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Abstract
We consider the problem of learning to predict out-
comes of unseen pairwise comparisons over a set
of items when a small set of pairwise comparisons
are available. When the underlying preferences
are intransitive in nature, which is common occur-
rence in real world data sets, this becomes a chal-
lenging problem both in terms of modeling and
learning. Towards this, we introduce a flexible
and natural parametric model for pairwise com-
parisons that we call the Distinguishing Feature
Model (DF). Under this model, the items have an
unknown but fixed embeddings and the pairwise
comparison between a pair of items depends prob-
abilistically on the feature in the embedding that
can best distinguish the items. The proposed DF
model generalizes the popular transitive Bradley-
Terry-Luce model and with embedding dimension
as low as d = 3, can capture arbitrarily long cyclic
dependencies. Furthermore, we explicitly show
the type of preference relations that cannot be
modelled under the DF model for d = 3. On the
algorithmic side, we propose a Siamese style neu-
ral network architecture which can be used learn
to predict well under the DF model while at the
same time being interpretable in the sense that
the embeddings learnt can be extracted directly
from the learnt model. Our experimental results
show that the model is either comparable or out-
performs standard baselines in both synthetic and
real world data-sets.

1. Introduction
We consider the problem of learning to predict outcomes
of unseen pairwise comparisons over a set of items given
a small set of pairwise comparisons as training data. This
problem has applications in predicting outcomes of sports
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tournaments, e-commerce, meta-ranking, etc. Typically,
one assumes a statistical model for comparisons where item
i is preferred to item j with some underlying fixed but
unknown probability Pij . The performance of an algorithm
is then measured by how closely the algorithm is able to
predict the underlying probability matrix P either in terms
of pairwise agreement or in terms of mean squared error
(RMSE). Imposing parametric assumptions on P lead to
various popular preference models. A typical score based
assumption leads to the popular Bradley-Terry-Luce Model
(BTL) where Pij = wi

wi+wj
where wi ∈ R+ is the score

of item i. Under the BTL model, one can learn effectively
from O(n log n) pairs uniformly chosen from the set of
all

(
n
2

)
pairs and where each chosen pair is compared only

O(log n) times 13. While the sample complexity of learning
is attractive, the downside of the BTL assumption is that
it can model only transitive preferences i.e., for any three
items i, j, k, Pij ≥ 0.5 & Pjk ≥ 0.5 =⇒ Pik ≥ 0.5.
Real world preferences are almost always intransitive due
to the fact that items typically have multiple features or
scores associated with them and one is preferred over the
other based on some function of all these features. In the
simplistic BTL model, items have 1 dimensional features
(their associated score) and are hence restrictive for real
world applications.

In this work, we propose a flexible model for pairwise com-
parisons called the Distinguishing Feature (DF) model. The
DF model is based on the simple hypothesis that when two
items are being compared by a human, there are several
implicit features of these items that are considered and the
preference is decided based on the most distinguishing fea-
ture among all features. For instance, if the items being
compared are mobile phones, the scores/features to be con-
sidered may include price, battery life, weight and/or some
weighted combination of these (all normalized to have the
same scale) and the comparison between two mobile phones
will depend only on the distinguishing feature i.e, the fea-
ture whose absolute difference of scores is the largest. Once
the distinguishing feature is identified, the preference is
a probabilistic choice that depends on the exact values of
the items for the distinguishing feature. We stress that the
features that the model uses are implicit i.e., they are not
necessarily known to an algorithm that attempts to learn a
ranking from pairwise comparisons. As we will see, this
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is a key property that makes the model much more flexible
than recently proposed models such as the salient feature
model where the features are assumed to be known.

Main Contributions: We investigate the proposed DF
model by first theoretically understanding the type of pref-
erences that can be realized under the model. We first show
that even with just 3 features per item, the DF model can
model intransitive preferences i.e., cyclic preferences of
arbitrary lengths. We explicitly identify a preference tour-
nament on 8 nodes that cannot be realized using only 3
features.

On the learning side, we develop a neural network based
algorithm (DF-Learn) to learn the implicit features from
pairwise comparisons generated according to the DF model.
DF-Learn is competitive when compared to a standard black
box neural network model in terms of it’s prediction accu-
racy while at the same time is designed such that the features
corresponding to each item can be easily extracted from the
architecture. Furthermore, we demonstrate that DF-Learn
requires very few number of comparisons to learn a good
predictive model, thus being sample efficient.

Finally, we demonstrate the power of the DF model on both
synthetic and real world datasets. As we will see in the
experimental results, the DF learn algorithm performs well
in terms of prediction accuracy and RMSE when compared
to the state of the art algorithms including those that are
proposed for the Salient Feature model (Bower & Balzano,
2020), Blade-Chest Model (Chen & Joachims, 2016), GNN-
Rank Model (He et al., 2022), Low Rank Pairwise Ranking
Model (Rajkumar & Agarwal, 2016), Majority Vote Model
(Makhijani, 2018), and BTL model (Negahban et al., 2015).

2. Related Work
The problem of learning to predict outcomes of pairwise
comparisons has been studied extensively in several areas
including theoretical computer science, AI/ML, social
choice, operations research, etc.

Prior work on learning from Transitive pairwise
Comparisons Models: A vast number of works have
considered learning from transitive pairwise models
especially focusing on the Bradley-Terry-Luce (BTL)
model(Bradley & Terry, 1952)(Luce, 2012). Spectral
ranking was studied in (Negahban et al., 2015)] where
Rank-centrality, an algorithm that produces good rankings
from O(nlog(n)2) comparisons was introduced.

Prior work on Intransitive Preference Modelling:
While the BTL model can be seen as using a 1 dimensional
embedding of the item using a score vector, studies have
considered higher dimensional embeddings. (Makhijani,

2018; Makhijani & Ugander, 2019)] propose the Majority
vote model which is a random utility model (RUM) with
a d dimensional feature embedding for each item. The
Blade-Chest inner (BC) model (Chen & Joachims, 2016)]
embeds each item into two d dimensional vectors (blade
vector and a chest vector) and a score vector s where
the probability of i being preferred over j depends on
< ichest, jblade > − < iblade, jchest > +si − sj . Previous
work (Gleich & Lim, 2011),(Rajkumar & Agarwal, 2016)
have proposed matrix completion based algorithms to
obtain optimal ranking for the LRPR type models assuming
transitivity of preferences. In this work, we make no such
assumptions. More recently, the context dependent salient
feature model(Bower & Balzano, 2020) was introduced
where the preference probabilities for a pair of items
depends on a subset of items that are specific to the pair.
In this work, we don’t require features to be available
along with the items. However, if features are available,
our algorithms will still learn an embedding from the
feature space to an embedding space automatically. The
GNNRank (He et al., 2022) (and it’s several variants)
produces a ranking by learning embeddings from pairwise
comparisons. As rankings are inherently transitive, this
algorithm may not be suited in cases where intransitivity is
expected in the underlying preferences.

