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Abstract

We study learning optimal policies from a logged dataset, i.e., offline RL, with function gen-
eral approximation. Despite the efforts devoted, existing algorithms with theoretic finite-
sample guarantees typically assume exploratory data coverage or strong realizable function
classes (e.g., Bellman-completeness), which is hard to be satisfied in reality. While there are
recent works that successfully tackle these strong assumptions, they either require the gap
assumptions that could only be satisfied by part of MDPs or use the behavior regularization
that needs to be carefully controlled. To solve this challenge, we provide finite-sample guar-
antees for a simple algorithm based on marginalized importance sampling (MIS), showing
that sample-efficient offline RL for general MDPs is possible with only a partial coverage
dataset (instead of assuming a dataset covering all possible policies) and weak realizable
function classes (assuming function classes containing simply one function) given additional
side information of a covering distribution. We demonstrate that the covering distribution
trades off prior knowledge of the optimal trajectories against the coverage requirement of the
dataset, revealing the effect of this inductive bias in the learning processes. Furthermore,
when considering the exploratory dataset, our analysis shows that only realizable function
classes are enough for learning near-optimal policies, even with no side information on the
additional coverage distributions.

1 Introduction and related works
In offline reinforcement learning (offline RL, also known as batch RL), the learner tries to find good policies
with a pre-collected dataset. This data-driven paradigm eliminates the heavy burden of environmental
interaction required in online learning, which could be dangerous or costly (e.g., in robotics (Kalashnikov
et al., 2018; Sinha & Garg, 2021) and healthcare (Gottesman et al., 2018; 2019; Tang et al., 2023)), making
offline RL a promising approach in real-world applications.

In early theoretic studies of offline RL (e.g., Munos (2003; 2005; 2007); Ernst et al. (2005); Antos et al. (2007);
Munos & Szepesvari (2008); Farahmand et al. (2010)), researchers analyzed the finite-sample behavior of
algorithms under the assumptions such as exploratory datasets, realizable or Bellman-complete function
classes. However, despite some error propagation bounds and sample complexity guarantees achieved in
these works, the strong coverage assumption made on datasets and the non-monotonic assumptions made
on function classes—which are always hard to be satisfied in reality—drive people to try to find sample-
efficient offline RL algorithms under only weak assumptions about dataset and function classes (Chen &
Jiang, 2019).

From the dataset perspective, partial coverage, which means that only some specific (or even none) policies
are covered by the dataset (Rashidinejad et al., 2021; Xie et al., 2021; Uehara & Sun, 2021; Song et al., 2022),
is studied. To address the problem of insufficient information, most algorithms use behavior regularization
(e.g., Laroche & Trichelair (2017); Kumar et al. (2019); Zhan et al. (2022)) or pessimism in the face of
uncertainty (e.g., Liu et al. (2020); Jin et al. (2020); Rashidinejad et al. (2021); Xie et al. (2021); Uehara
& Sun (2021); Cheng et al. (2022); Zhu et al. (2023)) to constrain the learned policies to be close to the
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behavior policy. Most of the algorithms in this setting (except some that we will discuss later) require
function assumptions in some sense of completeness—Bellman-completeness or strict realization according
to another function class (we attribute it as strong realization).

From the function classes perspective, while the primary concern is Bellman-completeness assumption which
is criticized for its non-monotonicity, some recent works (Zhan et al., 2022; Chen & Jiang, 2022; Ozdaglar
et al., 2022) have noticed that the realizability according to another function class is also non-monotonic.
These non-monotonic properties contradict the intuition in supervised learning that rich function classes
perform better (or at least no worse). Typical examples of these assumptions are the “realizability of all
candidate policies’ value functions” (e.g., Jiang & Huang (2020); Zhu et al. (2023)) and the “realizability
of all candidate policies’ density ratio” (e.g., Xie & Jiang (2020b)). These assumptions are equally strong
as Bellman-completeness, and we classify them as “strong realizability” (Zhan et al. (2022); Ozdaglar et al.
(2022) attribute it as “completeness-type”) for clarification. We also classify assuming that the function
class realizes specific elements as “weak realizability” correspondingly (Chen & Jiang (2022) attributes this
as “realizability-type”). We argue that this taxonomy is justified also because Bellman-completeness can be
converted to the realizability assumption between two function classes with the minimax algorithm (Chen &
Jiang, 2019). This conversion aligns the behavior of Bellman-completeness with strong realizability assump-
tions.

On the one hand, Bellman-completeness assumption is always made in the classical finite-sample analyses
of offline RL (e.g., analysis of FQI (Ernst et al., 2005; Antos et al., 2007)) to ensure closed updates of
value functions (Sutton & Barto, 2018; Wang et al., 2021). This assumption is notoriously hard to mitigate,
and Foster et al. (2021) even suggests an information-theoretic lower bound stating that without Bellman-
completeness, sample-efficient offline RL is impossible even with an exploratory dataset and a function class
containing all candidate policies’ value functions. Therefore, it is clear that additional assumptions are
required to circumvent Bellman-completeness.

On the other hand, as marginalized importance sampling (MIS, see, e.g., Liu et al. (2018); Uehara et al.
(2019); Jiang & Huang (2020); Huang & Jiang (2022)) has shown its effect of eliminating Bellman-
completeness with only a partial coverage dataset by assuming the realizability of density ratios in off-policy
evaluation (OPE), there are works try to adapt it to policy optimization. These adaptations retain the elimi-
nation of Bellman-completeness, but most come up with other drawbacks. Some works (e.g., Jiang & Huang
(2020); Zhu et al. (2023)) use OPE as an intermediate evaluation step for policy optimization yet require
the strong realizability assumption on the value function class. The others borrow the idea of discriminators
from MIS. Lee et al. (2021); Zhan et al. (2022) take value functions as discriminators for the optimal density
ratio, using MIS to approximate the linear programming approach of Markov Decision Processes (Manne,
1960; Puterman, 1994). Nachum et al. (2019); Chen & Jiang (2022); Uehara et al. (2023) take distribution
density ratios as discriminators for optimal value function by replacing the Bellman equation in OPE with
its optimality variant. While in most cases, theoretic finite-sample guarantees with these discriminators
would require strong realizable function classes (e.g., Rashidinejad et al. (2022)), Zhan et al. (2022); Chen
& Jiang (2022); Uehara et al. (2023) avoid this with additional gap assumptions or an alternative criterion
of optimality—performance degradation w.r.t. the regularized optimal policy. To the best of our knowledge,
they are the only works that achieve theoretic sample-efficient guarantees under only weak realizability and
partial coverage assumptions. However, on the one hand, the gap (margin) assumption (Chen & Jiang, 2022;
Uehara et al., 2023) causes that only some specific Markov decision processes (MDPs)—under which the
optimal value functions have gaps—can be solved. On the other hand, sub-optimality compared with a reg-
ularized optimal policy (Zhan et al., 2022) could be meaningless in some cases, and the actual performance
of the learned policy requires a careful fine-tuning on the regularization. Moreover, the sample complexities
from Uehara et al. (2023) are polynomial w.r.t. the cardinality of the action space, which cannot handle
large action spaces.

As summarized above, the following question arises:

Is sample-efficient offline RL possible with only partial coverage and weak realizability assumptions for
general MDPs?
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Table 1: A comparison of offline RL algorithms without assuming Bellman-completeness and model-
realizability. “conc.” stands for concentrability. The data assumptions from Xie & Jiang (2020a) require
that for all s ∈ S, a ∈ A, and s′ ∈ S, we have that dD(s, a), 1/πb(a|s), P (s′|s, a)/µD(s′) and µD(s)/µ0(s)
are lower bounded by a constant (we define 0/0 := 1). C(Q) stands for the convex hull of Q. w⋆

α and v⋆
α are

the regularized optima from the original paper. U and Z are the newly defined function classes introduced
by Rashidinejad et al. (2022). Uehara et al. (2023) is compromised by two parts for algorithms with or
without regularizations. The unregularized algorithm part requires margin assumptions of the optimal value
function, and the sample complexities of both parts are polynomial w.r.t. |A|. dc is the additional covering
distribution introduced by this paper. The definitions of the other notations can be found in the remaining
part of this paper.

