
Under review as a conference paper at ICLR 2024

A GRAPH TRANSFORMER FOR SYMBOLIC REGRESSION

Anonymous authors
Paper under double-blind review

ABSTRACT

Inferring the underlying mathematical expressions from real-world observed data
is a central challenge in scientific discovery. Symbolic regression (SR) tech-
niques stand out as a primary method for addressing this challenge, as they ex-
plore a function space characterized by interpretable analytical expressions. Re-
cently, transformer-based approaches have gained widespread popularity for solv-
ing symbolic regression problems. However, these existing transformer-based
models rely on pre-order traversal of expressions as supervision, essentially com-
pressing the information within a computation tree into a token sequence. This
compression makes the derived formula highly sensitive to the order of decoded
tokens. To address this sensitivity issue, we introduce a novel model architecture
called the Graph Transformer (GT), which is purpose-built for directly predicting
the tree structure of mathematical formulas. In empirical evaluations, our pro-
posed method demonstrates significant improvements in terms of formula skele-
ton recovery rates and R2 scores for data fitting when compared to state-of-the-art
transformer-based approaches.

1 INTRODUCTION

Inferring the underlying mathematical expressions for the real-world observed data is one of the
main research problems in the domain of scientific discovery Biggio et al. (2021). More specifically,
our objective is to unveil the mathematical formulation by seeking a function denoted as f , satisfying
the condition that yi ≈ f(x̃i) for M observed input-output data pair {x̃i, yi}Mi=1. Identifying the
mathematical expressions governing natural phenomena and technological systems not only provide
us with a deeper comprehension of the intrinsic dynamics but also help us to forecast the future
evolution of these systems.

There are two primary categories of methods employed to solve this problem. On one hand, machine
learning methods like neural networks explore the function f within an extensive range of nonlinear
functions by minimizing the loss function across the dataset LeCun et al. (2015). However, the
majority of machine learning models are regarded as black-box models, which are more difficult
to interpret, and tend to yield poor extrapolation performance because of overfitting Valipour et al.
(2021). Conversely, symbolic regression techniques explore in the space of functions characterized
by interpretable analytical expressions. The derived mathematical formula can be interpreted and
validated in a more intuitive way.

Symbolic regression is considered as NP-hard due to the exponential expansion of the search space
with respect to the length of the expression. The presence of numeric constants further exacerbates
its difficulty. In this initial stage, genetic programming (GP) Koza (1994) stands out as the most
common approach to tackle the symbolic regression problems. GP-based methods iteratively update
the candidates of mathematical formulas using the basic operations such as selection, crossover,
and mutation. The process of Genetic Programming is discrete optimization, which is known to be
computationally expensive and sensitive to hyper-parameters Mundhenk et al. (2021a).

Recent researches made use of the neural network to tackle the aforementioned shortcomings. These
neural network-based approaches seek the optimal function by training a parameterized machine
learning model through gradient descent, thereby resolving symbolic regression problems within a
continuous space Mundhenk et al. (2021a); Martius & Lampert (2016); Sahoo et al. (2018). The
well-trained model itself or the output it generates provides the most suitable mathematical function

1



Under review as a conference paper at ICLR 2024

for fitting a single set of data pairs. Nevertheless, they still treat symbolic regression as an instance-
specific challenge, training a new model from scratch on every new dataset.

Motivated by the achievements of large scale pre-training Floridi & Chiriatti (2020), contempo-
rary endeavors in the areas of symbolic regression have shifted their attention toward employing
transformer-based models to directly predict mathematical formulas based on input datasets Biggio
et al. (2021); Li et al. (2022b); Kamienny et al. (2022). While inferring the underlying mathemat-
ical formula from data poses a considerable challenge, the reverse operation, i.e. sampling data
points from a formula, only involves evaluation of a mathematical function, and as such is compu-
tationally inexpensive. This feature of symbolic regression problems enables the generation of large
datasets with minimal computational burden, paving the way for the use of pre-trained models for
mathetmatical formula search (as shown in Figure 1).

