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Abstract
In reinforcement learning, unsupervised skill dis-
covery aims to learn diverse skills without ex-
trinsic rewards. Previous methods discover skills
by maximizing the mutual information (MI) be-
tween states and skills. However, such an MI
objective tends to learn simple and static skills
and may hinder exploration. In this paper, we pro-
pose a novel unsupervised skill discovery method
through contrastive learning among behaviors,
which makes the agent produce similar behaviors
for the same skill and diverse behaviors for differ-
ent skills. Under mild assumptions, our objective
maximizes the MI between different behaviors
based on the same skill, which serves as an upper
bound of the previous MI objective. Meanwhile,
our method implicitly increases the state entropy
to obtain better state coverage. We evaluate our
method on challenging mazes and continuous con-
trol tasks. The results show that our method gen-
erates diverse and far-reaching skills, and also
obtains competitive performance in downstream
tasks compared to the state-of-the-art methods.

1. Introduction
Reinforcement Learning (RL) (Sutton & Barto, 2018) shows
promising performance in a variety of challenging tasks, in-
cluding game playing (Mnih et al., 2015; Schrittwieser et al.,
2020), quadrupedal locomotion (Lee et al., 2020; Miki et al.,
2022), and robotic manipulation (Kalashnikov et al., 2021;
Wu et al., 2022). In most tasks, the policy is trained by opti-
mizing a specific reward function with RL algorithms. One
limitation of such a framework is that the learned policy is
restricted to the training task and cannot generalize to other
downstream tasks (Cobbe et al., 2020). In contrast, humans
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can learn diverse and meaningful skills by exploring the
environment without specific rewards, and then use these
discovered skills to solve complex downstream tasks. In-
spired by the human intelligence, unsupervised RL (Laskin
et al., 2021) has recently become an important tool to ad-
dress the generalization problem through skill discovery.

Existing methods perform unsupervised skill discovery by
maximizing the MI between states and skills. Specifically,
the agent uses the discriminability and diversity of skill
behaviors as an intrinsic reward, and then trains a skill-
conditional policy by maximizing such a reward (Gregor
et al., 2016). The discovered skills can serve as primitives
to solve downstream tasks. Although these methods have
shown promising results in discovering useful skills, a key
limitation is that they often learn simple and static skills that
lead to poor state coverage, which has also been observed
in recent works (Campos et al., 2020; Jiang et al., 2022).
For instance, in locomotion tasks, the MI objective tends to
learn static ‘posing’ skills rather than dynamic skills. We
find it is mainly caused by the much smaller skill label
space compared to the state space, which makes the MI
objective easily achieve its maximum even with static skills.
Specifically, the states visited by different skills can only
have slight differences for distinguishing skills but not nec-
essarily learn semantically meaningful or far-reaching skills.
Increasing skill dimensions (Laskin et al., 2022) or enforc-
ing exploration (Liu & Abbeel, 2021b; Campos et al., 2020;
Park et al., 2022) partially addresses this problem, while
they require additional estimator or training techniques.

In this study, we propose a novel method for unsuper-
vised skill discovery, named Behavior Contrastive Learning
(BeCL). We consider skill discovery from a multi-view per-
spective, where different trajectories condition on the same
skill are different views. Specifically, we use the MI be-
tween different states generated by the same skill as an
intrinsic rewards and train a policy to maximize it. Intu-
itively, BeCL encourages the agent to perform similarly
condition on the same skill, and performs diversely among
different skills. Under the redundancy condition, our MI
objective serves as an upper bound of the previous MI ob-
jective, which means that BeCL also learns discriminating
skills implicitly. Moreover, our method implicitly increases
the state visitation entropy to encourage a better coverage
of the environment, which prevents the agent from learning
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static skills. To tackle the MI estimation problem in high-
dimensional control tasks, we adopt a contrastive learning
algorithm to estimate the MI in BeCL by sampling positive
and negative states from different skills.

The contribution can be summarized as follows. (i) We
propose a novel MI objective that performs unsupervised
skill discovery and entropy-driven exploration simultane-
ously. (ii) We propose BeCL as a practical contrastive
method to approximate our objective in high-dimensional
tasks. (iii) We discuss the connection and difference be-
tween BeCL and previous methods from an information-
theoretical perspective. (iv) We evaluate our method on
maze tasks and Unsupervised RL Benchmark (URLB)
(Laskin et al., 2021). The result shows that BeCL learns
diverse and far-reaching skills, and also demonstrates com-
petitive performance in downstream tasks compared to the
state-of-the-art methods. The open-sourced code is available
at https://github.com/Rooshy-yang/BeCL.

2. Preliminaries
We consider a Markov Decision Process (MDP) defined as
(S,A, P, r, γ, ρ0), where S is the state space, A is the action
space, P (s′|s, a) is the transition function, γ is the discount
factor, and ρ0 : S → [0, 1] is the initial state distribution.
For unsupervised skill discovery, the agent interacts with the
environment without specific reward functions and r denotes
some intrinsic rewards. We denote the skill space by Z and
the skill z ∼ Z can be discrete or continuous vector. In
each timestep t, the agent takes an action at ∼ π(a|st, z)
by following the skill-conditional policy with a specific skill
z. We denote the normalized probability that a policy π
encounters state s as ρπ(s) ≜ (1− γ)

∑∞
t=0 γ

tPπt (s).

During the unsupervised training stage, the policy π(a|s, z)
is learned by maximizing the discounted cumulative in-
trinsic reward as

∑T−1
t=0 γtrt. After training, we adapt the

training skill to downstream tasks that have extrinsic reward
functions {rtask}. As suggested by URLB (Laskin et al.,
2021), we can choose a skill vector z⋆ and initialize the pol-
icy of the downstream task as π(a|s, z⋆). Then we finetune
the policy for a small number of interactions by optimiz-
ing a task-specific reward function rtask and measure the
adaptation performance. Other metrics like data diversity
and zero-shot transfer can also evaluate the quality of skills
while they are less common than the adaptation efficiency.

In the following, we denote the information measure I(·; ·)
as MI andH(·) as Shannon entropy. Previous skill discovery
algorithms sample states from π(a|s, z) and then maximize
the MI objective I(S;Z) using variational approximators,
where S and Z denote random variables. The estimation
of I(S;Z) is used as an intrinsic reward to learn the policy
π(a|s, z). For example, DIAYN (Eysenbach et al., 2019)

maximize
𝐼(𝑆; 𝑍)

𝐻(𝑆)
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(a) Initialize (b) Skill discovery

Figure 1. Information diagrams for maximizing I(S;Z). (a) The
information shared between the states and skills (i.e., I(S;Z)) is
less than H(Z). (b) By maximizing the variational bound, the MI
objective is maximized and we have I(S;Z) = H(Z).

use a discriminator-based MI estimator as

I(S;Z) = H(Z)−H(Z|S) ≥ H(Z)+Ep(s,z)[log qϕ(z|s)],

where qϕ(z|s) is a discriminator of skills. With this dis-
criminator, the intrinsic reward for skill discovery is set to
r = log qϕ(z|s)− log p(z). Other variants also decompose
I(S;Z) to other forms or replacing S by other transition
information, while the initial MI objectives are similar.

3. The BeCL Method
In this section, we first illustrate the shortcomings of exist-
ing skill discovery methods from an information-theoretical
perspective. Then we propose a new MI objective for BeCL
and give a practical approximation of the objective via con-
trastive learning. Finally, we give analyses to show the
advantage of the BeCL algorithm in state coverage.

