
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Lottery Ticket Adaptation: Mitigating Destructive Interference in LLMs

Anonymous Authors1

Abstract
Existing methods for adapting large language
models (LLMs) to new tasks are not suited to
multi-task adaptation because they modify all the
model weights–causing destructive interference
between tasks. The resulting effects, such as
catastrophic forgetting of earlier tasks, make
it challenging to obtain good performance on
multiple tasks at the same time. To mitigate
this, we propose Lottery Ticket Adaptation
(LoTA), a sparse adaptation method that identifies
and optimizes only a sparse subnetwork of the
model. We evaluate LoTA on a wide range of
challenging tasks such as instruction following,
reasoning, math, and summarization. LoTA
obtains better performance than full fine-tuning
and low-rank adaptation (LoRA), and maintains
good performance even after training on other
tasks – thus, avoiding catastrophic forgetting. By
extracting and fine-tuning over lottery tickets (or
sparse task vectors), LoTA also enables model
merging over highly dissimilar tasks.

1. Introduction
Large language models (LLMs) (Brown et al., 2020)
have seen an explosion of applications to real-world
problems (OpenAI, 2023; Team et al., 2023) via adap-
tation (Ouyang et al., 2022) to new tasks. Three major
multi-task adaptation paradigms have emerged: storing and
loading task-specific adapters (Hu et al., 2022; Beck et al.,
2021), continuing to train instruction-tuned models on new
tasks in serial via sequential training (Ouyang et al., 2022),
and combining the adaptations to tasks learned in parallel
via model merging (Ilharco et al., 2022). Each paradigm
has its own associated challenges, such as catastrophic
forgetting during sequential training (McCloskey & Cohen,
1989; Dong et al., 2023; Ramasesh et al., 2022; Luo et al.,
2023; Wang et al., 2024), and methods that have been
proposed to mitigate these challenges (Crawshaw, 2020;

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

Zhang & Yang, 2021). In this work, we propose a new LLM
adaptation method, called Lottery Ticket Adaptation
(LoTA), that (1) provides sparse adaptation by freezing a
majority of the parameters and updating only a sparse sub-
network of the base model and (2) resolves the challenges
in common multi-task adaptation paradigms. (More details
in Section 3.) We summarize our contributions:

(1) We train lottery tickets (or sparse task vectors) that can
be stored efficiently and obtain performance similar to full
fine-tuning (FFT) and higher than LoRA across a range
of tasks spanning reasoning, math, code generation, and
instruction following. When adapting Mistral for instruction
following, FFT and LoTA both get a length-controlled
AlpacaEval 2 winrate (Dubois et al., 2024)(how often
GPT-4 prefers the outputs of our model over its own) of
19.0%, but LoRA only gets a winrate of 15.3%.

(2) We apply LoTA to mitigate catastrophic forget-
ting (McCloskey & Cohen, 1989) of earlier tasks, enabling
sequential adaptation to new tasks. When adapting an
instruction tuned model to a mix of new tasks, the winrate
of the FFT model drops from 19.0% to 0.5%, but by using
LoTA we can limit the drop to 15.9%.

(3) We can use LoTA to merge models in parallel (Worts-
man et al., 2022; Jin et al., 2022; Zhang et al., 2023a) across
dramatically different tasks, achieving better performance
than existing merging methods that rely on post hoc sparsifi-
cation (Yadav et al., 2023) (which degrades performance for
FFT models) because it naturally trains sparse task vectors.
When merging instruction following and math models with
LoTA, we get a task-average performance of 38.5% where
a merge of FFT models obtains 36.7%.

2. Background: Multi-Task Adaptation
In this section, we go over common multi-task adaptation
paradigms and discuss the challenges existing fine-tuning
methods, such as FFT and LoRA, bring in each paradigm.
Storing and Loading Adapters. As illustrated in the
first row of Figure 1, an emerging paradigm for multi-task
adaptation is to store an adapter for each desired task and
load a particular adapter at inference time (Ostapenko et al.,
2024; Beck et al., 2021; Mangrulkar et al., 2022), depending
on the need (Houlsby et al., 2019). This approach, while
avoiding any interference between tasks, increases the

1

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Lottery Ticket Adaptation: Mitigating Destructive Interference in LLMs

OR

Storing
&

Loading
Adapters

Sequential
Learning

Model
Merging

Adaptation Phase Inference Phase

Picks and loads one of the adapters
for inference. Adapter A for Task A or

adapter B for Task B, etc

Uses the final model after sequentially
fine-tuned on Task A, Task B, etc

Merges adapters fine-tuned for different
tasks, e.g., aggregates adapter A fine-

tuned on Task A, adapter B fine-tuned on
Task B, etc.

Figure 1. Multi-task adaptation: storing and loading adapters, sequential training, model merging.

memory and compute cost as it requires storing and loading
an additional adapter per task. To mitigate these costs, a
number of PEFT methods have been developed (Zhang
et al., 2023b; Li & Liang, 2021; Liu et al., 2022b; Lester
et al., 2021). Among them, LoRA (Hu et al., 2022) (training
adapters in the low-rank space) has received notable
attention due to its simplicity. For instance, services such as
Punica and S-LoRA allow developers to use this approach
to serve large numbers of task-specific adapters for specific
requests (Chen et al., 2023; Sheng et al., 2023). However,
a persistent gap in capacity between PEFT methods and
FFT has presented a tradeoff between adapter overhead and
performance (Hu et al., 2022; Liu et al., 2024b; Kopiczko
et al., 2023; Biderman et al., 2024; Nikdan et al., 2024).
Sequential Training. When it is desired to have a single
model with multi-task abilities (as opposed to storing/load-
ing adapters per task), one common approach is to fine-tune
the model on different tasks sequentially (Ruder, 2017),
e.g., first fine-tune on task A, then fine-tune on task B. This
is summarized in the second row of Figure 1. Note that
sequential training is distinct from continual pre-training,
as sequential training uses the instruction tuning objective
while continual pre-training typically uses the pre-training
objective of next-word-prediction (Yildiz et al., 2024).

