
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

UNIVERSAL LENGTH GENERALIZATION WITH TURING
PROGRAMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Length generalization refers to the ability to extrapolate from short training se-
quences to long test sequences and is a challenge for current large language models.
While prior work has proposed some architecture or data format changes to achieve
length generalization, these proposals typically apply to a limited set of tasks.
Building on prior scratchpad and Chain-of-Thought (CoT) techniques, we propose
Turing Programs, a novel CoT strategy that decomposes an algorithmic task into
steps mimicking the computation of a Turing Machine. This framework is both
universal, as it can accommodate any algorithmic task, and simple, requiring only
copying text from the context with small modifications. We show that by using
Turing Programs, we obtain robust length generalization on a range of algorithmic
tasks: addition, multiplication and in-context SGD. We then demonstrate that trans-
formers achieve length generalization on random Turing Programs, suggesting that
length generalization is possible for any algorithmic task. Finally, we theoretically
prove that transformers can implement Turing Programs, constructing a simple
RASP (Weiss et al. Weiss et al. (2021)) program that simulates an arbitrary Turing
machine.

1 INTRODUCTION

Figure 1: Turing Program example
for simulating a Turing Machine with
scratchpad.

Transformer-based language models have shown impressive
abilities in natural language generation, reading comprehension,
code-synthesis, instruction-following, commonsense reasoning,
and many other tasks Brown et al. (2020); Chen et al. (2021);
Chowdhery et al. (2023); Lewkowycz et al. (2022); Gunasekar
et al. (2023); Touvron et al. (2023). Despite these impres-
sive abilities, transformers struggle with length generalization,
which refers to the ability to generalize to longer sequences
than seen during training Abbe et al. (2023); Anil et al. (2022);
Jelassi et al. (2023); Zhou et al. (2023). This limitation raises
a central question about transformers: are they capable of ac-
tually learning an algorithm or do they solve algorithmic tasks
by resorting to memorization or shortcuts Liu et al. (2022)?

Recently, several works have reported poor length generaliza-
tion of transformers on a wide range of algorithmic tasks Anil
et al. (2022); Delétang et al. (2022); Dziri et al. (2024); Zhang
et al. (2022). In parallel, a myriad of papers Jelassi et al. (2023);
Kazemnejad et al. (2024); Shen et al. (2023); Zhou et al. (2023;
2024) have optimized the data formats choice (see Section 3
for details) to improve the length generalization of transform-
ers when trained to perform multi-digit addition of two numbers. While the recent progress is
impressive—Zhou et al. (2024) achieve almost perfect accuracy on addition with 100-digit operands
while trained on 40-digit, all these “tricks” are specific to the case of addition and may not generalize
to other tasks. In contrast, our goal is to develop a technique that is general enough to enable length
generalization on any algorithmic task.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Problem Generalization Accuracy
Addition (n+ n) 50 → 100 (2×) 98%

Multiplication (n× 1) 50 → 100 (2×) 97%

Multiplication (n× 3) 50 → 100 (2×) 97%

SGD (n examples) 50 → 80 (1.6×) 95%

Table 1: Length generalization results on various prob-
lems with Turing Programs. We use x → y to denote
training on n = x and generalizing to n = y.

To achieve this, we introduce Turing Programs,
a novel scratchpad technique that may be ap-
plied to general algorithmic tasks. This tech-
nique is motivated by the operations of a Turing
Machine, a mathematical model of computation
that is capable of implementing any computable
algorithm. A Turing machine consists of a “tape”
with symbols and a “head” that, at each step,
moves left or right on the tape, and can read and
write symbols in a single tape cell. Therefore,
when a Turing Machine processes an input, the tape at each step is a copy of the previous one up to a
few changes. Our Turing Programs follow this philosophy by decomposing an algorithmic task into a
series of steps. At each step we update a “tape” by copying the previous tape with a few elementary
changes. We refer the reader to Figure 1 for the correspondence between Turing Machines and Turing
Programs and to Figures 2 and 4, for examples of Turing Programs.

Using the Turing Programs technique, we show that transformers enhanced with the Hard-ALiBi
positional encoding Jelassi et al. (2024)—a recent encoding that achieves state-of-the-art length
generalization on copying—are capable of length generalization on a wide range of algorithmic tasks.
Our method achieves non-trivial length generalization on addition, multiplication and simulation
of SGD steps (see Table 1). Additionally, we show that transformers can be trained to execute
random Turing machines, extrapolating from 50 to over 100 input tokens, suggesting that our method
can work for general algorithmic tasks. To our knowledge, these are the first results showing non-
trivial length generalization on multiplication, and the first attempt to study length generalization on
complex algorithms like SGD. We hope that this recipe will be further used to unlock novel length
generalization on other algorithmic tasks.

Our key contributions are summarized as follows:

– In Section 3, we present length generalization results on multi-digit addition using a Turing Program
and Hard-ALiBi positional encoding.

– In Section 4, we present the Turing Program framework in full generality and its connections to
Turing machines. Additionally, we theoretically prove that transformers can implement Turing
Programs, constructing a RASP program Weiss et al. (2021) simulating Turing machines.

– In Section 5, we demonstrate that Turing Programs are general and lead to novel length generaliza-
tion results in unexplored algorithmic tasks: multiplication by 1 or 3-digit operand, SGD for linear
regression and Turing Machine simulation.

RELATED WORK

Length generalization remains an important challenge for large language models as underlined in
several works Delétang et al. (2022); Dziri et al. (2024); Hupkes et al. (2020); Schwarzschild et al.
(2021); Zhang et al. (2022). Despite their advanced reasoning capabilities, Transformer-based large
language models struggle to process longer sequences than they were trained on Anil et al. (2022).
The main approaches for improving length generalization focus on changing the positional encoding
and optimizing the data format.

Positional encodings for length generalization. Shaw et al. Shaw et al. (2018) were early to notice
that the weak length generalization of Transformers was due to the choice of absolute positional
encoding. Following this, many alternatives were proposed to replace the absolute positional encoding:
relative positional encodings, which focus on the relative distances between tokens Dai et al. (2019);
and weighted attention mechanisms in place of position embeddings Chi et al. (2022); Jelassi et al.
(2023); Li et al. (2023); Press et al. (2021); Raffel et al. (2020). These alternatives showed substantial
improvements in length generalization on natural language processing tasks. On the other hand,
Kazemnejad et al. (2024) found that a causal language model with no positional encoding can length
generalize better than some of these specialized positional encodings on algorithmic tasks. In this
work, we apply the Hard-ALiBi positional encoding Jelassi et al. (2024), that achieved state-of-the-art
length generalization on the specific task of copying, to more general algorithmic tasks.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Data formatting for length generalization. A wide range of data formatting methods have been
introduced to achieve length extrapolation in algorithmic tasks. Scratchpad and Chain-of-Thought
formats were proposed to learn arithmetic either through finetuning or in-context learning Anil et al.
(2022); Zhou et al. (2023). When training from scratch, some other proposed techniques to improve
length generalization on addition include: reversed formatting and random space augmentation Shen
et al. (2023), adding padding to the sequence Jelassi et al. (2023), and setting index hints in front of
each digit Zhou et al. (2023). Closer to our work, several works Anil et al. (2022); Dziri et al. (2024);
Hu et al. (2024); Kazemnejad et al. (2024); Lanchantin et al. (2024) report that training or finetuning
a model on scratchpad data does not yield any significant length generalization improvement. In
our work, we demonstrate that length generalization is possible using a combination of a particular
scratchpad variant and a favorable positional encoding. Additionally, we develop Turing Programs, a
novel scratchpad strategy that is general and may be applied to achieve length generalization on any
algorithmic task.

Neural networks and Turing Machines. Many prior works designed architectures inspired by
Turing Machines Dehghani et al. (2018); Graves et al. (2014); Kaiser & Sutskever (2015). From a
theoretical perspective, some works proved the Turing completeness of RNNs Chen et al. (2017);
Siegelmann & Sontag (1992), transformers Bhattamishra et al. (2020); Chung & Siegelmann (2021);
Pérez et al. (2019); Wei et al. (2022a); Merrill & Sabharwal (2023) and even linear next-token
predictors Malach (2023) under a wide range of assumptions. Lastly, another line of work charac-
terizes the computational model that Transformers express: Weiss et al. (2021) introduce RASP,
a human-readable programming language that can be implemented by transformers, Lindner et al.
(2024) show how human-readable programs are compiled into transformer models and other works
Giannou et al. (2023); Jojic et al. (2023) study how transformers can emulate computer programs.
Closer to our work, Zhou et al. (2024) hypothesize that Transformers can length generalization on
any algorithmic task that may written as a “simple” RASP program. In this work, we construct a
simple RASP program that generates Turing Programs to simulate arbitrary Turing machines.

2 SETTING

In this section, we present the length generalization problem and some instances where it appears.
Then, we discuss scratchpad prompting Nye et al. (2021), a technique that lets the model generate
solution steps before producing the final answer. Finally, we introduce various positional encoding
methods and discuss their implications on length generalization.

