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Abstract—We design a low complexity decentralized learning
algorithm to train a recently proposed large neural network in
distributed processing nodes (workers). We assume the com-
munication network between the workers is synchronized and
can be modeled as a doubly-stochastic mixing matrix without
having any master node. In our setup, the training data is
distributed among the workers but is not shared in the training
process due to privacy and security concerns. Using alternating-
direction-method-of-multipliers (ADMM) along with a layer-
wise convex optimization approach, we propose a decentralized
learning algorithm which enjoys low computational complexity
and communication cost among the workers. We show that it is
possible to achieve equivalent learning performance as if the data
is available in a single place. Finally, we experimentally illustrate
the time complexity and convergence behavior of the algorithm.

Index Terms—decentralized learning, neural network, ADMM,
communication network

I. INTRODUCTION

Decentralized machine learning receives a high interest in
signal processing, machine learning, and data analysis. In a
decentralized setup, the training dataset is not in one place
but distributed among several workers (or processing nodes).
Due to physical limitations, the workers are connected with a
communication network which is often represented as a graph
in machine learning and signal processing fields. In such a
communication network, data privacy and security among the
workers are the main concerns in developing a decentralized
learning algorithm. To this end, the following three aspects
are of particular interest for a decentralized machine learning
setup:

1) Workers are not allowed to share data, and there exists

no master node that has access to all workers.

2) The objective is to achieve the same performance as that

of a centralized setup.

3) The learning algorithm should have a low computational

complexity and communication overhead to efficiently
handle large scale data.

In this article, we develop a decentralized neural network
for a classification problem to address these three aspects. The
decentralized neural network is based on a recently proposed
neural network called self-size estimating feedforward neural
network (SSFN) [1]. The SSFN is a multi-layer feedforward
neural network that can estimate its size; meaning that the

network automatically finds the necessary number of neurons
and layers to achieve a certain performance. SSFN uses a
rectified-linear-unit (ReLU) activation function and a spe-
cial structure on the weight matrices. The weight matrices
have two parts: one part is learned during the optimization
process and the other part is predetermined as a random
matrix instance. Weight matrices are learned using a series
of convex optimization problems in a layer-wise fashion. The
combination of layer-wise learning and the use of random
matrices enables SSFN to be trained with a low computational
requirement. Besides, the layer-wise nature of the training
process leads to a significant reduction of communication
overhead in decentralized learning compared to the gradient-
based methods. Note that the SSFN does not use gradient-
based methods, such as backpropagation, and hence does
not require high computational resources. It is shown in [1]
that further optimization of weight matrices in SSFN using
backpropagation does not lead to significant performance
improvement.

Our contribution is to develop a decentralized neural net-
work by using the architecture and learning approach of SSFN
that provides low computation and communication costs.
We refer to this as decentralized SSFN (dSSFN) throughout
the article. We use alternating-direction-method-of-multipliers
(ADMM) [2] for finding decentralized solution of layer-wise
convex optimization in dSSFN. Note that similar to [1], a
decentralized estimation of the size of SSFN is possible in
our framework as well, at the expense of higher complexity.
In this article, we focus on training a fixed-size SSFN over
a synchronous communication network. To seek consensus
among the workers, we assume the communication network
can be modeled by a doubly-stochastic mixing matrix. We con-
duct experiments for circular network topology, while our ap-
proach remains valid for sparse and connected communication
networks as well. By systematically increasing the network
connections between the workers, we investigate the trade-off
between training time and the number of network connections.
Besides, we experimentally show the convergence behavior of
dSSFEN throughout the layers and compare its classification
performance against centralized SSFN for several well-known
datasets.



A. Literature Review

There exists an enormous literature on distributed learning
for large-scale data in recent years using huge computational
resources [3]-[6]. The most prominent work in this area is
the DistBelief framework which employs model parallelism
techniques to use thousands of computing clusters to train a
large neural network [3]. However, there is a growing need to
develop algorithms that require less computational and com-
munication resources. The use cases of such algorithms are
internet-of-things, vehicular communication, sensor network,
etc [7], [8].

