Stergiadis et al.,|2021)) and metric-based (Zhang et al.,[2022)
meta-learners. We investigate if the curriculum strategy can benefit the meta-training of ICL.

We consider a simple case, ICL model learning linear regression tasks where complexity is evaluated
by the number of dimensions, which has been practiced by |Garg et al.[(2022) de facto but the effect
has not been investigated. With maximum dimension of 20, the Curriculum_dim trains the ICL
model with tasks with increasing number of effective dimensions (shown as Figure[8(a)), while values
in the other dimensions are kept to be zero. The training loss shown in Figure[8(b)| and performance
comparison with limited training shown in Figure show that training ICL model with such
curriculum converges faster. But with sufficient training, ICL model trained with and without such
curriculum have very close training loss and testing performance (Figure[8(d)). This indicates that
such curriculum can only brings faster convergence but can not find better optimum in this case.

Curriculum_none Curriculum_none
20 - . Curriculum_dim . Curriculum_dim

Squared Error
¢
Squared Error

s , | \

Step 2 Ste o
o o

0 50k 100k 150k 200k 0 50k 100k 150k 200k T Bamplenumber " " Bample Number

(a) Effective dimension. (b) Training loss. (c) Testing @ 2 x 10° (d) Testing @ 5 X 10°
episodes. episodes.

Figure 8: Training dynamics and testing performance of training ICL model with curriculum.

6 CONCLUSION, LIMITATIONS AND DISCUSSION

From the nature that pre-training ICL model is learning to learn, this paper provides analysis of
ICL models in comparison to traditional meta-learning approaches, and strategies to improve ICL.
It is demonstrated that ICL with transformers can effectively learn optimal learning algorithms
data-dependently in an inclusive space. However, the generalizability of these learning algorithms is
identified to be a critical issue, as the learned algorithm could be only "implicit" optimal on training
tasks.

This understanding might be interpreted as that ICL model in meta-learning is conceptually iso-
morphic with deep-model in supervised-learning, as on meta-level it shows the widely studied
deep-learning characteristics. Based on the above understanding, this research further proposes
strategies to enhance ICL by transferring mature deep-learning techniques in supervised-learning
to meta-level, to address common challenges and achieve common expectations. such as meta-
level meta-learning and curriculum learning, which show promise in improving domain adaptability
and convergence speed. The findings offer valuable insights into the nature of ICL and provide a
foundation for developing more robust and generalizable models in the future.

There are limitations and future works left to be done. This paper only investigates ICL with
transformer omitting the sequential order of examples. The order of examples might can be studied
focusing on the effect of positional embeddings in transformer decoupled from the learning algorithm.
Though transformer is the conventional architecture for ICL, there are other deep architectures for
black-box meta-learners such as the classical RNNs and emerging SSMs |Gu & Dao| (2023). The
convergence of pre-training ICL model is not understood in this paper, as training deep model with
high non-linearity with very complex data is very hard to trace, especially for LLMs in real-world.
Not considering convergence (i.e., with sufficient training), it is hoped to develop quantitative relations
among the size of hypothesis space, inclusiveness of training tasks and generalizability, which is
conjectured that the growth of hypothesis space might lead to decreasing generalizability given certain
training tasks, while more inclusive training tasks possibly lead to growing generalizability but upper
bounded by the hypothesis space, describing the neural scaling law of in-context learning. More
deep-learning techniques like contrastive learning and denoising could be transferred to meta-level to
improve ICL.

10
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A RELATED WORKS

This paper is related with a wide range of existing works, including understanding ICL with trans-
former (Von Oswald et al., 2023 Mahankali et al.|[2024; |Ahn et al., 2023; (Gatmiry et al., 2024; [Wang
et al., 2024} Bai et al.| [2023} Tian et al.} 2023 [Li et al., 2023bj Huang et al2024; Zhang et al.| [2024;
Sander et al., 2024} [Li et al., [2023a; |2024; [Wies et al., 2024} |/Akytirek et al., 2023} Bhattamishra
et al.||2024; Zhang et al.l 2023)), meta-learning (Schmidhuber;, |1987; [Thrun & Pratt, |1998; | Koch et al.,
2015} |Finn et al., 2017 |Vinyals et al.,| 2016} |Snell et al.l 2017; |Garnelo et al.| 2018; Requeima et al.,
2019; |Garcia & Brunal 2018; Kirsch et al., |2022), expressiveness of neural networks (Hornik et al.}
1989; Raghu et al., [2017; Yun et al., 2019} [2020), generalizability of deep-learning (Kawaguchi et al.;
2017; |Neyshabur et al.,[2017; Zhang et al.|[2021).