3.1. Limitation of Previous MI Objective

In skill discovery, a skill refers to a kind of behavior that
can be represented by a set of semantically meaningful tra-
jectories labeled by a fixed latent variable z ∼ Z , indicating
that one skill should map to a set of states. Formally, we
have the following assumption.

Assumption 1. The skill space Z is smaller than the state
visitation space, i.e., H(Z) < H(S) with s ∼ ρπ(s).

Empirically, Assumption 1 holds even with a random policy
since RL tasks often have high-dimensional state space,
while the skill is a discrete or continuous vector with low
dimensions. In contrast, if the skill space is equal or even
larger than the state space, we have many-to-one mapping
from skill to state, which makes the skills indistinguishable.
Meanwhile, since the skill space is often set as a discrete or
uniform distribution with fixed entropy, H(Z) is a constant
and is irrelevant to the optimization objective of I(S;Z) =
H(Z)−H(Z|S).

We illustrate the information diagrams for maximizing
I(S;Z) in Figure 1. (i) As shown in Figure 1(a), since the
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Figure 2. Information diagrams of the learning process in BeCL. (a) We show the redundancy assumption of skill between different
views. (b) BeCL performs skill discovery by maximizing I(S;Z) and (c) learns multi-view consistency by maximizing I(S(1);S(2)|Z).
(d) Considering the maximum empowerment and perfect multi-view consistency, our objective directly maximizes the state coverage.

states are generated by the skill-conditional policy and the
policy is randomly initialized, the states and skills usually
share a small amount of information and I(S;Z) ≥ 0. (ii)
As we learn a discriminator and train the policy to maximize
the discriminability of skills, the MI term I(S;Z) increases
and approaches H(Z). As in Figure 1(b), when the MI
objective is fully optimized, the information of I(S;Z) is
contained in H(Z). Under Assumption 1, we have

max I(S;Z) = maxH(Z)−H(Z|S) = H(Z), (1)

where minH(Z|S) = 0 due to the non-negativity of en-
tropy, and maxH(Z) = H(Z) since H(Z) is fixed.

The major limitation of above optimization process is such
an MI objective can hinder better state coverage and learn
static skills. Specifically, the optimization objective is ir-
relevant to the state visitation entropy under Assumption 1
and we have max I(S;Z) = H(Z) with different H(S).
Considering there are two policies π1 and π2, where π2 has
better state coverage. Then the relationship between the cor-
responding state entropy measured by the states visited by
the two policies is Hρπ1

(S) < Hρπ2
(S). Nevertheless, for

both policies, the maximum values of the I(S;Z) objective
are equal to H(Z), which is irrelevant to their state entropy
as shown in Eq. (1). Since there is no gradient to encourage
the agent to update from π1 to π2, the MI objective can eas-
ily obtain its maximum, which discourages the agent from
learning far-reaching skills. We remark that such a problem
has also been mentioned in previous studies (Campos et al.,
2020; Park et al., 2022), where they observe the agent vis-
its marginally different states to learn distinguishable skills
(e.g., with different static postures). Nevertheless, we high-
light that we give an information-theoretical perspective and
propose an alternative MI-objective to solve this problem.

3.2. The BeCL Objective

In this section, we introduce the proposed BeCL objective
and show how our objective addresses above limitations. We
consider a multi-view setting where each skill zi generates
two trajectories τ (1) and τ (2) based on the skill-conditional

policy. The trajectories τ (1) and τ (2) usually have differ-
ences since (i) the skill has limited empowerment to be-
haviors in the early stage of training and (ii) the transition
function and policy are often stochastic. Based on τ (1) and
τ (2), we sample two states by following

s(1) ∼ τ (1), s(2) ∼ τ (2),

where τ (1), τ (2) ∼ π(a|s, zi),∀i. We remark that s(1) and
s(2) are generated with the same skill and denote the corre-
sponding random variables by S(1) and S(2), respectively.

Similar to multi-view representation that assumes each view
shares the same task-relevant information (Federici et al.,
2020; Fan & Li, 2022), we assume that S(1) and S(2) share
the same skill-relevant information since they are generated
on the same skill vector z. Formally, we give the following
mutual redundancy assumption in skill discovery.

Assumption 2 (Redundancy). The states S(1) and S(2) are
mutually redundant to the skill-relevant information, i.e.,
S(1) ⊥⊥ Z|S(2) or equivalently I(S(1), Z|S(2)) = 0.

Under Assumption 2, we have

I(S(1);Z) = I(S(2);Z) = I(S(1);S(2);Z). (2)

where the last term is multivariate MI. The proof is given in
Appendix A. We remark that Assumption 2 does not indicate
that the skill has good discriminability (i.e., I(S,Z) is large)
initially, but only assuming that the skill information shared
between different views (i.e., S(1), S(2)) are the same since
they are generated by the same skill, as shown in Eq. (2).
In most cases, the redundancy assumption holds unless the
policy network does not extract any skill information. An
illustration of this assumption is given in Figure 2(a).

Based on the redundancy assumption, we propose a novel
MI objective for our method, as

IBeCL = I(S(1);S(2)). (3)
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Figure 3. An illustration of the process of contrastive estimation in BeCL. We take two states of different trajectories generated by the
same skill as positive samples. In addition, we find that sampling positive pairs from the same trajectory that are far from each other is
also well-performed. Meanwhile, we take states of different trajectories generated by different skills as negative samples. Consider state 1
as example, we use (state 1, state 2) as positive pair, and then use (state 1, state 3) and (state 1, state 4) as negative pairs. The contrastive
loss and intrinsic reward are computed in Eq. (8) and Eq. (10), respectively.

To analyze the objective, we decompose IBeCL as

IBeCL = I(S(1);S(2))

= I(S(1);S(2);Z) + I(S(1);S(2)|Z)
= 1/2

[
I(S(1);Z) + I(S(2);Z)

]︸ ︷︷ ︸
(i) skill discovery

+ I(S(1);S(2)|Z)︸ ︷︷ ︸
(ii) multi−view consistency

,

(4)
where the last equation follows Eq. (2). We analyze the
optimization process of IBeCL as follows.

(1) Skill discovery. Maximizing term (i) in Eq. (4) is equiva-
lent to maximizing I(S;Z) in previous skill discovery meth-
ods, where s ∼ S can be sampled from S(1) or S(2). As a
result, our objective serves as an upper bound of I(S;Z) in
previous MI objective (Gregor et al., 2016). As shown in
Figure 2(b), this objective expands the information shared
between Z and (S(1), S(2)). In practice, since H(Z) is
much smaller than H(S), this term is relatively easy to
optimize to achieve its maximum value (i.e., H(Z)).

(2) Multi-view consistency. The empowerment of skill to
the resulting states is maximized when term (i) in Eq. (4)
achieveH(Z). Then the differences between two views (i.e.,
S(1) and S(2)) come from the randomness of the environ-
ment and the policy. As shown in Figure 2(c), through max-
imizing the second term in Eq. (4) (i.e., I(S(1), S(2)|Z)),
the skills will learn to make the explored policy less sensi-
tive to environmental randomness and also drive the policy
becomes deterministic, which leads to better multi-view
consistency of states based on the same skill. We remark
that such an effect is different from previous methods that
maximize the policy entropy to keep the policy stochastic
(Eysenbach et al., 2019). Nevertheless, we remark that a de-
terministic skill-conditional policy can also have a well state
coverage by generating far-reaching trajectories. The multi-
view consistency makes trajectories sampled with the same

skill explore the nearly areas and have better alignment.