Fine-tuning the LLM for new tasks with FFT or existing
PEFT methods leads to catastrophic forgetting of earlier
tasks. This is problematic, especially for safety alignment,
since we can fine-tune an LLM to be safe but later get this
feature erased during fine-tuning on new tasks (Lermen
et al., 2023). In fact, a number of works have aimed to mit-
igate this vulnerability (McCloskey & Cohen, 1989; Dong
et al., 2023; Ramasesh et al., 2022; Luo et al., 2023; Wang
et al., 2024), leaving an open research question: Can model
trainers release aligned models that remain safe even if
users fine-tune them for other, potentially malicious, tasks?
Model Merging. There has been a recent interest in model
arithmetic and editing methods, including merging multiple
models adapted to different individual tasks to have a single

-5 1 8 4

2 -4 -1 6

6 6 -3 1

7 3 7 5

5 2 -9 5

0 0

0

0 0

0 0 0

0 0 0 0

00 0 0

0 0 0 0

-5 1 8 4

2 -4 -1 6

6 6 -3 1

7 3 7 5

5 2 -9 5

0.2 0.1

-0.1

0.3 -0.7

-0.4 0.6 0.3

0.1 0.8 0.5 0.4

0.5-0.6 0.1 -0.8

0.3 -0.3 0.5 0.6
 iterations

-5 1 8 4

2 -4 -1 6

6 6 -3 1

7 3 7 5

5 2 -9 5

0

0

0

0 0

0

-5 1 8 4

2 -4 -1 6

6 6 -3 1

7 3 7 5

5 2 -9 5
 iterations

-0.6

0.5

0.6

-0.7 -0.9

0.8

Mask
Extraction

Sparse
Adaptation

Mask
Calibration

Figure 2. Lottery Ticket Adaptation (LoTA): (1) Mask calibration
via FFT for T iterations, (2) Extracting the sparsity mask m from
the task vector ∆, (3) Sparse fine-tuning with m for T iterations.

model adapted to multiple tasks simultaneously (Ilharco
et al., 2022). As the third row of Figure 1 shows, this is typ-
ically done via aggregating task vectors (or adapters) of dif-
ferent tasks. The existing model merging techniques either
require post-processing the task vectors through sparsifica-
tion (Yu et al., 2023; Davari & Belilovsky, 2023; Yadav et al.,
2023), degrading the performance on the task, and/or require
extensive hyperparameter tuning for a weighted aggregation
of task vectors (Matena & Raffel, 2022; Xiao et al., 2023b).

3. Lottery Ticket Adaptation (LoTA)
Each paradigm of multi-task learning poses different
challenges, and different methods have been proposed
to address these challenges. We defer the more in-depth
analysis of these proposed methods in Appendix A because
of the sheer quantity of related work that must be covered.
The number of methods itself poses challenges for studying
their drawbacks, especially when these methods are
adopted in settings orthogonal to those they were originally
developed for (i.e., LoRA leading to catastrophic forgetting
of safety alignment (Lermen et al., 2023)). Rather than
proposing tailored solutions for each paradigm of multi-task
adaptation, we want to propose a simple algorithm that can
serve as an effective foundation across all three paradigms
and evaluate it on a wide range of challenging tasks.

The desiderata for each multi-task adaptation paradigm
motivates the design of our method. For adapters, we

2

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Lottery Ticket Adaptation: Mitigating Destructive Interference in LLMs

want a representation that can be easily compressed for
memory efficiency. For sequential training, we want a
representation that minimizes destructive interference
between the previously learned tasks and tasks to be learned
in the future. For model merging, we want representations
that are mutually sparse with each other in parameter space
to again prevent destructive interference. We now propose
LoTA, a single method that enjoys all these features.
We first describe the workflow of LoTA, then revisit the
problems each multi-task paradigm faces and discuss how
and why LoTA successfully mitigates them.

Lottery Ticket Adaptation (LoTA). LoTA works in two
phases as summarized in Figure 2: (1) mask calibration, (2)
mask extraction, (3) sparse adaptation. In the mask calibra-
tion phase of LoTA, a base model with parameters wP is
fine-tuned for T iterations, yielding a fine-tuned model with
parameters wF . Then, in the mask extraction phase, LoTA
extracts a sparsity mask from the task vector ∆ = wF −wP

based on the magnitude of the updates in ∆. T could be
as small as one iteration. In the sparse adaptation phase
of LoTA, the model is first reset to its original state with
weights wP . Then the subnetwork wP ⊙m is fine-tuned
for T iterations, while leaving the remaining parameters
wP ⊙ (1−m) frozen at their initial values. We summarize
the workflow of LoTA in Figure 2 and Algorithm 1 further.