3. Problem Setting and Preliminaries
Let [n] = {1, 2, . . . , n} be a set of items that need to be
ranked. We assume that the learner is given a set of m
pairwise comparisons {ik, jk, yk} where k = 1, . . . ,m,
ik, jk ∈ [n] and yk ∈ {0, 1} for all k. For each k, (ik, jk)
refers to the pair of items that were compared and yk = 1
indicates that item ik was preferred to jk and yk = 0
indicates otherwise. The goal of the learner is to produce a
good global ranking over the set of items.

Probability Preference Matrix: We assume that
whenever two items i and j are compared, item i is
preferred to item j with probability Pij . Thus for all k, yk is
a Bernoulli random variable with proability Pikjk . We refer
to the matrix P ∈ [0, 1]n×n as the probability preference
matrix. We have Pij + Pji = 1 ∀i, j. We assume that ties
are not allowed i.e., Pij ̸= 0.5 ∀i ̸= j.

Performance Measure: We will use Prediction Ac-
curacy as one of the performance of an algorithm. This is
the fraction of pairwise preferences predicted correctly with
respect to the underlying true probability preference matrix.
Let P̂ be the predicted probability preference matrix where
P̂ij is the predicted pairwise preference probability for the
pair (i, j). The prediction accuracy is defined as below:

predAcc(P̂,P) =
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1(
n
2

) ∑
i<j

I
(
(Pij > 0.5 &P̂ij > 0.5) ||

I((Pij < 0.5 &P̂ij < 0.5)
)

As one can observe, the prediction accuracy captures the
fraction of correct predictions but does not capture the abso-
lute values of P̂ with respect to P. To capture this, we also
use RMSE as a performance measure.

RMSE(P̂,P) =

√
1(
n
2

) ∑
i<j

(P̂ij − Pij)2 (1)

4. Distinguishing Feature (DF) Model for
Pairwise Comparisons

We now introduce the distinguishing feature model for pair-
wise comparisons. The model assumes that each item i is
associated with an embedding ei ∈ Rd in some dimension d.
When two items i and j are compared, a two step procedure
if followed to decide the preferred item. In the first step, the
feature which contributes to the highest absolute difference
is calculated as follows:

k∗ = argmax
k

|eik − ejk| = ∥ei − ej∥∞ (2)

where, eik represents the kth feature of the embedding
ei. In the above equation, ties are broken arbitrarily. In
the second step, the preference probability is calculated
as Pij = ϕ(eik∗ − ejk∗), where ϕ is a probability link
function that satisfies ϕ(0) = 0.5, lim

x→∞
ϕ(x) = 1 and

lim
x→−∞

ϕ(x) = 0 and ϕ(x) ∈ [0, 1]∀x ∈ R. A simple

example of a probability link function is the logit function
defined as ϕ(x) = 1

1+e−x .

We say that a probability preference matrix P satisfies the
Distinguishing Feature model with dimension d if there
exists a set of d dimensional embeddings for the items such
that Pij can be obtained as described above for all i, j.

Remark: It is straightforward to see that the DF model with
embeddings of items in d dimensions is equivalent to the
following generalization of the BTL model: For any set of
d linearly independent vectors {w1, . . . ,wd}, define Pij =
ϕ(wk∗

T (ei−ej)) where k∗ = argmaxk |wk
T (ei−ej)|.

When {w1, . . . ,wd} is the set of standard basis vectors, we
obtain the distinguishing feature model described earlier.
For any general set of linearly independent vectors, the
embeddings can be linearly transformed to achieve the same
effect as the DF model. Moreover, when d = 1, we obtain
the BTL model.

5. Theoretical Aspects of DF Model
In this section, we prove several theoretical properties of the
Dinstinguishing Feature model. We begin by setting some

notation that will be useful to state our results.

Let P ∈ [0, 1]n×n be a probability preference matrix. We
denote by T(P) the tournament on n nodes associated with
P where T(P) is a complete directed graph and there is an
edge from node i to node j in T(P) if and only if Pij > 0.5.
For a general tournament T, we will say i ≻T j if and only
if there is an edge from i to j in T.

We first begin with a couple of results that show that our
model can effectively subsume several popular and recent
models for pairwise comparisons including the BTL model
and the context dependent Salient feature model.

Proposition 5.1. For d = 1, the Distinguishing Feature
model with the logit link function is exactly same as the
Bradley-Terry-Luce model.

Next, we take a closer look at the preferences that can be
modelled using the DF model. One of the important ways of
understanding a particular model for pairwise comparisons
is to understand the set of tournaments that are achievable
under the model. In this section, we will show several
results which will illustrate the flexibility of the DF model
in representing tournaments. We start with a result on 3
cycles.

Theorem 5.2. Let P ∈ [0, 1]n×n be a probability prefer-
ence matrix that satisfies the Distinguishing Feature model
with dimension d. If T(P) contains a cycle, then d ≥ 3.

While the above theorem shows that we need at least 3
dimensional embeddings to model cycles, we next show
that d = 3 is already powerful enough to model arbitrarily
long cycles.

Theorem 5.3. The DF model can capture arbitrarily long
cycles with just 3 dimensions.

The main result of this section is the following theorem
where we explicitly characterize the tournament that cannot
be modelled using the DF model with only 3 dimension.

Theorem 5.4. Let Tforb be the tournament on 8 nodes
described in Figure 1 (right). There does not exist any
probability preference matrix P ∈ [0, 1]8×8 that satisfies
the DF model with d = 3 such that T(P) = Tforb, i.e.,
Tforb is a forbidden tournament under the DF model for
d = 3.

Remark: The above theorem shows that tournaments with
complicated cyclic dependencies are those that end up being
forbidden by the DF-Model even for dimension d = 3. In
practice, we don’t expect tournaments to have complicated
cyclic dependencies and hence the above theorem can be
seen as a reassurance that the DF model is a good enough
model to capture most useful cyclic dependencies in prac-
tice.
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Figure 1. (left) DFLearn - A Siamese style architecture for learning under the Distinguishing Feature Model (right) Tforb - A 8 node
tournament that is forbinnden i.e., cannot be realized by the Distinguishing Feature Model with d = 3;

6. Learning under the DF Model
In this section, we turn to the question of learning under
the DF model. We propose a simple algorithm DF-Learn
which is based on a Siamese type neural network archi-
tecture as shown in Figure 1 (left). The network takes as
input a pair of items represented using either their features
if available or using a one-hot representation and learns
embeddings of each item via a shared input to embedding
network. The embeddings are then passed into a DF-Model
compute module which computes the difference of scores
for these embeddings corresponding to the most distinguish-
ing feature, which is then converted into a probability of
one item being preferred over another using a link function.
Given a pairwise comparison dataset, the network is trained
in the usual Siamese network training fashion to obtain the
weights. The Siamese nature of the architecture ensures
Pij + Pji = 1 for all i, j.