𝒙! , 𝑦! !"#
$

Easy 
(function evaluations)

Difficult 
(inferring symbolic function)

Pre-trained 
Transformer 

Model

𝑦 = sin 𝑥#% + 𝑥#

Output Input

𝑥! +𝑠𝑖𝑛 𝑥!^2

Figure 1: The scheme of using pre-trained models for mathematical formula inference. Despite the
primary task is inferring the underlying formula based on observation, we have the ability to easily
generate pairs of formulas and observations in the reverse direction.

It should be noted that existing transformer-based models rely on pre-order traversal of expressions
as supervision information, compressing the information contained within a computation tree into a
sequence of tokens. This approach, however, comes with the drawback of omitting critical details
regarding the connections between tokens. Consequently, even a minor alteration in the sequence,
as illustrated in Figure 2, such as the mutation of two tokens, can result in a substantial change
of the computation tree. In contrast, our work places its emphasis on predicting the connections
between tokens, enabling more flexible representations of the formula. For instance, an equation
that can only be represented by a unique sequence can be represented by various sequence-adjacency
representations, which leads to a higher chance of predicting the correct formula, as shown in Figure
2.

Due to the sensitivity of formula to the order of tokens, we conjecture that a model predicting a tree
directly will outperform a model predicting a sequence for symbolic regression tasks. Inspired by
established machine learning models designed for graph generation Zhu et al. (2022), we develop
a novel model architecture called Graph Transformer (GT). This model is specifically designed to
predict the tree structure of mathematical formulas directly. In summary, the primary contributions
of this study can be outlined as follows:

• Our innovative framework introduces a paradigm shift by directly generating the computa-
tion tree of mathematical formulas, which provides new insights for addressing symbolic
regression challenges.

• Our method combines the supervision of the token choice and computation tree skeleton,
effectively resolving the problem of decoded formula sensitivity to sequence order.

• In empirical evaluations, our proposed method demonstrates a state-of-art performance
compared to recent transformer-based approaches in terms of the recovery rate of formula
skeletons and R2 scores for data fitting.

2



Under review as a conference paper at ICLR 2024

Target sequence: Predicted sequence:−"! #$%"!+'$("!()* −"! #$%"! +'$("!()*

Various sequence-adjacency predictions for the same target:

−"! #$%"! +'$("!()* −"! #$%"! +'$("! ()* −"! #$%"! +'$("! ()* …

Rule-based generated links Predicted links

Decoded formula:

+ = -./ 0" + 12- 0" − 324(0") + = -./ 0" − 789(0" + 12- 0" )

Figure 2: An example to clarify the sensitivity of decoded mathematical formula with respect to
token orders and various representation of sequence-adjacency pair for one symbolic equation.

2 RELATED WORKS

Genetic Programming (GP) for symbolic function search. Traditional approaches to symbolic
regression have historically relied on genetic algorithms (GA) Forrest (1993) and, more specifically,
genetic programming (GP) Koza (1994). In GP-based symbolic regression, a population of candi-
date mathematical expressions is iteratively evolved through processes like mutation and crossover.
We choose the better candidates based on the fitness function. One of the most well-known GP-
based techniques for symbolic regression is Eureqa Dubčáková (2011), a commercial software tool
based on the approach proposed in Schmidt & Lipson (2009). While GP methods have showcased
the potential of data-driven approaches for function discovery, they face limitations when applied
to high-dimensional problems and are highly sensitive to hyperparameters, as highlighted in Mund-
henk et al. (2021a). These challenges have spurred the exploration of alternative approaches for
symbolic regression, including machine learning-based methods.

Machine learning for symbolic function search. Efforts to tackle the challenge of searching for
the optimal mathematical formula in a discrete space have indeed encountered significant compu-
tational hurdles. Consequently, recent research has shifted its focus towards leveraging machine
learning techniques to mitigate the computational cost associated with this task. Some studies re-
place the activation functions in neural networks with arithmetic operators. This adaptation allows
them to harness the power of neural networks for handling high-dimensional data and efficiently
scaling with the number of input-output pairs Martius & Lampert (2016); Sahoo et al. (2018). How-
ever, when dealing with exponential and logarithmic activation functions, the model training will
lead to gradient instability. Another noteworthy approach involves autoregressive models based on
reinforcement learning Mundhenk et al. (2021a). In this method, reinforcement learning, specif-
ically utilizing a risk-seeking policy gradient, is employed to train a Recurrent Neural Network
(RNN). This RNN is designed to generate a probability distribution over the space of mathematical
expressions. Furthermore, there have been endeavors to combine machine learning-based search
with Genetic Programming to enhance performance. This integration utilizes the output from the
RNN as an initial population for a genetic algorithm Mundhenk et al. (2021b). However, the major
limitation of using machine learning for formula searching method is that the network has to be
retrained from scratch for each new equation.