One popular approach to develop cost-efficient algorithms
is to use variants of gradient-descent for distributed training
of large neural networks. Stochastic gradient descent (SGD)
and its variants, e.g., stochastic variance reduced gradient
(SVRG), is designed to reduce the computational complexity
of each iteration compared to the vanilla gradient descent
[9]. Although these schemes are computationally efficient,
they may significantly increase the communication complexity
of the training process [10]. In particular, these approaches
require a much larger number of iterations to ensure con-
vergence to the true solution, and therefore, the number of
information exchanges between the master node and each
worker is potentially high.

This challenge has attracted wide attention in recent years.
The approaches that are trying to address this issue can be seen
as two different classes of algorithms. In the first class, a lossy
quantization of the parameters and their gradient is employed
to mitigate the huge communication burden, at the cost of
a more number of iterations compared to the unquantized
scheme. Some recent studies show that by carefully designing
the quantizer at every step, it is possible to maintain the
convergence speed of vanilla gradient descent [11], [12]. The
second class of algorithms removes the requirement for master
nodes to communicate with all workers at some iterations. In
this way, the communication burden can be reduced at the cost
of an increased local computational complexity [13]. All of the
above works investigate developing a cost-efficient algorithm
in a master-slave topology and requires the communication to
be synchronized.

Another widely studied algorithm for distributed optimiza-
tion is the alternating direction method of multipliers (ADMM)
and its variants. This class of algorithms has been studied
by augmented Lagrangian methods or by operator theoretical
frameworks [2], [14]-[16]. This class of algorithms gives more
flexibility regarding the underlying topology and the required
assumption on the communication links, e.g., synchronously
and lossless communication. For example, [15] provides a
framework for asynchronous updates of multiple workers
under the assumption of having reliable communication links.
[16] extends this result and proposes a relaxed ADMM
algorithm for asynchronous updates over lossy peer-to-peer
networks and provides linear convergence near a neighborhood
of the true solution. While the only gradient-based method
that can deal with packet loss and partially-asynchronous

updates is [17] which implicitly requires the workers to use
synchronized step-size [16]. Thus, we choose ADMM as a
different optimization approach to develop a cost-efficient
distributed learning algorithm that gives us more flexibility
regarding the underlying topology.

There are several works for training artificial neural net-
works based on non-gradient algorithms [18]—[21]. [18] pro-
vides an ADMM-based method for joint training of all layers
of a neural network. A fast yet effective architecture is random
vector functional link (RVFL) networks that uses some of
its parameters as randomly chosen between the input layer
and the hidden layer while keeping direct links from the
input layer to the output layer [22]. From the evaluation and
proposed works of RVFL networks, it is observed that the non-
iterative nature of RVFL leads to faster learning algorithms
and low computational complexity in the distributed scenario
[23], [24]. A variant of RVFL is extreme learning machine
(ELM) that removes the direct link between the input layer
and the output layer while provides competitive performance
with low complexity in different applications [25]-[27]. in
the distributed scenario. There have been several efforts to
learn an ELM in a distributed manner. For example, He
et. al. [28] employs the advantages of Map-Reduce [29] to
propose a distributed extreme learning machine scenario. We
find a recent work [30] where they use ADMM to achieve
the equivalent solution of the centralized ELM. In most of the
works, they assume that every node in the network is fully
connected to all other nodes. In this article, we investigate the
network model in which every node has access to a limited
number of neighbors.

There exist works to develop deep randomized neural
networks based on RVFL and its variants [1], [31], [32].
They are shown to be capable of providing high-quality
performance while keeping the computational complexity low.
Katuwal et. al. [31] uses stacked autoencoders to construct a
multi-layer RVFL network to obtain favorable performance
while keeping low computational complexity. Tang et. al. [32]
proposes the hierarchical ELM (H-ELM) which contains a
multi-layer forward encoding part followed by the original
ELM-based regression. The recent work by Chatterjee et. al.
[1] introduces a multi-layer ELM-based architecture called self
size-estimating feed-forward neural network (SSFN). SSFN
can estimate its size and guarantees the training error of the
network to be decreasing as the number of layers increases.
This is achieved using the lossless flow property [1] and
solving a constrained least-squares problem using ADMM at
each layer.