Algorithm Data assumptions Function assumptions Drawbacks

Jiang & Huang (2020) optimal conc. w⋆ ∈ W, and ∀π ∈ Π, Qπ ∈ C(Q) strong realizability

Xie & Jiang (2020a) conc. w.r.t. P and A Q⋆ ∈ Q strong dataset assumptions

Zhan et al. (2022) optimal conc. w⋆
α ∈ W, and v⋆

α ∈ V Use regularization

Chen & Jiang (2022) optimal conc. w⋆ ∈ W, and Q⋆ ∈ Q assume gap (margin)

Rashidinejad et al. (2022) optimal conc. w⋆ ∈ W, V ⋆ ∈ V, u⋆
w ∈ U ∀w and ζ⋆

w⋆,u ∈ Z ∀u strong realizability

Zhu et al. (2023) optimal conc. w⋆ ∈ W, and ∀π ∈ Π, Qπ ∈ Q strong realizability

Uehara et al. (2023) optimal conc from dD w⋆ ∈ W, and Q⋆ ∈ Q assume gap (margin)/|A|

Ours (VOPR) optimal conc. from dc w⋆ ∈ W, β⋆ ∈ B and Q⋆ ∈ Q assume a covering dc

We answer this question in the positive and propose an algorithm that achieves finite-sample guarantees
under weak assumptions with the help of an additional covering distribution. We assume that the covering
distribution covers all non-stationary near-optimal policies, and the dataset covers the trajectories induced by
an optimal policy from it. The covering distribution can be taken as a minimum requirement for accurately
estimating the optimal value function Q⋆, and we use it as a regularizer in our algorithm. It is adaptive
such that both “non-stationary” and “near-optimal” above would be alleviated as the gap of optimal value
function increases. The covering distribution also gives a trade-off against the data coverage assumption: the
more accurate it is, the fewer redundant trajectories are required to be covered by the dataset. Furthermore,
we can directly use the data distribution as the covering distribution as done in Uehara et al. (2023), if the
near-optimal variant of their data assumptions are also satisfied.

For comparison, we summarize algorithms that do not need Bellman-completeness and model realizability
(which is even stronger (Chen & Jiang, 2019; Zhan et al., 2022)) in Table 1. Necessary transfers are made
to get the sub-optimality bound.

In conclusion, our contributions are as follows:

• (Section 3) We identify the novel mechanism of non-stationary near-optimal concentrability in policy
optimization under weak assumptions.

• (Section 4) We demonstrate the trade-off brought by additional covering distributions for the cov-
erage requirement of the dataset.

• (Section 4) We propose the first algorithm that achieves finite-sample guarantees for general MDPs
under only weak realizability and partial coverage assumptions.

2 Preliminaries
This section introduces base concepts and notations in offline RL with function approximation and MIS. See
Table 2 in Appendix A for a more complete list of definitions of notations.

Markov Decision Processes (MDPs) We consider infinite-horizon discounted MDPs defined as
(S, A, P, R, γ, µ0), where S is the state space, A is the action space, P : S × A → ∆(S) is the transi-
tion probability, R : S × A → [0, Rmax] is the deterministic reward function, γ ∈ (0, 1) is the discount factor
that unravels the problem of infinite horizons, and µ0 ∈ ∆(S) is the initial state distribution. With a pol-
icy π : S → ∆(A), we say that it induces a random trajectory {s0, a0, r0, s1, a1, r1, . . . , si, ai, ri, si+1, . . . }
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if: s0 ∼ µ0, ai ∼ π(·|si), ri = R(si, ai) and si+1 ∼ P (·|si, ai). We define the expected return of a
policy π as Jπ = E

[ ∑∞
i=0 γiri | µ0, π

]
. We also denote the value function of π as the expected re-

turn starting from some specific state s or state-action pair (s, a) as Vπ(s) = E
[ ∑∞

i=0 γiri | s, π
]

and
Qπ(s, a) = E

[ ∑∞
i=0 γiri | (s, a), π

]
. We denote the optimal policies that achieve the maximum return J⋆

from µ0 as Π⋆, and its member as π⋆. We say a policy is optimal almost everywhere if its state value
function is maximized almost everywhere and denote it as π⋆

e (π⋆
e is not always unique). We represent the

value functions of π⋆
e as V ⋆ and Q⋆. It worth noting that V ⋆ and Q⋆, the unique solutions of both Bellman

optimality equation and the primal part of LP approach of MDPs (Puterman, 1994), are not the value
functions of all optimal policies. For ease of discussion, we assume S, A, S × A are compact measurable
spaces and, with abuse of notation, we use ν to denote the corresponding finite uniform measure on each
space (e.g., Lebesgue measure). We use Pπ to denote the state-action transition operator for density d as
Pπd(s′, a′) :=

∫
S×A π(a′ | s′)P (s′ | s, a)d(s, a)dν(s, a). The induced distribution of a policy π is defined as

dπ(s, a) = (1 − γ)
∑∞

0 P(si = s, ai = a|s0 ∼ µ0, ai ∼ π(·|si)), and use µπ to denote the state margin of dπ.
We would add subscripts to denote distributions not induced from µ0 (e.g., dd′,π).

Offline policy learning with function approximation In the standard theoretical setup of offline RL,
we are given with a dataset D consisting of N (s, a, r, s′) tuples, which is collected with state distribution
µD and behavior policy πb such that s ∼ µD, a ∼ πb(·|s), r = R(s, a), s′ ∼ P (·|s, a). We use dD(s, a) :=
µ(s)πb(a | s) to denote the composed state-action distribution of the dataset. When the state space and
action space become rather complex, function approximation is typically used. For this, we assume there
are some function classes at hand that satisfy certain assumptions and have limited complexity (measured
by cardinality, metric entropy and so forth). The function classes considered in this paper are state-action
value function class Q ⊆ (S × A → R), state distribution ratio class W ⊆ (S × A → R), and policy ratio
class B ⊆ (S × A → R).

MIS with density discriminators and L2 error bound One of the most popular ways to estimate the
optimal value function is via the Bellman optimality equation:

∀s ∈ S, a ∈ A, Q⋆(s, a) = T ⋆Q⋆(s, a) (1)

where T ⋆q(s, a) := R(s, a) + γEs′∼P (·|s,a)[max q(s′, ·)] denotes the Bellman optimality operator. However,
when we try to utilize the constraints from Eq. (1) (e.g., through the L1 error ∥q − T ⋆q∥1,dD

1), the ex-
pectation in T ⋆ would introduce the infamous double-sampling issue (Baird, 1995), making the estimation
intractable.

To overcome this, privious works with MIS tried to take weight functions as discriminators and minimize
a weighted sum of Eq. (1). In fact, even the L1 error itself could be written as a weighted sum with some
sign function (take 1 if q ≥ T ⋆q and −1 otherwise (Ozdaglar et al., 2022)). Namely, we approximate Q⋆

through

q̂ = argmin
q∈Q

max
w∈W

EdD [w(s, a)(q(s, a) − T ⋆q(s, a)]. (2)

Since the weight function class W is marginalized into the state-action space (instead of trajectories), this
approach is called marginalized importance sampling (MIS) (Liu et al., 2018). While theoretic guarantees
in MIS under weak realizability and partial coverage assumptions are typically made for scalar values (e.g.,
the return (Uehara et al., 2019; Jiang & Huang, 2020)), recently, Zhan et al. (2022); Huang & Jiang (2022);
Uehara et al. (2023) have gone beyond this and derived L2 error guarantees for the estimators by using some
strongly convex functions. Among them, the optimal value function estimator from Uehara et al. (2023)
constructs the base of this work.

3 From Q⋆ to optimal policy, the minimum requirement
Uehara et al. (2023) shows that accurately estimating optimal value function Q⋆ under dD is possible if dD

covers the optimal trajectories starting from itself. This “self-covering” assumption could be relieved and

1∥x∥p,q denotes q weighted Lp norm, i.e., ∥x∥p,q =
( ∫

xpdq

)1/p

.
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generalized if we only require an accurate estimator under some state-action distribution dc, such that dc

is absolutely continuous w.r.t. dD, i.e., dc ≪ dD (we use µc and πc to denote the state distribution and
behaviour policy decomposed from dc). In fact, dc provides a trade-off for the coverage requirement of the
dataset: the fewer state-action pairs on the support of dc, the weaker data coverage assumptions we will
make. Nevertheless, how much trade-off can dc provide while preserving the desired result?

In policy learning, our goal is to derive an optimal policy π̂ from the estimated Q⋆ (denoted as q̂). While
there are methods (see Section 4.3 for a brief discussion) that induce policies from q̂ by exploiting pessimism
or data regularization, one of the most straightforward ways is to take the actions covered by dc that achieve
the maximum q̂ in each state. This can be done with the help of policy ratio class B, via

β̂ = argmax
β∈B

⟨µc, q̂(·, πβ)⟩ and take π̂ = πβ̂ , (3)

where πβ(a | s) = πb(a | s)β(s, a) (normalized if needed). In case of infinite amount of data, we have
q⋆(s, a) = Q⋆(s, a) on the support of dc. With the optimal realizability of B and concentrability of πc,
Eq. (3) is actually equivalent to

⟨µc, Q⋆(·, π̂) − Q⋆(·, π⋆
e)⟩ = 0, (4)

which guides us to exploit the coverage provided by µc. Recall that our goal is to use dc to trade off the
coverage assumption of dD. Therefore, the question left, which forms the primary subject of this section,
is

With which µc can we conclude that π̂ is optimal from ⟨µc, Q⋆(·, π̂) − Q⋆(·, π⋆
e)⟩ = 0,

and what is the minimum requirement of it?