Pre-trained models for symbolic function prediction. Symbolic mathematics behaves as a lan-
guage in its own right, where well-formed mathematical expressions are valid “sentences” in this
language Valipour et al. (2021). This characteristic has inspired numerous recent studies to tackle
symbolic regression problems using sequence prediction models. The initial approach to training
large-scale transformer-based models for symbolic regression was established by NeSymReS Big-
gio et al. (2021). More recently, SymbolicGPT Valipour et al. (2021) trained a GPT Floridi & Chiri-
atti (2020) model to establish a mapping between pairs of points and symbolic expression strings,

3



Under review as a conference paper at ICLR 2024

utilizing T-net Qi et al. (2017) as the data encoder. However, these models were limited to predicting
only the skeleton of the formula.

To address this limitation, Symformer Vastl et al. (2022) introduced an additional head on the de-
coder, enabling the model to simultaneously predict the formula skeleton and constants. Another
study Kamienny et al. (2022) developed a fully end-to-end model architecture for predicting math-
ematical formulas, incorporating a novel tokenization method for constant values. While most prior
work has focused on addressing the presence of constant values in equations, some studies have
aimed to improve the accuracy of formula skeleton prediction. One such approach proposed a novel
loss function, combined with contrastive learning Chuang et al. (2020), to provide better supervision
for model training, resulting in higher accuracy in predicting formula skeletons. Existing works only
consider symbolic regression as a sequence prediction problems, which is fundamentally different
from the model architecture we propose in this study.

However, it’s important to note that existing works typically treat symbolic regression as a sequence
prediction problem. This approach differs fundamentally from the model architecture proposed in
our study, which focuses on predicting the computation tree structure of mathematical formulas
directly, rather than as a sequence of tokens.

3 METHOD

3.1 MODEL ARCHITECTURE

The model architecture is visualized in Figure 3. Our machine learning model has an encoder-
decoder structure. We first use set transformer Lee et al. (2019) as our model encoder to extract the
main features of data pairs {x̃i, yi}Mi=1, denoting the output as points embedding Epoints. We use
a trainable hidden embedding (i.e. token), denoted as T , to represent the type of each node. The
connections between each newly added token and the existing nodes are represented using a binary
vector, labeled as G, where G[i] = 1 indicates the presence of a link from the i-th node to the newly
added node. Subsequently, our innovative graph decoder generates probabilities for the next token
type and the likelihood of link creation based on several inputs: the point embeddings Epoints,
the token sequence from previous graph generation steps [T0, T1, ..., Tn−1], and the connectivity
information from previous graph generation steps [G0, G1, ..., Gn−1].

Set Transformer
Encoder

!𝑥! , 𝑦! !"#
$

Node Token

Connectivity

𝑇# 𝑇% 𝑇# 𝑇&

[0 0 0 0 0… 0] [1 0 0 0 0… 0] [0 1 0 0 0… 0][0 0 0 0 0… 0]

Points 
Embedding

Graph
Decoder

Token Type 
Probability

0.3

0.6

0.1

Connectivity 
Probability

0.9 0.1

Figure 3: Overall architecture of our model for mathematical formula inferring involves employing
a set transformer as the encoder, and introducing an innovative architecture known as the graph
decoder. The proposed graph decoder enables the direct prediction of the computation tree for the
formula.