(3) Entropy-based Exploration. In Figure 2(c), we show
an extreme case that S(1) and S(2) are completely consis-
tent by optimizing the multi-view consistency in our objec-
tive. In this case, we have the relationship I(S(1);S(2)) =
H(S(1)) = H(S(2)) holds, thus maximizing our objec-
tive directly maximizes the entropy of explored states. We
highlight that such a property addresses the limitation of
the previous MI objective. As illustrated in Figure 2(d),
the state coverage increases as we encourage the policy to
increase the state visitation entropy. Although such a com-
plete consistency case is unachievable in practice, we will
show that BeCL indeed maximizes the state entropy through
contrastive estimation of our MI objective in the following.

3.3. Behavior Contrastive Learning

To estimate the MI objective in high-dimensional state space,
a tractable variational estimator based on neural networks is
required (Poole et al., 2019). In BeCL, we adopt contrastive
learning (Oord et al., 2018) to approximate the objective, as

LBeCL1 = E
zi,{zj}∼p(z),(s(1)i ,s

(2)
i )∼p(·|zi)

ES−∼p(·|zj),∀zj ̸=zi− log
h(s

(1)
i , s

(2)
i )∑

sj∈S− ⋃
s
(2)
i
h(s

(1)
i , sj)

 ,
(5)

where zi and zj are skills sampled from a discrete skill
distribution p(z). A positive pair [s(1)i , s(2)i ] contains two
states sampled from trajectories based on the same skill-
conditional policy π(a|s, zi). In contrast, a negative pair
[s

(1)
i , sj ] is constructed by sampling si and sj based on

different skills zi and zj . In Eq. (5), we use a negative
sample set S− to represent the states sampled from {zj},
where zj ̸= zi. Since si and sj are sampled independently
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by different skills, we expect their similarity to be much
smaller than that of positive pairs. The score function is an
exponential similarity measurement between states, as

h(si, sj) = exp
(
fϕ(si)

⊤fϕ(sj)
)
, (6)

where fϕ(·) is an encoder network with normalization to
make ∥fϕ(·)∥ = 1. The function h(·, ·) aims to assign high
scores for positive pairs and low scores for negative pairs.

An illustration of the contrastive learning process is given
in Figure 3. We sample m skills {zi}i∈[m] and generate
two trajectories for each skill when interacting with the en-
vironment. Based on the trajectories {τ (1)i , τ

(2)
i }i∈[m], we

sample a state from each trajectory, which gives a positive
pair as {s(1)i , s

(2)
i }i∈[m]. Then, we construct the negative

pairs by sampling states come from trajectories based on
different skills. For each anchor state, we use the corre-
sponding positive state and 2(m − 1) negative states to
calculate the contrastive loss.

Theorem 1. The relationship between our MI objective in
Eq. (2) and the contrastive loss defined in Eq. (5) is

IBeCL = I(S(1);S(2)) ≥ logN − LBeCL1, (7)

where N = 2m− 1 and m is the number of sampled skills.

The proof is given in Appendix A. Since N is a constant,
minimizing the contrastive loss will maximize our MI ob-
jective I(S(1);S(2)). As discussed in Figure 2, maximizing
I(S(1);S(2)) can perform skill discovery, improve the multi-
view consistency, and improve the state coverage.

Comparing to other RL algorithms that use data augmenta-
tion (Laskin et al., 2020), dynamics consistency (Mazoure
et al., 2020), or temporal information (Eysenbach et al.,
2022) for contrastive learning, we provide a novel way by
using skills to construct positive and negative pairs, which
extracts skill-relevant information for unsupervised RL.

3.4. Qualitative Analysis

In practice, we follow SimCLR (Chen et al., 2020) by using
a small temperature κ < 1 in our contrastive objective to
control the strength of penalties. Specifically, we define

LBeCL2 = E
i,j∈[m],s

(1)
i ,s

(2)
i ,S−− log

exp
(
f(s

(1)
i )⊤f(s

(2)
i )/κ

)∑
sj∈S− ⋃

s
(2)
i

exp
(
f(sj)⊤f(s

(1)
i )/κ

)
 . (8)

There are two effects in optimizing Eq. (8) in skill discovery.
(i) The positive pairs in the numerator become similar in
the feature space, achieving better multi-view alignment for
trajectories based on the same skill. For implementation, si
or sj in Eq. (8) can also be replaced by other information

(e.g., sub-trajectory) to capture the long-term consistency.
(ii) The negative samples in the denominator have repulsive
force to each other, which will push the states in one skill
away from states in other skills. Finally, the states of differ-
ent skills will roughly be uniformly distributed in the state
space, which helps the agent improve the state coverage.

Formally, since the state features lie on a hypersphere, i.e.,
{f(s) ∈ Rd : ∥f(s)∥ = 1}, we adopt the von Mises-Fisher
(vMF) distribution as a spherical density function to perform
kernel density estimation (KDE) (Di Marzio et al., 2019;
Wang & Isola, 2020). The following theorem establishes
the relationship between the contrastive objective LBeCL2

and the state entropy estimation (Beirlant et al., 1997).

Theorem 2. With sufficient negative samples, minimizing
LBeCL2 can maximize the state entropy, as

lim
N→∞

LBeCL2=− 1

κ
Esi [f(s

(1)
i )⊤f(s

(2)
i )]−Ĥ

(
f(s)

)
+logC,

(9)
where Ĥ(·) is a resubstitution entropy estimator through
the von Mises-Fisher (vMF) kernel density estimation, and
logC is a normalization constant.

A detailed proof is given in Appendix A. In Theorem 2, the
vMF kernel has a concentration parameter κ−1, which con-
trols how peaky of the distribution is around its referenced
feature in entropy estimation. In practice, we set κ = 0.5
to obtain a reasonable result. According to Theorem 2, the
first term of Eq. (9) is related to skill discovery methods
(Eysenbach et al., 2019; Liu & Abbeel, 2021b) by improv-
ing the multi-view alignment to increase the empowerment
of skills. The second term is similar to data-based unsu-
pervised RL methods (Liu & Abbeel, 2021a; Laskin et al.,
2022) as they explicitly measure the state entropy through
a particle entropy estimator, while we maximize the state
entropy implicitly via contrastive learning.

For unsupervised RL training, we set the intrinsic reward to

r(s
(1)
i ) :=E

s
(2)
i ,S−

 exp
(
f(s

(1)
i )⊤f(s

(2)
i )/κ

)∑
sj∈S− ⋃

s
(2)
i

exp
(
f(sj)⊤f(s

(1)
i )/κ

)
 ,

(10)
where we estimate the reward by sampling s(2)i and S−

from a training batch that contains 2m trajectories. Then we
use the intrinsic reward for policy training. The algorithmic
description of our method is given in Appendix C.3.

4. Related Works
Unsupervised Skill Discovery Unsupervised skill discov-
ery allows agents to learn discriminable behavior by maxi-
mizing the MI between states and skills (Gregor et al., 2016;
Florensa et al., 2017; Eysenbach et al., 2019; Sharma et al.,
2020; Baumli et al., 2021). However, many related works
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(Laskin et al., 2021; 2022; Strouse et al., 2022) have shown
that skill learning through variational MI maximization pro-
vides a poor coverage of state space, which may affect its
applicability to downstream tasks with complex environ-
ments. Some methods consider restricting the observation
space of skill learning to x-y Cartesian coordinates to in-
crease in traveled distances (or variations) in the coordinate
space (called the x-y prior) (Park et al., 2022; Zhao et al.,
2021). However, these methods introduce strong assump-
tions in learning skills and are mainly narrow in navigation
tasks and a few other tasks with coordinate information. In
addition, other methods also propose auxiliary exploration
mechanisms or training techniques (Strouse et al., 2022;
Bagaria et al., 2021; Barreto et al., 2019; Campos et al.,
2020; Jiang et al., 2022) to tackle the problem of state cover-
age. In contrast, our approach learns diverse skills without
limiting the observation space, and also implicitly increases
the state entropy to encourages exploration without auxiliary
losses.