Most closely related works have been mentioned in main text. Here we discuss the relation between
this paper and most related ones. |Akyiirek et al.| (2023)); Bai et al.| (2023)) have comprehensively
studied what exact explicit learning algorithms transformers can learn in-context, including ridge
regression, least squares, Lasso on linear regression tasks. Based on their results, we believe there are
numerous explicit learning algorithms transformer can learn in-context, so rather than investigating
what exact explicit learning algorithms transformers learn under different settings we provide a more
general and abstract understanding of ICL with transformer: it is a deep-algorithm-model, which
can express typical meta-learners, while those meta-learners can express a wide range of explicit
learning algorithms |[Finn & Levine|(2017); | Zaheer et al.|(2017), this understanding accommodates
and extends existing results. [Wang et al.| (2024) and [Bai et al.| (2023)) have proved that ICL with
transformer can learn gradient-descent of neural networks, we use this result as an important tool to
prove that ICL can perform gradient-based meta-learners. We follow Kirsch et al.|(2022)’s definition
of learning algorithm and start from their understanding that ICL models are general-purpose meta-
learning systems with minimal inductive bias. [Kirsch et al.[(2022) show that ICL model can learning
to learn, and its generalizability increases with the increase of training task number on few-shot
image classification tasks, while we compare ICL model with other meta-learners, proving the
expressiveness of ICL with transformer, revealing its learnability and what characteristics the learned
algorithms show. It can be viewed as a cornerstone. The transition pattern of the learning ability with
the growing number of training tasks (Kirsch et al., |2022) can be complement to our work.

B PRELIMINARIES

B.1 IN-CONTEXT LEARNING WITH TRANSFORMER

Input. Following existing works (Von Oswald et al.,|2023; /Ahn et al., [2023), we investigate ICL
without positional embedding to study the learning to learn ability omitting the order of examples. Let
x( € R? be ainput, and y*) € R€ be the corresponding output. For each task 7, there a task-specific
function f, and dataset of the task D, that V(x(),y() € D, y@ = f (x®).

Labeled examples and query of a task are input together. Define the input matrix Zy:

D) @ ... g x@+D)
Zo = [z(1) 22 ... z(n) zn+D)] = | ¥ € RUE+x(+1) — (q)
o= J= 0 yo . oy g
where g €€ R€ is the indicator of unlabeled query. ICL model is trained to output the prediction of
y ("1 given Zy, with a set of tasks {D,}7_, = {{(x®,y@)}¥*}T_, from training distribution
fr ~p(7),x® ~ p(z), to generalize to unseen tasks.

Model Architecture. ICL is typically achieved by transformer, stacked with self-attention layers.
Letting Z € R(4+e)x(n+1) 3 single-head self-attention layer denoted by Attn"™® is a parametric
map defined as

Attnip (Z) = WoZ - smax(Z W, W, Z), (10)

where W,,, Wy, W, € R(d+e)x(d+e) are the (value, key and query) weight matrices, and smax(-) is
the softmax operator which applies softmax operation to each column of the input matrix. Note that
the prompt is asymmetric since the label for z("*+1) is excluded from the input.
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An M -layer transformer is denoted as TF 5, as a stack of M self-attention and MLP blocks. Formally,
denoting by Z; the output of the ™ layer attention, we define

Ziy1 =21+ (Tml(AttIlpl’Ql(Zl)) forl=0,1,...,.M — 1, (11

where o(-) is feed-forward layers function on each column of the input independently. Given Z, the
prediction

S’(n+1) = TFM(ZOa {Pl7 Ql7 al}ll\io_l’ WT) = WT[ZM]:,(n+1)7 (12)

where [Zy]. (n41) is the (n + 1)-th column of Zy7, and W, € R*(@+¢) i the linear readout weight.