By confining the adaptation updates within subnetworks
(identified by m), LoTA is able to mitigate destructive
interference, e.g., adaptation loss during fine-tuning on
future datasets or model merging, that FFT and LoRA
suffer from. We discuss this in more detail under three
multi-task adaptation paradigms below and provide
empirical comparisons with FFT and LoRA in Section 4.
(1) Storing & Loading Adapters. As mentioned before,
PEFT methods have emerged to reduce the memory cost
of storing and loading adapters. However, the most popular
and commonly used PEFT method, LoRA, restricts the
adaptation updates to have a low rank, which does not
capture the complex downstream tasks (Nikdan et al., 2024).
In parallel, recent work (Isik et al., 2023) on compressing
the delta between the fine-tuned and pre-trained model
∆ = wF − wP suggests that FFT updates are highly com-
pressible through a simple magnitude-based sparsification.
LoTA exploits this underlying sparsity during fine-tuning
and obtains better performance than LoRA, while requiring
fewer parameters to be trained.
(2) Sequential Training. Existing fine-tuning methods,
such as FFT and LoRA, are known to cause catastrophic
forgetting (Lermen et al., 2023). This is particularly
concerning for safety alignment as any safety measure the
model developers add could be erased by further fine-tuning.
By restricting the task vectors to be sparse, LoTA provides
robustness against catastrophic forgetting–improving the

durability of previous alignments. As LoTA prevents
destructive interference between sequential tasks via
sparse and disjoint task vectors, the same phenomenon
is also helpful in adapting to new tasks. To further
enhance the robustness against destructive interference in
sequential training, we propose Lottery Ticket Together
Optimization (LoTTO) which learns mutually sparse (i.e.,
non-overlapping) masks for sequentially learned tasks.
Further Enhancing Sequential Training via Lottery
Ticket Together Optimization (LoTTO). Without loss of
generality, suppose we have two tasks, Task A and Task B,
and that we have already learned Task A with LoTA. LoTTO
calibrates a sparsity mask for Task B by first training a
model where the only weights that can be updated are those
that are not updated when running LoTA on Task A, and
then using a sparse set of those weights to train the final
model. This procedure can be applied inductively to enable
sequential adaptation to multiple tasks, so that a model
developer seeking to adapt a model adapted with LoTA (po-
tentially on several tasks), just needs to ensure that they do
not update the task vector with respect to the base model.
(3) Model Merging. Existing model merging methods typi-
cally aim to merge task vectors of relatively similar language
datasets (Wortsman et al., 2022; Jin et al., 2022; Zhang et al.,
2023a), and they do so after a post hoc sparsification (Yadav
et al., 2023; Yu et al., 2023; Davari & Belilovsky, 2023) of
the task vectors. The post hoc sparsification aids in ensuring
the task vectors are disjoint – hence can prevent destructive
interference – but, in return, degrades the performance of
each individual task. LoTA, on the other hand, enforces
sparsity during fine-tuning and directly trains sparse task
vectors, obviating the need for post hoc sparsification.

4. Experimental Results
We provide details of the experimental setup, including
the baselines, model, dataset, and metric selection in
Appendix C.1. We evaluate LoTA and the baseline methods,
FFT and LoRA, across all three paradigms of multi-task
adaptation. In all experiments, we use LoTA with 90%
sparsity where the mask is calibrated by training for a
single epoch (T is one epoch) on the adaptation dataset.
We choose 90% sparsity because this is a nontrivial sparsity
level that we find achieves good performance across the
range of tasks we consider. We ablate the level of sparsity
and amount of calibration data in Appendix C.10.

4.1. Adapting to a Single Task
We first consider the simplest setting, in which we fit an
adapter to each dataset of interest starting from a pre-trained
base model, i.e., one adapter per task. In Table 1, we find
that LoTA outperforms LoRA and performs similarly to
FFT. Although LoRA is able to achieve similar performance
to LoTA on the easier tasks, such as SQL, Samsum, there
is a clear gap in performance on the more challenging

3

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Lottery Ticket Adaptation: Mitigating Destructive Interference in LLMs

tasks, such as Instruction Following and GSM8k. LoTA
consistently recovers the performance of FFT.

LoRA has a heavy regularizing effect on training. In some
settings, regularization can improve performance. On the
commonsense reasoning task, because the base model can
get nontrivial performance via in-context learning (although
we never use in-context learning in our evaluations), regu-
larizing the training as LoRA does actually improves the
score on reasoning for Mistral. Note here that we do a grid
search over learning rate and rank for LoRA, and the best
performance is at r = 256, 1e− 5. However, sparsity also
has a regularizing effect, and LoTA is even more successful
on the reasoning task when using the same learning rate as
we searched for the base model (1e− 6).

In other settings, e.g., GSM8k, the regularization hurts per-
formance significantly; (Nikdan et al., 2024) report a similar-
sized gap between LoRA and FFT on this dataset when
training LLama-2-7B. Because LoRA is underfitting the
data, it may be better suited for settings where we only train
for a single epoch, or on smaller datasets. In Table 3 in Ap-
pendix C, we make a side-by-side comparison of LoRA and
LoTA when training for a single epoch and find that LoTA
outperforms LoRA significantly across all tasks; in fact, the
difference is even more pronounced after a single epoch.
In Appendix C.6, we discuss how to store LoTA adapters
efficiently.