In this article, we investigate the prospect of SSFN in
a decentralized scenario over synchronous communication
networks. The layer-wise nature of SSFN and the use of
random weights makes SSFN an appealing option for low
complexity design in distributed and online learning frame-
works. Besides, the use of ADMM allows us to implement
a decentralized SSFN with centralized equivalence [2], while
paves the way for extending this result to asynchronous and
lossy communication networks [15], [16] in our future studies.



II. DECENTRALIZED SSFN

We begin this section with a decentralized problem formula-
tion for a feedforward neural network. Then, we briefly explain
the architecture and learning of (centralized) SSFN followed
by decentralization in synchronous communication networks.
Finally, we show a comparison with a decentralized gradient
descent algorithm.

A. Problem formulation

In a supervised learning problem, let (x,t) be a pair-wise
form of data vector x that we observe and target vector t that
we wish to infer. Let x € R” and t € R?. The target vector
t can be a categorical variable for a classification problem
with )-classes. Let us construct a feed-forward neural network
with L layers, and n; hidden neurons in the [’th layer. We
denote the weight matrix for I’th layer by W; € R™>"™i-1,
For an input vector x, a feed-forward neural network produces
a mapping f : R” — R™* from input data to the feature vector
in its last layer. The feature vector depends on parameters as
y&f (x7 {Wl}lel). Then we use a linear transformation to
generate target prediction as t = Oy, where O € R"=*@ s
the output matrix. We assume that there exists no parameter to
optimize activation functions as they are predefined and fixed.
A feed-forward neural network has the following form

t=0g(Wrg(...g(W2g(Wix))...)) = Oy,

where g(-) denotes the non-linear tranform function that uses
a scalar-wise activation function, for example ReLU. The
feedforward neural network signal flow follows sequenstial
use of linear transform (LT) and non-linear transform (NLT).

Suppose that we have a J-sample training dataset D =
{(x@,@)}]_,. The training dataset D is distributed over
M nodes in a decentralized setup as D = UM_,D,,, where
D,, denotes the dataset for m’th node. We assume that
D,, N D,, = (. The dataset D,,, is comprised of J,,, samples
such that "M 7, = J.

The output of the feed-forward neural network for the m’th
node has the form 3 = O,, f(x), {W,,}). The training
cost for the m’th node is defined as

C(Oma{wl,m}) £ C(m)

= > ItY =0t Wi}, (1)
(x@,t())eD,,
where || - || denotes ¢3-norm of a vector. The total cost for the

training dataset D over all nodes is Z%zl C(Onm{Wim}).
The decentralized learning problem is

S Con(Om Wi }) = S0 C(m)

arg min
{OTna{Wl,m}}
Wl,m = Wl;
0, =0, 2)
S W <,
IO]% <,

where W; ,, = W; and O,, = O ensure that we have the
same parameters for the set of neural networks across all M
nodes. The constraints |[W;||% < v and ||O||% < € are for

regularization of parameters to avoid overfitting to the training
dataset. Note that the constraints W, ,,, = W, and O,,, = O
lead to the case that the decentralized problem (2) is exactly
equivalent to the following centralized problem

argmin C= Y [[t9 — Of(x") {W;})|?

O {W:} (x() t0))eD 3)
ot [Will% < v,
L OolE <«

if the problem (3) has a unique solution. It is well known that
the above optimization problem is non-convex with respect to
its parameters, and a learning algorithm will generally provide
a suboptimal solution as a local minima.

B. Centralized SSFN

To design decentralized SSFN, we briefly discuss SSFN in
this section for completeness. Details can be found in [1].
SSEN is a feedforward neural network and its design requires
a low computational complexity. The architecture of SSFN
with its signal flow diagram is shown in Figure 1.

While the work of [1] developed the SSFEN architecture that
learns its parameters and size of the network automatically, we
work with a fixed size SSFN and learn its parameters. Note
that our proposed method remains valid for estimating the size
at the cost of higher complexity. The number of layers L and
the hidden neurons for the I’th layer n; are fixed a-priori. For
simplicity, we assume that all layers have the same number of
hidden neurons, which means n; = n, VI.