For training, given the distribution of tasks f, ~ p(7),x() ~ p(x), and loss function £(-,-) (e.g.,
cross-entropy), the parameters are optimized to minimize the expectation of auto-regressive loss of
training tasks:

N,.—1
1 T ) .
min E, - — Z(S’(l+1)ay(l+1)) (13)
(PLQLINM =, p(7),p(x) [N‘r ; ]

B.2 META-LEARNING

Meta-learning is a methodology considered with "learning to learn" algorithms. Define g(; ) is
a meta-learner that maps a task dataset D, and a query input x(9) to its task-specific prediction.
Typically meta-learning algorithms first learns an explicit model to a model h from D, and then
perform the prediction, i.e, y(@ = g(x(@,D;0) = (D 6)(x(9)). For meta-training, given the
training distribution p(7) and p(x) where the tasks {D }I_, are drawn, the goal of is to learn g(; )
to perform well on unseen task. A typical way is manually split each task into two disjoint sets:
a training set DY = {(x,;,y,;)}", to input and a validation set DY = {(x,,, yT’i)}fi’nH to
optimize the meta-learner, i.e., the meta-training is performed as:

mginEp(T)ﬁp(m — 42;14 x, D 6), y")] (14)

C OPTIMALITY OF A LEARNING ALGORITHM

We claim ICL model learns data-dependent optimal learning algorithms (DDOLA), which is different
and weaker than (true) optimal learning algorithm (OLA).

Formally, given a finite training set Dyyqin = {(2;,y;)} where each sample is i.i.d.: (x;,y;) ~
p(gc7 y), and a unseen testing set Dico¢ = {(z;,y;)} following the same distribution, the OLA is
g* = argmin ]E(mﬁ%)wp(%u {Prob[g (SL‘J Dyyain) = y;]}. Which is to say a learning algorithm can
make the most "accurate” prediction given a training set and unseen target 1nput from the same
distribution. It is possible to know the optimal learning algorithm with the priori of p(«,y). For
example, ordinary least squares is optimal for linear regression with Gaussian noise. In the paper,
three types of tasks are generated by designed ways, i.e., known p(x, y) (Section|4.1)). It is obvious
that a MatchNet model with certain parameters (simply keeping all modules inside as identical
mappings) is the optimal learning algorithm for €2;,,, and so does ProtoNet for §2,,.» and CNPs for
Q... However, meta-learners have not access the true p(z, y). They only learn the function to infer
p(z,y) from Dyrgin = {(2;,y;)} through meta-training, which inevitably brings variance and bias,
being (meta-training) data-dependent. So we denote that given certain meta-training set, the best that
a random-initialized and meta-trained deep learner can do as the DDOLA. This could be empirically
approximated by meta-training a deep and random-initialized MatchNet/ProtoNet/CNPs with certain
meta-training set (for the three task types respectively).

15



Under review as a conference paper at ICLR 2025

D PROOF OF THE META-LEVEL EXPRESSIVENESS OF ICL

D.1 DETAIL SETTINGS
D.1.1 CLASSIFICATION TASK WITH ORTHONORMAL LABEL EMBEDDING

Classification task specifies the ICL’s input in Sectionwith y(i) € {ey, e, ,co}, where ¢,
is the embedding vector of the c-th class. For these label embeddings, we can find 2C' orthonormal

vectors in R2¢: {u; }j 1» that:

1,ifi=j
T - ’
ulu; {0? o (15)

A simple choice of {u;}37, is the set of 2C one-hot vectors. We use {u;}5_, as the embeddings of
{e.} 1 ie, y € {u; }jczl, and w41 as the indicator of query q.

D.1.2 SELF-ATTENTION WITHOUT SOFTMAX

In our setting, we consider self-attention layers that replace the softmax operation in (I0) with
column-wise L1-normalization. In particular, (I0) is now approximated and reparameterized with
weights P := W, € R@+e)x(d+e) and Q == W, ' W, € Rld+e)x(d+e) a5

Attan(Z) = PZnorm$®(Z27QZ). (16)

S A |A”| Z|Au|7é0

where [norm$°'(A4)]; ; = . Note that it is a convention to omit some
0, Y |4ij|=0

3
non-linearity of softmax in self-attention layers to align transformer with explicit learning algorithms.
While existing works simply omit the softmax operation, replacing it with % (Von Oswald et al.|

2023;|Ahn et al., 2023)), the normCOI in @]) is a more close approximation.

As the proof for gradient-based algorithm (3) is trivial by applying the result from [Bai et al.| (2023));
Wang et al (2024), we focus on metric-based @)(3)) and amortization-based () algorithms. We prove
that there exists TF model with certain real-valued parameters can perform these algorithms.