2.1 LENGTH GENERALIZATION

Many sequence modeling tasks have problem instances of different lengths. Shorter instances are
often easier to state, process and handle, and require less compute to find the answer. By contrast,
longer instances are more challenging to parse and require more compute to solve. Reasoning tasks
such as multi-hop reasoning, program execution, deductive reasoning, and theorem proving fit in this
category.

Algorithmic reasoning tasks consist of inputs that are sequences of tokens describing the task (e.g.
addition, multiplication) and outputs that are the corresponding solutions. We assume that the
language model is allowed to generate (many) intermediate tokens before outputting the answer.
Then formally, the length generalization problem consists of training a language model on inputs of
length ≤ L and solving problems of length > L at test time.

2.2 SCRATCHPAD

It has been shown in prior work that the performance of LLMs on algorithmic tasks can be greatly
improved by generating step-by-step solutions instead of immediately outputting the final answer Wei
et al. (2022b). Among the multiple methods described in the literature, we focus on the scratchpad
method Nye et al. (2021). Given an algorithmic task, this method encodes the intermediate steps of the
algorithm as text and trains the model to emit them to a buffer that is referred to as the “scratchpad”.

Nye et al. Nye et al. (2021) showed that scratchpad finetuning can be used to achieve strong in-
distribution performance on execution based tasks such as code execution and computing polynomials.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

They also report modest length generalization results on integer arithmetic. The limitation of
scratchpad training for length generalization is further highlighted in Anil et al. (2022); Dziri et al.
(2024); Hu et al. (2024); Kazemnejad et al. (2024); Lanchantin et al. (2024).

In this paper, we revisit the use of scratchpad training to achieve length generalization on algorithmic
tasks. We begin with the observation that the scratchpad technique can be realized as an iterative
sequence of copying operations, where at each iteration the input is slightly modified. Building on
previous works showing that with the right positional encoding, transformers can achieve length
generalization on the copying operation Jelassi et al. (2024), we hypothesize that combining the
scratchpad technique with a favorable positional encoding can unlock length generalization capa-
bilities. We verify this hypothesis in Section 3 and Section 5, but first we review various choices of
positional encoding.

2.3 POSITIONAL ENCODINGS

The inability of transformers to extrapolate to longer sequences has been primarily attributed to the
positional encoding Shaw et al. (2018); Shen et al. (2023). In this section, we review the different
positional encoding schemes and in Section 3, we report their length generalization performance.
We review here specific choices for positional encodings that are known to perform well for length
generalization, and discuss additional encoding schemes (such as absolute and relative positional
encodings) in Appendix A.

No Positional Encoding (NoPE). Decoder-only models with causal attention, as shown by Haviv
et al. (2022), acquire positional understanding, without explicit positional encoding. Kazemnejad et al.
(2024) shows that a model without positional encoding extrapolate better than those with specialized
positional encodings on some algorithmic tasks.

ALiBi. Press et al. (2021) introduces this additive positional encoding where the bias function
follows b(i, j) = −r|i− j|, where r > 0 is some hyperparameter. This scheme has led to state-of-
the-art length generalization on natural language tasks. However, Jelassi et al. (2024) notices that it
struggles at length generalization on the copy task and hypothesize that it is due to the slow decay of
r.

Hard-ALiBi. Jelassi et al. (2024) introduce Hard-ALiBi, an additive positional encoding where the
bias satisfies b(i, j) = −∞ for j ≤ i−m and b(i, j) = 0 for j > i−m, for some hyperparameter
m > 0. Intuitively, with this hard thresholding, tokens can only attend to the m closest tokens.
Different heads may have different values of m and some heads use m = ∞ which corresponds to
softmax attention with no positional embedding at all (allowing for propagation of global information).
The authors demonstrate empirically that models equipped with the Hard-ALiBi positional encoding
achieve remarkable length generalization on the copy task. In this work, we use the Hard-ALiBi
position encoding to enable length generalization on algorithmic tasks as we show below.

3 LENGTH GENERALIZATION ON ADDITION

Figure 2: Turing Program for addition, text in
comments is not part of the input.

In this section, we address the length generalization
problem for addition. We first review prior results
on this problem and describe the techniques used in
these works. We then demonstrate that Transformers
trained with Turing Program scratchpads and Hard-
ALiBi positional encoding achieve good length gener-
alization performance, extrapolating from length-50
to length-100 addition. This is a remarkable improve-
ment over previous length generalization results us-
ing the “vanilla” scratchpad technique (e.g. Nye et al.
(2021)), which showed weak length generalization
performance. As mentioned, there is a long list of works that focus on length generalization on
addition (see Appendix B for a complete review). Notably, Zhou et al. (2024) report somewhat better
length generalization results compared to our results. However, we note that these results rely on

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

20 40 60 80 100 120
Length of Number

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

HAlibi + Direct
HAlibi + Turing Program
Alibi + Turing Program
NoPE + Turing Program
RoPE + Turing Program

(a)

40 50 60 70 80 90 100
Length of Number

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

(b)

Figure 3: (a): Comparison of different positional encodings and data formats for length generalization on
addition. We see significant extrapolation to longer sequence lengths with Hard-ALiBi and scratchpad. The
shade shows the 95% confidence intervals. (b): Hard-ALiBi with Turing Program, trained with 5 different
initialization seeds. To clarify, the randomness used to plot the 95% confidence intervals in Figure 3a comes
from the samples we draw to calculate the accuracy once a seed is fixed, not from different training seeds.

particular choices for the formatting of the input and the output, which are “tailored” for the task of
multi-digit addition.

3.1 LENGTH GENERALIZATION ON ADDITION WITH TURING PROGRAMS AND HARD-ALIBI

In this section, we present our Turing Program scratchpad strategy for addition and report length
generalization results.

3.1.1 EXPERIMENTAL SETUP

Data. We adopt the scratchpad format and write all the steps into one sequence, where steps
are separated by a separator token. Figure 2 shows our scratchpad strategy for getting length
generalization on addition1. If not specified otherwise, our token space is of size 24 and made
of V = {0, . . . , 9,+, a, . . . , j, ∧,<|BOS|>,<|EOS|>,<|SEP|>}. All the digits are sampled
uniformly as follows: we first sample the length of each operand (between 2 and L = 50) and then
independently sample each digit. Finally, we “pack the context” with i.i.d. sequences during training,
i.e. we fill the context with multiple independent samples of the task (similarly to Zhou et al. (2023)).
We set the training context length to 500. At test time, we evaluate our models using a sliding window:
we generate tokens until the training context length (500) is filled, and then each additional token is
generated by feeding the context of the most recent 500 tokens, effectively dropping all past tokens2.
This way, we are able to generate very long sequences of tokens without training or evaluating on
long context windows. To evaluate the accuracy at a given length, we test the model’s output on 288
examples. We report the accuracy of exactly matching the desired output.

Model and Training. Our base model is a 150M parameter Transformer with L = 12 layers, a
D = 1024 hidden size, feedforward layer with a hidden dimension of 4096 and H = 16 attention
heads. The backbone of our model is based on the GPT-NeoX architecture Black et al. (2022). We
pick a context length of 500 tokens. We use the AdamW optimizer Loshchilov & Hutter (2017) to
train the model with a weight decay value of 0.1 and no dropout, for 200,000 steps. The learning
rate schedule incorporates an initial 100-step linear warm-up, followed by a linear decay, starting at
7e-5.

Hard-ALiBi positional encoding. Similarly to Jelassi et al. (2024), we use M masked heads and
(H −M) NoPE heads. In the masked heads, we respectively set the hyperparameter m to 1, 2,. . .
and M . We swept over {3, 4, 5, 6, 7, 8} and found that M = 6 is the best choice.

1In the experiments, we use a slightly more compact version of the scratchpad, where each examples is repre-
sented as $4324+139|432e+13j(1,3)|43c+1d(0,63)|4d+b(0,463)|e+∧(0,4463)|4463.

2For efficiency reasons, once we reach the context length we advance the “window” by 20 tokens.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

3.1.2 RESULTS

In Figure 3a we show the length generalization performance of transformers trained to perform multi-
digit addition using the scratchpad described above. We compare the performance of different choices
of positional encodings, as well as comparing to the performance on addition without scratchpad
(directly outputting the answer). We observe that by using Hard-ALiBi together with scratchpad,
transformers are able to generalize well beyond the length of the training examples. In particular, the
Hard-ALiBi model achieves a 98% accuracy at length 100. As shown by Figure 9 in the appendix, the
model also length generalizes well when the operands are of different lengths. Finally, in Figure 3b
we analyze the robustness of length generalization performance to different choices of initialization
seed. We observe that, while there is significant variance in performance when testing on longer
sequences, our method is more robust compared to prior results (as reported in Zhou et al. (2024)).

4 TURING PROGRAMS

In Section 3, we showed that Transformers with Hard-ALiBi trained on a specific choice of scratchpad
format can length generalize to sequences that are 2× longer. On closer inspection, each line in the
scratchpad in Figure 2 is a slightly modified copy of the previous one where a few elementary changes
are applied, e.g. removing one digit for each operand and updating the intermediate result/carry.
Since Hard-ALiBi yields robust length generalization on copying, this may explain why we achieve
better extrapolation than previous works that trained their models with scratchpad.