The SSFN addresses the optimization problem (3) in a
suboptimal manner. The SSFN parameters O and {W;}
are learned layer-by-layer in a sequential forward learning
approach. The feature vector of [’th layer is constructed as
follows

yi=g(Wig(...g(W2g(W1x))...)) € R™. @)

The layer-by-layer sequential learning approach starts by opti-
mizing layer number [ = 1 and then the new layers are added
and optimized one-by-one until we reach [ = L. Let us first
assume that we have an [-layer network. The (I + 1)-layer
network will be built on an optimized [-layer network. We
define yo = x. For designing the (I + 1)-layer network given
the [-layer network, the steps of finding parameter W, are
as follows:

1) For all the samples in the training dataset D, we compute
v = g(Wig(...g(Wag(Wix1))..)).
2) Using the samples {yl(] )}3]:1 we define a training cost
J ‘ ,
C=>_ [tV — oy 5)
j=1
We compute the optimal output matrix O; by solving
the convex optimization problem

Of = argmin C; s.t. |O]|% < €.
O

(6)

It is shown in [1] that we can choose the regularization
parameters ¢, = € = 2Q, [ = 0,1,2,..., L. Note that



R ] R R
VoOg VoO7 VoO;] :
X { E{ 0 ] L Y1 - I N D E T [ *)’RLL“} e o tr
—> 1 gl —> U > o ¢ o — > U I e
LT NLT LT NLT LT NLT

Fig. 1: The architecture of a multi-layer SSFN with L layers and its signal flow diagram. LT stands for linear transform
(weight matrix) and NLT stands for non-linear transform (activation function). We use ReLU activation function.

Oy is a @ x P-dimensional matrix, and every O; for

l=1,2,...,Lis a Q x n-dimensional amtrix.
3) We form the weight matrix for the (I 4 1)’th layer
VoOr
Wi = [ N } ™
141

where Vg = [Ig — |7 is a fixed matrix of dimension
2Q x @, Of is learned by convex optimization (6),
and R, is an instance of random matrix. The matrix
Ry is (n—2Q) x P-dimensional, and every R; for
1=1,2,...,Lis (n —2Q) x n-dimensional. Note that
we only learn O} to form W;. We do not learn R; as it is
pre-fixed before training of SSFN. After constructing the
weight matrix according to (7), the (I + 1)-layer network
is

=g(Wir18(...8(Wag(Wix))...))
=g(Wiay)-

It is shown in [1] that the three steps mentioned above guaran-
tee monotonically decreasing cost ), [t0) — O, yl(] ) | with
increasing the layer number /. The monotonically decreasing
cost is the key to address the optimization problem (3) as
we continue to add new layers one-by-one and set the weight
matrix of every layer using (7). It was experimentally shown
(see Table 5 of [1]) that the use of gradient search (backprop-
agation) for further optimization of parameters in SSFN could
not provide any noticeable performance improvement. Note
that backpropagation-based optimization requires a significant
computational complexity compared to the proposed layer-
wised approach.

Yi+1

®)

C. Decentralized SSFN for Synchronous Communication

We now focus on developing decentralized SSFN (dSSFN)
where information exchange between M nodes follows syn-
chronous communications. The main task is finding decen-
tralized solution of the convex optimization problem (6). We
recast the optimization problem (6) in the following form

M
min E E
Ol.nuz ; i
m=1 (x() t())eD,,
2
st |Z|F < e, Ym, O = Z,

10 -0y

where Z is an auxiliary variable. We use matrix notation
henceforth for simplicity. For the m’th node on graph, we
define the following matrices: T, is a @ X J,,-dimensional

matrix comprising of the column vectors t/) € D,,, X,,
is a P x J,,-dimensional matrix comprising of the column
vectors x(9) € Dy, and Y, is a n X Jp,-dimensional matrix
comprising of the column vectors yl(j ) in the I'th layer. The
matrices T,,, X,,, and Y, ,, correspond to the dataset D,,.
Using the matrix notation, the optimization problem (9) can
be written as

HliIlZ Zf\le ||Tm - Ol,mYl,nLH%‘a s.t. HszF S €
l,m;