Since µc and dc are to provide additional coverage, we also call them “covering distributions”.

The remainder of this section is organized as follows: we first show why single optimal concentrability of µc is
not enough in Section 3.1, and then we introduce the alternative “all optimal concentrability” in Section 3.2
and the adapted version of it in Section 3.3 to accommodate statistical errors.

3.1 The dilemma of single optimal contentrability
Single optimal concentrability is standard (Liu et al., 2020; Xie et al., 2021; Cheng et al., 2022) when we try
to mitigate exploratory data assumptions (e.g., all-policy concentrability). However, this framework suffers
from a conundrum if only making weak realizability assumptions: we will know that the learned policy
performs well only if we are informed with trajectories induced by it—rather than the ones induced by the
covered policy.

More specifically, as the optimality of π̂ could be quantified as J⋆ −Jπ̂, the performance gap, we can telescope
it through the performance difference lemma.

Lemma 1 (The performance difference lemma). We can decompose the performance gap as

(1 − γ)(Jπ1 − Jπ2) = ⟨µπ1 , Qπ2(·, π1) − Qπ2(·, π2)⟩.

Thus, with Eq. (4), if we want J⋆ − Jπ̂ (i.e., Jπ⋆
e

− Jπ̂) to be equal to zero, it might be necessary to
require µc to cover µπ̂ (µc ≫ µπ̂) since the right part of the inner product in Eq. (4) is always non-positive.
However, as π̂ is estimated and is even random when considering approximating it from a dataset, µc ≫ µπ̂ is
usually achieved through all-policy concentrability—µc ≫ µπ for all π in the hypothesis class. Single optimal
concentrability fails to provide the desired result.

For instance, consider the counterexample in Figure 1 which is adapted from Zhan et al. (2022); Chen &
Jiang (2022). Suppose we finally get the following covering distribution and policy:

µc(s) =
{

1/2 if s = 1
1/2 if s = 2

and π̂(s) =


L if s = 1
R if s = 3
Random elsewise.
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Figure 1: The above MDP is deterministic, and we initially start from state 1. We can take actions L (left)
and R (right) in each state. In states 1 and 3, action L (R) will transfer us to its left (right) hand state, and
taking actions in other states will only cause a self-loop. We can only obtain non-zero rewards by taking
actions in states 2 and 4, with values 1 and 1

γ correspondingly. There are two trajectories that could lead to
the optimal γ/(1−γ) return: {(1, R), 2, . . . } and {(1, L), (3, L), 4 . . . }. We take γ as the discount factor.

While µc achieves single optimal concentrability and π̂ achieves the maximized value of Q⋆ in each state on
the support of µc, π̂ is not an optimal policy since it would end up with 0 return.

Proposition 2. Assuming that there exist q̂, π̂ and a state-action distribution d, such that (i; dataset
coverage) d ≫ dπ⋆ for an optimal policy π⋆; (ii; performance of the estimation oracle) ∥Q⋆ − q̂∥∞

d = 0;2 (iii;
export π̂ from q̂) ⟨q̂(·, π⋆

e) − q̂(·, π̂), µ⟩ = 0 (cf. Eq. 4; µ is the margin of d). There exist MDPs with above
properties satisfied such that Jπ⋆ − Jπ̂ = 1/(1 − γ).

How gap assumptions avoid this While both Chen & Jiang (2022) and Uehara et al. (2023) consider
single optimal concentrability and weak realizability assumptions (Uehara et al. (2023) also assumes addi-
tional structures of the dataset), the gap (margin) assumptions ensure that only taking π⋆ as π̂ could achieve
Eq. (4). Chen & Jiang (2022) also shows that with the gap assumption, we can even use a value-based algo-
rithm to derive a near-optimal policy without accurately estimating Q⋆. Nevertheless, these gap (margin)
assumptions only apply for part of MDPs.

Remark 1. While the gap assumption made in Ozdaglar et al. (2022) is applicable to all MDPs, their
sample complexity depends on a concentration coefficient appearing nowhere in their assumptions. Further,
the upper bound of this constant is not even clarified.

3.2 All-optimal concentrability
While single optimal concentrability suffers the hardness revealed before, there is still an alternative for the
exploratory covering µc, which is shown in the following lemma:

Lemma 3 (From advantage to optimality). If µc covers all distributions induced by non-stationary optimal
policies (i.e., µc ≫ µπ⋆

non
for any π⋆

non) and Eq. (4) holds, then π̂ is optimal and Jπ̂ = J⋆.

Remark 2. Non-stationary policies are frequently employed in the analysis of offline RL (Munos, 2003;
2005; Scherrer & Lesner, 2012; Chen & Jiang, 2019; Liu et al., 2020). If we make the gap assumption, the
“all non-stationary” requirement is discardable since the action in each state that could lead to the optimal
return is unique.

Remark 3. Wang et al. (2022) also utilizes the all-optimal concentrability assumption, but they consider
the tabular setting and they require additionally gap assumptions to achieve the near-optimal guarantees.

We now provide a short proof of Lemma 3, showing by induction that π̂i—the non-stationary policy that
adopts π̂ at the beginning 0-th to i-th (include the i-th) steps and then follows π⋆

e—is optimal.
2this is stronger than the L1 norm
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Proof. We first rewrite the telescoping equation in the performance difference lemma as

(1 − γ)(Jπ̂i − J⋆) =⟨µπ̂i , Q⋆(·, π̂i) − Q⋆(·, π⋆
e)⟩ (5)

=⟨µ0:i
π̂i

, Q⋆(·, π̂) − Q⋆(·, π⋆
e)⟩ + ⟨µi+1:∞

π̂i
, Q⋆(·, π⋆

e) − Q⋆(·, π⋆
e)⟩ (6)

=⟨µ0:i
π̂i

, Q⋆(·, π̂) − Q⋆(·, π⋆
e)⟩ (7)

where µi:j
π denotes the i-th to j-th steps (include the i-th and j-th) part of µπ. Thus, the optimality of π̂i

only depends on the first 0-th to i-th steps, and π̂i is optimal if this part is on the support of µc. Now we
inductively show that, for any natural number i, the initial 0-th to i-th steps part is covered:

• The step-0 part of µπ̂ (i.e., (1 − γ)µ0) is on the support of µc since there is some (non-stationary)
optimal policy π⋆ covered by it,

µc ≫ µπ⋆ ≫ µ0.

Therefore, ⟨µ0:0
π̂0

, Q⋆(·, π̂) − Q⋆(·, π⋆
e)⟩ = 0. From Eq. (7), π̂0 is optimal.

• We next show that if π̂i is optimal (which means that it’s covered µc), then the first 0-th to (i+1)-th
steps part of µπ̂ is covered by µc, which means that π̂i+1 is optimal. This comes from the fact that
the initial 0-th to (i + 1)-th steps part of the state distribution induced by a policy only depends on
its previous 0-th to i-th decisions:

µc ≫ µπ̂i
≫ µ0:i+1

π̂i
= µ0:i+1

π̂ .

From Eq. (7), π̂i+1 is optimal.

Thus, for any ϵ > 0, there exists natural number i ≥ logγ
ϵ

Vmax
such that

J⋆ − Jπ̂ ≤ J⋆ − J0:i
π̂ ≤ J⋆ − (Jπ̂i

− γi+1Vmax) ≤ γi+1Vmax ≤ ϵ,

where J i:j
π denotes the i-th to j-th steps part of the return. Therefore, π̂ is optimal.

Consequently, instead of the exploratory data assumption, all non-stationary optimal coverage is sufficient
for policy optimization.

3.3 Dealing with statistical error
While Lemma 3 is adequate at the population level (i.e., with an infinite amount of data), covering all non-
stationary optimal policies is not enough when considering the empirical setting (i.e., with finite samples)
due to the introduced statistical error. This motivates us to adapt Lemma 3 with a more refined µc.

Assumption 1 (All near-optimal concentrability). We are given with a covering distribution dc such that
its state distribution part µc covers the distributions induced by any non-stationary εc near-optimal policy
π̃: ∥∥∥µπ̃

µc

∥∥∥
∞

≤ Cc, ∀π̃ ∈ Π⋆
εc,non. (8)

We call a policy π is ε near-optimal if J⋆ − Jπ ≤ ε and denote Π⋆
ε,non as the class of all non-stationary ε

near-optimal policies. We also define 0
0 = 1 to suppress the extreme cases. With this refined µc, we can now

derive the optimality of π̂ even with some statistical errors.