To better clarify our proposed graph decoder, we introduce various versions of the attention mech-
anism utilized in our architecture. The fundamental component in transformer-based models is
single-head Scaled Dot-Product attention module Vaswani et al. (2017). The output of this atten-
tion module is computed by:

H = Att(Q,K, V ) = softmax(
QTK√

dk
)V, (1)

4



Under review as a conference paper at ICLR 2024

where Q, K, and V are the query input, key input, and value input of the attention module, softmax
is the Softmax operation Jang et al. (2016) for computing the attention scores, and dk is the dimen-
sion size of Q,K, V . A more advanced attention module is multi-head attention module Vaswani
et al. (2017), which aggregates information from different representation subspaces:

MH = Multi(Q,K, V ) = Concat(H1, H2, ...,Hn)W
O, (2)

Hi = Att(WQ
i Q,W k

i K,W v
i V ), (3)

where WQ
i ,W k

i ,W
v
i are the linear projection parameters for Q, K, and V , Concat represents

concatenation operation and WO is the linear projection parameters to aggregate the information of
different subspace.

The multi-head attention module can be self-attention or cross-attention, depending on the input
sequences. We denote the S1 and S2 as two sequences. In self-attention module, we aggregate
the embedding of the sequence S1 based on the itself, while in cross attention we aggregate the
embedding S1 based on query computed by the other sequence S2:

MH self = Multi(Q = S1,K = S1, V = S1), (4)
MH cross = Multi(Q = S2,K = S1, V = S1). (5)

In the decoder of transformer-based model, we employ a mask in attention module to prevent the
model from attending the tokens to be predicted during training, which is called masked attention
module Vaswani et al. (2017). This makes sure that information should only flow from past to
future and not the other way around. Hence, the aggregated embedding of k-th token in a sequence
is represented as:

V ′
k =

∑
i<=k

Attk,iVi, (6)

where V ′ is the aggregated embedding, Att is the attention scores matrix.

Building upon these different versions of attention modulus, we introduce our novel model architec-
ture, the graph decoder, which generates a graph incrementally, as shown in Figure 4. We use stacked
attention layers to predict the next token type and connectivity separately. In each attention layer,
we employ a masked multi-head self-attention module to aggregate the input sequence’s embed-
ding. Subsequently, we utilize a masked multi-head cross-attention module to connect information
between the input sequence and the auxiliary sequence. The auxiliary sequence for token sequence
is connectivity sequence, and vice versa. Another multi-head cross-attention module is then em-
ployed to aggregate point embedding information into the model, followed by a feed-forward neural
network. A normalization layer Ba et al. (2016) will be applied after each attention module and
the feed-forward neural network. The output from the stacked attention layers is passed through
a linear layer with a Softmax operation to predict token type probabilities or a linear layer with a
Sigmoid Han & Moraga (1995) activation function to predict link existence between existing tokens
and newly added tokens.

Masked 
Multi-Head 
AttentionK, V

Q Norm
Feed 

Forward
Norm

×𝑁

Masked 
Multi-Head 
Attention

Norm Multi-Head 
Attention

NormNode Token

Connectivity

K, V

Q

Points 
Embedding

Q

K, V

Masked 
Multi-Head 
AttentionK, V

Q Norm
Feed 

Forward
Norm

×𝑁

Masked 
Multi-Head 
Attention

Norm Multi-Head 
Attention

Norm

K, V

Q

Points 
Embedding

Q

K, VConnectivity

Linear
&

Softmax
Token Type 
Probability

0.3

0.6

0.1

Connectivity 
Probability

0.9 0.1

Linear
&

Sigmoid

Figure 4: Overall architecture of our proposed graph decoder for generating the computation tree of
the mathematical formulas is shown.

5



Under review as a conference paper at ICLR 2024

3.2 MODEL TRAINING AND INFERENCE

We consider the token type prediction as a multi-class classification problem and link prediction
as a binary classification problem. Hence our training process involves using cross-entropy (CE)
De Boer et al. (2005) loss for symbolic token prediction and negative-log-likelihood (NLL) Bosman
& Thierens (2000) loss for link prediction. To train the model effectively, we combine these two
terms using a weighted sum denoted as L:

L = LCE + λLNLL, (7)

where λ is a hyperparameter. At the beginning of the training, we set λ to zero, and after a few
epochs, we gradually increase it using the cosine schedule Loshchilov & Hutter (2016).