In this section, we generalize this approach and claim that every algorithmic task can be written as a
sequence of modified copy operations: i.e. copy operations with small and localized modifications.
Such decomposition follows immediately from the standard construction of a Turing Machine, a
universal model of computation. We therefore refer to this scratchpad strategy as a Turing Program.
We start this section introducing the standard definition of a Turing Machine, and then present Turing
Programs, our scratchpad strategy for achieving length generalization on any algorithmic task. Lastly,
we present our main theoretical result: Transformers can implement Turing Programs over long
sequences of inputs.

4.1 BACKGROUND: TURING MACHINES

A Turing Machine Turing (1950) is a computational model that consists of an infinite tape3 with
cells, a head that can read from a cell, write to a cell and move left or right over the tape, and a set of
rules which direct the head based on the symbol it reads and the current state of the machine. More
formally, a Turing Machine is defined as follows.

Definition 4.1 A Turing Machine is specified as a quadruple T = (Q,Σ, s, δ) where: 1) Q is a finite
set of states, 2) Σ is a finite set of symbols, 3) s ∈ Q is the initial state and f ∈ Q is the final state, 4)
δ is a transition function determining the next move: δ : (Q× Σ) → (Σ× {L,R} ×Q).

At the first iteration, the machine is set to state s ∈ Q, the head is on the first (leftmost) cell of the tape,
and the input is written on the tape from left to right. At each iteration, the head is on the i-th cell in
the tape, is in state q ∈ Q and reads the i-th symbol on the tape α. Then, if δ(q, α) = (α′, D, q′), the
head writes the symbol α′, moves in the direction D ∈ {L,R}, and the machine changes its state to
q′. If the machine reaches the state f , it stops, and its “output” is written on the tape.

Turing Machines are a powerful model for solving algorithmic tasks since (a) the framework is
universal i.e. it is possible to write any algorithmic task in the Turing Machine formalism, (b)
Turing Machines can solve a wide range of algorithmic problems—ranging from simple arithmetic to
determining whether a number is a prime Agrawal et al. (2004)—in a polynomial number of steps. In
the next section, we show how to use the Turing Machine formalism to obtain a novel scratchpad
strategy that unlocks length generalization on any algorithmic task.

3We assume that the tape is unbounded from the right side, but bounded from the left. Namely, there are
infinitely many cells to the right of the input, but no empty cells to the left. This is computationally equivalent to
a tape that is infinite from both sides.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

4.2 TURING PROGRAMS: A UNIVERSAL SCRATCHPAD STRATEGY FOR LENGTH
GENERALIZATION

The left panel of Figure 1 represents the simulation of a Turing Machine and shows how the state, the
head and the tape evolves with time. Note that at each time step, the state of the tape is a copy of the
previous tape with a few elementary changes such as a move of the head, an edit of a single symbol
and a change of state.

The steps in a Turing Machine simulation are similar to a scratchpad strategy where each string is a
copy of the previous one with a few modifications. Therefore, we claim that for any algorithmic task
that can be solved by a Turing-computable algorithm, there is a corresponding scratchpad strategy
for solving this problem (as demonstrated in the right panel of Figure 1). We refer to this novel
scratchpad strategy as Turing Programs.

Turing Programs decompose an algorithmic task into a series of intermediate reasoning steps. Each
step is a “tape” that maintains the state of the machine, and the next step is a copy of the previous
tape with a few elementary changes, such as trimming of digits and update of carry/intermediate
result as in the case of addition and multiplication (see Figures 2 and 4) or update of the parameters in
the case of SGD on linear regression (see Subsection 5.2). In Section 5, we show how to use Turing
Programs to unlock novel length generalization results on challenging algorithmic tasks.

4.3 THEORY: TURING PROGRAMS IN RASP

To further motivate the use of Turing Programs to achieve length generalization on arbitrary algo-
rithms, we prove that transformers can implement Turing Programs over long sequences of inputs.
In particular, we show that Turing Programs can be implemented in RASP Weiss et al. (2021), a
programming language that was suggested as an abstract description of the operations of a transformer.
Following Zhou et al. (2023), we use a restricted version of RASP that does not allow direct index
operations, as Zhou et al. (2023) hypothesized that RASP programs with index arithmetics may
not length generalize4. Therefore, our result should be viewed as a length-generalization-friendly
construction of a transformer that can execute (most) Turing Programs (and hence, can simulate most
Turing machines).

Figure 4: Turing Program for 3-digit multipli-
cation. At each step, we update three informa-
tion: the head position, the result of the “local”
multiplication, the carry and the intermediate
result of the “global” multiplication.

To avoid index operations, we leverage the n-gram
hashing mechanism suggested by Jelassi et al. (2023)
as a basis for the copying ability of transformers. In
their construction, copying a string from the input
was achieved by storing a sequence of n preceding to-
kens (n-gram) at each position, and iteratively retriev-
ing the next token after the uniquely matched n-gram.
Our Turing Program construction is very similar, ex-
cept that instead of copying a string from the input,
we copy the next state of the Turing machine as com-
puted from the previous string. As in the construction
of Jelassi et al. (2023), our RASP program is limited
to operating on inputs that have no repeated n-grams
(i.e., no sequence of n tokens appears twice in the
input), which can be guaranteed with high probability
for uniformly random sequences of tokens of length
≤ exp(n). Additionally, we require that the Turing
machine does not generate repeated n-grams when
processing the input, and that all the operations of the Turing machine are applied in-memory5. Under
these assumptions, we get the following result:

4Our RASP program does not follow all the restrictions of the RASP-L language suggested in Zhou et al.
(2023), as we do not restrict the tokens to have int8 values.

5Namely, we assume that the head of the Turing machine does not go beyond the input sequence. We believe
that this restriction may be removed at the cost of constructing a more complex RASP program. While this may
seem like a limiting restriction, we note that this limitation can be easily mitigated by padding the input with
random tokens.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Theorem 4.1 Let T be a Turing Machine s.t. 1) T does not generate repeated n-grams and 2) T
operates in-memory. Then, there exists a RASP program P of size (number of lines) O(n) s.t. for
every input x without repeated n-grams, P correctly simulates T for exp(n) steps.

We give the full code for the construction of such RASP programs in Appendix D.

5 LENGTH GENERALIZATION ON OTHER ALGORITHMIC TASKS

Building upon the encouraging length generalization results on addition from Section 3 and the
Turing Programs framework from Section 4, we show that Transformers enhanced with Hard-ALiBi
may achieve robust length generalization on complex algorithmic tasks. We show that our framework
achieves length generalization on multiplication by 1-digit and 3-digit operands, on SGD applied to
linear regression, and finally, on next-state prediction of a random Turing Machine.

5.1 MULTIPLICATION BY A FIXED-LENGTH OPERAND

Prior work. Multiplication is known to be a challenging task for length generalization and very
few works report positive length generalization results on this task. On pretrained models, Zhou
et al. (2023) shows that elaborate prompting techniques slightly improve the length generalization
of Codex on (n ≤ 3)-multiplication. Dziri et al. (2024) show that even fine-tuned GPT-3 struggles
with performing 3-digit multiplication. On randomly intialized networks, Lee et al. (2023) show that
models can learn in-distribution the 2-digit multiplication in a sample efficient way using scratchpad.
Shen et al. (2023) shows that with padding and reversed products it is possible to perfectly learn
in-distribution 12-digit multiplication. Jelassi et al. (2023) focuses on 3-digit multiplication and
shows that when training on (5× 3)-digit-multiplication and adding a few examples of (35× 3)-digit-
multiplication, the model length generalizes to (35× 3)-digit-multiplication. In summary, prior work
mainly focused on in-distribution learning of multiplication and did not manage to obtain length
generalization results.

40 50 60 70 80 90 100 110 120
Length of Number

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

(n x 1) HAlibi + Turing Program
(n x 1) Alibi + Turing Program
(n x 1) NoPE + Turing Program
(n x 1) RoPE + Turing Program
(n x 1) HAlibi + Direct

(a)

40 50 60 70 80 90 100 110 120
Length of Number

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

(n x 3) HAlibi + Turing Program
(n x 3) Alibi + Turing Program
(n x 3) NoPE + Turing Program
(n x 3) RoPE + Turing Program
(n x 3) HAlibi + Direct

(b)

Figure 5: (a): Comparison of different positional encodings and data formats for length generalization on
(n× 1)-digit-multiplication using the same hyperparameters. The shade shows the 95% confidence intervals.
(b): Comparison of different positional encodings and data formats for length generalization on (n× 3)-digit-
multiplication. We see that directly outputting the answer has zero accuracy at length 40 already.

Data setup. Our experimental setup is similar to the one in Section 3. We focus on multiplication
by a fixed-length operand, i.e. (n× k)-digit-multiplication where the first operand has variable length
n and the second operand always has a fixed length k ∈ {1, 3} across all examples. We adopt the
scratchpad format and write all the steps into one sequence, where steps are separated by a separator
token. The Turing Program for multiplication is described in Figure 4.6 Our token space is similar to
the token space used in Section 3, using a ∗ symbol instead of + and using an additional separator

6In the experiments, we use a slightly more compact version of the scratchpad, where each examples is
represented as $4324*135|432e*135(0540∼054,0)|43c*135(0270∼032,40)|4d*135(0405
∼043,740)|e*135(0540∼058,3740)|∧

*135(0000∼005,83740)|∧
*135(0000∼000,5837

40)|583740.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

token ∼. All the digits are sampled uniformly as follows: we first sample the length of the first
operand (between 2 and 50) and then independently sample each digit. The remaining details of the
training/test protocols are similar to those in Section 3.