Unsupervised RL Unsupervised RL algorithms focus on
training a general policy for fast adaptation to various down-
stream tasks. Unsupervised RL mainly contains two stages:
pretrain and finetune. The core of unsupervised RL is to de-
sign an intrinsic reward in the pretrain stage. URLB (Laskin
et al., 2021) broadly divides existing algorithms into three
categories. The data-based approaches encourage the agent
to collect novel states in pretraining through maximization
of state entropy (Liu & Abbeel, 2021a; Yarats et al., 2021;
Laskin et al., 2022); the knowledge-based approaches enable
agents to learn behavior based on the output of some model
prediction (i.e. curiosity, surprise, uncertainty, etc.) (Pathak
et al., 2017; 2019; Burda et al., 2019; Hao et al., 2023; Bai
et al., 2021c;a); and the competence-based approaches max-
imize the agent empowerment over environment from the
perspective of information theory, which means the agent
is trained to discover what can be done in an environment
while learning how to achieve it (Lee et al., 2019; Eysen-
bach et al., 2019; Liu & Abbeel, 2021b). Our method can
be regarded as a novel competence-based approach as we
can make each skill learn potential behavior that is useful
for downstream tasks and also improve the state coverage.

Contrastive Learning Contrastive learning is a represen-
tation learning framework in deep learning (He et al., 2020;
Caron et al., 2020; Grill et al., 2020; Radford et al., 2021).
The main idea is to define positive and negative pairs to learn
useful representations. Contrastive learning has also been
used in RL as auxiliary tasks to improve the sample effi-
ciency. Positive and negative pairs in RL can be constructed
following state enhancement (Laskin et al., 2020), tempo-
ral consistency (Sermanet et al., 2018), dynamic-relevant
transition (Mazoure et al., 2020; Bai et al., 2021b; Qiu et al.,
2022), return estimation (Liu et al., 2021), or goal informa-

tion (Eysenbach et al., 2022). Unlike these methods, we
use skills to divide the positive and negative pairs. Recently
proposed CIC (Laskin et al., 2022) performs contrastive
learning to approximate I(S;Z) and uses the learned rep-
resentation for entropy estimation. In contrast, we propose
a different contrastive objective through a multi-view per-
spective and use the objective as an intrinsic reward. Our
method is related to the alignment and uniformity properties
of contrastive learning mentioned in Wang & Isola (2020).
Our contrastive objective also learns uniformly distributed
state representations to improve the state coverage.

5. Experiments
In this section, we first provide qualitative analysis for the
behaviors of different skills learned in BeCL and other
competence-based methods in a 2D continuous maze and
challenging continuous control tasks from the DeepMind
Control Suite (DMC) (Tassa et al., 2018). We then com-
pare the adaptation efficiency of the learned skills in down-
stream tasks of URLB (Laskin et al., 2021), where previ-
ous competence-based methods shown to produce relatively
weak performance. We finally conduct several ablation stud-
ies on skill finetuning, skill dimensions, and temperature.

5.1. Continuous 2D Maze

We start from a continuous 2D maze to illustrate the skills
learned in BeCL. We adopt the environment of Campos
et al. (2020), where the agent observes its current position
(S ∈ R2) and takes an action (A ∈ R2) to control its veloc-
ity and direction. The agent will be blocked if it collides
with the wall. We make comparisons with three typical
skill optimization objectives from DIAYN (Eysenbach et al.,
2019), DADS (Sharma et al., 2020), and CIC (Laskin et al.,
2022). Specifically, DIAYN maximizes the reverse form of
MI as I(S;Z) = H(Z)−H(Z|S), DADS maximizes the
forward form of MI as I(S;Z) = H(S) − H(S|Z), and
CIC is a data-based method that maximizes the state en-
tropy H(S) with a particle estimator. For a fair comparison,
all methods sample skills from a 10-dimensional discrete
distribution and follow the same training procedure. The
differences between methods are the formulation of intrinsic
rewards and representations.

Question 1. Can BeCL balance skill empowerment and
state coverage?

We visualize the trajectories generated by different skills in
maze and compare BeCL to other skill discovery methods
in Figure 4. We find DIAYN and DADS produce discrim-
inable skills while the trajectories are not far-reaching. In
contrast, CIC can produce skills with the best state coverage,
while the trajectories of different skills are mixed and lack
of diversity. Since CIC maximizes the state entropy via
a k-nearest-neighbor estimator and maps states from the
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Figure 4. A illustration of different skill discovery objectives. The
initial state is denoted by a black dot and the color of the trajectories
denote different skill upon which it was conditioned. We generate
20 trajectories for each skill. Top: the reverse (Eysenbach et al.,
2019) and forward (Sharma et al., 2020) forms for optimizing
I(S;Z) can discover discriminable skills but fail to reach the right
side of the maze. Bottom left: Maximizing the state entropy allows
skills to cover the entire space of maze, while different skills cannot
be distinguished from each other (Laskin et al., 2022). Bottom
right: BeCL learns skills that are distributed in different areas with
well alignment in the same skill, indicating that BeCL can balance
state coverage and empowerment in skill discovery.

same skill to similar representations, the closest k-th neigh-
bors can also include states conditioned on the same skill.
Maximizing the state entropy will push these states away
from each other and leads to an increase in H(S|Z). In
contrast, BeCL maps the states from the same skill into sim-
ilar features to encourage better empowerment; meanwhile,
it also pushes states in one skill away from states in other
skills to obtain diverse skills and better state coverage. We
provide further numerical analysis of mutual information
and entropy estimation between the methods in the maze, as
shown in Figure 8 in Appendix B.

5.2. URLB Environments

We evaluate BeCL in DMC tasks from URLB benchmark
(Laskin et al., 2021), which needs to discover more compli-
cated skills to achieve the desired behavior. URLB consists
of three different domains, including Walker, Quadruped,
and Jaco Arm. Each domain contains four downstream tasks.

Specifically, Walker is a biped constrained to a 2D vertical
plane (i.e. S ∈ R24,A ∈ R6), which has four different
locomotion tasks including (Walker, Stand), (Walker, Run),
(Walker, Flip) and (Walker, Walk); Quadruped is a quadruped
with four downstream tasks including (Quadruped, Stand),
(Quadruped, Run), (Quadruped, Jump) and (Quadruped,
Walk), while it is more challenging due to the higher-
dimensional states and actions spaces (i.e. S ∈ R78,A ∈
R16) and complex dynamics; Jaco Arm is a 6-DoF robotic
arm with a three-finger gripper (i.e. S ∈ R55,A ∈ R9) and
its downstream tasks aim to reach and manipulate a movable
diamond with different positions. We illustrate more details
about the tasks in Figure 9 of Appendix C

Question 2. What skills do BeCL learn in DMC?

We provide a qualitative analysis of the behavior of skills
in more complex control tasks. We compare BeCL to other
competence-based algorithms including CIC and DIAYN in
Walker domain. As shown in Figure 10 in Appendix C.4,
with the same pretraining steps, BeCL produces dynamic
and non-trivial behavior during a finite episode. In contrast,
solely maximizing state entropy like CIC leads to trivial and
dynamic behavior since it encourages the agent to collect
unusual states, such as visiting ‘handstands’ state by con-
stantly trying to wiggle the agent’s body for larger reward.
In addition, DIAYN learns static ‘posing’ skills since the
static skills can also optimize the MI objective I(S;Z), as
we discuss in Section 3.1.