Lemma 4 (From advantage to optimality, with statistical errors). If ⟨µc, Q⋆(·, π̂) − Q⋆(·, π⋆)⟩ ≥ −ε , and
Assumption 1 holds with εc ≥ Ccε

1−γ , π̂ is Ccε
1−γ near-optimal.

We defer the proof of this lemma to Appendix C.1.

Remark 4 (The asymptotic property of εc). One of the most important properties of all near-optimal
concentrability is that εc depends on the statistical error, which decreases as the amount of data increases.
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4 Algorithm and analysis
After discussing the minimum requirement of estimating Q⋆, this section will demonstrate how to fulfill it
and accomplish the policy learning task. Our algorithm, which is based on the optimal value estimator from
Uehara et al. (2023), follows the pseudocode in Algorithm 1.

Algorithm 1: VOPR (Value-Based Offline RL with Policy Ratio)
Input : Dataset D, value function class Q, distribution density ratio class W, policy ratio function

class B, and covering distribution dc

1 Estimate the optimal value function q̂ as

q̂ = argmin
q∈Q

max
w∈W

L̂(dc, q, w) (9)

where

L̂(d, q, w) := 0.5Ed[q2(s, a)] + 1
ND

∑
(s,a,r,s′)∈D

[
w(s, a)

[
γ max q(s′, ·) + r − q(s, a)

]]
(10)

2 Derive the approximated optimal policy ratio:

β̂ = argmax
β∈B

Eµc
[q̂(s, πβ)]

Output: π̂ = πβ̂

We organized the rest of this section as follows: we first discuss the trade-off provided by the additional
covering distribution dc and how to deduce dc in reality in Section 4.1; we then provide the finite-sample
analysis of Algorithm 1 and its proof sketch in Section 4.2; we finally conclude this section by comparing our
algorithms with the others in Section 4.3.

We defer the main proofs in this section to Appendix D.

4.1 Data assumptions and trade-off
As investigated in recent works (Huang & Jiang, 2022; Uehara et al., 2023), value function estimation under a
given distribution requires a dataset that contains trajectories rolled out from it. Thus, our data assumption
is as follows.

Assumption 2 (Partial concentrability from dc). The shift from dD to the induced state-action distribution
by π⋆

e from dc is bounded: ∥∥∥ddc,π⋆
e

dD

∥∥∥
∞

≤ CD. (11)

It is clear that with Assumption 2, dc is also covered by dD.

Proposition 5. If Assumption 2 holds, by definition of ddc,π⋆
e
,∥∥∥ dc

dD

∥∥∥
∞

≤
∥∥∥ddc,π⋆

e
/(1 − γ)
dD

∥∥∥
∞

≤ CD

1 − γ
.

We now clarify the order of the learning process: we are first given with a dataset D with some good
properties; then we try to find a dc from the support of the state-action distribution of D through some
inductive bias (with necessary approximation); finally, we apply Algorithm 1 with D and dc.

The choice of dc constructs a trade-off between the knowledge about optimal policy and the requirement
of data coverage. On the one hand, the most casual choice of dc is dD (as in Uehara et al. (2023)), which
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means we have no prior knowledge about optimal policies. Employing dD as dc will not only requires the
dataset to cover unnecessary suboptimal trajectories, but also makes the dataset non-monotonic (adding
new data points to it would break this assumption). On the other hand, if we have perfect knowledge about
optimal policies, Assumption 2 could be significantly alleviated. More concretely, if dc strictly consists of
the state-action distribution of trajectories induced by near-optimal policies, our data assumption reduces
to the per-step version of near-optimal concentrability.

Lemma 6. If dc is a linear combination of the state-action distributions induced by non-stationary ε near-
optimal policies Π⋆

ε,non under a fixed probability measure λ:

dc =
∫

Π⋆
ε,non

dπ̃dλ(π̃). (12)

And dD covers all admissible distributions of Π⋆
ε,non:

∀ π̃ ∈ Π⋆
ε,non, i ∈ N,

∥∥∥dπ̃,i

dD

∥∥∥
∞

≤ C,

where dπ,i denotes the normalized distribution of the i-th step part of dπ. The distribution shift from dD is
bounded as ∥∥∥ddc,π⋆

e

dD

∥∥∥
∞

≤ C.

While the above case is impractical in reality, it reveals the power of this inductive bias: the more auxiliary in-
formation we obtain about optimal paths, the weaker coverage assumptions of the dataset are required.

4.2 Finite-sample guarantee
We now give the finite-sample guarantee of Algorithm 1, but before proceeding, we should state necessary
function class assumptions. The first are the weak realizability assumptions:

Assumption 3 (Realizability of W). There exists state-action distribution density ratio w⋆ ∈ W such that
w⋆ ◦ dD = (I − γPπ⋆

e
)−1dcQ⋆.

Assumption 4 (Realizability of B). There exists policy ratio β⋆ ∈ B such that β⋆ ◦ πc = π⋆
e and for all

s ∈ S,
∫

A β(s, a)πc(s, a)dν(a) = 1.

Assumption 5 (Realizability of Q). Q contains the optimal value function: Q⋆ ∈ Q.

On the other hand, we gather all the bounding assumptions here.

Assumption 6 (Boundness of Q). For any q ∈ Q, we assume q ∈ (S × A → [0, Vmax]).

Assumption 7 (Boundness of B). For any β ∈ B, we assume β ∈ (S × A → [0, UB]).

Assumption 8 (Boundness of W). For any w ∈ W, we assume w ∈ (S × A → [0, UW ]).

Remark 5 (Validity). The invertibility of I −γPπ⋆
e

is shown by Lemma 11 in Appendix B.1. While Assump-
tions 3 and 8 actually subsumes Assumption 2, we make it explicit for clarity of explanation. Assumption 4
implicitly assumes that πc covers π⋆

e , this can easily be done by directly choosing πb as πc.

Remark 6. Although we include the normalization step in Assumption 4, this can also be achieved with
some preprocessing steps.

Remark 7. There is an overlap in the above assumptions: we can derive a policy ratio class B directly from
W and Q.

With these prerequisites in place, we can finally state our finite-sample guarantee.
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Theorem 1 (Sample complexity of learning a near-optimal policy). If Assumptions 1, 2, 3, 4, 5, 6, 7 and 8
hold with εc ≥ 4CcUB

√
εstat

1−γ where

εstat = UWVmax

√
2 log(2|Q||W|/δ)

ND
,

then with probability at least 1 − δ, the output π̂ from Algorithm 1 is near-optimal:

J⋆ − Jπ̂ ≤
4CcUB

√
εstat

1 − γ
.

Proof sketch of Theorem 1 As we can obtain the near-optimality guarantee via Lemma 4, the remaining
task is to approximate Eq. (4). This comes from the following two lemmas.

Lemma 7 (L2 error of q̂ under dc, adapted from theorem 2 in Uehara et al. (2023)). If Assumptions 2, 3,
5, 6 and 8 hold, with probability at least 1 − δ, the estimated q̂ from Algorithm 1 satisfies

∥q̂ − Q⋆∥dc,2 ≤ 2√
εstat.

Lemma 8 (From L1 distance to Eq. (4)). If Assumptions 4 and 7 hold,

⟨Q⋆(·, π⋆
e) − Q⋆(·, π̂), µc⟩ ≤2UB∥q̂ − Q⋆∥dc,1.

Combine them, we have that with probability at least 1 − δ,

⟨Q⋆(·, π⋆
e) − Q⋆(·, π̂), µc⟩ ≤2UB∥q̂ − Q⋆∥dc,1 ≤ 2UB∥q̂ − Q⋆∥dc,2 ≤ 4UB

√
εstat.

4.3 Comparison with related works
We now provide a brief comparison of our method with some related algorithms.

Algorithms with gap assumptions Chen & Jiang (2022) and Uehara et al. (2023) assume that there
are (soft) gaps in the optimal value function, which is only satisfied by part of MDPs, whereas our goal is to
deal with general problems. Moreover, while our algorithm is based on the optimal value estimator proposed
by Uehara et al. (2023), we use the policy ratio to ensure a finite distribution shift and our near-optimality
guarantee does not require the soft margin assumption. Besides, Uehara et al. (2023) use dD as dc, assuming
that the dataset covers the optimal trajectories from itself. This assumption is non-monotonic and hard to
be satisfied in reality. Instead, we propose using an additional covering distribution dc as an alternative,
which can effectively utilize the prior knowledge about the optimal trajectories and trade off the dataset
requirement.