Results. Figure 5 reports our length generalization results on (n× 1) and (n× 3) multiplications.
We obtain robust length generalization by a factor ×2 (from 50 to 100-digit numbers) on (n × 1)
and (n × 3) multiplication. We note that, up to length 100, (n × 1) and (n × 3) multiplication
perform roughly the same ((n × 1) has accuracy 97.1% and (n × 3) has accuracy 96.8%), which
demonstrates the generality of our Turing Programs framework. Both results are achieved with
M = 7 masked heads and peak learning rate 0.0003. The head numbers were again chosen by
sweeping over candidate numbers as before while the learning rates were chosen from the candidate
set {7e-5,e-4,3e-4}.

5.2 SGD ON LINEAR REGRESSION

40 50 60 70 80 90
Size of Dataset

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

HAlibi + Direct Answer
HAlibi + Turing Program
Alibi + Turing Program
NoPE + Turing Program
RoPE + Turing Program

Figure 6: Length generalization on running the
SGD algorithm, varying the number of examples.

In this section, we train a model to perform SGD
and demonstrate its ability to length generalize.
While in previous examples we varied the num-
ber of digits in the operands, here we instead
vary the number of examples.

Problem Description. Let D =
{(x⃗i, yi)}i=0,...,n−1 with x⃗i ∈ R2 and
yi ∈ R be a dataset of size n. Given initial
weights w⃗0 ∈ Rn, we can obtain the final
weight w⃗n−1 by performing gradient descent:
w⃗i+1 = w⃗i − λ∇wi

(yi − w⃗i · x⃗i)
2, where λ is

the learning rate. For our experiment, we pick
λ = 0.5 and w⃗0 = 0.

Tokenization and Data. We divide the interval [−1, 1] into 200 discrete tokens {a0,a1, ...,a199}.
As an input, the model receives a sequence of n examples, each encoded as two input coordinate and
one output (label) value. The model then needs to compute the iterates of the SGD algorithm when
processing the data examples, starting from the last data point, and output the resulting weight vector
w⃗n−1. A detailed description of the Turing Program for solving SGD is detailed in Appendix E.

Results. Unlike previous experiments, where we report accuracy w.r.t. exact string matching, here
we allow the network to err by two quantization unit, counting any output that is within 2/100 from
the ground-truth output (in ℓ∞ norm) as correct. In other words, we disregard errors that may occur to
differences in quantization of the real-valued iterates of SGD. As shown by the blue curve in Figure
6, training the transformer to perform SGD on dataset of sizes n ≤ 50 generalizes with accuracy
> 95% to datasets of size n = 80. Our Hard-ALiBi model has M = 7 masked heads, a context
length of 600, and was trained with peak learning rate 7e-5 for 400, 000 steps with a batchsize of
16. For comparison, we also trained a model to directly compute the final answer as shown by the red
curve in Figure 6. We observe that training the model to immediately output the answer significantly
degrades its performance.

5.3 TURING SIMULATIONS

In this section, we test the length generalization of transformers trained to predict the next state of
an arbitrary, randomly generated, Turing machine. Our experimental setup is similar to the one in
Section 3 except for the data as detailed below.

Data setup. We first sample a random Turing Machine T with 5 states, 15 input symbols and a
random transition function (i.e., for every pair of state and symbol we randomly draw a triplet of
state, symbol and move-direction). During training, each input example is generated as follows: we
randomly choose an input sequence length L between 2 and 50, then randomly choose L tokens,
a random position for the head and a random state for the machine. At each step of training, we

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

generate in an online manner a batch of size 16 of Turing simulations from T and focus on learning
1-step prediction: given the input tape, the model has to generate the output of the transition function
followed by the next state of the tape. At test time, we evaluate the model on tapes of length L ≥ 50.
Further details are in Appendix F.

40 60 80 100 120 140
Length of Tape

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

Turing Machine 0
Turing Machine 1
Turing Machine 2
Turing Machine 3
Turing Machine 4
Turing Machine 5
Turing Machine 6
Turing Machine 7
Turing Machine 8
Turing Machine 9

Figure 7: Length generalization performance on
10 different randomly generated Turing machines.

Results. Figure 7 shows that transformers en-
hanced with Hard-ALiBi predict almost per-
fectly the 1-step Turing Machine transition of
tapes that are 2× to 3× longer than those seen
during training. Trained with a peak learning
rate of 7e-5, the models have M = 8 masked
heads and a context length of 450. This experi-
ment suggests that transformers may length gen-
eralize on arbitrary Turing Programs7. However,
this admittedly does not imply that transform-
ers can successfully execute Turing Programs
for multiple steps, as accumulating errors might
cause the programs to fail. That said, we note
that in many cases we get length generalization
with virtually zero error, suggesting that multi-
ple steps of the machine can be execute while
still maintaining accurate performance. The per-
formance of different positional encodings and data formats for Turing simulation can be found in
Appendix C. We observed that both directly outputting the answer and using alternative positional
encodings significantly degraded the performance of length generalization.

6 DISCUSSION AND LIMITATIONS

Studying and improving the length generalization abilities of transformers on algorithmic tasks has
been the focus of various recent works. In parallel, it has been established experimentally that the
ability of language models to solve algorithmic tasks is greatly enhanced when allowing them to
use scratchpad/CoT data. Additionally, recent theoretical works demonstrate that transformers can
use CoT to simulate arbitrary algorithms Merrill & Sabharwal (2023), establishing that they are
computationally “universal”. These results motivate us to study whether transformers are universal
learners, able to learn from examples to execute arbitrary algorithms. Since algorithms are typically
defined over arbitrary sequence lengths, we use length generalization as a measure of whether the
model has learned the true algorithm. To establish this, we use the key observation that transformers
can length generalize on the copying operation. Since executing an algorithm can be implemented
as a sequence of “smart” copy operations, the copying ability of transformers can be leveraged to
achieve non-trivial length generalization performance on a wide range of algorithmic tasks.

That said, we acknowledge that our work still falls short of demonstrating that transformers can
robustly length generalize on any algorithmic task. In some of our results, the extrapolation to longer
sequence length is not robust, and degradation in performance may appear shortly after moving
out-of-distribution. Additionally, our results rely on potentially very long and cumbersome CoT data,
in a way that is not necessarily useful for real-world applications of language models. Thus, we view
our results as theoretical evidence that length generalization is possible, and leave the development of
more practical and robust methods for real-world length generalization to future work.

REFERENCES

Emmanuel Abbe, Samy Bengio, Aryo Lotfi, and Kevin Rizk. Generalization on the unseen, logic
reasoning and degree curriculum. In International Conference on Machine Learning, pp. 31–60.
PMLR, 2023.

7We note that, formally, the experiment demonstrates the ability of transformers to learn in the “average
case”, but does not rule out the possibility that some “worst case” Turing Programs have much more restricted
length generlization.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Manindra Agrawal, Neeraj Kayal, and Nitin Saxena. Primes is in p. Annals of mathematics, pp.
781–793, 2004.

Cem Anil, Yuhuai Wu, Anders Andreassen, Aitor Lewkowycz, Vedant Misra, Vinay Ramasesh,
Ambrose Slone, Guy Gur-Ari, Ethan Dyer, and Behnam Neyshabur. Exploring length generalization
in large language models. Advances in Neural Information Processing Systems, 35:38546–38556,
2022.

Satwik Bhattamishra, Arkil Patel, and Navin Goyal. On the computational power of transformers and
its implications in sequence modeling. arXiv preprint arXiv:2006.09286, 2020.

Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding, Horace He,
Connor Leahy, Kyle McDonell, Jason Phang, et al. Gpt-neox-20b: An open-source autoregressive
language model. arXiv preprint arXiv:2204.06745, 2022.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Yining Chen, Sorcha Gilroy, Andreas Maletti, Jonathan May, and Kevin Knight. Recurrent neural
networks as weighted language recognizers. arXiv preprint arXiv:1711.05408, 2017.

Ta-Chung Chi, Ting-Han Fan, Peter J Ramadge, and Alexander Rudnicky. Kerple: Kernelized
relative positional embedding for length extrapolation. Advances in Neural Information Processing
Systems, 35:8386–8399, 2022.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. Journal of Machine Learning Research, 24(240):1–113,
2023.

Stephen Chung and Hava Siegelmann. Turing completeness of bounded-precision recurrent neural
networks. Advances in neural information processing systems, 34:28431–28441, 2021.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc V Le, and Ruslan Salakhutdi-
nov. Transformer-xl: Attentive language models beyond a fixed-length context. arXiv preprint
arXiv:1901.02860, 2019.

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and Łukasz Kaiser. Universal
transformers. arXiv preprint arXiv:1807.03819, 2018.