Vm, Ol,m = Z,

(10)

where Z is an auxiliary variable. By using alternating direction
method of multipliers (ADMM) [2], we break it into three
subproblems as follows

Of,, = argmin| [ Tin-OY i + 02 + A2

Z* = argmin N _ (|0, -Z + A% st [|Z])% < e
7 m

Ay = A, +OF, —Z*

Here, p; is the Lagrangian parameter of ADMM in the [’th
layer, and A,, is the scaled dual variable at node m. The
ADMM iterations are:
Oft! = (TwYf, + 12" — A))
X(Yl;mY?m + iI)_l,
/ k k
Z0HD = P S (05 + AR,

AR = Al oD gk,

(11

where k£ denotes the iteration for ADMM, and P, performs
projection onto the space of matrices with Frobenius norm less
than or equal to e. The operation P, is defined as

P.(Z) :{ ;'(Hzew

For the k’th iteration of ADMM, it is required that the
average quantity ﬁZ%ZI(OI(i:U +A$,]f)) be available to
every node. This average can be found by seeking consensus
over the graph. It can be easily seen that if the graph topology
is modeled as a doubly-stochastic matrix, it is possible to
achieve the consensus across all nodes by a sufficiently large
number of exchanges throughout the network [33]. The main
steps of decentralized SSFN are shown in Algorithm 1.

NZ||F > e
: otherwise.



Algorithm 1 : Algorithm for learning decentralized SSFN
Input:

1: Training dataset D,,, for the m’th node

2: Parameters to set: L, g, ty,n

3: Set of random matrices {R;}/, are generated and shared
between all nodes

Initialization:
Ll=-1
Progressive growth of layers:

(Index for [’th layer)

1: repeat
2 l+1+1 (Increase layer number)
33 k=0 (Iteration index of ADMM)
4. Compute Y;,, = gW;...e(WiX;nm)...) =
gsW Y _1.m)
Solve (6) in decentralized form (10) to find O;:
5. repeat
6: k—k+1
7: Solve Ol(zrl) using (11)
8 Find Zﬁf:l(ol(,’j;f” + Agf)) using consensus
over graph
9: Find Z*+1 and A% by (11)
10 until £ = K .
11:  Form weight matrix W;,; = [ VQOi }
Ryt

12: until [ = L

D. Synchronous communication

To guarantee that every node learns the same SSFN struc-
ture with centralized equivalence, it is required to have syn-
chronous communication and computation over the graph.
This synchronized manner is also used for exchanging
(Opm + Ay,) in Z-update in equation (11). After ADMM
converges for all the nodes on the graph, we construct one
more layer of SSFN and repeat until we learn the parameters
for all the L layers.

E. Comparison with decentralized gradient search

We now present a comparison with distributed gradient
descent for neural networks. While being generally a powerful
method, gradient descent has practical limitations due to a
high computational complexity and communication overhead.
Let us assume for simplicity that there is no regularization
constraints on W; and O. Considering the weight matrix W,
at [’th layer of the neural network. The centralized gradient
descent is

ac

WZ(H'U K——
ow"

—w - (12)

where ¢ denotes the iteration for gradient search and « is the
step size of the algorithm. The centralized gradient descent

can be done in the following decentralized manner:
it+1 it+1
Wl( o= M Z W + )

i) Copy
= M an:l <W( - Kaw(b) >

l m
_ 1M ()
- M melw - M Zm 1 aw(”

I,m
—w® _ 9Cy
- Wl ]\4 Zm 1 aw() :

(13)

For ¢’th iteration of gradlent search, it is required that the
average quantity M Z 9Cm_ be available to every node.

An average can be found by seeking consensus over a
communication graph. The communication property of such
graphs can be modeled as a doubly-stochastic mixing matrix.
Therefore, under the technical condition of consensus seeking,
it is possible to realize decentralized gradient search which is
exactly the same as the centralized setup. Assume that we
require B iterations of information exchange to calculate an
average quantity. Then assuming that the gradient descent
requires [ iterations to converge, we need BI times of
information exchange. In practice, B is in order of hundreds
and [ is in order of thousands. Since the W; matrix contains
nyn;—1 scalars, the total information exchange for learning W,
is

nml,lBI. (14)
In practice, this total information exchange may be very
large and lead to a high communication load. Further, as the
sparsity level of the graph increases, the required number of
information exchanges B also increases, and that leads to a
longer training time for gradient descent.