Note that for simplicity in proving the expressiveness of ICL with transformer, we focus on the
algorithm framework: we leave feature-level transformations with neural networks alone as they can
occur in both ICL model and conventional meta-learners, and enjoy the same universal approximation
property (Hornik et al., |1989); we also do not consider the order of samples in D, omitting any se-
quential models in meta-learners and positional embeddings in ICL. Typical metric-based algorithms
are thus categorized into to types: one is based on pair-wise distance @), e.g., MatchNet; another
one is based on distance with class prototypes (3), e.g., ProtoNet. And typical amortization-based
algorithms are summarized as a function taking the query and the encoded set as input (6). Proving
these exemplar set and inference functions can be achieved, more algorithms including feature-wise
transformation, interaction between samples, more complex distance functions can be easily achieved
with the the recursion of self-attention and feed-forward layers.

D.1.3 ICL CAN PERFORM PAIR-WISE METRIC-BASED ALGORITHMS

For pair-wise metric-based algorithms, we take MatchNet for example, proving (T2)) can perform

A(n—',-l) _ Z < X n+l) > y(l) (17)
In fact, this case is quite simple that it can be achieved with a single layer transformer without the help
T
. Lo I 0 0 0 o --- 0
of the two tools. One implementation is )y = [0 0} , Py = {0 I] , Wy = {Ul o “J .

Note that though the output of TF would be A>"7" | < x( x("*+D) > y() where A € Ris a
query-specific value, it has the same classification result with after de-embedding.
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D.1.4 ICL CAN PERFORM CLASS-PROTOTYPE METRIC-BASED ALGORITHMS

For the second category of metric-based algorithms, we take ProtoNet for example, proving (I12) can
perform

c
S(n 1 A n
gyt = Zf”— x(0 — x| gy, (18)

This can be implemented by a 3C' — 1 layer transformer achieving [Z3;_1](q:a+2¢),(n+1) = 4 +
22:1 |[x(*+D) — p| |U(ct1+C)mod(2c) in the following step-by-step function:

<D %@ .. x() D]
%_bmyw.”ym a | (19)
(1) (n+1) _ 5]
Z) = {;@ 0 (20)
() (1) _ 1
X b1
Zo = X, , 21
PO g+ X = palucys 2D
o [xO (1) o
T y® q+HX“”—pﬂmma’
(i) X
Zi =%, , 23
0 g xD = pylucss) 29
X0 X+ _ '
Zs =" : 24
’ {y“) q + X" —piflucis + XY — po||ucys) .
(@) (n+1) ]
X X
Ze = | =, , 25
=[50 gt ) s+ ) s, @
, 0 (1) ] o
31-3 — i n )
y @ g+ S x D — Pz\lu(1+1+0)mod(20)
[+ () x(n+1) _
X b
Zyo = |, ) , (28)
v g+ X | - pz\|u(1+1+0)mod(20)
[+ (%) x(n+1) _
X b
Zyi—1=|_ 4 1 ; (29)
D g+ De—1 || — Pillu(it1+0)mod(2c)]
(30)
0 . 0 T
and readout by W,. = . Each step of function
—Uc+2 T Ue+14C)mod(20) T UL

from Z; to Z;4, can be implemented with one transformer layer, which would be proved later.

D.1.5 ICL CAN PERFORM AMORTIZATION-BASED ALGORITHMS

Denote the set embedding £ "7 [x®]y®] as e € R?. As f in (&) can always be implemented by
feed forward layers taking the concatenation of x(4) and e as input, there exists a learnable function
hyin R? x R and hy in RY x R2C that

FUED)T,eT]T) = ho(xD + hy(e)). 31)

Thus, we prove that (I2)) can perform

n

FOD = hy(xHD 4 hy(— Z x®y ) (32)

:»—t
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This can be implemented by a 3 layer transformer achieving the following step-by-step function:

(1) 2 ... (n) (n+1)7
X X X X
Zo = , 33
0 L/(” vy oy g ] (33)
(7) (n+1) 15n (1) |3 (2)
7, = |:X(Z) X + hl(n Zz:l[x |y ]) (34)
y q
Z2 — |:XZ; hQ(X(n+1) + hl(% Z:L:l[x(l)‘y(l)])) , (35)
y q J

and readout by W,. = {é 8] . Each step of function from Z; to Z;4; can be implemented with one

transformer layer, which would be proved now.