7. Experiments
In this section, we describe our experimental results on syn-
thetic as well as real world datasets. We begin by describing
our experimental setup.

7.1. Synthetic Data Experimental Setup:

We perform experiments on synthetic data by generating
probability preferences over n = 100 items using three
different models as described below.

• BTL Model: A score vector s ∈ R100 is generated at
random from a uniform distribution in [0, 1].

• Salient Feature Model (SF): The embeddings in R10

for items are generated randomly where each compo-
nent is drawn from a Gaussian distribution with mean
0 and standard deviation 1√

d
. Furthermore, each com-

ponent of the weights are drawn according to a 0 mean
Gaussian with standard deviation 4√

d
.

• Distinguishing Feature Model (DF): 3 dimensional

embeddings are generated for 100 nodes such that they
realize the tournament in Figure 2 (left). In particular,
there are 3 clusters with 66, 22 and 12 items each. Each
of these clusters has 3 sub-clusters. Each circle in the
figure indicates the corresponding number of nodes in
that subgroup. For the nodes in each subgroup, the em-
beddings are generated according to a 3 dimensional
Gaussian distribution with mean embeddings respect-
ing the pairwise relation with other subgroups and with
a co-variance of 0.0001I.

The BTL model was chosen as it the most commonly used
transitive model, the SF model was chosen as we wanted
to test the DF learn algorithm’s performance under model
mis-specification. We run the following algorithms for data
generated according to each of the above models.

• Rank Centrality - This algorithm computes a Markov
chain transition probability matrix from the training
pairwise comparisons and outputs the stationary distri-
bution of the Markov chain as the score vector (Negah-
ban et al., 2015).

• LRPR-2 - This algorithm that computes the embed-
dings using a matrix completion procedure as proposed
in (Rajkumar & Agarwal, 2016). The rank is chosen
as 2 after trying out different ranks and finding that 2
gives the best results in general.

• SF-MLE - This algorithm computes the maximum
likelihood estimator for the weights under the context
dependent Salient Features model (Bower & Balzano,
2020)

• Blade-Chest - This algorithm that computes embed-
dings assuming that data is generated according to the
Blade Chest (Inner) model of (Chen & Joachims, 2016)

• Majority Vote - This algorithm that computes em-
beddings assuming the data is generated according to
the 3D majority vote model of (Makhijani & Ugander,
2019)
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Figure 2. (left) The Tournament used to generated the synthetic data from the DF model. (Right) Visualization of the top 3 principal
components of the learnt embeddings by the DFlearn algorithm with increasing number of training pairs. As can be seen, the embeddings
become better with increasing data and visually correspond to the ground truth tournament shown on the left.

c RC LRPR-2 SF-MLE Blade-Chest 3D Majority Vote DFLearn GNNRank-Best
1 0.741 (0.004) 0.802 (0.002) 0.784 (0.002) 0.815 (0.004) 0.782 (0.007) 0.89 (0.004) 0.745 (0.005)
2 0.729 (0.003) 0.803 (0.002) 0.8 (0.002) 0.898 (0.003) 0.857 (0.008) 0.903 (0.003) 0.728 (0.007)
3 0.728 (0.003) 0.8 (0.003) 0.806 (0.002) 0.91 (0.002) 0.747 (0.012) 0.912 (0.003) 0.733 (0.005)
4 0.727 (0.002) 0.807 (0.002) 0.808 (0.002) 0.918 (0.001) 0.768 (0.017) 0.901 (0.004) 0.74 (0.006)
5 0.718 (0.004) 0.805 (0.005) 0.807 (0.003) 0.917 (0.002) 0.81 (0.005) 0.905 (0.004) 0.738 (0.005)
6 0.71 (0.005) 0.81 (0.005) 0.805 (0.003) 0.922 (0.003) 0.86 (0.012) 0.906 (0.004) 0.732 (0.006)

Figure 3. Prediction Accuracy (higher is better) of various algorithms when the data follows the DF model and the number of training
pairs are varied as cn logn for various choices of c, red implies the best and blue implies the second best

• GNNRank-Best - There are 5 algorithmic variants
proposed in their work(He et al., 2022). We run all 5
variants and report the results for the best variant in
each case.

• DF-Learn - This is the algorithm proposed in this work.
The architecture is as shown in Figure 1 (right) where
the weight shared neural network is a fully connected
network with 2 hidden layers and ReLu activation.

Remark: While the Rank Centrality algorithm and the DF
learn algorithm does not require any features, the SF-MLE
algorithm requires features to learn from data. However,
the BTL model and the DF model do not have any explicit
feature information. Thus, when we run the SF-MLE al-
gorithm, we use the one-hot encoding of the items as the
features i.e., the i-th item is represented using a n dimen-
sional vector (where n is the number of items) where the
i-th entry is 1 and the rest are 0.

7.2. Synthetic Data - Experimental Results

For each of the 3 models generating the data and for each of
the 7 algorithms considered above, we test the performance
using various measures discussed earlier namely the Pre-
diction accuracy and the root mean squared error (We also
measure the Kendall-Tau correlation for all the experiments
where a ranking is obtained suitably from both ground-truth
and the predicted preference matrix. We present the root
mean squared error and Kendall-Tau correlation results in
the appendix due to lack of space).

The pairwise comparisons were split in ratio of 70 : 30 for
train and test respectively. The algorithms were run on the
train set and they were tested for accuracy of prediction on
the test set. We report performance measures along with
their standard errors averaged over 10 runs. As there are
100 items, there are

(
100
2

)
= 4950 unique pairs in total.

We vary the number of pairs during training as cn log n for
c = 1, 2, ..., 6. The number of times each pair is compared
is fixed to be 6 which is equal to log(n) as n = 100 for
these experiments. In each case, the accuracy is measured
with respect to the pairs not seen in the training data. We
make the following observations.

Transitive Model - BTL Data: The results of the algo-
rithms when the data is generated according to the BTL
model is given in Table 7. Here, we observe that the DF-
learn model performs exceedingly well, sometimes even
better than the Rank Centrality (RC) algorithm which is
designed to work for the BTL model.

Model Mis-specification - SF Data: The results of the algo-
rithms when the data is generated according to the SF model
is given in Table 8. This experiment is to study the robust-
ness of the DF learn algorithm to model mis-specification.
As expected, in this case the SF-MLE algorithm works the
best. However, the RC algorithm performs reasonably well
in this case whereas DF-learn performs slightly worse than
RC.