Grégoire Delétang, Anian Ruoss, Jordi Grau-Moya, Tim Genewein, Li Kevin Wenliang, Elliot Catt,
Chris Cundy, Marcus Hutter, Shane Legg, Joel Veness, et al. Neural networks and the chomsky
hierarchy. arXiv preprint arXiv:2207.02098, 2022.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Nouha Dziri, Ximing Lu, Melanie Sclar, Xiang Lorraine Li, Liwei Jiang, Bill Yuchen Lin, Sean
Welleck, Peter West, Chandra Bhagavatula, Ronan Le Bras, et al. Faith and fate: Limits of
transformers on compositionality. Advances in Neural Information Processing Systems, 36, 2024.

Angeliki Giannou, Shashank Rajput, Jy-yong Sohn, Kangwook Lee, Jason D Lee, and Dimitris
Papailiopoulos. Looped transformers as programmable computers. In International Conference on
Machine Learning, pp. 11398–11442. PMLR, 2023.

Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines. arXiv preprint
arXiv:1410.5401, 2014.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio César Teodoro Mendes, Allie Del Giorno, Sivakanth
Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo de Rosa, Olli Saarikivi, et al. Textbooks are all
you need. arXiv preprint arXiv:2306.11644, 2023.

Adi Haviv, Ori Ram, Ofir Press, Peter Izsak, and Omer Levy. Transformer language models without
positional encodings still learn positional information. arXiv preprint arXiv:2203.16634, 2022.

Yi Hu, Xiaojuan Tang, Haotong Yang, and Muhan Zhang. Case-based or rule-based: How do
transformers do the math? arXiv preprint arXiv:2402.17709, 2024.

Dieuwke Hupkes, Verna Dankers, Mathijs Mul, and Elia Bruni. Compositionality decomposed: How
do neural networks generalise? Journal of Artificial Intelligence Research, 67:757–795, 2020.

Samy Jelassi, Stéphane d’Ascoli, Carles Domingo-Enrich, Yuhuai Wu, Yuanzhi Li, and François
Charton. Length generalization in arithmetic transformers. arXiv preprint arXiv:2306.15400,
2023.

Samy Jelassi, David Brandfonbrener, Sham M Kakade, and Eran Malach. Repeat after me: Trans-
formers are better than state space models at copying. arXiv preprint arXiv:2402.01032, 2024.

Ana Jojic, Zhen Wang, and Nebojsa Jojic. Gpt is becoming a turing machine: Here are some ways to
program it. arXiv preprint arXiv:2303.14310, 2023.

Łukasz Kaiser and Ilya Sutskever. Neural gpus learn algorithms. arXiv preprint arXiv:1511.08228,
2015.

Amirhossein Kazemnejad, Inkit Padhi, Karthikeyan Natesan Ramamurthy, Payel Das, and Siva Reddy.
The impact of positional encoding on length generalization in transformers. Advances in Neural
Information Processing Systems, 36, 2024.

Jack Lanchantin, Shubham Toshniwal, Jason Weston, Sainbayar Sukhbaatar, et al. Learning to reason
and memorize with self-notes. Advances in Neural Information Processing Systems, 36, 2024.

Nayoung Lee, Kartik Sreenivasan, Jason D Lee, Kangwook Lee, and Dimitris Papailiopoulos.
Teaching arithmetic to small transformers. arXiv preprint arXiv:2307.03381, 2023.

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay Ra-
masesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, et al. Solving quantitative
reasoning problems with language models. Advances in Neural Information Processing Systems,
35:3843–3857, 2022.

Shanda Li, Chong You, Guru Guruganesh, Joshua Ainslie, Santiago Ontanon, Manzil Zaheer, Sumit
Sanghai, Yiming Yang, Sanjiv Kumar, and Srinadh Bhojanapalli. Functional interpolation for
relative positions improves long context transformers. arXiv preprint arXiv:2310.04418, 2023.

David Lindner, János Kramár, Sebastian Farquhar, Matthew Rahtz, Tom McGrath, and Vladimir
Mikulik. Tracr: Compiled transformers as a laboratory for interpretability. Advances in Neural
Information Processing Systems, 36, 2024.

Bingbin Liu, Jordan T Ash, Surbhi Goel, Akshay Krishnamurthy, and Cyril Zhang. Transformers
learn shortcuts to automata. arXiv preprint arXiv:2210.10749, 2022.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Eran Malach. Auto-regressive next-token predictors are universal learners. arXiv preprint
arXiv:2309.06979, 2023.

William Merrill and Ashish Sabharwal. The expresssive power of transformers with chain of thought.
arXiv preprint arXiv:2310.07923, 2023.

Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari, Henryk Michalewski, Jacob Austin, David
Bieber, David Dohan, Aitor Lewkowycz, Maarten Bosma, David Luan, et al. Show your work:
Scratchpads for intermediate computation with language models. arXiv preprint arXiv:2112.00114,
2021.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,
Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, et al. In-context learning and induction heads.
arXiv preprint arXiv:2209.11895, 2022.

Jorge Pérez, Javier Marinković, and Pablo Barceló. On the turing completeness of modern neural
network architectures. arXiv preprint arXiv:1901.03429, 2019.

Ofir Press, Noah A Smith, and Mike Lewis. Train short, test long: Attention with linear biases
enables input length extrapolation. arXiv preprint arXiv:2108.12409, 2021.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1–67, 2020.

Anian Ruoss, Grégoire Delétang, Tim Genewein, Jordi Grau-Moya, Róbert Csordás, Mehdi Bennani,
Shane Legg, and Joel Veness. Randomized positional encodings boost length generalization of
transformers. arXiv preprint arXiv:2305.16843, 2023.

Avi Schwarzschild, Eitan Borgnia, Arjun Gupta, Furong Huang, Uzi Vishkin, Micah Goldblum,
and Tom Goldstein. Can you learn an algorithm? generalizing from easy to hard problems with
recurrent networks. Advances in Neural Information Processing Systems, 34:6695–6706, 2021.

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. Self-attention with relative position representations.
arXiv preprint arXiv:1803.02155, 2018.

Ruoqi Shen, Sébastien Bubeck, Ronen Eldan, Yin Tat Lee, Yuanzhi Li, and Yi Zhang. Positional
description matters for transformers arithmetic. arXiv preprint arXiv:2311.14737, 2023.

Hava T Siegelmann and Eduardo D Sontag. On the computational power of neural nets. In
Proceedings of the fifth annual workshop on Computational learning theory, pp. 440–449, 1992.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: Enhanced
transformer with rotary position embedding. Neurocomputing, 568:127063, 2024.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

A. M. Turing. Computing machinery and intelligence. Mind, 59(236):433–460, 1950. ISSN
00264423, 14602113. URL http://www.jstor.org/stable/2251299.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Colin Wei, Yining Chen, and Tengyu Ma. Statistically meaningful approximation: a case study on
approximating turing machines with transformers. Advances in Neural Information Processing
Systems, 35:12071–12083, 2022a.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022b.

Gail Weiss, Yoav Goldberg, and Eran Yahav. Thinking like transformers. In International Conference
on Machine Learning, pp. 11080–11090. PMLR, 2021.

Yi Zhang, Arturs Backurs, Sébastien Bubeck, Ronen Eldan, Suriya Gunasekar, and Tal Wagner.
Unveiling transformers with lego: a synthetic reasoning task. arXiv preprint arXiv:2206.04301,
2022.

Hattie Zhou, Arwen Bradley, Etai Littwin, Noam Razin, Omid Saremi, Josh Susskind, Samy Bengio,
and Preetum Nakkiran. What algorithms can transformers learn? a study in length generalization.
arXiv preprint arXiv:2310.16028, 2023.

Yongchao Zhou, Uri Alon, Xinyun Chen, Xuezhi Wang, Rishabh Agarwal, and Denny Zhou. Trans-
formers can achieve length generalization but not robustly. arXiv preprint arXiv:2402.09371,
2024.

13

http://www.jstor.org/stable/2251299


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A ADDITIONAL POSITIONAL ENCODINGS REVIEW

Absolute Positional Encoding (APE). APE consists in maintaining a positional vector pi for each
position i. This vector is either predefined via a sinusoidal function Vaswani et al. (2017) or learned
Devlin et al. (2018). Then, pi is added to the token embedding ei before being processed by the
Transformer. Prior work observed that this positional encoding does not generalize well to longer
sequences in both natural language Press et al. (2021) and algorithmic tasks Jelassi et al. (2023);
Kazemnejad et al. (2024).

Additive Relative Positional Encoding (RPE). Shaw et al. (2018) were the first to integrate
positional encodings at the level of each attention layer (instead of doing it at the input level). Raffel
et al. (2020) built upon this approach and added scalar biases to pre-softmax logits as follows:

A = XWQ(XWK)⊤ +B, (1)

where X , WQ, WK are the input and query and key weight matrices. The bias matrix B ∈ Rn×n is
induced by some positional encoding function b : N∗2 → R. For instance, the T5 relative positional
encoding Raffel et al. (2020) set b(i, j) = f(i− j), where f is some function. Most of the subsequent
positional encodings such as ALiBi Press et al. (2021), Kerple Chi et al. (2022), Randomized
Positional Encoding Ruoss et al. (2023) and Fire Li et al. (2023) rely on changing the pre-softmax
logits and differ in their definition of b.