Question 3. How does the adaptation efficiency of BeCL
compared to other unsupervised RL algorithms?

Baselines. We compare BeCL with other baselines in the
URLB benchmark, including knowledge-based, data-based,
and competence-based algorithms. Knowledge-based meth-
ods include ICM (Pathak et al., 2017), Disagreement (Pathak
et al., 2019), and RND (Burda et al., 2019); data-based meth-
ods include APT (Liu & Abbeel, 2021a), ProtoRL (Yarats
et al., 2021), and CIC (Laskin et al., 2022); and competence-
based methods include SMM (Lee et al., 2019), DIAYN
(Eysenbach et al., 2019), and APS (Liu & Abbeel, 2021b).
The main difference between baselines are the design of
intrinsic reward and representation. We summarize the im-
plementation details of the baselines in Appendix C.2. We
follow the hyper-parameters and the implementation recom-
mended by URLB and CIC.

Evaluation. To perform a fair comparison, we follow stan-
dard pretraining and finetuning procedures as suggested in
URLB (Laskin et al., 2021). We pretrain each algorithm
for 2M steps with only intrinsic rewards for each domain,
and then finetune the policy for 100K steps in different
downstream tasks with extrinsic reward. We use DDPG
(Lillicrap et al., 2016) as the basic RL algorithm and train
each method for 10 seeds, resulting in 1200 runs in total
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Figure 5. The aggregate statistics indicate the adaptation performance of different unsupervised RL methods in 12 downstream tasks.
We run all baselines for 10 seeds and report the aggregated normalized score (Agarwal et al., 2021) after 100K steps of finetune. BeCL
obtains the highest Interquratile Mean (IQM) score of 75.38% and the lowest Optimality Gap (OG) score of 25.44%.

(i.e., 10 algorithms × 10 seeds × 3 domains × 4 tasks).

Following reliable (Agarwal et al., 2021), we adopt in-
terquartile mean (IQM) and optimality gap (OG) metrics
aggregated with stratified bootstrap sampling as our main
evaluation metrics across all runs. IQM discards the bottom
and top 25% of the runs and calculates the mean score of the
remaining 50% runs. OG evaluates the amount by which the
algorithm fails to meet a minimum score of desired target.
The expert score is obtained by running DDPG with 2M
steps in the corresponding tasks and we adopt the expert
scores from Laskin et al. (2022). We normalize each score
with the expert score and the statistical results are shown in
Figure 5. In the IQM metric, BeCL achieves competitive
performance with CIC (75.38% and 75.18%, respectively)
and outperforms the next best skill discovery algorithm (i.e.,
APS) by 38.2%. In OG metric, BeCL achieves the closest
performance to expert performance (around 25.44%) and
the CIC score achieves approximately 25.75%.

5.3. Ablation Study

Question 4. Whether different skills have different adapta-
tion efficiency on downstream tasks?

We evaluate the adaptation efficiency of the learned skills
in pretraining the Quadruped agent. We compare the nor-
malized reward after finetuning by initializing the policy
with different skills vector. We show the downstream perfor-
mance in (Quadruped, stand) and (Quadruped, run) tasks
in Figure 11 of Appendix C. We find that the performance
of different skills does not always revolve around statistical
averages and some skills have relatively weak adaptation
ability, which indicates that a skill-chosen process would
be desired before finetuning. For example, CIC (Laskin
et al., 2022) chooses skills with grid sweep in the first 4K
finetuning steps. In contrast, BeCL randomly samples skills
in the finetuning stage to report the average performance of

skills, which provides a more comprehensive evaluation of
the learned skills.

Question 5. How does the skill dimensions affect unsuper-
vised skill discovery?

We explore the impact of the skill dimensions with a dis-
crete skill space. We train DIAYN (Eysenbach et al., 2019),
DADS (Sharma et al., 2020) and BeCL with different num-
bers of skill in a tree-like maze. As shown in Figure 7 of
Appendix B, with the skill dimension increases, DIAYN and
DADS still optimize MI in a narrow area of the maze and
cannot go far away. In contrast, BeCL skills gradually cover
the entire maze when the skill dimension increases, which
coincides to Theorem 2 that using more skills increases the
number of negative samples and provides a better entropy
estimator. We further study the impact of the skill dimension
on adaptation efficiency in DMC, as shown in Figure 12
of Appendix C. The results show that increasing the skill
dimension can benefit the adaptation performance in hard
downstream tasks (e.g. (Walker, Run) and (Walker, Flip)),
while it cannot improve the performance in relatively easy
tasks approaching expert scores (e.g. (Walker, Stand)).

Question 6. How does the temperature κ in the contrastive
objective affect empowerment and state coverage?

To analyze the effect of temperature κ on the behavior of
BeCL skills, we evaluate several values of κ in the maze
task. The result is shown in Figure 6. We find that using a
smaller temperature value encourages the skills to explore
the entire maze space (i.e., decreases from 1 to 0.5). How-
ever, as the temperature decreases further (i.e., decreases
from 0.1 to 0.01), trajectories from different skills tend to
be more uniformly distributed, which somewhat weakens
the discriminability of skills. We remark that such a sce-
nario resembles previous analysis of temperature (Wang &
Liu, 2021; Wang & Isola, 2020), where κ is considered to
balance the uniformity-tolerance dilemma in unsupervised
contrastive learning. Specifically, we hope that the skills
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Figure 6. The impact of temperature κ in the behavior of BeCL. Lower temperatures encourage more skills to cover the right side of the
maze (e.g. temperature from 1 to 0.5). But as the temperature dropped further (e.g. temperature from 0.1 to 0.01), some skills tend to
produce more dispersed trajectories. This makes some skills indistinguishable from each other in a confined maze.

can be distributed uniformly to be globally separated; mean-
while, we hope that the trajectories are locally clustered
and are more tolerant to the states generated with the same
skill. A suitable κ may avoid the gathering of different
skills in local areas, which helps to explore different regions
and improves the state coverage. Meanwhile, too small κ
can be harmful to the alignment of positive samples, which
weakens the empowerment of skills.

6. Conclusion
We propose BeCL with a novel MI objective for unsuper-
vised skill discovery from a multi-view perspective. The-
oretically, BeCL discovers skills and maximizes the state
coverage simultaneously, which makes BeCL produce di-
verse behaviors in various skills. Empirical results show that
BeCL learns diverse and far-reaching skills in mazes and
performs well in downstream tasks of URLB. In the future,
we will improve BeCL by selecting hard negative samples to
obtain a tighter MI bound, and developing a meta-controller
for better skill selection in the finetuning stage.
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Appendix

A. Theoretical Proof
A.1. Proof of the MI Decomposition

Under Assumption 2, we recall that Eq. (2) is

I(S(1);Z) = I(S(2);Z) = I(S(1);S(2);Z).

Proof. For random variables X , Y and Z, the chain rule for multivariate MI is

I(X;Y ;Z) = I(Y ;Z)− I(Y ;Z|X). (11)

Thus, for S(1), S(2), and Z, we have the similar relationship as

I(S(1);Z) = I(S(1);S(2);Z) + I(S(1);Z|S(2)). (12)

According to the redundancy assumption in Assumption 2, we have

I(S(1);Z
∣∣ S(2)) = 0, (13)

and then we have

I(S(1);Z) = I(S(1);S(2);Z). (14)

Following a similar proof, we have

I(S(2);Z) = I(S(1);S(2);Z), (15)

which conclude our proof.