4.2. Sequential Training
During sequential training, a model is first adapted to
one capability (Task A) and then to another capability
(Task B) (such as when creating a specialized model for
math) or a set of capabilities (the most common setting
for open-sourced fine-tunes of frontier models). The
main challenges we seek to mitigate are (1) catastrophic
forgetting of Task A and (2) the inability to adapt to Task
B. We set instruction following as Task A in all settings
because this maps to the enterprise adaptation setting,
where user queries need to be answered with a combination
of instruction following and domain-specific knowledge. In
particular, OpenAI offers a fine-tuning API for their aligned
models (GPT-3.5 and GPT-4) (OpenAI, 2023).

Mitigating Catastrophic Forgetting While Enabling
Adaptation to Downstream Datasets. In Table 2 we
consider the a range of method combinations for a
simplified setting where we seek to adapt an Instruct model
to Math data without catastrophic forgetting. We will
go row-by-row through the table and analyze each set of
results. Even when training on just a single, relatively small
dataset, FFT in both phases suffers a significant drop in
winrate. An easy way to mitigate this is to simply train the
initial Instruct model with LoTA. Following this, FFT on
GSM8k does not significantly reduce winrate. However,
it does present a potentially unwelcome tradeoff in task

accuracy. For this, we turn to LoTTO, which achieves the
best performance across both tasks.

Mitigating Catastrophic Forgetting of Safety Alignment

In the “Safety” row of Table 2, we consider fine-tuning the
Mistral Instruct model we trained ourselves on the 100 harm-
ful instructions from (Qi et al., 2023). The baseline model
gets a score of 80% and training with FFT quickly degrades
safety. Adapting the LoTA Instruct with LoTTO (again,
with the LoTTO mask calibrated from GSM8k) mitigates
this safety drop significantly, even though our LoTTO mask
was calibrated on an extremely different dataset. Therefore,
a potential mitigation would be for an entity providing a
fine-tuning API such as OpenAI to do the safety training
with LoTA, calibrate the LoTTO mask on a utility dataset,
and then do fine-tuning on their client’s dataset with LoTTO.

We do not intend to present our method as an active de-
fense against fine-tuning attacks; given sufficient data and
access to the model weights, any attacker can of course undo
safety tuning entirely. However, catastrophic forgetting of
safety alignment is an important problem with real-world
applications, and we find it compelling that our method can
mitigate this.

4.3. LoTA for Model Merging
We now consider the setting of model merging, where we
train models on disjoint datasets fully in parallel and then
merge together the task vectors with the goal of producing
a model with good performance on multiple tasks. Prior
work in model merging mostly considers merging similar
datasets, such as the commonsense reasoning datasets, but it
is relatively easy to merge models when the datasets are sim-
ilar and becomes increasingly hard as the datasets become
more heterogeneous due to the gradient mismatch (Daheim
et al., 2024).

Merging Models. We use TIES-Merging (Yadav et al.,
2023) to merge the Instruct and Math models together. TIES
performs post-hoc sparsification on each task vector and re-
quires a 2-D hyperparameter search for this quantity, which
we perform for the merge of FFT models. Naturally, we
could optimize the performance of Task A by fully spar-
sifying Task B, and vice versa; we report the result that
achieves good performance on Task B while maintaining
some performance on Task A, and report the full range of
hyperparameters in Appendix C. LoTA is inherently sparse,
so when we merge a LoTA model with an FFT model we
do not need to perform hyperparameter search on the LoTA
model, and we use the same level of sparsity for the FFT
model that we obtained when merging together two FFT
models. When merging two LoTA models together, no hy-
perparameter search is required at all as both models are
inherently sparse. We could in theory sparsify the LoTA
models beyond their existing levels with post-hoc sparsifi-

4

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Lottery Ticket Adaptation: Mitigating Destructive Interference in LLMs

Table 1. Performance comparison on single-task datasets for 3 epochs in sparse adaptation. We report the winrate on instruction following,
the accuracy of exact match on the reasoning and math tasks, and the ROUGE-1 score on the SQL generation and summarization tasks.
LoTA outperforms LoRA on the challenging tasks of instruction following, reasoning, and math, obtaining comparable performance to
FFT. bold: best method, underline: second best method.

Model Method Instruction Following Reasoning GSM8k SQL Summarization

Mistral
FFT 19.00.98 83.5 59.81.0 98.90.1 52.00.2

LoRA 15.30.8 85.4 54.31.1 98.90.1 52.90.3
LoTA (ours) 19.00.7 87.0 59.11.1 98.90.1 52.90.2

Llama 3
FFT 17.610.8 84.8 63.00.1 99.40.1 53.61.9

LoRA 14.20.8 82.2 54.70.4 98.70.1 52.30.2
LoTA (ours) 18.00.7 84.1 61.80.7 99.00.1 52.30.3

Table 2. Sequential learning first on Task A (Instruction Following) then on Task B (varied). Fine-tuning on Tasks A and B is performed
using both FFT and LoTA. The utility of each task is computed after fine-tuning on Task B is completed. Note that there is no utility when
we fine-tune on harmful data to evaluate the catastrophic forgetting of Safety, and the baseline is the safety score of the Instruct model.
FT=Fine-tuning. We reproduce the baseline of doing FFT on each method independently as reported in Table 1 for convenience; note that
on the reasoning task LoTA outperforms FFT. bold: best method, underline second-best method; we do not report second-best when only
two methods are presented. All results are with Mistral. We reuse the same mask for LoTTO calibrated on GSM8k for MathInstruct,
Reasoning, GSM8k+Arc+SQL and Safety.