Rotary Positional Encoding (RoPE). RoPE Su et al. (2024) encodes position information in
attention logits by applying a rotation transformation to the query and key vectors based on their
relative positions. Despite being widely used, RoPE exhibits limited length generalization Press et al.
(2021); Kazemnejad et al. (2024).

B PRIOR RESULTS ON MULTI-DIGIT ADDITION

In this section, we summarize the methods proposed by prior work to get length generalization
on addition along with their corresponding performance. In what follows, we indicate in red the
positional encoding and in green the data format used in these works. We also take as a running
example the addition 576+361=937.

– Lee et al. (2023) from 7 to 7-digit (1.0×). APE + Reversed format. They train their models by
reversing each operand as 675+163=739. Therefore, the causal model that processes information
from left to right can start with the least significant digit and proceed to the most significant digit,
which corresponds to the algorithm for addition. They do not achieve any length generalization.

– Kazemnejad et al. (2024) from 8 to 9-digit (1.125×): NoPE + Reversed format. They show that a
model without positional encoding trained on reversed additions like 675+163=739 outperforms
those with specialized positional encodings like T5’s relative positional Raffel et al. (2020) or RoPE
Su et al. (2024).

– Shen et al. (2023) from 10 to 11-digit (1.1×): NoPE + Reversed format + random space augmen-
tation. They introduced random spacing between digits, aiming to alleviate the model’s reliance
on absolute positional information. Combining this with the reversed format, the running example
becomes 6 75+16 3=739. They show that NoPE Transformers length generalize from 10 to 11
digit-addition.

– Zhou et al. (2023) from 30 to 45 digits (1.5×): NoPE + Index Hints. They define "index hints",
a formatting that consists in adding a letter in front of each digit in the addition to indicate their
position. For instance, the running example becomes a5b7c6+a3b6c1=a9b3c7. This change is
applied during training and inference and enables transformers to execute indexing via induction
heads Olsson et al. (2022).

– Zhou et al. (2024) from 40 to 100 digits (2.5×): Fire Li et al. (2023) + Randomized positional
encoding Ruoss et al. (2023) + Reversed format + Index Hints . They use a combination of two
positional encodings: Fire Li et al. (2023), a additive relative positional encoding that has obtained
strong length generalization on natural language benchmarks and Randomized positional encoding
Ruoss et al. (2023): a technique that samples encodings from a range exceeding test-time lengths.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

40 60 80 100 120 140
Length of Tape

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

HAlibi
Alibi
NoPE
RoPE

Figure 8: Comparison of different positional encodings for length generalization on a randomly
generated Turing machine using the same hyperparameters (peak learning rate of 7e− 5, batch size
of 16, trained for 200, 000 steps).

The goal is to ensure that Transformers can adapt to larger positional encodings during training and
not encounter any OOD encoding at test-time. With reversed format and index hints, the data format
looks like a6b7c5+a1b6c3=a7b3c9. By using all these modifications, they reach state-of-the-art
performance on length generalization for addition. However, these choices seem to be specific to the
addition case and hard to transfer to other algorithmic tasks.

C ADDITIONAL EXPERIMENTAL RESULTS

Additional experimental results for Turing simulation are shown in Figure 8.

To the best of our knowledge, Zhou et al. (2024) achieved length generalization mainly for addition
when the two summands had the same length. Our method generalizes even when the two summands
have different lengths. For L1, L2 ∈ {17, 32, 47, 62, 77, 92}, we sampled 96 addition examples
where the first summand has length L1 and the second summand has length L2. The accuracy for
each combination is shown in Figure 9. We see that it generalizes well beyond the trained distribution
(L1, L2 ≤ 50).

D RASP TURING PROGRAMS

D.1 RASP PYTHON DEFINITIONS (FROM ZHOU ET AL. (2023))

import numpy as np

def f u l l ( x , c o n s t ) :
re turn np . f u l l _ l i k e ( x , c o n s t , d t y p e = i n t )

def i n d i c e s ( x ) :
re turn np . a r a n g e ( l e n ( x ) , d t y p e = i n t )

def tok_map ( x , func ) :
re turn np . a r r a y ( [ func ( x i ) f o r x i in x ] ) . a s t y p e ( i n t )

def seq_map ( x , y , func ) :
re turn np . a r r a y ( [ func ( xi , y i ) f o r xi , y i in z i p ( x , y ) ] ) . a s t y p e ( i n t )

def s e l e c t ( k , q , pred , c a u s a l =True ) :
s = l e n ( k )
A = np . z e r o s ( ( s , s ) , d t y p e = bool )
f o r q i in range ( s ) :

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

17 32 47 62 77 92
Length of Summand 1

17
32

47
62

77
92

Le
ng

th
 o

f S
um

m
an

d 
2

100 100 100 100 100 99

100 100 100 100 100 100

100 100 100 100 100 100

100 100 100 100 99 100

100 100 100 99 99 98

99 100 100 99 99 99

Accuracy (%)

98.00

98.25

98.50

98.75

99.00

99.25

99.50

99.75

100.00

Figure 9: Grid displaying the accuracy of our model on addition when changing the length of each
operand. We observe that our model is able to generalize on operands with different lengths.

f o r k j in range ( q i +1 i f c a u s a l e l s e s ) :
A[ qi , k j ] = p red ( k [ k j ] , q [ q i ] )

re turn A

def s e l _ w i d t h (A ) :
re turn np . d o t (A, np . ones ( l e n (A ) ) ) . a s t y p e ( i n t )

def aggr_mean (A, v , d e f a u l t = 0 ) :
o u t = np . d o t (A, v )
norm = s e l _ w i d t h (A)
o u t = np . d i v i d e ( out , norm , o u t =np . f u l l _ l i k e ( v , d e f a u l t , d t y p e = f l o a t ) , where =( norm != 0 ) )
re turn o u t . a s t y p e ( i n t )

def aggr_max (A, v , d e f a u l t = 0 ) :
o u t = np . f u l l _ l i k e ( v , d e f a u l t )
f o r i , row in enumerate (A ) :

i d x s = np . f l a t n o n z e r o ( row )
i f l e n ( i d x s ) > 0 :

o u t [ i ] = np . max ( v [ i d x s ] )
re turn o u t . a s t y p e ( i n t )

def aggr_min (A, v , d e f a u l t = 0 ) :
re turn −aggr_max (A, −v , − d e f a u l t )

def agg r (A, v , d e f a u l t =0 , r e d u c t i o n = ’ mean ’ ) :
i f r e d u c t i o n == ’ mean ’ :

re turn aggr_mean (A, v , d e f a u l t )
e l i f r e d u c t i o n == ’max ’ :

re turn aggr_max (A, v , d e f a u l t )
e l i f r e d u c t i o n == ’ min ’ :

re turn aggr_min (A, v , d e f a u l t )

def kqv ( k , q , v , pred , d e f a u l t =0 , r e d u c t i o n = ’ mean ’ ) :

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

re turn agg r ( s e l e c t ( k , q , p r ed ) , v , d e f a u l t = d e f a u l t , r e d u c t i o n = r e d u c t i o n )

D.2 ADDITIONAL FUNCTIONS (FROM ZHOU ET AL. (2023))

import o p e r a t o r a s op
import numpy as np

# D e f i n e compar i son o p e r a t o r s
e q u a l s , l eq , l t , geq , g t = op . eq , op . l e , op . l t , op . ge , op . g t

def s h i f t _ r i g h t ( x , n , d e f a u l t = 0 ) :
# s h i f t s s e q u e n c e x t o t h e r i g h t by n p o s i t i o n s
re turn kqv ( i n d i c e s ( x ) + n , i n d i c e s ( x ) , x , e q u a l s , d e f a u l t = d e f a u l t )

def cumsum ( b o o l _ a r r a y ) :
# r e t u r n s number o f p r e v i o u s True e l e m e n t s i n b o o l _ a r r a y
re turn s e l _ w i d t h ( s e l e c t ( b o o l _ a r r a y , b o o l _ a r r a y , lambda k , q : k ) )

def where ( c o n d i t i o n , x _ i f , y _ e l s e ) :
# e q u i v a l e n t t o np . where ( c o n d i t i o n , x _ i f , y _ e l s e )
x_masked = seq_map ( x _ i f , c o n d i t i o n , lambda x , m: x i f m e l s e 0)
y_masked = seq_map ( y _ e l s e , c o n d i t i o n , lambda y , m: y i f not m e l s e 0)
re turn seq_map ( x_masked , y_masked , lambda x , y : x i f y == 0 e l s e y )

def mask ( x , bool_mask , mask_val = 0 ) :
# e q u i v a l e n t t o x * bool_mask + d e f a u l t *(~ bool_mask )
re turn where ( bool_mask , x , f u l l ( x , mask_val ) )

def maximum ( x ) :
re turn kqv ( x , x , x , lambda k , q : True , r e d u c t i o n = ’max ’ )