A.2. Proof of Theorem 1

Theorem (Theorem 1 restate). The relationship between our MI objective in Eq. (2) and the contrastive loss defined in
Eq. (5) is

IBeCL = I(S(1);S(2)) ≥ logN − LBeCL1, (16)

where N = 2m− 1 and m is the number of sampled skills.

Proof. We rewrite LBeCL1 defined in Eq. (5) with m discrete skills as

LBeCL1 = E
i∈[m],s

(1)
i ,s

(2)
i ,S−

− log
h(s

(1)
i , s

(2)
i )∑

sj∈S− ⋃
s
(2)
i
h(s

(1)
i , sj)

 ,
13
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Following the definition of MI, we have

I(S(1);S(2))− logN = E
i∈[m],s

(1)
i ,s

(2)
i

[
log

p(s
(1)
i s

(2)
i )

p(s
(1)
i )p(s

(2)
i )

]
− logN

= E
i∈[m],s

(1)
i ,s

(2)
i

[
log

p(s
(1)
i |s(2)i )

p(s
(1)
i )

]
− logN

= E
i∈[m],s

(1)
i ,s

(2)
i

log 1

p(s
(1)
i )

p(s
(1)
i |s(2)i )

N


= E

i∈[m],s
(1)
i ,s

(2)
i

log 1

p(s
(1)
i )

p(s
(1)
i |s(2)i )

+
p(s

(1)
i )

p(s
(1)
i |s(2)i )

(N − 1)



(17)

Under Assumption 2, since S(1) and S(2) share the same information about the skill, we have p(s(1)|s(2)) ≥ p(s(1)). Then

I(S(1);S(2))− logN ≥ E
i∈[m],s

(1)
i ,s

(2)
i

log 1

1 +
p(s

(1)
i )

p(s
(1)
i |s(2)i )

(N − 1)

 (18)

= E
i∈[m],s

(1)
i ,s

(2)
i

[
− log

(
1 +

p(s
(1)
i )

p(s
(1)
i |s(2)i )

(N − 1)

)]
. (19)

Considering we sample sj ∈ S− that is independent to s(1)i (i.e., i ̸= j), we have p(s(1)i |sj) = p(s
(1)
i ). Formally, we have

Ej∈[m]\{i},sj∈S−

[
p(s

(1)
i |sj)

p(s
(1)
i )

]
= 1, (20)

where S− contains N − 1 negative examples. Plugging (20) into (19), we have

I(S(1);S(2))− logN ≥ E
i∈[m],s

(1)
i ,s

(2)
i

[
− log

(
1 +

p(s
(1)
i )

p(s
(1)
i |s(2)i )

(N − 1)

)]

= E
i∈[m],s

(1)
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(2)
i
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− log

(
1 +
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(1)
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(1)
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(1)
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])]
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(1)
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(1)
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(1)
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(1)
i |s(2)i )



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(1)
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(2)
i ,S−

log
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(1)
i |s(2)i )

p(s
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i |sj)

p(s
(1)
i )




= E
i∈[m],s

(1)
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i ,S−

log
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i , s
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(1)
i , s

(2)
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(1)
i , sj)

 ,

(21)

where h(x1, x2) = p(x1|x2)/p(x1) is the score function that preserves the mutual information between x1 and x2. In
practice, we use a neural network to represent the score function.
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A.3. Proof of Theorem 2

Theorem (Restate of Theorem 2). With sufficient negative samples, minimizing LBeCL2 can maximize the state entropy, as

lim
N→∞

LBeCL2=− 1

κ
Esi [f(s

(1)
i )⊤f(s

(2)
i )]− Ĥ

(
f(s)

)
+ logC, (22)

where Ĥ(·) is a resubstitution entropy estimator through the von Mises-Fisher (vMF) kernel density estimation, and logC is
a normalization constant.

Proof. We rewrite the definition of our contrastive estimator as

LBeCL2 = Esi,S−

− log
exp

(
f(s

(1)
i )⊤f(s

(2)
i )/κ

)
exp

(
f(s

(1)
i )⊤f(s

(2)
i )/κ

)
+
∑
sj∈S− exp

(
f(sj)⊤f(s

(1)
i )/κ

)


= Esi
[
− 1

κ

(
f(s

(1)
i )⊤f(s

(2)
i )

]
+ Esi,S−

log
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(
f(s

(1)
i )⊤f(s

(2)
i )/κ

)
+
∑
sj∈S−

exp
(
f(sj)

⊤f(s
(1)
i )/κ

)
(23)

In the following, we denote M = N − 1 as the number of negative samples when using s(1) as the anchor state. Then we
have

lim
M→∞

LBeCL2 − logM

= Esi
[
− 1

κ

(
f(s

(1)
i )⊤f(s

(2)
i )

]
+ Esi lim
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log
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(
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) ,
(24)

where the second equation holds by the strong law of large numbers (SLLN).

When M → ∞, the negative sample set S− contains sufficient states to represent the state visitation distribution. As a result,
sampling sj ∈ S− will be equivalent to sampling sj ∼ ρπ(s), where ρπ(s) is the state visitation measure of the current
policy π. Then we have

lim
M→∞

LBeCL2 = Esi
[
− 1

κ
f(s

(1)
i )⊤f(s

(2)
i )

]
+ Esi

[
logEsj∼ρπ(s)

[
exp

(
f(sj)

⊤f(s
(1)
i )/κ

)]]
+ logM, (25)

where we follow Continuous Mapping Theorem with the logarithmic function.

As we normalize the output of the encoder network to make ∥f(·)∥ = 1, the features of states lie on a unit hypersphere

Sd−1 :
{
f(s) ∈ Rd : ∥f(s)∥ = 1

}
.

Kernel density estimation (KDE) is commonly used in the Euclidean setting. In our problem, we use a spherical kernel K
as a spherical probability density function with a mean direction µ ∈ Rd and a concentration parameter u > 0. Specifically,
we adopt the classical von Mises-Fisher (vMF) distribution defined over

KvMF(x;µ, u) = ZvMF(u) · exp(u · µ⊤x), ZvMF(u) =
ud/2−1

(2π)d/2Id/2−1(u)
, (26)

where Iα is a modified Bessel function of the first kind with order α. Here, u and µ ∈ Rd are the parameters of vMF density
with u ≥ 0 and ∥µ∥ = 1.

In the following, we denote si = s
(1)
i for the second term in Eq. (25) as it only contains a single view that can be sampled

from ρπ(s). In the following, we sample si with a number of Ns to estimate this term. With a sufficiently large number of
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Ns and the vMF kernel defined in Eq. (26), we have

Esi
[
logEsj∼ρπ(s)

[
exp

(
f(sj)

⊤f(s
(1)
i )/κ

)]]
=

1

Ns

Ns∑
i=1

log

 1

M

M∑
j=1

exp
(
f(sj)

⊤f(si)/κ
)

=
1

Ns

Ns∑
i=1

log p̂vMF−KDE

(
f(si)

)
+

1

Ns

Ns∑
i=1

logZvMF

(
f(si)

)
= −Ĥ

(
f(s)

)
+ logZvMF,

(27)

where we denote ZvMF =
∏Ns

i=1 ZvMF(f(si)) as the normalization constant for the vMF distribution. Here, p̂vMF−KDE is
the vMF kernel density estimation with a concentration parameter of u = κ−1.