Task B Method on Task A Method on Task B Utility of Task A (Drop) Utility of Task B (Drop)

Instruction Following Baseline - 19.0 (-) -

GSM8k

- Baseline - 59.8 (-)
FFT FFT 15.2 (3.8) 58.3 (1.5)

LoTA (ours) FFT 17.7 (1.3) 58.7 (1.1)
FFT LoTA (ours) 15.9 (3.1) 54.2 (5.6)

LoTA (ours) LoTTO (ours) 17.8 (1.2) 59.1 (0.7)
FFT LoRA 14.1 (4.2) 55.5 (4.9)
FFT FFT (Mixed) 16.3 (2.7) 55.5 (4.3)

MathInstruct - Baseline - 56.7 (-)
FFT FFT 14.20.8 (4.8) 51.30.2 (5.4)

LoTA (ours) LoTA (ours) 16.00.7 (−3.0) 55.50.1 (1.2)

Reasoning
- Baseline - 83.5 (-)

FFT FFT 0.20.1 (18.8) 82.3 (1.2)
LoTA (ours) LoTTO (ours) 16.50.9 (2.5) 83.7 (-)

GSM8k+Arc+SQL

- Baseline - 77.0
FFT FFT 0.50.2 (18.6) 75.0 (2.0)

LoTA (ours) FFT 11.50.7 (7.5) 75.4 (1.6)
LoTA (ours) LoTTO (ours) 15.90.9 (3.1) 73.8 (3.2)

Safety
Baseline - 93.1 (-) -

FFT FFT 19.13.5 (73.9) -
LoTA (ours) LoTTO (ours) 63.42.2 (29.7) -

cation, but we do not tune this hyperparameter.

Challenge of Overlapping Sparsity in Model Merging.
In the sequential training paradigm, we exploited the fact
that masks for different tasks have a significant overlap in
order to generalize our LoTTO mask calibrated on GSM8k
to provide robustness to forgetting across a range of other
tasks. However, this same phenomenon of overlapping
sparsity presents a challenge in the model merging setting.
The challenge is that because the merging is parallel, we
cannot use LoTTO to calibrate the masks to be disjointly
sparse as we did in the sequential training setting.

Due to the page limit, we provide the model merging results
in Appendix C.9. We consider the full combination of merg-
ing FFT and LoTA models. The merge of two FFT models
performs poorly in all settings on both tasks, indicating that
post-hoc sparsification does not perform well for hetero-

geneous tasks, which is in line with recent model merging
theory (Daheim et al., 2024). The merges that contain LoTA
models have better performance across all tasks, but there
is no combination that is pareto-optimal across all tasks.

5. Discussion
We propose Lottery Ticket Adaptation (LoTA), a sparse
alignment framework that fine-tunes only a sparse subnet-
work of the base model, leaving the rest of the parameters
frozen. LoTA successfully mitigates destructive interference
(a problem with existing fine-tuning methods including full
fine-tuning and low-rank adaptation (LoRA)) in many multi-
task adaptation paradigms, prevents catastrophic forgetting
of earlier tasks, including safety, and allows for successful
model merging of even dramatically different tasks. Due to
the page limit, we discuss related work in Appendix A.

5

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Lottery Ticket Adaptation: Mitigating Destructive Interference in LLMs

References
Winogrande: An adversarial winograd schema challenge at

scale. 2019.

AI@Meta. Llama 3 model card. 2024. URL
https://github.com/meta-llama/llama3/
blob/main/MODEL_CARD.md.

Aljundi, R., Babiloni, F., Elhoseiny, M., Rohrbach, M., and
Tuytelaars, T. Memory aware synapses: Learning what
(not) to forget. In Proceedings of the European conference
on computer vision (ECCV), pp. 139–154, 2018.

b mc2. sql-create-context dataset, 2023. URL
https://huggingface.co/datasets/
b-mc2/sql-create-context. This dataset
was created by modifying data from the following
sources: (Zhong et al., 2017; Yu et al., 2018).

Beck, T., Bohlender, B., Viehmann, C., Hane, V., Adamson,
Y., Khuri, J., Brossmann, J., Pfeiffer, J., and Gurevych,
I. Adapterhub playground: Simple and flexible few-shot
learning with adapters. arXiv preprint arXiv:2108.08103,
2021.

Biderman, D., Ortiz, J. G., Portes, J., Paul, M., Greengard,
P., Jennings, C., King, D., Havens, S., Chiley, V., Frankle,
J., Blakeney, C., and Cunningham, J. P. Lora learns less
and forgets less, 2024.

Bisk, Y., Zellers, R., Bras, R. L., Gao, J., and Choi, Y.
Piqa: Reasoning about physical commonsense in natural
language, 2019.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G.,
Henighan, T., Child, R., Ramesh, A., Ziegler, D., Wu, J.,
Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M.,
Gray, S., Chess, B., Clark, J., Berner, C., McCandlish, S.,
Radford, A., Sutskever, I., and Amodei, D. Language
models are few-shot learners. In Larochelle, H.,
Ranzato, M., Hadsell, R., Balcan, M., and Lin, H. (eds.),
Advances in Neural Information Processing Systems,
volume 33, pp. 1877–1901. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.
cc/paper_files/paper/2020/file/
1457c0d6bfcb4967418bfb8ac142f64a-Paper.
pdf.