def minimum ( x ) :
re turn −maximum( − x )

def argmax ( x ) :
mm = maximum ( x )
re turn kqv (mm, x , i n d i c e s ( x ) , r e d u c t i o n = ’max ’ )

def argmin ( x ) :
re turn argmax ( −x )

def num_prev ( x , q u e r i e s ) :
# o u t p u t [ i ] = number o f p r e v i o u s e l e m e n t s o f x e q u a l t o q u e r i e s [ i ] , i n c l u s i v e
re turn s e l _ w i d t h ( s e l e c t ( x , q u e r i e s , e q u a l s ) )

def h a s _ s e e n ( x , q u e r i e s ) :
re turn kqv ( x , q u e r i e s , f u l l ( x , 1 ) , e q u a l s , d e f a u l t =0)

def f i r s t s ( x , q u e r i e s , d e f a u l t = −1) :
# f i n d t h e i n d e x o f t h e f i r s t o c c u r r e n c e o f each query [ i ] i n x
# o u t [ i ] := np . f l a t n o n z e r o ( x [ : i +1] == q u e r i e s [ i ] ) . min ( )
re turn kqv ( x , q u e r i e s , i n d i c e s ( x ) , e q u a l s , d e f a u l t = d e f a u l t , r e d u c t i o n = ’ min ’ )

def l a s t s ( x , q u e r i e s , d e f a u l t = −1) :
# f i n d t h e i n d e x o f t h e l a s t o c c u r r e n c e o f each query [ i ] i n x
# o u t [ i ] := np . f l a t n o n z e r o ( x [ : i +1] == q u e r i e s [ i ] ) . max ( )
re turn kqv ( x , q u e r i e s , i n d i c e s ( x ) , e q u a l s , d e f a u l t = d e f a u l t , r e d u c t i o n = ’max ’ )

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

def i n d e x _ s e l e c t ( x , idx , d e f a u l t = 0 ) :
# i n d e x e s i n t o s e q u e n c e x , v i a i n d e x s e q u e n c e i d x
# i . e . , r e t u r n x [ i d x ] i f i d x [ i ] <= i e l s e d e f a u l t
re turn kqv ( i n d i c e s ( x ) , idx , x , e q u a l s , d e f a u l t = d e f a u l t )

def f i r s t _ t r u e ( x , d e f a u l t = −1) :
# r e t u r n s t h e i n d e x o f t h e f i r s t t r u e v a l u e i n x
s e e n _ t r u e = kqv ( x , f u l l ( x , 1 ) , f u l l ( x , 1 ) , e q u a l s , d e f a u l t =0)
f i r s t _ o c c = seq_map ( s e e n _ t r u e , s h i f t _ r i g h t ( s e e n _ t r u e , 1 ) , lambda c u r r , p r ev : c u r r and not p rev )
re turn kqv ( f i r s t _ o c c , f u l l ( x , 1 ) , i n d i c e s ( x ) , e q u a l s , d e f a u l t = d e f a u l t )

def i n d u c t _ k q v ( k , q , v , o f f s e t , d e f a u l t =0 , n u l l _ v a l = −999) :
# g e t v a l u e o f v a t i n d e x o f : f i r s t o c c u r r e n c e o f q [ i ] found i n k ( i f f ound ) + o f f s e t .
# ( e x c l u d e s t h e l a s t OFFSET t o k e n s o f k from match ing )
# n u l l _ v a l i s a s p e c i a l t o k e n t h a t ca nno t appear i n k or q ; used t o p r e v e n t a c c i d e n t a l matches
i n d i c e s _ t o _ c o p y = f i r s t s ( s h i f t _ r i g h t ( k , o f f s e t , d e f a u l t = n u l l _ v a l ) , q , d e f a u l t = n u l l _ v a l )
c o p i e d _ v a l u e s = i n d e x _ s e l e c t ( v , i n d i c e s _ t o _ c o p y , d e f a u l t = d e f a u l t )
re turn c o p i e d _ v a l u e s

def i n d u c t ( k , q , o f f s e t , d e f a u l t =0 , n u l l _ v a l = −999) :
re turn i n d u c t _ k q v ( k , q , k , o f f s e t = o f f s e t , d e f a u l t = d e f a u l t , n u l l _ v a l = n u l l _ v a l )

def i n d u c t _ p r e v ( k , q , o f f s e t , d e f a u l t =0 , n u l l _ v a l = −999) :
# A v e r s i o n o f i n d u c t f o r n e g a t i v e o f f s e t s .
i n d i c e s _ t o _ c o p y = f i r s t s ( k , q , d e f a u l t = n u l l _ v a l ) + o f f s e t
c o p i e d _ v a l u e s = i n d e x _ s e l e c t ( k , i n d i c e s _ t o _ c o p y , d e f a u l t = d e f a u l t )
re turn c o p i e d _ v a l u e s

D.3 UTILITY FUNCTIONS

def p r e f i x _ f i l l ( x , n , v a l u e ) :
ones = f u l l ( x , 1 )
n o _ f i l l = s h i f t _ r i g h t ( ones , n )
re turn where ( n o _ f i l l , x , f u l l ( x , v a l u e ) )

def where3 ( cond , x , y , z ) :
o u t = where ( cond == 0 , x , y )
re turn where ( cond == 2 , z , o u t )

D.4 TURING MACHINE TRANSITION FUNCTION

sep = 0
bos = 1
eos = 2
empt = 3
a l p h a b e t = l i s t ( range ( 4 , 1 6 ) )
s t a t e _ s p a c e = l i s t ( range ( 1 6 , 3 2 ) )

s t a t e _ t r a n s i t i o n = { a : { s : np . random . c h o i c e ( s t a t e _ s p a c e ) f o r s in s t a t e _ s p a c e } f o r a in a l p h a b e t + [ bos , eos ] }
s y m b o l _ t r a n s i t i o n = { a : { s : np . random . c h o i c e ( a l p h a b e t ) f o r s in s t a t e _ s p a c e } f o r a in a l p h a b e t }
m o v e _ d i r e c t i o n = { a : { s : np . random . c h o i c e ( [ 0 , 1 ] ) f o r s in s t a t e _ s p a c e } f o r a in a l p h a b e t }

def n e x t _ s t a t e ( s t a t e , t o k e n ) :
i f t o k e n in s t a t e _ t r a n s i t i o n . keys ( ) and s t a t e in s t a t e _ s p a c e :

re turn s t a t e _ t r a n s i t i o n [ t o k e n ] [ s t a t e ]
e l s e :

re turn 0

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

def nex t_symbol ( s t a t e , t o k e n ) :
i f t o k e n in a l p h a b e t and s t a t e in s t a t e _ s p a c e :

re turn s y m b o l _ t r a n s i t i o n [ t o k e n ] [ s t a t e ]
e l i f t o k e n == bos :

re turn bos
e l i f t o k e n == eos :

re turn eos
e l s e :

re turn 0

def move ( s t a t e , t o k e n ) :
i f t o k e n in a l p h a b e t and s t a t e in s t a t e _ s p a c e :

re turn m o v e _ d i r e c t i o n [ t o k e n ] [ s t a t e ]
e l i f t o k e n == bos :

re turn 1
e l s e :

re turn 0

D.5 COMPUTATION OF NEXT TAPE STATE

def g e t _ n e x t ( x , x _ l e f t , x _ r i g h t ) :
# compute t h e n e x t s t a t e o f head and new symbol , w i t h o u t moving t h e head
x _ s t a t e = seq_map ( x , x _ l e f t , n e x t _ s t a t e )
x_symbol = seq_map ( x _ r i g h t , x , nex t_symbol )
x_move_R = seq_map ( x , x _ l e f t , move )
i s _ h e a d = tok_map ( x , lambda z : z in s t a t e _ s p a c e )
i s _ h e a d _ r i g h t = tok_map ( x _ r i g h t , lambda z : z in s t a t e _ s p a c e )
x_ ne x t = where ( i s _ h e a d , x _ s t a t e , x )
x_ ne x t = where ( i s _ h e a d _ r i g h t , x_symbol , x _n ex t )
x_move_R = x_move_R & i s _ h e a d
re turn i s _ h e a d , x_next , x_move_R

def s e l e c t _ m o v e _ t o k e n ( no_head_around , h e a d _ l e f t _ m o v e _ l e f t , h e a d _ l e f t _ m o v e _ r i g h t , h e a d _ r i g h t _ m o v e _ l e f t , h e a d _ r i g h t _ m o v e _ r i g h t , i s _ h e a d _ m o v e _ l e f t , i s _ h e a d _ m o v e _ r i g h t ) :
LEFT_TOKEN = f u l l ( no_head_around , 0 )
CUR_TOKEN = f u l l ( no_head_around , 1 )
RIGHT_TOKEN = f u l l ( no_head_around , 2 )
o u t = CUR_TOKEN
o u t = where ( h e a d _ l e f t _ m o v e _ r i g h t | i s _ h e a d _ m o v e _ l e f t , LEFT_TOKEN , o u t )
o u t = where ( h e a d _ r i g h t _ m o v e _ l e f t | i s _ h e a d _ m o v e _ r i g h t , RIGHT_TOKEN, o u t )