With the density estimation in the hypersphere, Ĥ is a resubstitution entropy estimator based on vMF. Inserting Eq. (27)
into Eq. (25) gives us

lim
M→∞

LBeCL2 = Esi
[
− 1

κ
f(s

(1)
i )⊤f(s

(2)
i )

]
− Ĥ(f(s)) + logZvMF + logM, (28)

which concludes our proof by setting C =M · ZvMF.
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B. Additional Experiments in Maze
B.1. Effect of Skill Dimensions

Reverse form
(DIAYN)

5 skills 10 skills 20 skills 30 skills

Forward form
(DADS)

BeCL

Figure 7. A illustration of the impact of different numbers of skills in tree-like Mazes. All methods are trained for 2500 episodes, and
each episode allows 50 interactions with environment. As the skill dimension increases, skills of DIAYN and DADS still optimize MI in a
narrow area of the maze and cannot reach deeper position. In contrast, BeCL skills gradually cover the whole state space by applying
more skills to explore the maze and more negative samples to provide a better state-entropy estimator.

B.2. The MI and Entropy Estimation of skill discovery methods in Maze

Figure 8. We compare the mutual information (MI) estimation and the entropy estimation in maze. Specifically, we generate several
trajectories for each learned skill and perform MI estimation using MINE (Belghazi et al., 2018) and entropy estimation using the
particle-based entropy estimator (Liu & Abbeel, 2021a). The result shows that CIC obtains much lower MI than other skill discovery
methods but obtains the largest state entropy. BeCL can balance state coverage and empowerment with different temperature parameters,
which leads to diverse skills and also better state coverage than previous MI-based algorithms.
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C. Additional Experiments in URLB
C.1. Hyperparameter

We adopt the baselines of open source code implemented by URLB (https://github.com/rll-research/
url_benchmark) and CIC (https://github.com/rll-research/cic). The hyperparameters of the baselines
remain unchanged and are fixed in all tasks in the pretraining and finetuning stage. Table 1 shows the hyperparameters of
BeCL and DDPG. We also refer to the hyperparameters settings of baselines implemented in URLB.

Table 1. Hyper-parameters used for BeCL and DDPG.
BeCL hyper-parameter Value
Skill dim 16 discrete
Temperature κ 0.5
Skill sampling frequency (steps) 50
Contrastive encoder arch. f(s) dim(S) → 1024 → 1024 → 16 → 1024 → 16 ReLU (MLP)

DDPG hyper-parameter Value
Replay buffer capacity 106

Action repeat 1
Seed frames 4000
n-step returns 3
Mini-batch size 1024
Seed frames 4000
Discount (γ) 0.99
Optimizer Adam
Learning rate 10−4

Agent update frequency 2
Critic target EMA rate (τQ) 0.01
Features dim. 1024
Hidden dim. 1024
Exploration stddev clip 0.3
Exploration stddev value 0.2
Number pretraining frames 2× 106

Number fineturning frames 1× 105

C.2. Description of Baselines in URLB

A comparison of different intrinsic rewards and representations in unsupervised RL baselines in our experiments is shown
in Table 2. Specifically, knowledge-based baselines utilize a trainable encoder to predict dynamics f(st+1|st, at) (e.g.,
ICM (Pathak et al., 2017), Disagreement (Pathak et al., 2019)) or minimize the output error of f(st, at) and a random
network f̃(st, at) (e.g., RND (Burda et al., 2019)); data-based baselines maximize the entropy of collected data on different
representations of state f(s) with particle estimator; Competence-based baselines aim to learn latent skill z by maximizing
the MI between states and skills: I(S;Z) = H(S) −H(S|Z) = H(Z) −H(Z|S). For example, APS (Liu & Abbeel,
2021b) optimizes the forward form of I(S;Z) as in DADS (Sharma et al., 2020) but with successor features, and estimates
H(S) with the particle estimator as in APT; DIAYN (Eysenbach et al., 2019) optimizes the reverse form of I(S;Z), and
utilizes the non-negativity property of the KL divergence to compute the variational lower bound of I(S;Z) through a
trainable network q. The main differences between the baselines in URLB are the design of intrinsic reward and its state
representation. More descriptions of the baselines can be found in URLB (Laskin et al., 2021). Furthermore, BeCL is a
competence-based method and trains skills with I(S(1);S(2)).

1The newest NeurIPS version of CIC https://openreview.net/forum?id=9HBbWAsZxFt has two designs of intrinsic
reward including the NCE term and KNN reward, which represent competence-base and data-based designs respectively. Since CIC
obtains the best performance in URLB with KNN reward only and NCE is used to update representation, we use KNN reward as its
intrinsic reward and consider it as a data-based method in this paper.
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Table 2. BeCL and other unsupervised RL baselines.
Name Algo. Type Intrinsic Reward Explicit max H(s)

ICM (Pathak et al., 2017) Knowledge ∥f(st+1|st, at)− st+1∥2 No
Disagreement (Pathak et al., 2019) Knowledge Var{fi(st+1|st, at)} i = 1, . . . , N No
RND (Burda et al., 2019) Knowledge ∥f(st, at)− f̃(st, at)∥22 No

APT (Liu & Abbeel, 2021a) Data
∑
j∈KNN log ∥f(st)− f(sj)∥ f ∈ random or ICM Yes

ProtoRL (Yarats et al., 2021) Data
∑
j∈KNN log ∥f(st)− f(sj)∥ f ∈ prototypes Yes

CIC (Laskin et al., 2022) Data 1 ∑
j∈KNN log ∥f(st, s′t)− f(sj , s

′
j)∥ f ∈ contrastive Yes

SMM (Lee et al., 2019) Competence log p∗(s)− log qz(s)− log p(z) + log d(z|s) Yes
DIAYN (Eysenbach et al., 2019) Competence log q(z|s)− log p(z) No
APS (Liu & Abbeel, 2021b) Competence rAPT

t (s) + log q(s|z) Yes
BeCL (Ours) Competence exp(f(s

(1)
t )⊤f(s

(2)
t )/κ)/

∑
sj∼S− ⋃

s
(2)
t

exp(f(sj)
⊤f(s

(1)
t )/κ No

Reach Bottom Left Reach Bottom Right

Reach Top Left Reach Top Right

Jaco Arm

Stand

Jump

Walk

Run

QuadrupedWalker

Run Flip

Stand Walk

Figure 9. Introduction of domains and their downstream tasks in URLB (Laskin et al., 2021). There are four different domains and each
domain has four different downstream tasks. The environment is based on DMC (Tassa et al., 2018). The episode lengths for the Walker
and Quadruped domains are set to 1000, and the episode length for the Joco domain is set to 250, which results in the maximum episodic
reward for the Walker and Quadruped domains being 1000, and for Jaco Arm being 250.