Algorithms with behavior regularization Zhan et al. (2022) use behavior regularization to ensure that
the learned policy is close to the dataset. Nevertheless, the regularization makes the optimality of the learned
policy unprovable without careful control on the regularization. The SMQP from Uehara et al. (2023) also
uses regularizations, but its sample complexity is polynomial w.r.t. |A|.

Algorithms with pessimism in the face of uncertainty These algorithms (e.g., Jiang & Huang
(2020); Liu et al. (2020); Xie et al. (2021); Cheng et al. (2022); Zhu et al. (2023)) are often closely related to
approximate dynamic programming (ADP). They “pessimistically” estimate the given policies and update
(or choose) policies “pessimistically” with the estimated value functions. However, the evaluation step used
in these algorithms always requires the strong realization of all candidate policies’ value functions, which our
algorithm avoids.

Limitations of our algorithm On the one hand, the additional covering distribution may be hard to
access in some scenarios, leading back to using dD as dc. On the other hand, although mitigated with
increasing dataset size, the assumption of covering all near-optimal policies is still stronger than the classic
single-optimal concentrability. In addition, the “non-stationary” coverage requirement is also somewhat
restrictive.

10



Published in Transactions on Machine Learning Research (11/2023)

5 Conclusion and further work
This paper present VOPR, a new MIS-based algorithm for offline RL with function approximations. VOPR
is inspired by the optimal value estimator proposed in Uehara et al. (2023), and it circumvents the soft
margin assumption in the original paper with the near-optimal coverage assumption. While it still works if
using the data distribution as the covering distribution, VOPR can trade off data assumptions with more
refined choices. Compared with other algorithms considering partial coverage, VOPR does not make strong
function class assumptions and works under general MDPs. Finally, despite the successes, a refined additional
covering distribution may be difficult to obtain, and the near-optimal coverage assumption is still stronger
than single optimal concentrability. We leave them for further investigation.
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A Notations

Table 2: Notations
S state space
A action space
Q state-action value function class
W state-action distribution ratio function class
B policy ratio function class
β members of B
Jπ expected return of the policy π from the initial state distribution µ0
Vπ state value function for policy π
Qπ state-action value function for policy π
V ⋆ optimal state value function
Q⋆ optimal state-action value function
ν uniform measure of A, S, or S × A, depending on the context
D dataset used in the algorithm
dD state-action distribution of dataset
µD state distribution of dataset
πb behaviour policy
dc the additional covering distribution
µc state distribution (margin) of the additional covering distribution
πc policy of the additional covering distribution
⟨a, b⟩ inner product of a and b, usually as

∫
ab dν

f1 ◦ f2 (f1 ◦ f2)(s, a) = f1(s, a)f2(s, a), normalizing it if needed (e.g., density)
µ × π (µ × π)(s, a) = µ(s)π(a | s)
T ⋆ Bellman optimality operator, T ⋆q(s, a) := R(s, a) + γEs′∼P (·|s,a)[max q(s′, ·)]
µ0 initial state distribution
µi:j

π the i-th to j-th steps part of µπ

d1 ≫ d2 d2 is absolutely continuous w.r.t. d1
dπ,i normalize i-th step part of state-action distribution induced by π
dd,π state-action distribution induced by π from d
πi policy take π in the previous 0-th to i-th (include the i-th) steps, and take π⋆

e after this
πβ πβ(a | s) = πc(a | s)β(s, a)/

∫
A πc(a | s)β(s, a)dν(a)

Π⋆
ε,non the class of all non-stationary ε near-optimal policies

Pπ state-action transition kernel with policy π
O⋆ conjucate operator of some operator O

While π, µ, and d are mainly used to denote the Radon–Nikodym derivatives of the underlying probability
measures w.r.t. ν, we sometimes also use them to represent the correspondent distribution measure with
abuse of notation.

B Helper Lemmas

B.1 Properties of Pπ

We first provide some properties of Pπ (for any policy π) as an operator on the L∞-space of S × A, and
similar results should also hold for transition operators with policies defined on S. Note that the integrations
of the absolute value of the functions considered in this subsection are always finite, which means that we
can change the orders of integrations via Fubini’s Theorem. As we will consider conjugate operators, we
define the inner product as ⟨q, d⟩ =

∫
S×A q(s, a)d(s, a)dν(s, a).

Lemma 9. Pπ is linear.

14



Published in Transactions on Machine Learning Research (11/2023)

Proof. Recall the definition of Pπ,

Pπd(s′, a′) =
∫

S×A
π(a′ | s′)P (s′ | s, a)d(s, a)dν(s, a)

For any d1, d2 ∈ L∞(S × A),

Pπ(α1d1 + α2d2)(s′, a′) =
∫

S×A
π(a′ | s′)P (s′ | s, a)(α1d1 + α2d2)(s, a)dν(s, a)

=
∫

S×A
α1π(a′ | s′)P (s′ | s, a)d1(s, a)dν(s, a) +

∫
S×A

α2π(a′ | s′)P (s′ | s, a)d2(s, a)dν(s, a)

=α1

∫
S×A

π(a′ | s′)P (s′ | s, a)d1(s, a)dν(s, a) + α2

∫
S×A

π(a′ | s′)P (s′ | s, a)d2(s, a)dν(s, a)

=α1Pπd1(s′, a′) + α2Pπd2(s′, a′)

This compeletes the proof.

Lemma 10. The adjoint operator of Pπ is

P ⋆
π q(s, a) =

∫
S×A

q(s′, a′)π(a′ | s′)P (s′ | s, a)dν(s′, a′).

Remark 8. Intuitively, we can see Pπd(s′, a′) as one-step forward of d, such that we start from (s, a) ∼ d,
transit into s′ ∼ P (· | s, a) and take a′ ∼ π(· | s′). Also, we can view P ⋆

π q(s, a) as one-step backward of q,
such that we compute the value of (s, a) through the one step transferred state-action distribution with the
help of q.

Proof. Consider the inner products ⟨q, Pπd⟩ and ⟨P ⋆
π q, d⟩, we should prove that these two are equal. By

definition,

⟨q, Pπd⟩ =
∫

S×A

[
q(s′, a′)

∫
S×A

π(a′ | s′)P (s′ | s, a)d(s, a)dν(s, a)
]

dν(s′, a′)

=
∫

S×A

∫
S×A

q(s′, a′)π(a′ | s′)P (s′ | s, a)d(s, a)dν(s, a)dν(s′, a′)

and

⟨P ⋆
π q, d⟩ =

∫
S×A

d(s, a)
[ ∫

S×A
q(s′, a′)π(a′ | s′)P (s′ | s, a)dν(s′, a′)

]
dν(s, a)

=
∫

S×A

∫
S×A

d(s, a)q(s′, a′)π(a′ | s′)P (s′ | s, a)dν(s′, a′)dν(s, a)

=
∫

S×A

∫
S×A

q(s′, a′)π(a′ | s′)P (s′ | s, a)d(s, a)dν(s, a)dν(s′, a′). (Fubini’s Theorem)

This completes the proof.

Lemma. ∥P ⋆
π ∥∞ = ∥Pπ∥∞ ≤ 1

Remark 9. This upper bound should be intuitive since that Pπ can be seen as a probability transition
kernel from S × A to itself.
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Proof. Fix any s ∈ S, a ∈ A, we define p(s′, a′) = P (s′ | s, a)π(a′ | s′), By Fubini’s theorem, we have that

∥p∥1,ν =
∫

S×A
|p|dν =

∫
S×A

pdν

=
∫

S

∫
A

P (s′ | s, a)π(a′ | s′)dν(a′)dν(s′)

=
∫

S
P (s′ | s, a)

[ ∫
A

π(a′ | s′)dν(a′)
]

dν(s′)

=
∫

S
P (s′ | s, a)dν(s′)

=1.

For another function q on S × A such that ∥q∥∞,ν ≤ 1, we can use Hölder’s inequality, which yields

∥pq∥1,ν ≤ ∥q∥∞,ν∥p∥1,ν ≤ 1.

Thus, for any s ∈ S, a ∈ A, and function q with ∥q∥∞,ν ≤ 1,

P ⋆
π q(s, a) =

∫
S×A

q(s′, a′)π(a′ | s′)P (s′ | s, a)dν(s′, a′) = ∥pq∥1,ν ≤ 1.

So, we have that

∥Pπ∥∞ = ∥P ⋆
π ∥∞ = max

∥q∥∞≤1
∥P ⋆

π q∥∞,ν ≤ max
∥q∥∞≤1

max
s∈S,a∈A

P ⋆
π q(s, a) ≤ 1.

This completes the proof.