D.1.6 THE FUNCTION OF ONE TRANSFORMER LAYER

A transformer layer (IT)) can perform a wide range of functions, as we can decompose it is composed
of a self-attention layer and feed-forward layers, where (i) self-attention (I6)) with orthonormal label
tokenization (T3) can achieve a wide range of label-aware set operations. (ii) feed-forward layer o (-)
in (TT) can learn any measurable functions in R4+2¢ x R4+2¢, Here we prove how a transformer
layer can obtain the above functions from Z; to Z; 1. The main idea is a function can be decomposed
to three sub-steps: label-selecting which is achieved by A = Z T QZ, linear interaction achieved by
PZnorm$°!(A), and non-linear transformation by o) if needed.

Label-Aware Attention. In one self-attention layer, equation @, first each column in Z refer to
other columns through attention weights A = ZTQZ. A € R(»+1)x(n+1) iq selecting interaction
objectives and weighting interaction weights. We use label-aware to describe { A € R(»+1)x(n+1) |
(y® =y A (y9) = yU)) = A;; = Ay ji}, ie., the interaction weight between ordered
sample-pair (7, j) only depends on their labels (y*), y/)) (including unknown label q), and can be
arbitrary value in R.

With our orthonormal label embedding in R2¢, A is label-aware, thus can achieve label-aware
interaction. For example, to achieve to (20), we require (¢ + 1)? conditions about A:

Aeg=1

Aeg=0,i€{2,3,---,C}

Age, =0,i€{1,2,---,C} (36)
Aere, =0, 4,5 €{1,2,---,C}

Agg=0

As A= Z"QZ and A, is only related to y(¥), y9), we have Q = [8 2} where I € R26x2¢,
Equation (36)) gives (C + 1)? linear equations about L:

uILuqzl
w! Lu, =0,i€{2,3,---,C}
u, Lu; =0, i€{1,2,---,C} (37)

w! Lu; =0, i,j €{1,2,---,C}
u;—Luqz()

Proposition D.1. V¢ > 1, Equation (37) has solutions in R >*2C.

Proof. Denote u; ® wu,; = [ui,lu;,uiygu;r, e ,uivgcu;]T e R¥ [ =
[Ll,h cee 7L1,2C7 cee 7L2C’20]T S R4Cz, then u;'—Luj = (ui ® Uj)TE.
@< UL = A, where

U=[u; @ujfori,je{1,2,---,C+1}]T e RETHx4C*, (38)
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(u; ® Uj)T (uy @u, ) Z ultulltu uj (39)
(u] ujr) Z Uitire ) (40)
= (u; )(u uy) (41)
ifi=¢ A j=
{ i=i Nj=j 42)
ifi£d v j#£75
— rank(U) = (C +1)? (43)
[U, A] € ROTDXUCHD) 5 1 —s rank([U, 4]) < (C + 1) (44)
@3), @4 —
rank([U, A]) = rank(U) = (C + 1) < 4C?. (45)
— Equation UL = A has solutions in R¢*, < Equation (37) has solutions in R2€*2C O

Note that for any function from Z; to Z; 1, the number of conditions about A < (2C')2. Thus for
any label-aware function from Z; to Z; 1, it requires a label-ware A and we can find a linear system
of equations UL = A, that has solutions in R4, as the proof rank([U, A]) = rank(U) < 4c? is
without loss of generalizability.

Linear Interaction. After obtalmng desired A, norm$°!(A) is performed as norm$ is a better
approximation of softmax than 1 =, and also required to deal with inconsistent label number in our
classification tasks. Then all columns in Z interact with the others linearly through PZnorm$®(A).
Still taking (I9) to (20) as example, after obtaining desired A satisfying 36), P = [_O] 8} can

achieve the function.

Non-Linear Transformation. In (TI)), o4(-) is feed-forward layers that function on each column
of Z independently. Thanks to the universal approximation property (Hornik et al., |1989), it can
approximate any measurable function in R4+2¢ x R%*2¢ to any desired degree of accuracy. Thus
feature-level non-linear transformation from Z; to Z;;1 could turn to o, (-). For example, (I9) to
(20) does not require non-linearity so it can be implemented as o(z) = z. For (20) to (ZI), one
implementation is o (z) = [0, ||[2]1.4+1||wc2] T Note that in this step, the = does not hold strictly,
but can be approximated by MLPs with error € > 0. We use "=" to mean such approximation for
simplicity, as the error can be arbitrary small.