Chen, L., Ye, Z., Wu, Y., Zhuo, D., Ceze, L., and Krishna-
murthy, A. Punica: Multi-tenant lora serving, 2023.

Christopher, C., Kenton, L., Ming-Wei, C., Tom, K.,
Michael, C., and Kristina, T. Boolq: Exploring the sur-
prising difficulty of natural yes/no questions. In NAACL,
2019.

Clark, P., Cowhey, I., Etzioni, O., Khot, T., Sabharwal, A.,
Schoenick, C., and Tafjord, O. Think you have solved
question answering? try arc, the ai2 reasoning challenge.
arXiv:1803.05457v1, 2018.

Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H.,
Kaiser, L., Plappert, M., Tworek, J., Hilton, J., Nakano,
R., Hesse, C., and Schulman, J. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168,
2021.

Crawshaw, M. Multi-task learning with deep neural net-
works: A survey. arXiv preprint arXiv:2009.09796, 2020.

Cui, G., Yuan, L., Ding, N., Yao, G., Zhu, W., Ni, Y., Xie, G.,
Liu, Z., and Sun, M. Ultrafeedback: Boosting language
models with high-quality feedback, 2023.

Daheim, N., Möllenhoff, T., Ponti, E., Gurevych, I., and
Khan, M. E. Model merging by uncertainty-based gra-
dient matching. In The Twelfth International Confer-
ence on Learning Representations, 2024. URL https:
//openreview.net/forum?id=D7KJmfEDQP.

Davari, M. and Belilovsky, E. Model breadcrumbs: Scal-
ing multi-task model merging with sparse masks. arXiv
preprint arXiv:2312.06795, 2023.

Dettmers, T., Lewis, M., Belkada, Y., and Zettlemoyer, L.
Gpt3. int8 (): 8-bit matrix multiplication for transformers
at scale. Advances in Neural Information Processing
Systems, 35:30318–30332, 2022.

Dettmers, T., Pagnoni, A., Holtzman, A., and Zettlemoyer, L.
Qlora: Efficient finetuning of quantized llms. Advances
in Neural Information Processing Systems, 36, 2023a.

Dettmers, T., Svirschevski, R., Egiazarian, V., Kuznedelev,
D., Frantar, E., Ashkboos, S., Borzunov, A., Hoefler, T.,
and Alistarh, D. Spqr: A sparse-quantized representation
for near-lossless llm weight compression. arXiv preprint
arXiv:2306.03078, 2023b.

Dong, G., Yuan, H., Lu, K., Li, C., Xue, M., Liu, D., Wang,
W., Yuan, Z., Zhou, C., and Zhou, J. How abilities in large
language models are affected by supervised fine-tuning
data composition. arXiv preprint arXiv:2310.05492,
2023.

Dou, S., Zhou, E., Liu, Y., Gao, S., Zhao, J., Shen, W.,
Zhou, Y., Xi, Z., Wang, X., Fan, X., et al. Loramoe:
Revolutionizing mixture of experts for maintaining world
knowledge in language model alignment. arXiv preprint
arXiv:2312.09979, 2023.

Dubois, Y., Galambosi, B., Liang, P., and Hashimoto, T. B.
Length-controlled alpacaeval: A simple way to debias
automatic evaluators. arXiv preprint arXiv:2404.04475,
2024.

6

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://huggingface.co/datasets/b-mc2/sql-create-context
https://huggingface.co/datasets/b-mc2/sql-create-context
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://openreview.net/forum?id=D7KJmfEDQP
https://openreview.net/forum?id=D7KJmfEDQP

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Lottery Ticket Adaptation: Mitigating Destructive Interference in LLMs

Edalati, A., Tahaei, M., Kobyzev, I., Nia, V. P., Clark,
J. J., and Rezagholizadeh, M. Krona: Parameter ef-
ficient tuning with kronecker adapter. arXiv preprint
arXiv:2212.10650, 2022.

Frankle, J. and Carbin, M. The lottery ticket hypothe-
sis: Finding sparse, trainable neural networks. In In-
ternational Conference on Learning Representations,
2019. URL https://openreview.net/forum?
id=rJl-b3RcF7.

Frankle, J., Dziugaite, G. K., Roy, D., and Carbin, M. Prun-
ing neural networks at initialization: Why are we missing
the mark? In International Conference on Learning
Representations, 2021. URL https://openreview.
net/forum?id=Ig-VyQc-MLK.

Frantar, E. and Alistarh, D. Sparsegpt: Massive language
models can be accurately pruned in one-shot. In Inter-
national Conference on Machine Learning, pp. 10323–
10337. PMLR, 2023.

Frantar, E., Ashkboos, S., Hoefler, T., and Alistarh, D.
OPTQ: Accurate quantization for generative pre-trained
transformers. In The Eleventh International Confer-
ence on Learning Representations, 2023. URL https:
//openreview.net/forum?id=tcbBPnfwxS.

Ghosh, S., Evuru, C. K. R., Kumar, S., Aneja, D., Jin,
Z., Duraiswami, R., Manocha, D., et al. A closer look
at the limitations of instruction tuning. arXiv preprint
arXiv:2402.05119, 2024.