During model inference, we use random sampling based on the predicted probability distribution
to generate a set of candidate equation skeletons. Then, we implement BFGS Fletcher (2000) to
optimize the constant values in the equation skeleton. Finally, we evaluate the performance of each
equation candidate on the input data pairs and select the one with the lowest prediction error, thereby
determining the best-fitting mathematical equation for the given dataset.

4 EXPERIMENTS AND RESULTS

4.1 DATASET GENERATION

We introduced a novel framework for generating datasets for tree-generation based symbolic regres-
sion models. To create an equation, our framework initiates the process by randomly generating a
sequence composed of operands and operators. We adopted a probability distribution for the opera-
tors, which aligns with the distribution used in Li et al. (2022a), and employed a uniform distribution
for operand sampling. The resulting training dataset comprises approximately 30,000 distinct for-
mula skeletons represented in postfix notation Dabhi & Vij (2011), with placeholders for constants.
For each formula skeleton, we generated 20 unique formulas by sampling constant values from a
uniform distribution, denoted as U[1, 5], as outlined in Biggio et al. (2021). These sampled constants
are then used to fill in the placeholders within the formula skeleton.

The formulas now can be represented as a bunch of sequences of operands and operators, which we
refer to as tokens. For each token indexed as i, we determined the probability of establishing a link
from previous tokens to this token through uniform sampling from the range U[0, 1]. Subsequently,
we selected the tokens eligible for constructing links, specifically those tokens that have not yet
been assigned outgoing links. Finally, we assigned an outgoing link from the token with the highest
probability to the i-th token if the i-th token corresponds to a unary operator, or we assigned two
outgoing links if the i-th token represents a binary operator. This process governs the connectivity
within the sequence of tokens, defining how they relate to each other in the formulation of the
mathematical expressions.

Following the previous steps, the entire equation undergoes a simplification process utilizing the
rules embedded within the symbolic library SymPy Meurer et al. (2017). We establish input-output
pairs {x̃, y} by randomly sampling x̃ from a multivariate standard normal distribution and subse-
quently calculating the corresponding output value y. If the sampling of x̃ results in non-finite values
(such as NaN or ±∞), we repeat the sampling process until a valid value is obtained. If the sam-
pling process exceeds a time limit of 30 seconds without producing a valid result, we discard the
expression associated with that particular set of inputs. This ensures that our dataset comprises valid
and meaningful input-output pairs for training and evaluation.

4.2 BASELINE MODELS

We employed the Adam optimizer Zhang (2018) and distributed the training across 4 NVIDIA A100
GPUs for computational efficiency. The learning rate was set to 0.0001, and we used a batch size
of 64 to update model parameters in each training iteration. For evaluating the performance of our
model, we conducted comparisons with several state-of-the-art baseline methods:

• Genetic Programming (GP) Koza (1994): Standard GP-based symbolic regression based
on the open-source Python library gplearn Stephens (2019).

6



Under review as a conference paper at ICLR 2024

• Deep Symbolic Optimization (DSO) Mundhenk et al. (2021a): A symbolic regression
method based on RNN and reinforcement learning search strategy.

• Neural Symbolic Regression that Scales (NeSymReS) Biggio et al. (2021): the first
transformer-based symbolic regression model on the large training data.

• Transformer-based model for symbolic regression via Joint Supervised Learning (T-JS) Li
et al. (2022b): transformer-based symbolic regression model with the training loss com-
bined with contrastive learning.

• End-to-end symbolic regression with transformers (E2E-SR) Kamienny et al. (2022): A
recently proposed novel model architecture for end-to-end symbolic equation prediction.

During the training phase, we ensured a fair comparison among different transformer-based model
architectures by utilizing the same dataset for their training. Additionally, all of these models shared
a common token library for the decoder. The model-specific parameters were kept the same as the
implementation of original papers.

Our model used 8 decoder layers and 4 encoder layers. The hidden dimension of the embedding is
512. The maximum size of the decoded sequence of our model is 100. We trained each model for
10 epochs and chose the one of highest performance for testing.