Lemma 11. I − γPπ is invertible and

(I − γPπ)−1 =
∞∑

i=0
(γPπ)i.

Proof. Since ∥Pπ∥∞ ≤ 1,
∞∑

i=0
(γPπ)i converges. Take multiplication

(I − γPπ)[
∞∑

i=0
(γPπ)i] =

∞∑
i=0

(γPπ)i −
∞∑

i=1
(γPπ)i

=(γPπ)0

=I.

This completes the proof.

Proposition 12. By definition, dd,π = (1 − γ)
∞∑

i=0
(γPπ)id = (1 − γ)(I − γPπ)−1d.

B.2 Other useful lemmas

Lemma (Performance difference lemma). We can decompose the performance gap as

(1 − γ)(Jπ1 − Jπ2) = ⟨µπ1 , Qπ2(·, π1) − Qπ2(·, π2)⟩.
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Proof. By definition,

⟨µπ1 , Qπ2(·, π1) − Qπ2(·, π2)⟩ =Es∼µπ1

[
R(·, π1) + γEa∼π1(·|s),s′∼P (·|s,a)[Qπ2(s′, π2)] − Qπ2(·, π2)⟩

]
=Es∼µπ1

[
R(·, π1)

]
+ Es∼µπ1

[
γEa∼π1(·|s),s′∼P (·|s,a)[Qπ2(s′, π2)]

]
− Es∼µπ1

[
Qπ2(·, π2)⟩

]
=Es∼µπ1

[
R(·, π1)

]
+ γEs∼µπ1 ,a∼π1(·|s),s′∼P (·|s,a)[Qπ2(s′, π2)]

]
− Es∼µπ1

[
Qπ2(·, π2)⟩

]
=Es∼µπ1

[
R(·, π1)

]
+ Es∼µπ1

[Qπ2(s, π2)]
]

− (1 − γ)Es∼µ0 [Qπ2(s, π2)]
]

− Es∼µπ1

[
Qπ2(·, π2)⟩

]
=Es∼µπ1

[
R(·, π1)

]
− (1 − γ)Es∼µ0 [Qπ2(s, π2)]

]
=(1 − γ)(Jπ1 − Jπ2)

The first equality comes from Bellman equation, and the fourth equality comes from the definition of µπ.
This completes the proof.

C Detailed proofs for Section 3
C.1 Proof of Lemma 4
Lemma (From advantage to optimality, restatement of Lemma 4). If ⟨µc, Q⋆(·, π̂) − Q⋆(·, π⋆)⟩ ≥ −ε , and
Assumption 1 holds with εc ≥ Ccε

1−γ , π̂ is Ccε
1−γ near-optimal.

Proof. We begin with using induction to prove that π̂i is Ccε
1−γ near-optimal for any i ∈ N:

• We first show that π̂0 is Ccε
1−γ near-optimal. From Assumption 1, we can use any π̃ ∈ Π⋆

εc,non to
conclude that ∥∥∥µ0

µc

∥∥∥
∞

≤
∥∥∥µπ̃/(1 − γ)

µc

∥∥∥
∞

≤ Cc

1 − γ
.

Thus, we can the show optimality of π̂⋆
0 by the advantage:

⟨µπ̂0 , Q⋆(·, π̂0) − Q⋆(·, π⋆
e)⟩ =⟨µ0:0

π̂0
, Q⋆(·, π̂) − Q⋆(·, π⋆

e)⟩ + ⟨µ1:∞
π̂0

, Q⋆(·, π⋆
e) − Q⋆(·, π⋆

e)⟩
=⟨µ0:0

π̂⋆
0

, Q⋆(·, π̂) − Q⋆(·, π⋆
e)⟩

=(1 − γ)⟨µ0, Q⋆(·, π̂) − Q⋆(·, π⋆
e)⟩

≥Cc⟨µc, Q⋆(·, π̂) − Q⋆(·, π⋆
e)⟩ (Q⋆(·, π̂) − Q⋆(·, π⋆

e) is non-positive)
≥ − Ccε.

By performance difference lemma,

(1 − γ)(Jπ̂0 − J⋆) =⟨µπ̂0 , Q⋆(·, π̂0) − Q⋆(·, π⋆
e)⟩

≥ − Ccε.

• Next, we show that if π̂i is Ccε
1−γ near-optimal, π̂i+1 is Ccε

1−γ near-optimal. Since that π̂i is Ccε
1−γ optimal,

the distribution shift from µc to µπ̂i
is bounded, which means,

∥∥∥µ0:i+1
π̂

µc

∥∥∥
∞

=
∥∥∥µ0:i+1

π̂i

µc

∥∥∥
∞

≤
∥∥∥µπ̂i

µc

∥∥∥
∞

≤ Cc.
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Then, we have

⟨µπ̂i+1 , Q⋆(·, π̂i+1) − Q⋆(·, π⋆
e)⟩

=⟨µ0:i+1
π̂i+1

, Q⋆(·, π̂) − Q⋆(·, π⋆
e)⟩ + ⟨µi+2:∞

π̂i+1
, Q⋆(·, π⋆

e) − Q⋆(·, π⋆
e)⟩

=⟨µ0:i+1
π̂i+1

, Q⋆(·, π̂) − Q⋆(·, π⋆
e)⟩

=⟨µ0:i+1
π̂ , Q⋆(·, π̂) − Q⋆(·, π⋆

e)⟩
≥Cc⟨µc, Q⋆(·, π̂) − Q⋆(·, π⋆

e)⟩ (Q⋆(·, π̂) − Q⋆(·, π⋆
e) is non-positive)

≥ − Ccε.

By performance difference lemma,

(1 − γ)(Jπ̂i+1 − J⋆) =⟨µπ̂i+1 , Q⋆(·, π̂i+1) − Q⋆(·, π⋆
e)⟩.

≥ − Ccε

Therefore, π̂i+1 is Ccε
1−γ near-optimal.

Thus, for any ϵ > 0, there exists natural number i ≥ logγ
ϵ

Vmax
such that

J⋆ − Jπ̂ ≤ J⋆ − J0:i
π̂ ≤ J⋆ − (Jπ̂i

− γi+1Vmax) ≤ Ccε

1 − γ
+ γi+1Vmax ≤ Ccε

1 − γ
+ ϵ,

where J i:j
π denotes the i-th to j-th steps part of the return. Therefore, π̂ is Ccε

1−γ near-optimal.

D Detailed proofs for Section 4
D.1 Proof of Lemma 6

Lemma (Restatement of Lemma 6). If dc is a linear combination of the state-action distributions induced
by ε near-optimal non-stationary policies Π⋆

ε,non under a fixed probability measure λ:

dc =
∫

Π⋆
ε,non

dπ̃dλ(π̃). (13)

And dD covers all admissible distributions of Π⋆
ε,non:

∀ π̃ ∈ Π⋆
ε,non, i ∈ N,

∥∥∥dπ̃,i

dD

∥∥∥
∞

≤ C.

The distribution shift from dD is bounded as ∥∥∥ddc,π⋆
e

dD

∥∥∥
∞

≤ C.

Proof. Define the state-action distribution of policy π from s ∈ S, a ∈ A at step i as

ds,a,π,i(s′, a′) = P (si = s′, ai = a′ |s0 = s, a0 = a, s1 ∼ P (· | s0, a0), a1 ∼ π(· | s1) . . .

sj ∼ P (· | sj−1, aj−1), aj ∼ π(· | sj) . . . ).

Also, define the global version of it as

ds,a,π(s′, a′) = (1 − γ)
∞∑

i=0
ds,a,π,i(s′, a′).
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We can rewrite ddc,π⋆
e
(s, a) as

ddc,π⋆
e
(s, a) =

∫
S×A

ds1,a1,π⋆
e
(s, a)dc(s1, a1)dν(s1, a1)

=
∫

S×A
ds1,a1,π⋆

e
(s, a)

[ ∫
Π

dπ̃(s1, a1)dλ(π̃)
]
dν(s1, a1)

=
∫

Π

[ ∫
S×A

ds1,a1,π⋆
e
(s, a)dπ̃(s1, a1)dν(s1, a1)

]
dλ(π̃) (Fubini’s Theorem)

=
∫

Π

[ ∫
S×A

(1 − γ)
∞∑

i=0

[
γids1,a1,π⋆

e
(s, a)dπ̃,i(s1, a1)

]
dν(s1, a1)

]
dλ(π̃)

=
∫

Π

[
(1 − γ)

∞∑
i=0

[
γi

∫
S×A

ds1,a1,π⋆
e
(s, a)dπ̃,i(s1, a1)dν(s1, a1)

]]
dλ(π̃)

=
∫

Π

[
(1 − γ)

∞∑
i=0

di:∞
π̃i

(s, a)
]
dλ(π̃).