DF Model Data: The results of the algorithms when the
data is generated according to the DF model described ear-
lier is given in Table 3. DFLearn outperforms all other
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Accuracy RC LRPR-2 SF-MLE Blade-Chest Majority Vote DFLearn GNNRank-Best
Jester 0.87(0.001) 0.87(0.001) 0.726(0.003) 0.84(0.005) 0.849(0.01) 0.876(0.004) 0.875(0.003)

MovieLens 0.649(0.001) 0.676(0.001) 0.600(0.003) 0.599(0.003) 0.661(0.003) 0.676(0.003) 0.554(0.003)
DoTA 0.603(0.007) 0.556(0.02) 0.533(0.013) 0.72(0.009) 0.578(0.007) 0.64(0.013) 0.512(0.01)

StarCraft II : WoL 0.605(0.002) 0.63(0.006) 0.546(0.005) 0.816(0.003) 0.63(0.005) 0.663(0.005) 0.518(0.006)
StarCraft II : HoTs 0.627(0.002) 0.69(0.003) 0.574(0.005) 0.84(0.002) 0.646(0.005) 0.699(0.006) 0.52(0.005)

Figure 4. Prediction Accuracy (higher is better) of various algorithms for real world datasets.

algorithms in terms of accuracy except Blade-Chest which
outperforms DFLearn in some cases. Both Blade-Chest and
DFLearn perform much better in terms of RMSE 2 than
every other algorithm. We have also run an experiment[10],
with the data following the DF model, where the number of
comparisons is varied for a fixed number of training pairs
(n log n = 664) as c log n for various choices of c.

7.3. Further Experiments on DFLearn

Visulaization of Learnt Embeddings: We visualized the
10 dimensional embeddings learnt by the DF learn algo-
rithm when the ground truth embedding corresponds to the
tournanment in Figure 2 (left). We plot the top 3 principal
components (obtained using PCA) to see if the embeddings
visually correspond to the tournament. As can be seen,
with increasing number of pairs, the embeddings becomes
visually similar to the tournament structure. In particular,
the clusters with 66(3 ∗ 22) node corresponds to 3 cluster
regions and the cluster with 22(2 ∗ 7 + 8) and 12(2 ∗ 4)
nodes correspond to 2 other cluster regions indicating that
the algorithm is able to learn the tournament embeddings
very well.

Effect of Dimension on Cycles Captured: We test what
fractions of 3-cycles are captured by the DF-learn model
as we vary the learning dimension when the ground-truth
dimension is 3. Note that the RC algorithm cannot capture
any cycles and the fraction will always be 0. The result is
shown in Table 5. As the dimension increases, the fraction
of cycles captured increases indicating that the algorithm is
able to predict intransitive preferences well on unseen data.

Effect of Dimension on Accuracy: We test the effect of
learning dimension and prediction accuracy. Again the
ground-truth dimension is fixed to be 3 while we vary the
learning dimension and the number of training pairs. The
result is shown in Table 6.

7.4. RealWord Data - Setup

To test the performance of our algorithm on real world data,
we did the experiments using the following datasets.

• Jester: This is a dataset (Goldberg et al., 2001) of
ratings of jokes given by several users. The ratings are
converted into pairwise comparisons. Number of jokes
n = 100 and number of pairs compared m = 891404.

• MovieLens: This dataset (Herlocker et al., 1999)
contains real-world ratings of movies. We consider
n = 1682 movies and m = 139982 comaprisons
among them derived from ratings.

• DoTA: This dataset (dt) contains match-ups of players
of the online video game. Number of players con-
sidered n = 757 and number of matches considered
m = 10, 442.

• StarCraft II: WoL Similar to DoTA dataset where
pairwise match results of online video games are con-
sidered for n = 4381 with m = 61657 matches (sc).

• StartCraft II: HoTs Another pairwise matches dataset
with n = 2287 users and m = 28582 matches (sc).

7.5. RealWord Data - Results

All the algorithms were run on real world datasets where
the learning rates were tuned using cross validation. For
DF learn algorithm, a SGD optimizer was used. 200 epochs
were used for LRPR-2, Majority Vote, DF-Learn algorithm.
For Blade-Chest, SF-MLE and GNN-Rank, we used the
epochs specified as default in the publicly available imple-
mentations of these algorithms. The results of running our
experiments on real world data are shown in Table 4,9. We
note that the datasets Jester and Movielens are inherently
ranking/rating based datasets where the pairwise compar-
isons are obtained from underlying scores given by users
to movies/jokes. In these datasets, we observe that the DF
learn algorithm performs the best both in terms of accuracy
and RMSE. For the other datasets, DF learn algorithm per-
forms the second best while the Blade-Chest algorithm is
the best. The performance of the remaining algorithms are
below par when compared to DF-learn.

8. Conclusion
In this work, we proposed the distinguishing feature model
for pairwise comparisons. We analysed certain theoretical
properties of the class of tournaments that can be obtained
via this model, developed an algorithm called DF-Learn
to learn from pairwise comparisons generated according
to this model and showed superior experimental results on
both real world and synthetic data as compared to standard
baselines. Future work includes understanding the exact
class of tournaments that can be modelled under DF model.
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A. Appendix
Code for Reproducing results All datasets and code are available here

Proof of Proposition 1

Proof. When d = 1, the only feature present is indeed the distinguishing feature as well. Thus, the feature can be thought of
as a score for each item and the item with the higher score dominates the one with lower score. The exact probability with
which it dominates is given by logit(si − sj) where s ∈ Rn is the score vector. This is indeed equivalent to a BTL model
where the score for the i-th item is given by esi for every item i.

In all the proofs given below, if i ≥ j, the tie is broken in favor of i.

Proof of Theorem 1

Proof. We already know that dimension 1 corresponds to the BTL model and it is known that the BTL model cannot model
cyclic relations. Thus, assume there are only two dimensions x and y. Let three items a, b, c be represented using the
following embeddings in R2: [xa, ya], [xb, yb], [xc, yc].

Assume wlog, a ≻ b(1), b ≻ c(1) where i ≻ j(k) means that node i beats node j and the distinguishing feature dimension
is k. Thus, |xa − xb| ≥ |ya − yb|, xa > xb, and |xb − xc| ≥ |yb − yc|, xb > xc. For a 3-cycle to exist among these three
items with only two dimensions, it should be the case that c ≻ a(2) , because i ≻ j(l), j ≻ k(l) =⇒ i ≻ k(l). So, if we
can show that |xa − xc| < |ya − yc|, yc > ya, it would imply that two dimensions are sufficient for realizing a 3-cycle.

As, xc < xb < xa, we have the following cases depending on the relation of yb w.r.t ya and yc.

Case 1 : ya < yb < yc: Let yc − ya = (yc − yb) + (yb − ya) > (xa − xc) = (xa − xb) + (xb − xc). But,
(yb − ya) < (xa − xb) =⇒ (yc − yb) > (xb − xc) which is a contradiction.

Case 2 : yb < ya < yc or ya < yc < yb
yb < ya < yc =⇒ (yc − yb) > (yc − ya) > (xa − xc) = (xa − xb) + (xb − xc)
(xa − xb) > 0 =⇒ (yc − yb) > (xb − xc), which contradicts our previous assumption.
A similar argument shows the case ya < yc < yb also leads to a contradiction.