4.3 METRICS

We utilize two criteria to evaluate the model performances: the skeleton recovery rate and the coeffi-
cient of determination R2 values Glantz et al. (2001). The skeleton recovery rate is evaluated based
on the predicted token sequence and the corresponding adjacency matrix of the computation tree,
measuring the model’s ability to accurately reconstruct the underlying structure. The coefficient of
determination R2 is calculated using the formula:

R2(y, ŷ) = 1−
∑K

i=1(yi − ŷi)
2∑K

i=1(yi − ȳ)2
, (8)

where yi and ŷi are the ground-truth and predicted values for point x̃i, respectively, ȳ is the average
of yi over all the points, and K is the number of test points. A higher R2 value indicates a superior
predictive performance. When R2 is greater than 0, it means that the prediction is better than merely
predicting the average value, suggesting that the model provides better performance than a basic
average prediction.

4.4 IN-DOMAIN PERFORMANCE

Our initial evaluation focuses on the model’s ability to accurately detect the exact mathematical
formulas within our self-synthesized dataset. In this assessment, we exclusively compare our method
with other pre-trained-based models that predict the formula directly. As depicted in Table 3, our
method demonstrates a higher recovery rate of formula skeletons compared to all the pre-trained-
based methods.

Table 1: Recovery rate of equation skeletons comparison between multiple pre-trained models on the self-
synthesized benchmark are shown.

Model Input Dimension
x ∈ R x ∈ R2 x ∈ R3

NeSymReS 62.4% 57.2% 47.2%
T-JS 74.5% 66.3% 55.1%

E2E-SR 68.9% 60.8% 51.4%
GT 81.9% 70.2% 61.4%

We further assessed the model’s performance in terms of data fitting on our self-synthesized dataset.
As evident from the results in Table 3, our method surpasses all baseline methods with respect
to the average R2 score. The R2 scores for one-dimensional data fitting exceed those for higher-
dimensional data fitting, indicating the increased difficulty of fitting higher-dimensional data on
average. We also observed that there is a positive correlation between the skeleton recovery rate and
the R2 scores, with higher skeleton recovery rates corresponding to higher R2 scores.

7



Under review as a conference paper at ICLR 2024

Table 2: The R2 scores of different methods for data fitting on the self-synthesized benchmark are shown.

Model Input Dimension
x ∈ R x ∈ R2 x ∈ R3

GP 0.9032 0.8827 0.8495
DSO 0.9767 0.9263 0.8954

NeSymReS 0.9454 0.9029 0.8693
T-JS 0.9879 0.9531 0.9117

E2E-SR 0.9802 0.9623 0.9318
GT 0.9932 0.9704 0.9583

4.5 OUT-OF-DOMAIN PERFORMANCE

We conducted a comprehensive evaluation of model performances in uncovering dynamics from
observed datasets using the recently introduced SRbenchmark dataset La Cava et al. (2021). Our
specific focus was on ”black-box” problems, which involve a combination of real-world and noisy
synthetic datasets. For each ”black-box” dataset, we created 50 dataset samples by randomly sam-
pling features from the input and identify the function that best captured the relationship between a
subset of features and the target value. The results, as illustrated in Figure 3, consistently demon-
strate that our model outperformed all existing baseline models across various ”black-box” datasets.
These findings underscore the effectiveness of our approach in addressing complex, real-world data-
driven challenges.

Table 3: The R2 scores of different methods for data fitting on the SRbenchmark are shown.

Model Input Dimension
x ∈ R x ∈ R2 x ∈ R3

GP 0.4493 0.4279 0.4098
DSO 0.4682 0.4398 0.4128

NeSymReS 0.4754 0.4432 0.4045
T-JS 0.4931 0.4789 0.4591

E2E-SR 0.5292 0.5074 0.4813
GT 0.5583 0.5304 0.5211

We also conducted a comparison focusing on two aspects: the complexity of decoded formulas
and the inference time. As demonstrated in Figure 5a, our model generated less complex functions
compared to other baseline models. This reduction in complexity enhances the interpretability of
the mathematical formulas generated by our model. However, it can be seen that our model required
more time for formula decoding due to its more complicated architecture. Although the decoding
time is longer compared to other baseline models, it remains within a reasonable range, ensuring
practical usability.

(a) Formula complexity comparison. (b) Inference time comparison.

Figure 5: The complexity (number of tokens) of the decoded formulas and average inference time
for the SRbenchmark dataset of different methods are shown.