re turn o u t

def move_head ( c u r _ s t a t e , r i g h t _ s t a t e ) :
i s _ h e a d , c u r _ n e x t , move_R = c u r _ s t a t e
r i g h t _ i s _ h e a d , r i g h t _ n e x t , r ight_move_R = r i g h t _ s t a t e
l e f t _ i s _ h e a d , l e f t _ n e x t , l e f t_move_R = s h i f t _ r i g h t ( i s _ h e a d , 1 ) , s h i f t _ r i g h t ( c u r _ n e x t , 1 ) , s h i f t _ r i g h t ( move_R , 1 )

no_head_around = (~ l e f t _ i s _ h e a d & ~ r i g h t _ i s _ h e a d & ~ i s _ h e a d )
h e a d _ l e f t _ m o v e _ l e f t = l e f t _ i s _ h e a d & ~ lef t_move_R
h e a d _ l e f t _ m o v e _ r i g h t = l e f t _ i s _ h e a d & lef t_move_R
h e a d _ r i g h t _ m o v e _ l e f t = r i g h t _ i s _ h e a d & ~ right_move_R
h e a d _ r i g h t _ m o v e _ r i g h t = r i g h t _ i s _ h e a d & right_move_R
i s _ h e a d _ m o v e _ l e f t = i s _ h e a d & ~move_R
i s _ h e a d _ m o v e _ r i g h t = i s _ h e a d & move_R

x_sel_move = s e l e c t _ m o v e _ t o k e n ( no_head_around , h e a d _ l e f t _ m o v e _ l e f t , h e a d _ l e f t _ m o v e _ r i g h t , h e a d _ r i g h t _ m o v e _ l e f t , h e a d _ r i g h t _ m o v e _ r i g h t , i s _ h e a d _ m o v e _ l e f t , i s _ h e a d _ m o v e _ r i g h t )

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

re turn where3 ( x_sel_move , l e f t _ n e x t , c u r _ n e x t , r i g h t _ n e x t )

def n e x t _ t a p e ( x , s h i f t ) :
# compute t h e s t a t e o f t h e head , a f t e r s h i f t i n g by some n >= 2
x_ = s h i f t _ r i g h t ( x , s h i f t )
x _ l e f t = s h i f t _ r i g h t ( x , s h i f t +1)
x _ r i g h t = s h i f t _ r i g h t ( x , s h i f t −1)
x _ r i g h t _ r i g h t = s h i f t _ r i g h t ( x , s h i f t −2)

# compute t h e n e x t s t a t e ( b e f o r e moving t h e head ) f o r c u r r e n t t a p e and r i g h t t a p e
c u r _ s t a t e = g e t _ n e x t ( x_ , x _ l e f t , x _ r i g h t )
r i g h t _ s t a t e = g e t _ n e x t ( x _ r i g h t , x_ , x _ r i g h t _ r i g h t )

x_ ne x t = move_head ( c u r _ s t a t e , r i g h t _ s t a t e )

re turn x_ ne x t

D.6 HASHING FUNCTIONS

MAX_INT = 32
def hash_n_gram ( x , n ) :

o u t = x
b e f o r e _ l a s t _ s e p = tok_map ( x , lambda z : z == 0)
s h i f t e d = s h i f t _ r i g h t ( x , 1 )
f o r i in range ( n ) :

s h i f t e d _ i s _ s e p = tok_map ( s h i f t e d , lambda z : z == 0)
b e f o r e _ l a s t _ s e p = s h i f t e d _ i s _ s e p | b e f o r e _ l a s t _ s e p
to _a dd = seq_map ( s h i f t e d , b e f o r e _ l a s t _ s e p , lambda a , b : a *(1 − b ) )
# add t o hash
o u t = seq_map ( out , to_add , lambda a , b : b + MAX_INT * a )
s h i f t e d = s h i f t _ r i g h t ( s h i f t e d , 1 )

re turn o u t

def h a s h _ n _ g r a m _ i t e r ( x , n ) :
i s _ s e p = tok_map ( x , lambda z : z == 0)
s e p _ c s = cumsum ( i s _ s e p )
x_hash = hash_n_gram ( x , n )
re turn seq_map ( sep_cs , x_hash , lambda a , b : a + (MAX_INT**n )* b )

D.7 NEXT-TOKEN PREDICTION FOR TURING PROGRAMS

def n e x t _ t o k e n _ t u r i n g ( x ) :
x _ n e x t _ t a p e _ 2 = n e x t _ t a p e ( x , 2 )
x _ n e x t _ t a p e _ 3 = n e x t _ t a p e ( x , 3 )
x _ n e x t _ t a p e _ 3 = p r e f i x _ f i l l ( x _ n e x t _ t a p e _ 3 , 2 , empt )
k = h a s h _ n _ g r a m _ i t e r ( x _ n e x t _ t a p e _ 3 , 1 )
q = h a s h _ n _ g r a m _ i t e r ( x , 1 )
v = x _ n e x t _ t a p e _ 2
o u t = kqv ( k , q , v , e q u a l s , r e d u c t i o n = ’max ’ )
re turn o u t [ −1]

E SGD TURING PROGRAM DESCRIPTION

We briefly describe here the Turing Program we used in Subsection 5.2. Beyond the numerical tokens
“a0, a1, a2,... a199", we include tokens “$, d, yp, g , cur , |" to aid the calculation. A typical CoT for a

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

gradient descent then looks like the following:

$ d a179 a166 , a76 d a80 a145 , a102 d a77 a139 , a103 |
d a179 a166 , a76 d a80 a145 , a102 d a77 a139 , a103 yp a100 g a101 a99 cur a99 a101 |
d a179 a166 , a76 d a80 a145 , a102 yp a101 g a100 a99 cur a99 a102 |
d a179 a166 , a76 yp a100 g a120 a117 cur a79 a85 |

In the above example, the first line provides a dataset of size three where “d a179 a166 , a76" denotes
the first example (“a179"and “a166" are the coordinates of x⃗, “a76" is the value of y, and “d" is
a token that denotes the start of an example). From the second line onward, we perform gradient
descent starting from the last data point, working backward: On the second line, the original dataset
is copied, while the “a100" following “yp" is the predicted value of y given the initial weight and
the last feature vector “a77 a139", the “g a101 a99" says that λ∇wi ||yi − w⃗i · x⃗i|| has value “a101
a99", and “cur a99 a101" means that the current weight after update is “a99 a101". After a example’s
gradient is calculated, we delete that example.

F TURING PROGRAMS FOR SIMULATING TURING MACHINES

We use the tokens space a1,a2, . . . , b1, b2, . . . , s1, s2, L,R|, (, ),∼
,<|BOS|>,<|EOS|>,<|SEP|>}, where the aj’s are input symbols, the bj’s are symbols
substituting the aj’s when the head is pointing to them and (, ), |,∼, L,R are symbols used to encode
the transitions. For instance, the transition (s1,a6, L) means that the Turing machines moves to
state s1, edits the tape by writing a6 and moves the head to the left.

G COMPARISON WITH PAST METHODS

In this section, we show the performance of some of the methods mentioned in Appendix B under
our experimental condition. We consider three data formats:

• Reversed format in Shen et al. (2023).
• Index hints in Zhou et al. (2023)
• Index hints + Reversed format in Zhou et al. (2023)

Moreover, we consider three positional encodings: ALiBi, NoPE, and RoPE. We performed the
addition experiments under the exact hyperparameter setting of Figure 3. The results are shown in
Figure 10.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

40 50 60 70 80 90
Length of Number

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

NoPE + Direct
NoPE + Index Hint
NoPE + Reverse
NoPE + Reversed Index Hint

(a)

40 50 60 70 80 90
Length of Number

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

Alibi + Direct
Alibi + Index Hint
Alibi + Reverse
Alibi + Reversed Index Hint

(b)

40 50 60 70 80 90
Length of Number

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

RoPE + Direct
RoPE + Index Hint
RoPE + Reverse
RoPE + Reversed Index Hint

(c)

Figure 10: Comparison of different positional encodings and data formats for addition. All hy-
perparameters were held fixed: learning rate of 7e − 5, batch size of 16, and trained for 200k
steps.

22


	Introduction
	Setting
	Length generalization
	Scratchpad
	Positional encodings

	Length generalization on addition
	Length generalization on addition with Turing Programs and Hard-ALiBi
	Experimental setup
	Results


	Turing Programs
	Background: Turing Machines
	Turing Programs: a universal scratchpad strategy for length generalization
	Theory: Turing Programs in RASP

	Length generalization on other algorithmic tasks
	Multiplication by a fixed-length operand
	SGD on Linear Regression
	Turing simulations

	Discussion and Limitations
	Additional Positional Encodings Review
	Prior results on multi-digit addition
	Additional experimental results
	RASP Turing Programs
	RASP Python Definitions (from zhou2023algorithms)
	Additional Functions (from zhou2023algorithms)
	Utility Functions
	Turing Machine Transition Function
	Computation of Next Tape State
	Hashing Functions
	Next-Token Prediction for Turing Programs

	SGD Turing Program Description
	Turing Programs for Simulating Turing Machines
	Comparison with Past Methods