Proof of Theorem 2

Proof. From theorem 1, it is clear that we need at least three dimensions to realize a 3-cycle in a tournament based on the
DF model.

Suppose that a tournament consists of only 3 items a, b, c and each item has a 3-dimensional feature embedding given by
[xa, ya, za], [xb, yb, zb], and [xc, yc, zc] respectively and together they form a 3-cycle.
Wlog a ≻ b(1), b ≻ c(2), c ≻ a(3). Hence,

1) |xa − xb| ≥ |ya − yb|, |xa − xb| ≥ |za − zb| and xa > xb,

2) |yb − yc| ≥ |xb − xc|, |yb − yc| ≥ |zb − zc| and yb > yc,

3) |zc − za| ≥ |xc − xa|, |zc − za| ≥ |yc − ya| and zc > za.

In order to show that the above claim holds, we will give a constructive proof below.
Let’s fix an ordering for the feature embeddings of the items based on the above relations,

xa > xb > xc, ya > yb > yc, zc > zb > za (3)

https://github.com/AuthorCSE5/Distinguishing-Feature_Model-NeurIPS-2023.git
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The following set of inequalities follow:

(xa − xb) ≥ (ya − yb), (xa − xb) ≥ (zb − za) (4)
(yb − yc) ≥ (xb − xc), (yb − yc) ≥ (zc − zb) (5)
(zc − za) ≥ (xa − xc), (zc − za) ≥ (ya − yc) (6)

Let, xa = ya and xc = yc =⇒ xa − xc = ya − yc.

Now, if we add a node d such that, zd = (za+zc)
2 , xd = (xa+xc)

2 , yd = (ya+yc)
2 , then (zc − zd) ≥ (xd − xc) and

(zc − zd) ≥ (yd − yc).

Similarly, (zd − za) ≥ (xa − xd) and (zd − za) ≥ (ya − yd).

In the same way, we can add further nodes to the tournament and bisect the intervals (za, zd), (xd, xa) and
(yd, ya) to accommodate each such node in the cycle thereby increasing its length arbitrarily.

Proof of Theorem 3

Proof. Consider the tournament in Figure 1. We begin by fixing a part of the dimension assignment wlog as follows,
1 ≻ 2(1), 2 ≻ 3(2), 3 ≻ 1(3). Note that we have i ≻ j(l), j ≻ k(l) =⇒ i ≻ k(l). Also from theorem 1, we know that for
any three cycle, all three dimension must be used. We will now look at all possibilities given that the above assignment
was fixed wlog. In all the below possible combinations, an invalid assignment occurs whenever a dimension has already
been assigned to another pair of items for comparison in the same three cycle. As, one directed edge might be a part of
more than one three cycles in the tournament, it might be possible that the dimension capturing the respective edge/pairwise
comparison is not available for further assignment. We can consider

• 2 ≻ 4(2), 4 ≻ 1(3)

• 2 ≻ 4(3), 4 ≻ 1(2)

• 7 ≻ 3 (1 or 2)

If 2 ≻ 4(3), 4 ≻ 1(2), then 5 ≻ 2(1) because 2 ≻ 3(2), 2 ≻ 4(3) and both 5 ≻ 2 ≻ 3 ≻ 5 and 5 ≻ 2 ≻ 4 ≻ 5 are three
cycles. If 2 ≻ 4(2), 4 ≻ 1(3), then 5 ≻ 2(1 or 3). We have six possible cases to consider.

Case 1) Let 2 ≻ 4(3), 4 ≻ 1(2), 7 ≻ 3(1) => 1 ≻ 7(2), 5 ≻ 2(1) => 7 ≻ 5(3) (because it is the common edge of
5 ≻ 2 ≻ 7 ≻ 5, 5 ≻ 1 ≻ 7 ≻ 5), 5 ≻ 1(1). Now, 4 ≻ 5(2), 7 ≻ 5(3) => 5 ≻ 8(1) => 8 ≻ 4(3). So, 3 ≻ 8 has no
dimension left to be assigned to.

Case 2) Let 2 ≻ 4(3), 4 ≻ 1(2), 7 ≻ 3(2) => 1 ≻ 7(1). (a) If 7 ≻ 5(3), then 5 ≻ 8(1). Now, 8 ≻ 7 has no dimension left.
(b) If 7 ≻ 5(2) => 5 ≻ 8(3 or 1).

Let 5 ≻ 8(3),=> 8 ≻ 7(1), 8 ≻ 4(1), 1 ≻ 8(3), 3 ≻ 8(3), 6 ≻ 1(2), 7 ≻ 6(3), but 2 ≻ 7(3)(invalid)
Let 5 ≻ 8(1),=> 8 ≻ 7(3), 8 ≻ 4(3), 1 ≻ 8(1), 3 ≻ 8(1), 2 ≻ 7(3), 7 ≻ 6(2), 6 ≻ 1(3), 8 ≻ 6(2), 6 ≻ 3(3), but
3 ≻ 5(3) (invalid)

Case 3) Let 2 ≻ 4(2), 4 ≻ 1(3), 7 ≻ 3(2), 5 ≻ 2(1). Then, 3 ≻ 5(3), 4 ≻ 5(3), 1 ≻ 7(1).

If 7 ≻ 5(3) and 5 ≻ 8(1) => 8 ≻ 7(2), but 7 ≻ 3(2) (invalid)
If 7 ≻ 5(3) and 5 ≻ 8(2) => 8 ≻ 7(1), 3 ≻ 8(3), 8 ≻ 4(1), 1 ≻ 8(2), 6 ≻ 1(3), 7 ≻ 6(2), but 2 ≻ 7(2) (invalid)
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If 7 ≻ 5(2), then 5 ≻ 8(1), 8 ≻ 7(3), 8 ≻ 4(2), 1 ≻ 8(1), 3 ≻ 8(1), 6 ≻ 3(2), 8 ≻ 6(3), 6 ≻ 1(2), 7 ≻ 6(3), but 2 ≻ 7(3)
(invalid)

Case 4) Let 2 ≻ 4(2), 4 ≻ 1(3), 7 ≻ 3(2), 5 ≻ 2(3). Then, 1 ≻ 7(1), 7 ≻ 5(2), 3 ≻ 5(1), 4 ≻ 5(1), 5 ≻ 8(3), 8 ≻
7(1), 3 ≻ 8(3), 8 ≻ 4(2), 1 ≻ 8(1), 6 ≻ 3(2), 8 ≻ 6(1) (invalid)

Case 5) Let 2 ≻ 4(2), 4 ≻ 1(3), 7 ≻ 3(1), 5 ≻ 2(1). Then, 1 ≻ 7(2), 7 ≻ 5(3), 2 ≻ 7(2), 3 ≻ 5(3), 4 ≻ 5(3).
If 5 ≻ 8(2), then 8 ≻ 7(1) (invalid).
If 5 ≻ 8(1), then 8 ≻ 7(2), 3 ≻ 8(3), 8 ≻ 4(2), 1 ≻ 8(1), 8 ≻ 6(2), 6 ≻ 1(3), 7 ≻ 6(1), 6 ≻ 3(1), 5 ≻ 6(2), 6 ≻ 4(1)
(invalid)

Case 6) Let 2 ≻ 4(2), 4 ≻ 1(3), 7 ≻ 3(1), 5 ≻ 2(3). Then, 3 ≻ 5(1), 4 ≻ 5(1), 1 ≻ 7(2), 7 ≻ 5(1),
If 5 ≻ 8(2), 8 ≻ 7(3), 3 ≻ 8(2) (invalid).
If 5 ≻ 8(3), 8 ≻ 7(2), 3 ≻ 8(3), 6 ≻ 3(2), 8 ≻ 6(1), 8 ≻ 4(2), 1 ≻ 8(1)(invalid).