8



Under review as a conference paper at ICLR 2024

(a) Model performance versus the number of input
observation.

(b) Model performance versus the training dataset
size.

Figure 6: Our model performance versus the number of observation for each formula (left) and
versus the size of the training dataset (right) are shown.

We further conducted an investigation into the impact of the number of input observations and train-
ing data size on model performance. As demonstrated in Figure 6a, we observed that the model’s
performance improved as the number of input observations increased. However, beyond a certain
threshold (around 200 observations), the number of observations had a limited influence on model
performance.

Similar conclusions were drawn when assessing the effect of training data size on model perfor-
mance, as shown in Figure 6b. The model’s performance benefited from a larger dataset, and we did
not observe a plateau in performance up to a training data size of 600K equations. This suggested
that further improvements in model performance may be achievable with even larger datasets, indi-
cating the potential for continued improvement in model capabilities.

5 CONCLUSION

In this study, we propose a novel framework to directly predict the computation tree structure of
mathematical formulas directly. Using this framework, we eliminates the need for information com-
pression of a computation tree into a sequence. The experimental results demonstrate that our model
can achieve state-of-the-art performance in the task of inferring mathematical formulas. This work
represents a significant advancement in the field of symbolic regression and opens up a new range of
machine learning methods in this domain. We anticipate that the methods presented here will serve
as a valuable toolbox for the development of more novel model architectures for computation tree
prediction.

Limitation This work presents several limitations. Firstly, the current model architecture has been
tested primarily on low-dimensional symbolic regression problems. Adapting the framework to
high-dimensional scenarios represents an interesting and challenging future direction, potentially re-
quiring substantial changes in data generation protocols and model architectures. Secondly, the cur-
rent model architecture relies on an attention mechanism with computational complexity of O(L2).
Combining this with graph neural networks could potentially lead to efficiency increment in solv-
ing symbolic regression tasks. Lastly, the current framework is designed to predict the skeleton of
mathematical formulas, and extending it to achieve end-to-end formula prediction, including con-
stant values, would be an intriguing topic for future research.

REFERENCES

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Luca Biggio, Tommaso Bendinelli, Alexander Neitz, Aurelien Lucchi, and Giambattista Parascan-
dolo. Neural symbolic regression that scales. In International Conference on Machine Learning,

9



Under review as a conference paper at ICLR 2024

pp. 936–945. PMLR, 2021.

Peter AN Bosman and Dirk Thierens. Negative log-likelihood and statistical hypothesis testing as
the basis of model selection in ideas. 2000.

Ching-Yao Chuang, Joshua Robinson, Yen-Chen Lin, Antonio Torralba, and Stefanie Jegelka. De-
biased contrastive learning. Advances in neural information processing systems, 33:8765–8775,
2020.

Vipul K Dabhi and Sanjay K Vij. Empirical modeling using symbolic regression via postfix genetic
programming. In 2011 International Conference on Image Information Processing, pp. 1–6.
IEEE, 2011.

Pieter-Tjerk De Boer, Dirk P Kroese, Shie Mannor, and Reuven Y Rubinstein. A tutorial on the
cross-entropy method. Annals of operations research, 134:19–67, 2005.

Renáta Dubčáková. Eureqa: software review, 2011.

Roger Fletcher. Practical methods of optimization. John Wiley & Sons, 2000.

Luciano Floridi and Massimo Chiriatti. Gpt-3: Its nature, scope, limits, and consequences. Minds
and Machines, 30:681–694, 2020.

Stephanie Forrest. Genetic algorithms: principles of natural selection applied to computation. Sci-
ence, 261(5123):872–878, 1993.

Stanton A Glantz, Bryan K Slinker, and Torsten B Neilands. Primer of applied regression & analysis
of variance, ed, volume 654. McGraw-Hill, Inc., New York, 2001.

Jun Han and Claudio Moraga. The influence of the sigmoid function parameters on the speed of
backpropagation learning. In International workshop on artificial neural networks, pp. 195–201.
Springer, 1995.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. arXiv
preprint arXiv:1611.01144, 2016.

Pierre-Alexandre Kamienny, Stéphane d’Ascoli, Guillaume Lample, and François Charton. End-to-
end symbolic regression with transformers. Advances in Neural Information Processing Systems,
35:10269–10281, 2022.