C.3. Practical Implementation

We evaluate the adaptation efficiency of BeCL following the pretraining and finetuning procedures in URLB (Laskin et al.,
2021). Specifically, in the pretraining stage, latent skill z is changed and sampled from a discrete distribution p(z) in every
fixed step and the agent interacts with the environments based on πθ(a|s, z). The encoder network f(·) will be updated after
4k steps of pretraining. We use 5 MLP to construct the encoder network and compute the optimization loss by Eq. (8). The
replay buffer has the same capacity on all baselines. We sample a mini-batch from the replay buffer (s, s′, a, z), and pick
samples with the same skill as a positive pair, and consider those samples with different skills as negative pairs to compute
contrastive loss and intrinsic reward. We then update the critic Qψ by minimizing the Bellman residual, as

LQ(ψ,B) = E(st,at,rt,st+1,zt)∼B

[(
Qψ(st, zt, at)− rt − γQψ̄(st+1, zt, πθ(st+1, zt)

)2]
. (29)

where ψ̄ is an exponential moving average (EMA) of the critic weights ψ, and rt is an intrinsic or extrinsic reward depending
on the training stages. We train the actor πθ(st, zt) by maximizing the expected returns, as

Lπ(θ,B) = −E(st,zt)∼B [Qψ(st, zt, πθ(st, zt))] . (30)

In the finetuning stage, a skill is randomly sampled and keep fixed in all steps. The actor and critic are updated by extrinsic
reward after first 4000 steps. We give algorithmic descriptions of the pretraining and finetuning stages in Algorithm 1
and Algorithm 2, respectively. In our experiment, pretraining one seed of BeCL for 2M steps takes about 18 hours while
fine-tuning to downstream tasks for 100k steps takes about 30 minutes with a A100 GPU.
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Algorithm 1 BeCL: Unsupervised pretraining
Input: number of pretraining frames NPT , skill dimension |z|, batch size N , and skill sampling frequency Nupdate.
Initialize the environment, random actor πθ(a|s, z), critic Qψ(s, z, a), contrastive encoder f , and replay buffer B
for t = 1 to NPT do

Randomly choose zt from category distribution p(z) ∈ R|z| every Nupdate steps.
Interact with environment : τzt , τ

′
zt ∼ πθ(a|s, zt), p(s′|s, a).

Store τzt , τ
′
zt into buffer B.

if t ≥ 4, 000 then
Sample a batch from B : {(a(1)i , s

(1)
i , s

′(1)
i , zi), (a

(2)
i , s

(2)
i , s

′(2)
i , zi)}N/2i=1 ∼ {τZ}.

Update the contrastive encoder f using contrastive loss in Eq. (8).
Compute the intrinsic reward rint with Eq. (10).
Update actor πθ(a|s, z) and critic Qψ(s, z, a) by Eq. (29) and Eq. (30) using intrinsic reward rint.

end if
end for

Algorithm 2 BeCL: Finetuning with extrinsic rewards
Input: actor πθ(a|s, z⋆) and critic Qψ([s, z⋆], a) with weights from pretraining phase, randomly sampled z⋆ from p(z),
and number of finetuning frames NFT batch size N . Initialized environment and an empty replay buffer D.
for t = 1 to NFT do

Choose the action by at ∼ πθ(a|st, z⋆).
Interact with environment to obtain st+1, rt with extrinsic reward from downstream task.
Store (st, at, st+1, rt, z

⋆) into buffer D.
if t ≥ 4, 000 then

Sample a batch {(a(i), s(i), s′(i), r(i), z(i))}Ni=1 from the replay buffer D.
Update actor πθ(a|s, z⋆) and critic Qψ([s, z⋆], a) using extrinsic reward r in Eq. (29) and Eq. (30).

end if
end for

C.4. Visualization of Behaviors in Competence-based Methods

DIAYN

“static”

BeCL

“static”“dynamic”

CIC

“dynamic”

Figure 10. Qualitative visualization for the behavior of different competence-based algorithms on Walker domain from URLB. From
left to right, the figures show the snapshots of behaviors from the three algorithms within an episode. We find that DIAYN polices
produce constantly static and non-trivial poses, while CIC policies can produce dynamic and trivial behaviors, which is consistent with the
observations of previous work (Laskin et al., 2022; 2021). In contrast, BeCL combines dynamic and static behaviors during an episode,
which can also be use for good adaptation in downstream tasks.
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C.5. Numerical Results

We represent the individual normalized return of different methods in state-based URLB after 2M steps of pretraining and
100k steps of finetuning, as shown in Table 3. In the Quadruped domain, BeCL obtains state-of-the-art performance in
downstream tasks. In the Walker and Jaco domains, BeCL shows competitive performance against the leading baselines.

Table 3. Results of BeCL and other baselines on state-based URLB. All baselines are pretrained for 2M steps with only intrinsic rewards
in each domain, and then finetuned to 100K steps in each downstream task by giving the extrinsic rewards. All baselines are run for 10
seeds per task, and the code and hyperparameters are given in URLB (Laskin et al., 2021). The highest performing scores are highlighted.

Domain Task DDPG ICM Disagreement RND APT ProtoRL SMM DIAYN APS CIC BeCL

Walker

Flip 538±27 390±10 332±7 506±29 606±30 549±21 500±28 361±10 448±36 641±26 611±18
Run 325±25 267±23 243±14 403±16 384±31 370±22 395±18 184±23 176±18 450±19 387±22

Stand 899±23 836±34 760±24 901±19 921±15 896±20 886±18 789±48 702±67 959±2 952±2
Walk 748±47 696±46 606±51 783±35 784±52 836±25 792±42 450±37 547±38 903±21 883±34

Quadruped

Jump 236±48 205±47 510±28 626±23 416±54 573±40 167±30 498±45 389±72 565±44 727±15
Run 157±31 125±32 357±24 439±7 303±30 324±26 142±28 347±47 201±40 445±36 535±13

Stand 392±73 260±45 579±64 839±25 582±67 625±76 266±48 718±81 435±68 700±55 875±33
Walk 229±57 153±42 386±51 517±41 582±67 494±64 154±36 506±66 385±76 621±69 743±68

Jaco

Reach bottom left 72±22 88±14 117±9 102±9 143±12 118±7 45±7 20±5 84±5 154±6 148±13
Reach bottom right 117±18 99±8 122±5 110±7 138±15 138±8 60±4 17±5 94±8 149±4 139±14

Reach top left 116±22 80±13 121±14 88±13 137±20 134±7 39±5 12±5 74±10 149±10 125±10
Reach top right 94±18 106±14 128±11 99±5 170±7 140±9 32±4 21±3 83±11 163±9 126±10

C.6. Evaluation of Different Skills in Finetuning
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Quadruped. Stand
Quadruped. Run

Figure 11. The adaptation efficiency of difference skills in the finetuning stage. The skill is a one-hot vector sampled from a 16-dimensional
discrete distribution in the pretraining stage. Then we sample each skill for finetuning in (Quadruped, Run) and (Quadruped, Stand) tasks.
We find that some skills do not always obtain a well generalization performance in downstream tasks (e.g. skill 1,6,13 in stand task). In
BeCL, we uniformly choosing skill in the finetuning stage to evaluate the average adaptation performance among skills, although it would
be better to choosing the best skills through a grid search like CIC (Laskin et al., 2022). We believe more matching meta-controller or
other effective finetuning methods should be considered in future works.
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C.7. The Impact of Skill Dimension in Adaptation
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Figure 12. Illustration of the adaptation efficiency of different skill dimensions in URLB. We pretrain the policies with 4, 8, 16, 32,
64-dimensional discrete skills respectively. We compare their average normalize reward after 100K steps of finetuning. The results
show that increasing the skill dimension in BeCL can benefit the adaptation efficiency in some hard downstream tasks (e.g. (Walker,
Run) and (Walker, Flip) that need more complicated skills). Meanwhile, we find BeCL performs similar with different skill dimensions
in easy downstream tasks like (Walker, Stand), where a 4-dimensional skill space can also perform well. In all URLB tasks, we use a
16-dimensional discrete skill distribution as in DIAYN (Eysenbach et al., 2019) for a fair comparison.

C.8. The Initial Results of Pixels-based URLB

Figure 13. we provide the initial results of the performances of BeCL in pixels-based walker in URLB. To extend BeCL to image-based
tasks, we add PIEG (Yuan et al., 2022) encoder to encode the observation ahead our policy and reward in the pretraining and finetuning
stage. The result shows that the performance of BeCL in image-based tasks outperforms image-based CIC (Laskin et al., 2022) while still
underperforms that in state-based tasks.
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