B. Experimental Results
For each of the models generating the data and for each of the algorithms considered above, we test the performance using
various measures discussed below. All the hyper-parameters used in the DFLearn and 3D majority vote models are tuned
using the cross validation method for both synthetic and real-world datasets.

For synthetic experiments, ADAM optimizer with binary cross-entropy loss is used in DFLearn with 100 epochs and batch
size 32. For both Blade-Chest model and DFLearn, the number of embedding dimensions is a hyperparameter, which is
fixed to be 10 for the synthetic experiments for data generated from the DF model. For data generated from other two models
and real-world data, the number of dimensions for items is taken as 50 for both Blade-Chest model and DFLearn after doing
the hyperparameter tuning. The other hyper-parameters in DFLearn are learning rate, kernel regularization parameter and
number of hidden nodes in both the hidden layers.

In 3D majority vote, the parameters are generated from a uniform distribution for real-world data as well as synthetic data
generated from DF model. But for data generated from the Salient Features model and BTL model, the parameters are
generated from a Gaussian distribution with mean 0 and standard deviation 1. A standard deviation of 1√

k
is used in 3D

majority vote in order to generate the probabilities using the normal cumulative distribution function, where k is taken as a
hyper-parameter and tuned using cross-validation. For GNNRank algorithm, K = log n, where n = number of items and
K = number of top eigen vectors used, when the input features are unavailable.

B.1. Kendall-Tau Correlation

We next measure the Kendall-Tau correlation of global rankings on n items obtained from the algorithms and compare it
with the global rankings obtained from the underlying ground truth probability preferences.

Ground Truth Ranking: For the BTL model, the ground truth ranking is obtained by sorting the true scores in descending
order. For both SF model and DF model, it is obtained by the Copeland procedure i.e., associating the score of an item
as the number of items it beats with probability greater than 0.5 in pairwise contests. The Copeland score is known to be
a 5-approximation of the NP-hard problem of obtaining the ranking that minimizes pairwise disagreement error with the
ground truth preference matrix.

Ranking Output by Algorithm: For the RC algorithm, the scores output by the algorithm is sorted to obtain the predicted
ranking. For all other algorithms, all pairwise probabilities are computed and a ranking is obtained by sorting the Copeland
scores as described earlier.

The Kendall Tau correlation computes how well the output ranking aligns with the ground-truth ranking. We can observe
that in general, DFLearn gives better rank correlation compared to the other baselines for the data generated from DF model.
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c RC LRPR-2 SF-MLE Blade-Chest 3D Majority Vote DFLearn GNNRank-Best
1 0.535 (0.013) 0.517 (0.005) 0.486 (0.007) 0.545 (0.01) 0.554 (0.036) 0.545 (0.012) 0.54 (0.01)
2 0.491 (0.015) 0.512 (0.003) 0.507 (0.003) 0.513 (0.012) 0.541 (0.02) 0.551 (0.01) 0.51 (0.012)
3 0.486 (0.009) 0.503 (0.004) 0.509 (0.003) 0.52 (0.01) 0.543 (0.01) 0.555 (0.016) 0.515 (0.009)
4 0.508 (0.01) 0.509 (0.003) 0.509 (0.004) 0.54 (0.009) 0.546 (0.01) 0.546 (0.009) 0.52 (0.009)
5 0.492 (0.016) 0.507 (0.004) 0.526 (0.003) 0.536 (0.009) 0.539 (0.014) 0.564 (0.009) 0.53 (0.01)
6 0.52 (0.009) 0.513 (0.004) 0.51 (0.003) 0.541 (0.012) 0.553 (0.02) 0.559 (0.02) 0.53 (0.01)

Table 1. Kendall-Tau Correlation of various algorithms when the data follows the DF model and the number of training pairs are varied as
cn logn for various choices of c red implies the best, blue implies the second best

c RC LRPR-2 SF-MLE Blade-Chest 3D Majority Vote DFLearn GNNRank - Best
1 0.427 (0.0005) 0.366 (0.002) 0.387 (0.0013) 0.319 (0.005) 0.39 (0.0089) 0.204 (0.009) 0.419 (0.0006)
2 0.397 (0.0004) 0.353 (0.001) 0.387 (0.0007) 0.159 (0.003) 0.225 (0.0153) 0.141 (0.008) 0.39 (0.0006)
3 0.372 (0.0004) 0.346 (0.001) 0.387 (0.0007) 0.117 (0.005) 0.304 (0.007) 0.117 (0.005) 0.37 (0.0005)
4 0.35 (0.0007) 0.34 (0.002) 0.389 (0.0011) 0.097 (0.002) 0.226 (0.016) 0.118 (0.006) 0.32 (0.0048)
5 0.333 (0.001) 0.339 (0.003) 0.39 (0.0008) 0.087 (0.003) 0.269 (0.012) 0.115 (0.006) 0.32 (0.0007)
6 0.321 (0.0011) 0.34 (0.004) 0.392 (0.0013) 0.077 (0.001) 0.136 (0.013) 0.106 (0.007) 0.32 (0.001)

Table 2. RMSE values of various algorithms when the data follows the DF model and the number of training pairs are varied as cn logn
for various choices of c, red implies the best, blue implies the second best

c d = 10 d = 20 d = 30 d = 40 d = 50
1 0.864 (0.023) 0.915 (0.018) 0.919 (0.01) 0.925 (0.007) 0.93 (0.007)
2 0.946 (0.008) 0.949 (0.006) 0.951 (0.01) 0.966 (0.011) 0.974 (0.006)
3 0.96 (0.004) 0.955 (0.005) 0.962 (0.011) 0.969 (0.012) 0.978 (0.004)
4 0.956 (0.004) 0.956 (0.004) 0.96 (0.022) 0.966 (0.023) 0.971 (0.01)
5 0.959 (0.005) 0.96 (0.005) 0.975 (0.012) 0.977 (0.011) 0.985 (0.003)
6 0.959 (0.005) 0.961 (0.005) 0.969 (0.02) 0.97 (0.013) 0.977 (0.003)