John R Koza. Genetic programming as a means for programming computers by natural selection.
Statistics and computing, 4:87–112, 1994.

William La Cava, Patryk Orzechowski, Bogdan Burlacu, Fabrı́cio Olivetti de França, Marco Vir-
golin, Ying Jin, Michael Kommenda, and Jason H Moore. Contemporary symbolic regression
methods and their relative performance. arXiv preprint arXiv:2107.14351, 2021.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436–444,
2015.

Juho Lee, Yoonho Lee, Jungtaek Kim, Adam R. Kosiorek, Seungjin Choi, and Yee Whye Teh. Set
transformer: A framework for attention-based permutation-invariant neural networks, 2019.

Wenqiang Li, Weijun Li, Linjun Sun, Min Wu, Lina Yu, Jingyi Liu, Yanjie Li, and Songsong Tian.
Transformer-based model for symbolic regression via joint supervised learning. In The Eleventh
International Conference on Learning Representations, 2022a.

Wenqiang Li, Weijun Li, Linjun Sun, Min Wu, Lina Yu, Jingyi Liu, Yanjie Li, and Songsong Tian.
Transformer-based model for symbolic regression via joint supervised learning. In The Eleventh
International Conference on Learning Representations, 2022b.

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. arXiv
preprint arXiv:1608.03983, 2016.

10



Under review as a conference paper at ICLR 2024

Georg Martius and Christoph H Lampert. Extrapolation and learning equations. arXiv preprint
arXiv:1610.02995, 2016.

Aaron Meurer, Christopher P Smith, Mateusz Paprocki, Ondřej Čertı́k, Sergey B Kirpichev, Matthew
Rocklin, AMiT Kumar, Sergiu Ivanov, Jason K Moore, Sartaj Singh, et al. Sympy: symbolic
computing in python. PeerJ Computer Science, 3:e103, 2017.

T Nathan Mundhenk, Mikel Landajuela, Ruben Glatt, Claudio P Santiago, Daniel M Faissol, and
Brenden K Petersen. Symbolic regression via neural-guided genetic programming population
seeding. arXiv preprint arXiv:2111.00053, 2021a.

T Nathan Mundhenk, Mikel Landajuela, Ruben Glatt, Claudio P Santiago, Daniel M Faissol, and
Brenden K Petersen. Symbolic regression via neural-guided genetic programming population
seeding. arXiv preprint arXiv:2111.00053, 2021b.

Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning on point sets
for 3d classification and segmentation. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 652–660, 2017.

Subham Sahoo, Christoph Lampert, and Georg Martius. Learning equations for extrapolation and
control. In International Conference on Machine Learning, pp. 4442–4450. PMLR, 2018.

Michael Schmidt and Hod Lipson. Distilling free-form natural laws from experimental data. science,
324(5923):81–85, 2009.

Trevor Stephens. Gplearn (2015). URL https://gplearn. readthedocs. io/en/stable/index. html, 2019.

Mojtaba Valipour, Bowen You, Maysum Panju, and Ali Ghodsi. Symbolicgpt: A generative trans-
former model for symbolic regression. arXiv preprint arXiv:2106.14131, 2021.

Martin Vastl, Jonáš Kulhánek, Jiřı́ Kubalı́k, Erik Derner, and Robert Babuška. Symformer: End-to-
end symbolic regression using transformer-based architecture. arXiv preprint arXiv:2205.15764,
2022.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Zijun Zhang. Improved adam optimizer for deep neural networks. In 2018 IEEE/ACM 26th inter-
national symposium on quality of service (IWQoS), pp. 1–2. Ieee, 2018.

Yanqiao Zhu, Yuanqi Du, Yinkai Wang, Yichen Xu, Jieyu Zhang, Qiang Liu, and Shu Wu. A survey
on deep graph generation: Methods and applications, 2022.

11


	Introduction 
	Related works 
	Method 
	Model architecture 
	Model training and inference 

	Experiments and Results 
	Dataset Generation 
	Baseline models 
	Metrics 
	In-domain performance 
	Out-of-domain performance 

	Conclusion 