With this limitation of gradient descent, we take a different
approach. We use a structured neural network where parame-
ters are learned using ADMM to solve a convex optimization
problem. The use of ADMM allows fast and efficient opti-
mization in the decentralized scenario.

We now quantify the communication load for decentral-
ized SSFN. Let us assume that we require B iterations of
information exchange across the nodes to calculate an average
quantity. Assuming that the ADMM requires K iterations, we
need BK times of information exchange for learning O; and
forming W, according to equation (7). The submatrix R; in
W, is an instance of random matrix, and it is pre-defined
across all nodes. In practice, B and K are both in the order
of hundreds. The O} matrix has Qn;_; scalars. Hence, the
total information exchange for learning W; is

Qn;_1BK. (15)
The ratio of communication load between gradient descent and
decentralized SSFN is
nmp— 1BI TLZI

N= = > 1,

Qm_.BK ~ QK (0

since in practice, we have I > K and n; > Q.
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Fig. 2: Example of circular communication network topology.
We have the number of nodes M = 10 with degree d =
1,2,3,4,5, respectively.

III. EXPERIMENTAL EVALUATION

In this section, we apply numerical experiments to evaluate
the performance of the decentralized SSFN. We compare the
performance of decentralized SSFN with centralized SSFN.
We investigate how the training time differs versus the con-
nectivity of the underlying network. We learn SSFN on a
decentralized underlying network with the following topology
and properties.

1) Network topology: The decentralized learning approach
we propose in this manuscript can be performed on any
network topology with the network mixing matrix being
modeled as a doubly-stochastic matrix. There are several
common types of network topology representations, such as
n-connected cycles, random geometric structure, and n-regular
expander structure [34]. To perform a systematic study, we use
circular topology as a communication network with a doubly-
stochastic mixing matrix in the experiments.

Circular network topology with M nodes has a degree d
to represent its connectivity. We show examples of circular
topology in Figure 2. A network with a degree d has d level
of connected cycles between the neighbors. This implies that
each node in the network has connections with d neighbors
on the left and right sides, respectively. A network with a
low degree is considered sparse in the sense of having much
fewer connections. A low degree in a network limits the
number of information exchanges and subsequently affects the
convergence speed of a decentralized learning algorithm. It is
expected that a network consensus can be achieved faster if
the degree of a graph increases.

The communication property over the network can be mod-
eled as a doubly-stochastic matrix H = [h;;]arxas in which
h;; is the weight of importance that the 4’th node assigns to the
7’th node during parameters exchange. The doubly-stochastic
matrix has the following property:

>0 JEN; M M
h;; = hj; ’ o hyi = . hy = 1.
ij ji {: 0, JEN, ) Z]_1 ij = D i i
Here N refers to the the set of neighbors with whom the
7’th node is connected. Note that 7 € A;. In this setup, we
assume that there is no master node and no node is isolated

either. For the sake of simplicity, in the following experiments,

TABLE I: Dataset for multi-class classification.

of of Input of
Dataset traﬁ data tejf data dimenin)on (P) clajres (Q)
Vowel 528 462 10 11
Satimage 4435 2000 36 6
Caltech101 | 6000 3000 3000 102
Letter 13333 6667 16 26
NORB 24300 24300 2048 5
MNIST 60000 10000 784 10

the doubly-stochastic mixing matrix is chosen in such a way
that every node is connected to its neighbors with equal
weights. That means we have h;; = ﬁ, where |NV;| denotes
cardinality of the set ;. As we use circular network topology
for the experiments, we have the relation

2d + 1, d < dmaz
NG| = _ ,
M, d = dmaa

for a graph with degree d.

A. Classification tasks and datasets

We evaluate the decentralized SSFN for different classifi-
cation tasks. The datasets that we use are briefly mentioned
in Table I. We use the ()-dimensional target vector t in a
classification task represented as a one-hot vector. A target
vector has only one scalar component that is 1, and the other
scalar components are zero.