Figure 5. Effect of dimension on the fraction of cycles captured by the DFlearn algorithm under the DF model when trained with cn log(n)
training pairs, with the average number of cycles = 33, 544

c d = 10 d = 20 d = 30 d = 40 d = 50
1 0.89 (0.004) 0.892(0.005) 0.895(0.005) 0.909(0.005) 0.897 (0.006)
2 0.903 (0.003) 0.911 (0.005) 0.903(0.003) 0.914(0.003) 0.915(0.004)
3 0.912 (0.003) 0.901(0.003) 0.906(0.005) 0.912(0.004) 0.918(0.004)
4 0.901 (0.004) 0.909(0.004) 0.911(0.004) 0.91(0.004) 0.907(0.004)
5 0.905 (0.004) 0.907(0.006) 0.906(0.005) 0.912(0.004) 0.918(0.004)
6 0.906 (0.004) 0.911(0.002) 0.907(0.003) 0.91(0.003) 0.915(0.003)

Figure 6. Effect of dimension on accuracy by the DFlearn algorithm under the DF model when trained with cn log(n) training pairs
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c RC LRPR-2 SF-MLE Blade-Chest 3D Majority Vote DFLearn GNNRank-Best
1 0.849(0.003) 0.705(0.012) 0.708(0.005) 0.787(0.007) 0.761(0.02) 0.867(0.004) 0.503(0.008)
2 0.892(0.003) 0.817(0.007) 0.723(0.004) 0.8(0.005) 0.856(0.003) 0.899(0.002) 0.506(0.007)
3 0.912(0.002) 0.863(0.007) 0.736(0.004) 0.795(0.005) 0.89 (0.004) 0.914(0.003) 0.514(0.011)
4 0.928(0.002) 0.876(0.004) 0.732(0.005) 0.788(0.008) 0.901(0.003) 0.928(0.002) 0.517(0.012)
5 0.939(0.003) 0.877(0.004) 0.74(0.005) 0.782(0.005) 0.913(0.003) 0.935(0.002) 0.512(0.01)
6 0.945(0.003) 0.889(0.014) 0.737(0.01) 0.77(0.003) 0.923(0.004) 0.94(0.003) 0.532(0.011)

RC LRPR-2 SF-MLE Blade-Chest 3D Majority Vote DFLearn GNNRank - Best
1 0.2228(0.0006) 0.3008(0.0058) 0.2035(0.0049) 0.1914(0.0025) 0.2131(0.0301) 0.1029(0.0063) 0.2036(0.0004)
2 0.1916(0.0011) 0.2198(0.0036) 0.2056(0.0051) 0.1868(0.0009) 0.1094(0.0022) 0.0722(0.0036) 0.2035(0.0004)
3 0.1588(0.0011) 0.1892(0.0027) 0.2054(0.0052) 0.1909(0.0015) 0.0694(0.0007) 0.0598(0.0034) 0.2032(0.0004)
4 0.1309(0.0013) 0.181(0.0024) 0.2049(0.0053) 0.1983(0.002) 0.0604(0.0007) 0.0455(0.0018) 0.2031(0.0005)
5 0.0971(0.0006) 0.1736(0.003) 0.2059(0.0057) 0.2089(0.0018) 0.053(0.0008) 0.0404(0.0008) 0.2027(0.0005)
6 0.0681(0.0015) 0.1704(0.003) 0.2031(0.0055) 0.2188(0.001) 0.0477(0.0011) 0.0379(0.0014) 0.2025(0.0003)

c RC LRPR-2 SF-MLE Blade-Chest 3D Majority Vote DFLearn GNNRank-Best
1 0.704 (0.007) 0.505 (0.018) 0.437 (0.009) 0.06 (0.08) 0.648(0.051) 0.735 (0.008) 0.004 (0.028)
2 0.786 (0.006) 0.645 (0.014) 0.464 (0.009) 0.069 (0.084) 0.815 (0.006) 0.799 (0.004) 0.012 (0.009)
3 0.83 (0.004) 0.732 (0.013) 0.485 (0.008) 0.074 (0.085) 0.843 (0.006) 0.83 (0.007) 0.036 (0.032)
4 0.856 (0.005) 0.756 (0.009) 0.477 (0.008) 0.084 (0.086) 0.856 (0.006) 0.856 (0.005) 0.036 (0.035)
5 0.88 (0.004) 0.761 (0.006) 0.491 (0.009) 0.085 (0.088) 0.88 (0.004) 0.874 (0.002) 0.024 (0.026)
6 0.892 (0.004) 0.779 (0.007) 0.487 (0.009) 0.08 (0.09) 0.896 (0.006) 0.884 (0.004) 0.046 (0.021)

Figure 7. Prediction Accuracy (top, higher is better), RMSE (middle, lower is better) and Kendall-Tau Correlation (bottom, higher is
better) of various algorithms when the data follow and s the BTL model and the number of training pairs are varied as cn logn for various
choices of c, red implies the best, blue implies the second best

c RC LRPR-2 SF-MLE Blade-Chest 3D Majority Vote DFLearn GNN Rank- Best
1 0.608(0.01) 0.498(0.003) 0.899(0.034) 0.549(0.003) 0.559(0.021) 0.584(0.009) 0.516(0.013)
2 0.631(0.007) 0.503(0.002) 0.901(0.029) 0.548(0.004) 0.58(0.005) 0.614(0.01) 0.509(0.013)
3 0.651(0.008) 0.506(0.003) 0.938(0.029) 0.553(0.005) 0.589(0.005) 0.638(0.01) 0.512(0.017)
4 0.657(0.009) 0.521(0.006) 0.931(0.018) 0.551(0.006) 0.599(0.008) 0.643(0.008) 0.512(0.014)
5 0.681(0.005) 0.529(0.009) 0.938(0.023) 0.549(0.003) 0.622(0.01) 0.67(0.007) 0.528(0.013)
6 0.668(0.008) 0.546(0.011) 0.972(0.014) 0.544(0.004) 0.565(0.026) 0.657(0.01) 0.509(0.016)

c RC LRPR-2 SF-MLE Blade-Chest 3D Majority Vote DFLearn GNN Rank - Best
1 0.0653(0.0009) 0.2823(0.0058) 0.0476(0.0061) 0.2205(0.0018) 0.147(0.0024) 0.117(0.0044) 0.203(0.0003)
2 0.0629(0.0006) 0.2237(0.0045) 0.0443(0.0058) 0.2138(0.0011) 0.13(0.0013) 0.0851(0.0019) 0.2032(0.0004)
3 0.0601(0.0005) 0.1963(0.0048) 0.0465(0.0053) 0.216(0.0008) 0.111(0.0022) 0.0735(0.0012) 0.203(0.0004)
4 0.0593(0.0007) 0.187(0.0035) 0.042(0.0039) 0.2247(0.0011) 0.1(0.001) 0.0706(0.0017) 0.2028(0.0006)
5 0.0578(0.0005) 0.174(0.003) 0.0396(0.0035) 0.2313(0.0012) 0.09(0.0016) 0.0623(0.0006) 0.2022(0.0005)
6 0.0583(0.0005) 0.164(0.0035) 0.0389(0.0045) 0.2399(0.0014) 0.132(0.0039) 0.0632(0.0011) 0.2032(0.0008)