In conclusion, each step from Z; to Z; 1 can be implemented using a transformer layer. Typical
metric- and amortization-based meta-learning algorithms {@)()(6) can be implemented with ICL.
More complex models following the same set functions can also be performed by ICl with additional
recursion of transformer layers, whose proof is trivial. Moreover, as it has been proved that ICL
can perform gradient-based algorithms (3)), ICL can exactly perform conventional handcrafted meta-
learning algorithms.

E GENERATING TASKS
Here we show the task generation for ggiy,, gpr¢ and gq.,,. We design the following specific forms for

the three types of tasks because they are all linearly separable by x(*) € R¢, for 2-d visualization to
observe ICL’s behavior.
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(a) Pair-wise metric-based. (b) Class-prototype metric-based. (c) Amortization-based.

Figure 9: Examples of three types of tasks.

For pair-wise metric-based algorithms gs;,,,, we generate a task by sampling C' x N¢ support samples
{x( € RHYZ*Ne from distribution p(7) and randomly assign them with labels y) = ¢, making

C x N¢ supports exactly contains N¢ label ¢ for each ¢ = 1,2,--- ,C. Then the remaining
samples {x(i) € R%} fvz CC+><]\1]VC 1 are sampled from distribution p,, and assigned with labels y =

argmax, Zfle{\;?j)zc < x(M x0) > A typical meta-learner, MatchNet, can learn the optimal

classifier. A case is shown in Figure|9(a)l where each point corresponds to a x(*) € R? and different
labels are assigned with different colors.

For class-prototype metric-based algorithms g,,;, we generate a task by sampling C' prototypes
{p. € R}}C | from p(7). Then sample {x(V) € R4} | from p,, and assign labels by y(?) =
argmin,, ||p. — x?||. The corresponding optimal classifier is ProtoNet. A case is shown in Figure

For amortization-based algorithms g,.,,, we pre-define a partition of R, { Qc}le, as decision range.
We generate a task by sampling . € R? from p(7). Then sample {x(¥) € R4}, from p,(u) =

N (p, ), and assign labels by y(¥) = ¢ where Zle [x() — u]; € Q.. The corresponding optimal
classifier is amortization-based. A case is shown in Figure

F MORE EMPIRICAL RESULTS

F.1 ICL MODEL TRAINED WITH SINGLE TYPE OF TASKS

Figure[T0] [TT]and [T2] show more cases to support that ICL model learns MatchNet, ProtoNet, CNPs
on Qgim, Qpre, QLam respectively.

(a) ICL-1. (b) True-1. (c) ICL-2. (d) True-2. (e) ICL-3. (f) True-3.
Figure 10: Comparing ICL’s predictions and true labels on pair-wise metric-based tasks (trained with
single task type).

F.2 ICL MODEL TRAINED WITH MIXED TYPE OF TASKS

Figure T3] [[4]and [T3] show cases to support that ICL model learns data-dependent optimal learning
algorithm on Q.52 = {Qsim, Qpres Lam }-
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(a) ICL-1. (b) True-1. (c) ICL-2. (d) True-2. (e) ICL-3. (f) True-3.

Figure 11: Comparing ICL’s predictions and true labels on class-prototype metric-based tasks (trained
with single task type).

(a) ICL-1. (b) True-1. (c) ICL-2. (d) True-2. (e) ICL-3. (f) True-3.

Figure 12: Comparing ICL’s predictions and true labels on amortization-based tasks (trained with
single task type).

G EXPERIMENT DETAILS

Our code is provided athttps://anonymous.4open.science/r/code_unicl-D60E/.

H META-LEVEL META-LEARNING FOR CROSS-DOMAIN FEW-SHOT IMAGE
CLASSIFICATION

We investigate the effective of meta-level meta-learning on real-world few-shot image classification
problem. We use Meta-Dataset [Triantafillou et al.| (2019) for training. Because it contains multiple
datasets inside each we can sample many few-shot classification tasks, thus can be naturally divided
into multiple domains to perform the meta-level meta-training (8).

Following standard settings, we used the training sets of ILSVRC, Omniglot, Aircraft, Birds, Textures,
Quick Draw, and Fungi during training. For testing, we used unseen datasets such as Traffic Signs,
MSCOCO, and additional datasets like MNIST, CIFAR10, and CIFAR100. Each dataset is treated
as a domain for meta-level meta-learning. We considered 5-way 5-shot tasks at the meta-level and
8/16/32 tasks-for-adaptation per domain at the meta-meta-level. The sampling of classes and images
to form tasks, as well as the sampling of tasks-for-adaptation within a domain, was random.