B. Experimental setup

In all experiments, we set the number of layers L = 20 and
the number of hidden neurons n = 2@ + 1000 for each layer.
We fix the number of nodes M = 20 and uniformly divide
the training dataset between the nodes. We set the number of
iterations in ADMM as K = 100 for each layer.

C. Experimental results

We first show the performance of decentralized SSFN for
a graph with a degree d = 4 compared with the centralized
SSEN. The performances are shown in Table II. It can be
seen that dSSFN provides similar performance to centralized
SSEN for the proper choice of hyperparameters. The practical
performance of the decentralized SSFN is affected by the
choice of hyperparameters pyg, p;, the number of ADMM
iterations K. Choosing proper po and p; guarantees ADMM
to converge within K = 100 iterations.

The convergence behavior of dSSFN throughout the layers
is shown in Figure 3. The decentralized objective cost versus
the total number of ADMM iterations in all layers is shown for
Satimage, Letter, and MNIST dataset. For each layer (every
100 ADMM iterations), ADMM converges to a global solution
for the optimization problem (10). Overall it can be observed
that the curves show a power-law behavior. Similar to SSFN,
the objective cost converges as we increase the number of
layers. Therefore, we can decide to stop the addition of new
layers when we see that the cost has a convergence trend.

Figure 4 shows training time for learning decentralized
SSEN versus network degree d for Satimage, Letter, and



TABLE II: Classification performance comparison between centralized SSFN and decentralized SSFN on a circular commu-
nication network where d = 4.

Dataset Centralized SSFN Decentralized SSFN
Train Train Test Train Train Test
Accuracy Error Accuracy o H Accuracy Error Accuracy o H
Vowel 100£0.00 -53.8 58.3+1.70 10=3 1 100+£0.00 -51.67 59.2£1.10 10-3 101
Satimage 94.2+0.21 -10.6 86.9+0.37 10-6 10T 92.1£0.10 937 88.8+0.08 10— 10— T
Caltech101 99.940.01 -38.9 73.240.91 10 1 99.940.01 -34.94 75.440.29 10~ T 100
Letter 99.440.02 -19.5 91.84+0.23 10—1 10 98.9+0.03 -17.64 92.5+£0.22 106 100
NORB 96.7+0.04 -13.9 82.5+0.22 101 101 96.7+0.02 -13.93 82.6+0.16 102 109
MNIST 96.8+0.06 -12.9 94.840.16 10~ 10~ 1T 97.040.04 -13.24 95.1£0.16 10—° 100
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Fig. 3: Objective cost versus total number of ADMM iterations throughout all layers.
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Fig. 4: Training time changes as the network degree increases on the 20-node circular communcication network.

MNIST datasets. It is interesting to observe that the training
time shows a transition jump in the middle range of d. There
exists a d threshold after which the learning mechanism in
decentralized SSFN converges noticeably faster. The degree
represents sparsity in the graph, and in turn, relates to privacy,
security, and physical communication links. Our results imply
that a suitable network degree helps to achieve a trade-off
between the graph degree and training time.

D. Reproducible codes

Matlab codes of all the experiments described in this paper
are available at https://sites.google.com/site/saikatchatt/. The
datasets used for the experiments can be found at [35]-[38] .

IV. CONCLUSION

We develop a decentralized multilayer neural network and
show that it is possible to achieve centralized equivalence
under some technical assumptions. While being sub-optimal



because of its layer-wise nature, the proposed method is cost-
efficient compared to the general gradient-based methods in
the sense of computation and communication complexities.
We experimentally show the convergence behavior of dSSFN
throughout the layers and provide a monotonically decreasing
training cost by adding more layers. Besides, we inspect the
time complexity of the algorithm under different network
connectivity degrees. Our experiments show that dSSFN can
provide centralized performance for a network with a high
sparsity level in its connections. The proposed method is lim-
ited to the network topologies with a doubly-stochastic mixing
matrix and synchronized connections. Extending this result
to asynchronous and lossy peer-to-peer networks by using
relaxed ADMM approaches is a potential future direction.
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