c RC LRPR-2 SF-MLE Blade-Chest 3D Majority Vote DFLearn GNNRank-Best
1 0.283 (0.025) 0.04 (0.025) 0.713 (0.09) 0.216 (0.017) 0.219 (0.034) 0.222 (0.022) 0.04 (0.031)
2 0.347 (0.018) 0.083 (0.033) 0.775 (0.076) 0.298 (0.018) 0.291 (0.026) 0.306 (0.023) 0.035 (0.032)
3 0.412 (0.017) 0.074 (0.024) 0.799 (0.094) 0.349 (0.018) 0.378 (0.024) 0.363 (0.024) 0.03 (0.04)
4 0.43 (0.023) 0.14 (0.023) 0.818 (0.061) 0.36 (0.021) 0.396 (0.014) 0.38 (0.019) 0.035 (0.037)
5 0.489 (0.015) 0.164 (0.037) 0.877 (0.064) 0.343 (0.01) 0.458 (0.025) 0.461 (0.017) 0.068 (0.031)
6 0.474 (0.016) 0.218 (0.036) 0.929 (0.047) 0.363 (0.017) 0.36 (0.05) 0.429 (0.017) 0.039 (0.04)

Figure 8. Prediction Accuracy (top, higher is better), RMSE (middle, lower is better) and Kendall-Tau Correlation (bottom, higher is
better) of various algorithms when the data follows the Salient Features model and the number of training pairs are varied as cn logn for
various choices of c, red implies the best, blue implies the second best
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RMSE RC LRPR-2 SF-MLE Blade-Chest Majority Vote DFLearn GNNRank-Best
Jester 0.066(0.0002) 0.084(0.0003) 0.12(0.0002) 0.078(0.0003) 0.082(0.005) 0.065(0.0003) 0.157(0.0003)

MovieLens 0.471(0.0002) 0.472(0.0005) 0.449(0.0002) 0.532(0.0002) 0.441(0.0002) 0.416(0.0002) 0.477(0.0002)
DoTA 0.378(0.0013) 0.418(0.0043) 0.368(0.0013) 0.291(0.0013) 0.398(0.005) 0.332(0.0013) 0.379(0.0011)

StarCraft II : WoL 0.466(0.0003) 0.467(0.0006) 0.453(0.0009) 0.307(0.0005) 0.456(0.0006) 0.413(0.0005) 0.467(0.0004)
StarCraft II : HoTs 0.482(0.0003) 0.461(0.0031) 0.466(0.0005) 0.309(0.0004) 0.484(0.01) 0.419(0.0006) 0.482(0.0006)

Figure 9. RMSE values (lower is better) of various algorithms for real data, red implies the best, blue implies the second best

c RC LRPR-2 SF-MLE Blade-Chest 3D Majority Vote DFLearn GNNRank-Best
1 0.741 (0.004) 0.802 (0.002) 0.784 (0.002) 0.815 (0.004) 0.768 (0.007) 0.89 (0.004) 0.745 (0.005)
2 0.732 (0.002) 0.797 (0.002) 0.782 (0.005) 0.801 (0.011) 0.797 (0.009) 0.898 (0.007) 0.75 (0.007)
3 0.73(0.003) 0.796 (0.002) 0.782 (0.004) 0.806(0.005) 0.751(0.009) 0.892 (0.01) 0.737(0.005)
4 0.728 (0.002) 0.797 (0.002) 0.784 (0.001) 0.802 (0.004) 0.755 (0.007) 0.892 (0.004) 0.744 (0.006)
5 0.736 (0.002) 0.798 (0.002) 0.785 (0.01) 0.821 (0.003) 0.761 (0.007) 0.892 (0.01) 0.74 (0.005)
6 0.738 (0.003) 0.801 (0.002) 0.784(0.003) 0.82 (0.002) 0.768 (0.009) 0.898 (0.009) 0.75 (0.006)

c RC LRPR-2 SF-MLE Blade-Chest 3D Majority Vote DFLearn GNNRank-Best
1 0.424 (0.0005) 0.366 (0.002) 0.387 (0.0013) 0.319 (0.005) 0.39 (0.0089) 0.204 (0.009) 0.419 (0.0006)
2 0.427 (0.0003) 0.368 (0.003) 0.389 (0.001) 0.328 (0.018) 0.331(0.008) 0.165 (0.021) 0.404 (0.0006)
3 0.428 (0.0004) 0.364 (0.001) 0.391 (0.002) 0.323 (0.012) 0.33 (0.009) 0.193 (0.031) 0.405 (0.0005)
4 0.427 (0.0003) 0.362 (0.002) 0.392 (0.002) 0.324 (0.005) 0.331 (0.008) 0.193 (0.017) 0.403 (0.0048)
5 0.427 (0.0003) 0.364 (0.001) 0.392 (0.002) 0.301 (0.007) 0.33 (0.006) 0.175 (0.027) 0.404 (0.0007)
6 0.427 (0.0005) 0.363 (0.001) 0.393 (0.001) 0.31 (0.005) 0.33 (0.006) 0.16 (0.022) 0.4 (0.001)

c RC LRPR-2 SF-MLE Blade-Chest 3D Majority Vote DFLearn GNNRank-Best
1 0.533 (0.013) 0.517 (0.005) 0.486 (0.007) 0.545 (0.01) 0.554 (0.036) 0.545 (0.012) 0.54 (0.01)
2 0.483 (0.012) 0.505 (0.005) 0.483 (0.007) 0.504(0.017) 0.541 (0.017) 0.523 (0.02) 0.51 (0.012)
3 0.471 (0.011) 0.503 (0.005) 0.482 (0.006) 0.493(0.009) 0.553 (0.032) 0.542 (0.027) 0.5 (0.009)
4 0.456 (0.009) 0.506 (0.004) 0.484 (0.004) 0.506 (0.022) 0.558 (0.029) 0.544 (0.013) 0.506 (0.009)
5 0.511 (0.009) 0.506 (0.003) 0.486 (0.02) 0.508 (0.009) 0.553 (0.019) 0.518 (0.014) 0.511 (0.01)
6 0.518 (0.016) 0.516 (0.007) 0.489 (0.01) 0.531 (0.016) 0.554 (0.025) 0.524(0.027) 0.52 (0.01)

Figure 10. Prediction Accuracy (top, higher is better), RMSE (middle, lower is better), Kendall-Tau Correlation (bottom, higher is better)
of various algorithms when the data follows the DF model and the number of comparisons is varied for a fixed number of training pairs
(n logn = 664) as c logn for various choices of c, red implies the best, blue implies the second best