Gliwa, B., Mochol, I., Biesek, M., and Wawer, A. SAM-
Sum corpus: A human-annotated dialogue dataset for
abstractive summarization. In Proceedings of the 2nd
Workshop on New Frontiers in Summarization, pp.
70–79, Hong Kong, China, November 2019. Associ-
ation for Computational Linguistics. doi: 10.18653/
v1/D19-5409. URL https://www.aclweb.org/
anthology/D19-5409.

Guo, D., Rush, A. M., and Kim, Y. Parameter-efficient
transfer learning with diff pruning. arXiv preprint
arXiv:2012.07463, 2020.

Guo, H., Greengard, P., Xing, E., and Kim, Y. LQ-loRA:
Low-rank plus quantized matrix decomposition for ef-
ficient language model finetuning. In The Twelfth In-
ternational Conference on Learning Representations,
2024. URL https://openreview.net/forum?
id=xw29VvOMmU.

Han, S., Mao, H., and Dally, W. J. Deep compres-
sion: Compressing deep neural networks with pruning,
trained quantization and huffman coding. arXiv preprint
arXiv:1510.00149, 2015.

Houlsby, N., Giurgiu, A., Jastrzebski, S., Morrone, B.,
De Laroussilhe, Q., Gesmundo, A., Attariyan, M., and
Gelly, S. Parameter-efficient transfer learning for nlp. In
International conference on machine learning, pp. 2790–
2799. PMLR, 2019.

Hu, E. J., yelong shen, Wallis, P., Allen-Zhu, Z., Li, Y.,
Wang, S., Wang, L., and Chen, W. LoRA: Low-rank adap-
tation of large language models. In International Confer-
ence on Learning Representations, 2022. URL https:
//openreview.net/forum?id=nZeVKeeFYf9.

Hu, Z., Wang, L., Lan, Y., Xu, W., Lim, E.-P., Bing, L., Xu,
X., Poria, S., and Lee, R. LLM-adapters: An adapter fam-
ily for parameter-efficient fine-tuning of large language
models. In Bouamor, H., Pino, J., and Bali, K. (eds.),
Proceedings of the 2023 Conference on Empirical Meth-
ods in Natural Language Processing, pp. 5254–5276,
Singapore, December 2023. Association for Computa-
tional Linguistics. doi: 10.18653/v1/2023.emnlp-main.
319. URL https://aclanthology.org/2023.
emnlp-main.319.

Huang, Y., Zhang, Y., Chen, J., Wang, X., and Yang, D.
Continual learning for text classification with information
disentanglement based regularization. In Proceedings of
the 2021 Conference of the North American Chapter of
the Association for Computational Linguistics: Human
Language Technologies, pp. 2736–2746, 2021.

Hui, T., Zhang, Z., Wang, S., Xu, W., Sun, Y., and Wu, H.
Hft: Half fine-tuning for large language models. arXiv
preprint arXiv:2404.18466, 2024.

Ilharco, G., Ribeiro, M. T., Wortsman, M., Gururangan, S.,
Schmidt, L., Hajishirzi, H., and Farhadi, A. Editing mod-
els with task arithmetic. arXiv preprint arXiv:2212.04089,
2022.

Isik, B., Kumbong, H., Ning, W., Yao, X., Koyejo, S., and
Zhang, C. Gpt-zip: Deep compression of finetuned large
language models. In Workshop on Efficient Systems for
Foundation Models@ ICML2023, 2023.

Jiang, A. Q., Sablayrolles, A., Mensch, A., Bamford, C.,
Chaplot, D. S., Casas, D. d. l., Bressand, F., Lengyel, G.,
Lample, G., Saulnier, L., et al. Mistral 7b. arXiv preprint
arXiv:2310.06825, 2023.

Jin, X., Ren, X., Preotiuc-Pietro, D., and Cheng, P. Data-
less knowledge fusion by merging weights of language
models. In The Eleventh International Conference on
Learning Representations, 2022.

Kairouz, P., McMahan, H. B., Avent, B., Bellet, A., Ben-
nis, M., Bhagoji, A. N., Bonawitz, K., Charles, Z., Cor-
mode, G., Cummings, R., D’Oliveira, R. G. L., Eichner,

7

https://openreview.net/forum?id=rJl-b3RcF7
https://openreview.net/forum?id=rJl-b3RcF7
https://openreview.net/forum?id=Ig-VyQc-MLK
https://openreview.net/forum?id=Ig-VyQc-MLK
https://openreview.net/forum?id=tcbBPnfwxS
https://openreview.net/forum?id=tcbBPnfwxS
https://www.aclweb.org/anthology/D19-5409
https://www.aclweb.org/anthology/D19-5409
https://openreview.net/forum?id=xw29VvOMmU
https://openreview.net/forum?id=xw29VvOMmU
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://aclanthology.org/2023.emnlp-main.319
https://aclanthology.org/2023.emnlp-main.319

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Lottery Ticket Adaptation: Mitigating Destructive Interference in LLMs

H., Rouayheb, S. E., Evans, D., Gardner, J., Garrett, Z.,
Gascón, A., Ghazi, B., Gibbons, P. B., Gruteser, M., Har-
chaoui, Z., He, C., He, L., Huo, Z., Hutchinson, B., Hsu,
J., Jaggi, M., Javidi, T., Joshi, G., Khodak, M., Konečný,
J., Korolova, A., Koushanfar, F., Koyejo, S., Lepoint, T.,
Liu, Y., Mittal, P., Mohri, M., Nock, R., Özgür, A., Pagh,
R., Raykova, M., Qi, H., Ramage, D., Raskar, R., Song,
D., Song, W., Stich, S. U., Sun, Z., Suresh, A. T., Tramèr,
F., Vepakomma, P., Wang, J., Xiong, L., Xu, Z., Yang,
Q., Yu, F. X., Yu, H., and Zhao, S. Advances and open
problems in federated learning, 2021.