The last equation comes from that

γi

∫
S×A

ds1,a1,π⋆
e
(s, a)dπ̃,i(s1, a1)dν(s1, a1)

=γi

∫
S×A

ds1,a1,π⋆
e
(s, a)

[ ∫
S

[ ∫
A

ds2,a2,π̃,i(s1, a1)π̃(a2 | s2)dν(a2)
]
µ0(s2)dν(s2)

]
dν(s1, a1)

=
∫

S

[ ∫
A

[
γi

∫
S×A

ds1,a1,π⋆
e
(s, a)ds2,a2,π̃,i(s1, a1)dν(s1, a1)

]
π̃(a2 | s2)dν(a2)

]
µ0(s2)dν(s2),

(Fubini’s Theorem)

since

γi

∫
S×A

ds1,a1,π⋆
e
(s, a)ds2,a2,π̃,i(s1, a1)dν(s1, a1)

=γi

∫
S×A

(1 − γ)
∞∑

k=0

[
γkds1,a1,π⋆

e ,k(s, a)
]
ds2,a2,π̃,i(s1, a1)dν(s1, a1)

=(1 − γ)
∞∑

k=0

[
γk+i

∫
S×A

ds1,a1,π⋆
e ,k(s, a)ds2,a2,π̃,i(s1, a1)dν(s1, a1)

]
=(1 − γ)

∞∑
k=0

[
γk+ids2,a2,π̃i,k+i(s, a)

]
=(1 − γ)

∞∑
k=i

[
γkds2,a2,π̃i,k(s, a)

]
=di:∞

s2,a2,π̃i
(s, a),

we get

γi

∫
S×A

ds1,a1,π⋆
e
(s, a)dπ̃,i(s1, a1)dν(s1, a1)

=
∫

S

[ ∫
A

[
di:∞

s2,a2,π̃i
(s, a)

]
π̃(a2 | s2)dν(a2)

]
µ0(s2)dν(s2)

=di:∞
π̃i

(s, a).
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Finally, ∀s ∈ S, a ∈ A,

ddc,π⋆
e
(s, a)

dD(s, a) =
∫

Π

[
(1 − γ)

∞∑
i=0

di:∞
π̃i

(s, a)
dD(s, a)

]
dλ(π̃)

=
∫

Π

[
(1 − γ)

∞∑
i=0

(1 − γ)
∑∞

j=i γjdπ̃i,j(s, a)
dD(s, a)

]
dλ(π̃)

=
∫

Π

[
(1 − γ)

∞∑
i=0

(1 − γ)
∞∑

j=i

γj dπ̃i,j(s, a)
dD(s, a)

]
dλ(π̃)

≤
∫

Π

[
C(1 − γ)2

∞∑
i=0

∞∑
j=i

γj
]
dλ(π̃) (π̃ ∈ Π⋆

ε,non indicates π̃i ∈ Π⋆
ε,non)

≤
∫

Π

[
C(1 − γ)2

∞∑
i=0

γi

1 − γ

]
dλ(π̃)

≤
∫

Π
Cdλ(π̃)

=C.

This completes the proof.

D.2 Proof of Lemma 7
Note that the lemmas and proofs of this subsection are mainly adapted from Uehara et al. (2023), similar
statements could also be found in the original paper. However, since that we use dc to replace dD, we present
them for clarity of explanation and to make our paper self-contained. We refer interested readers to the
original paper for another detail.

We first define the expected version of Eq. (10) as

L(d, q, w) :=0.5Ed[q2(s, a)] + E(s,a)∼dD
w ,r=R(s,a),s′∼P (·|s,a)

[
γ max q(s′, ·) + r − q(s, a)

]
=0.5Ed[q2(s, a)] + EDw

[
γ max q(s′, ·) + r − q(s, a)

]
where dD

w = dD ◦ w, and EDw
denotes taking expectation with respect to the reweighted data collecting

process.

Lemma 13 (Expectation). The expected value of L̂(d, q, w) w.r.t. the data collecting process is L(d, q, w):

ED[L̂(d, q, w)] = L(d, q, w).

Proof. Since only the second term of L̂ is random, we additional define

L̂W(q, w) := 1
ND

∑
(s,a,r,s′)∈D

ED

[
w(s, a)

[
γ max q(s′, ·) + r − q(s, a)

]
.

We can rearrange the expectation as follows,

ED[L̂(d, q, w)] =ED

[
0.5Ed[q2(s, a)] + L̂W(q, w)

]
(14)

=ED

[
0.5Ed[q2(s, a)]

]
+ ED

[
L̂W(q, w)

]
(15)

=0.5Ed[q2(s, a)] + ED

[
L̂W(q, w)

]
(16)
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Then, by the i.i.d. assumption of samples and linear property of MIS,

ED[L̂(d, q, w)] =0.5Ed[q2(s, a)] + ED

[
1

ND

∑
(s,a,r,s′)∈D

[
w(s, a)

[
γ max q(s′, ·) + r − q(s, a)

]]]

=0.5Ed[q2(s, a)] + 1
ND

∑
(s,a,r,s′)∈D

ED

[
w(s, a)

[
γ max q(s′, ·) + r − q(s, a)

]]
=0.5Ed[q2(s, a)] + ED

[
w(s, a)

[
γ max q(s′, ·) + r − q(s, a)

]]
=0.5Ed[q2(s, a)] + E(s,a)∼dD,r=R(s,a),s′∼P (·|s,a)

[
w(s, a)

[
γ max q(s′, ·) + r − q(s, a)

]]
=0.5Ed[q2(s, a)] + E(s,a)∼dD

[
w(s, a)

[
Es′∼P (·|s,a)[γ max q(s′, ·)] + R(s, a) − q(s, a)

]]
=0.5Ed[q2(s, a)] + E(s,a)∼dD

w

[
Es′∼P (·|s,a)[γ max q(s′, ·)] + R(s, a) − q(s, a)

]
=0.5Ed[q2(s, a)] + E(s,a)∼dD

w ,r=R(s,a),s′∼P (·|s,a)
[
γ max q(s′, ·) + r − q(s, a)

]
=L(d, q, w).

This compeletes the proof.

Lemma 14 (Concentration). For any fixed d, with probability at least 1 − δ, for any q ∈ Q, w ∈ W,∣∣∣L(d, q, w) − L̂(d, q, w)
∣∣∣ ≤ εstat.

Proof. The statistical error only comes from L̂W , as∣∣∣L(d, q, w) − L̂(d, q, w)
∣∣∣ =

∣∣∣ED[L̂(d, q, w)] − L̂(d, q, w)
∣∣∣ (Lemma 13)

=
∣∣∣ED[L̂W(q, w)] − L̂W(q, w)

∣∣∣. (Eq. (16))

Since each entry of LW is bounded:

∀q ∈ Q, w ∈ W, a ∈ A, s′ ∈ S,
∣∣∣w(s, a)

[
γ max q(s′, ·) + r − q(s, a)

]∣∣∣ ≤ UWVmax,

we can apply Hoeffding’s inequality which yields that, for any q ∈ Q, w ∈ W, with probability at least
1 − δ/(|Q||W|),

∣∣∣ED[L̂W(q, w)] − L̂W(q, w)
∣∣∣ ≤ UWVmax

√
2 log(2|Q||W|/δ)

ND
.

Finally, we can use union bound, rearranging terms to get that, for any fixed d, with probability at least
1 − δ, for any q ∈ Q, w ∈ W,

∣∣∣L(d, q, w) − L̂(d, q, w)
∣∣∣ ≤ UWVmax

√
2 log(2|Q||W|/δ)

ND
= εstat

This compeletes the proof.

Lemma 15. If w is non-negative ν-a.e. (e.g., w ∈ W), for any q : S × A → [0, Vmax],

L(d, q, w) − L(d, Q⋆, w) ≥ 0.5⟨d, q2 − (Q⋆)2⟩ + ⟨(γPπ⋆
e

− I)dD
w , q − Q⋆⟩. (17)
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Proof. This result simply comes from the definition:

L(d, q, w) − L(d, Q⋆, w)
=0.5Ed[q2(s) − (Q⋆)2(s)]

+ EDw [γ max q(s′, ·) + r − q(s, a)] − EDw [γ max Q⋆(s′, ·) + r − Q⋆(s, a)]
=0.5Ed[q2(s) − (Q⋆)2(s)]

+ EDw
[γ max q(s′, ·) + r − q(s, a)] − EDw

[γQ⋆(s′, π⋆
e) + r − Q⋆(s, a)]

≥0.5Ed[q2(s) − (Q⋆)2(s)]
+ EDw

[γq(s′, π⋆
e) + r − q(s, a)] − EDw

[γQ⋆(s′, π⋆
e) + r − Q⋆(s, a)]

=0.5Ed[q2(s) − (Q⋆)2(s)]
+ EDw [γ(q − Q⋆)(s′, π⋆

e) − (q − Q⋆)(s, a)]
=0.5⟨d, q2 − (Q⋆)2⟩ + ⟨dD

w , (γP ⋆
π⋆

e
− I)(q − Q⋆)⟩ (Rewrite the expectation with inner products)

=0.5⟨d, q2 − (Q⋆)2⟩ + ⟨(γPπ⋆
e

− I)dD
w , q − Q⋆⟩. (conjugate)

This compeletes the proof.