Following the typical setting, in training, we access training sets in ILSVRC, Omniglot, Aircraft,
Birds, Textures, Quick Draw, and Fungi. We use unseen Traffic Signs, MSCOCO, and additional
MNIST, CIFAR10, CIFAR100 for testing. Note that each of these datasets is viewed as a domains
for meta-level meta-learning. We consider 5-way 5-shot tasks at meta-level, and 8/16/32-task-for-
adaptation domains at meta-meta-level. The sampling of classes and images to form a task and the
and the sample of tasks-for-adaptation in a domain are random. We consider the following baselines:

* ICL w/o adpt: The standard meta-learning setting, where meta-training is performed on all
tasks without distinguishing between datasets. During meta-testing, no domain adaptation is
performed, meaning that the 8/16/32 tasks are not utilized.

e ICL w/ adpt: The meta-training process is identical to that of ICL w/o adpt. While dur-
ing meta-testing, the model adapts using 8/16/32 domain-specific tasks by fine-tuning all
parameters (step = 5, learning rate = 0.0001, batch size = 8/16/32).

¢ MZ2-ICL: Meta-level meta-training an ICL model following the method introduced in Sec-
tion [5.I] The domain adaptation process, i.e., the inner-loop of meta-level- MAML is
configured as step=>5, 1r=0.0001, with 16 tasks-for-adaptation per domain. The settings
8/16/32-task-for-adaptation domains at meta-meta-level are meta-meta-trained and evalu-
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Fin

(a) ICL-1. (b) True-1. (c) ICL-2. (d) True-2. (e) ICL-3. (f) True-3.

Figure 13: Comparing ICL’s predictions and true labels on pair-wise metric-based tasks (trained with
mixed task type).

(a) ICL-1. (b) True-1. (c) ICL-2. (d) True-2. (e) ICL-3. (f) True-3.

Figure 14: Comparing ICL’s predictions and true labels on class-prototype metric-based tasks (trained
with mixed task type).

ated respectively. During testing, given 8/16/32 domain-specific tasks, the same adaptation
process is applied.

Our implementation builds the ICL model with a 8-layer transformer (without positional encoding),
where the input features are 512-dim extracted by a ResNet (resnet-18). Though the model is
relatively toy, it is enough to verify the effectiveness of meta-level meta-learning for improving ICL
in real-world application: the method pipeline is generalizable and one can replace them with models
with more advanced architectures or for other applications.

The results are provided in Table [1| We find that the M2-ICL significantly outperforms ICL w/o or w/
adpt with any tasks. Specifically, comparing with ICL w/o adpt (standard meat-training and testing),
adapting the ICL model with 8 tasks badly harms the performance due to overfitting, and with 16
tasks also do harm, while 32 tasks shows marginally improvement. However, adapting the M2-ICL
model with only 8 tasks is enough to surpasses the average performance, and the growing number of
tasks for adaptation brings more significant improvement. ICL w/o adpt, ICL w/ adpt (32 tasks) and
M2-ICL (8 tasks) have comparable performance. This show the proposed meta-level meta-learning is
very effective to improve the few-task domain adaptation ability.

Table 1: Cross-domain few-shot image classification.

Method Traffic Signs | MSCOCO | MNIST | CIFAR10 | CIFARI00 | Average

ICL w/o adpt 454 355 88.1 65.2 55.9 58.02
ICL w/ adpt (8 tasks) 41.9 35.1 76.4 64.9 55.5 53.76
ICL w/ adpt (16 tasks) 433 36.2 78.5 66.0 56.3 56.06
ICL w/ adpt (32 tasks) 46.1 36.5 83.2 66.8 58.3 58.18
MZ2-ICL (8 tasks) 459 39.4 86.6 67.4 57.2 59.30
MZ-ICL (16 tasks) 47.5 40.6 88.9 68.0 57.9 60.58
MZ-ICL (32 tasks) 52.6 44.1 91.0 69.4 59.2 63.26
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(a) ICL-1. (b) True-1. (c) ICL-2. (d) True-2. (e) ICL-3. 0 Traes

Figure 15: Comparing ICL’s predictions and true labels on amortization-based tasks (trained with
mixed task type).
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