Lemma 16. If Assumption 5 holds, with probability at least 1 − δ, for any w ∈ W and any state-action
distribution d, we have

L(d, q̂, w) − L(d, Q⋆, w) ≤ 2εstat. (18)

Proof. We can decompose Eq. (18) as follows,

L(d, q̂, w) − L(d, Q⋆, w) = L(d, q̂, w) − L̂(d, q̂, w)︸ ︷︷ ︸
(1)

+ L̂(d, q̂, w) − L̂(d, q̂, ŵ)︸ ︷︷ ︸
(2)

+ L̂(d, q̂, ŵ) − L̂(d, Q⋆, ŵ(Q⋆))︸ ︷︷ ︸
(3)

+ L̂(d, Q⋆, ŵ(Q⋆)) − L(d, Q⋆, ŵ(Q⋆))︸ ︷︷ ︸
(4)

+ L(d, Q⋆, ŵ(Q⋆)) − L(d, Q⋆, w)︸ ︷︷ ︸
(5)

where ŵ(q) = argmaxw∈W L̂(d, q, w). For the terms above, we have that:

• (2) and (3) are non-positive since the optimization process.

• (1) and (4) could be bound by concentration.

• For (5), as Bellman optimality equation holds,

∀s ∈ S, a ∈ A, Es′∼P (·|s,a)
[
γ max Q⋆(s′, ·)

]
+ R(s, a) − Q⋆(s, a) = 0.

We have that

(5) =L(d, Q⋆, ŵ(Q⋆)) − L(d, Q⋆, w)
=0.5Ed[(Q⋆)2(s, a)] + EDŵ(Q⋆)

[
γ max q(s′, ·) + r − q(s, a)

]
−

[
0.5Ed[(Q⋆)2(s, a)] + EDw

[
γ max Q⋆(s′, ·) + r − Q⋆(s, a)

]]
=E(s,a)∼dD

ŵ(Q⋆),r=R(s,a),s′∼P (·|s,a)
[
γ max Q⋆(s′, ·) + r − Q⋆(s, a)

]
−

[
E(s,a)∼dD

w ,r=R(s,a),s′∼P (·|s,a)
[
γ max Q⋆(s′, ·) + r − Q⋆(s, a)

]]
=E(s,a)∼dD

ŵ(Q⋆)

[
γEs′∼P (·,s,a)[max Q⋆(s′, ·)] + R(s, a) − Q⋆(s, a)

]
− E(s,a)∼dD

w

[
γEs′∼P (·,s,a)[max Q⋆(s′, ·)] + R(s, a) − Q⋆(s, a)

]
=0.
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Thus, we conclude that with probability at least 1 − δ,

L(q̂, w) − L(Q⋆, w) ≤ L(q̂, w) − L̂(q̂, w)︸ ︷︷ ︸
(1)

+ L̂(Q⋆, ŵ(Q⋆)) − L(Q⋆, ŵ(Q⋆))︸ ︷︷ ︸
(4)

≤|L(q̂, w) − L̂(q̂, w)| + |L̂(Q⋆, ŵ(Q⋆)) − L(Q⋆, ŵ(Q⋆))|
≤2εstat. (Lemma 14)

This compeletes the proof.

With lemmas above, it’s time to prove Lemma 7.

Lemma (L2 error of q̂ under dc, restatement Lemma 7). If Assumptions 2, 3, 5, 6 and 8 hold, with probability
at least 1 − δ, the estimated q̂ from Algorithm 1 satisfies

∥q̂ − Q⋆∥dc,2 ≤ 2√
εstat.

Proof. By Assumption 3, dD
w⋆ = (I − γPπ⋆)−1dcQ⋆, and from Lemma 15 we have

L(dc, q̂, w⋆) − L(dc, Q⋆, w⋆) ≥0.5⟨dc, q̂2 − (Q⋆)2⟩ − ⟨(I − γPπ⋆)(I − γPπ⋆)−1dcQ⋆, (q̂ − Q⋆)⟩
=0.5⟨dc, q̂2 − (Q⋆)2⟩ − ⟨dcQ⋆, (q̂ − Q⋆)⟩
=0.5⟨dc, q̂2 − (Q⋆)2⟩ − ⟨dc, Q⋆(q̂ − Q⋆)⟩
=0.5⟨dc, (q̂ − Q⋆)2⟩
=0.5∥q̂ − Q⋆∥2

dc,2.

Together with Lemma 16, with probability at least 1 − δ,

0.5∥q̂ − Q⋆∥2
dc,2 ≤ L(dc, q̂, w⋆) − L(dc, Q⋆, w⋆) ≤ 2εstat.

Rearrange this and we can get

∥q̂ − Q⋆∥dc,2 ≤ 2√
εstat

This compeletes the proof.

D.3 Proof of Lemma 8

Lemma (Restatement of Lemma 8). If Assumptions 4 and 7 hold,

⟨Q⋆(·, π⋆
e) − Q⋆(·, π̂), µc⟩ ≤2UB∥q̂ − Q⋆∥dc,1.

Proof. We can rearrange the above term as

⟨Q⋆(·, π⋆
e) − Q⋆(·, π̂), µc⟩ =⟨Q⋆(·, π⋆

e) − q̂(·, π⋆
e), µc⟩ + ⟨q̂(·, π⋆

e) − q̂(·, π̂), µc⟩
+ ⟨q̂(·, π̂) − Q⋆(·, π̂), µc⟩

≤⟨Q⋆(·, π⋆
e) − q̂(·, π⋆

e), µc⟩ + ⟨q̂(·, π̂) − Q⋆(·, π̂), µc⟩ (Assumption 4)
≤∥Q⋆(·, π⋆

e) − q̂(·, π⋆
e)∥µc,1 + ∥q̂(·, π̂) − Q⋆(·, π̂)∥µc,1

=∥Q⋆ − q̂∥µc×π⋆
e ,1 + ∥q̂ − Q⋆∥µc×π̂,1

≤2UB∥Q⋆ − q̂∥dc,1

The distribution shift comes from the fact that∥∥∥µ × π1

µ × π2

∥∥∥
∞

=
∥∥∥π1

π2

∥∥∥
∞

,

and shifts from πc to π⋆
e and π̂ are both bound by UB due to Assumptions 4 and 7. This completes the

proof.
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D.4 Proof of Theorem 1
Theorem (Finite sample guarantee of Algorithm 1, restatement of Theorem 1). If Assumptions 1, 2, 3, 4,
5, 6, 7 and 8 hold with εc ≥ 4CcUB

√
εstat

1−γ , then with probability at least 1 − δ, the output π̂ from Algorithm 1
is near-optimal:

J⋆ − Jπ̂ ≤
4CcUB

√
εstat

1 − γ
.

Proof. From Lemma 7, we have that with probability at least 1 − δ,

∥q̂ − Q⋆∥dc,1 ≤ ∥q̂ − Q⋆∥dc,2 ≤ 2√
εstat.

Then apply Lemma 8 to bound the weighted advantage,

⟨Q⋆(·, π⋆
e) − Q⋆(·, π̂), µc⟩ ≤2UB∥q̂ − Q⋆∥dc,1 ≤ 4UB

√
εstat.

Finally, according to Lemma 4, π̂ is 4CcUB
√

εstat
1−γ optimal. This completes the proof.

24


	Introduction and related works
	Preliminaries
	From Q to optimal policy, the minimum requirement
	The dilemma of single optimal contentrability
	All-optimal concentrability
	Dealing with statistical error

	Algorithm and analysis
	Data assumptions and trade-off
	Finite-sample guarantee
	Comparison with related works

	Conclusion and further work
	Notations
	Helper Lemmas
	Properties of P
	Other useful lemmas

	Detailed proofs for section:adv2gap
	Proof of lemma:advtosubopt

	Detailed proofs for section:algorithm-and-analysis
	Proof of lemma:exactly-d
	Proof of lemma:l2-distance
	Proof of lemma:l1-2-adv
	Proof of theorem:finite1