Kim, S., Hooper, C., Gholami, A., Dong, Z., Li,
X., Shen, S., Mahoney, M. W., and Keutzer, K.
Squeezellm: Dense-and-sparse quantization. arXiv
preprint arXiv:2306.07629, 2023.

Kopiczko, D. J., Blankevoort, T., and Asano, Y. M. Vera:
Vector-based random matrix adaptation. arXiv preprint
arXiv:2310.11454, 2023.

Kopiczko, D. J., Blankevoort, T., and Asano, Y. M. VeRA:
Vector-based random matrix adaptation. In The Twelfth
International Conference on Learning Representations,
2024. URL https://openreview.net/forum?
id=NjNfLdxr3A.

Lee, N., Ajanthan, T., and Torr, P. SNIP: SINGLE-SHOT
NETWORK PRUNING BASED ON CONNECTION
SENSITIVITY. In International Conference on Learning
Representations, 2019. URL https://openreview.
net/forum?id=B1VZqjAcYX.

Lermen, S., Rogers-Smith, C., and Ladish, J. Lora fine-
tuning efficiently undoes safety training in llama 2-chat
70b. arXiv preprint arXiv:2310.20624, 2023.

Lester, B., Al-Rfou, R., and Constant, N. The power of
scale for parameter-efficient prompt tuning. In Moens,
M.-F., Huang, X., Specia, L., and Yih, S. W.-t. (eds.), Pro-
ceedings of the 2021 Conference on Empirical Methods
in Natural Language Processing, pp. 3045–3059, On-
line and Punta Cana, Dominican Republic, November
2021. Association for Computational Linguistics. doi:
10.18653/v1/2021.emnlp-main.243. URL https://
aclanthology.org/2021.emnlp-main.243.

Li, X., Zhang, T., Dubois, Y., Taori, R., Gulrajani, I.,
Guestrin, C., Liang, P., and Hashimoto, T. B. Alpacae-
val: An automatic evaluator of instruction-following
models. https://github.com/tatsu-lab/
alpaca_eval, 2023.

Li, X. L. and Liang, P. Prefix-tuning: Optimizing continu-
ous prompts for generation. In Zong, C., Xia, F., Li, W.,
and Navigli, R. (eds.), Proceedings of the 59th Annual
Meeting of the Association for Computational Linguistics

and the 11th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers), pp.
4582–4597, Online, August 2021. Association for Com-
putational Linguistics. doi: 10.18653/v1/2021.acl-long.
353. URL https://aclanthology.org/2021.
acl-long.353.

Li, Y., Yu, Y., Liang, C., Karampatziakis, N., He, P.,
Chen, W., and Zhao, T. Loftq: LoRA-fine-tuning-aware
quantization for large language models. In The Twelfth
International Conference on Learning Representations,
2024. URL https://openreview.net/forum?
id=LzPWWPAdY4.

Lin, C.-Y. Rouge: A package for automatic evaluation
of summaries. In Text summarization branches out, pp.
74–81, 2004.

Lin, J., Tang, J., Tang, H., Yang, S., Dang, X., and
Han, S. Awq: Activation-aware weight quantization
for llm compression and acceleration. arXiv preprint
arXiv:2306.00978, 2023.

Liu, H., Tam, D., Muqeeth, M., Mohta, J., Huang, T., Bansal,
M., and Raffel, C. A. Few-shot parameter-efficient fine-
tuning is better and cheaper than in-context learning. Ad-
vances in Neural Information Processing Systems, 35:
1950–1965, 2022a.

Liu, J., Xiao, G., Li, K., Lee, J. D., Han, S., Dao, T., and
Cai, T. Bitdelta: Your fine-tune may only be worth one
bit. arXiv preprint arXiv:2402.10193, 2024a.

Liu, S.-Y., Wang, C.-Y., Yin, H., Molchanov, P., Wang,
Y.-C. F., Cheng, K.-T., and Chen, M.-H. Dora:
Weight-decomposed low-rank adaptation. arXiv preprint
arXiv:2402.09353, 2024b.

Liu, X., Ji, K., Fu, Y., Tam, W., Du, Z., Yang, Z., and Tang, J.
P-tuning: Prompt tuning can be comparable to fine-tuning
across scales and tasks. In Muresan, S., Nakov, P., and
Villavicencio, A. (eds.), Proceedings of the 60th Annual
Meeting of the Association for Computational Linguistics
(Volume 2: Short Papers), pp. 61–68, Dublin, Ireland,
May 2022b. Association for Computational Linguistics.
doi: 10.18653/v1/2022.acl-short.8. URL https://
aclanthology.org/2022.acl-short.8.

Luo, Y., Yang, Z., Meng, F., Li, Y., Zhou, J., and Zhang,
Y. An empirical study of catastrophic forgetting in large
language models during continual fine-tuning. arXiv
preprint arXiv:2308.08747, 2023.

Mangrulkar, S., Gugger, S., Debut, L., Belkada, Y., Paul,
S., and Bossan, B. Peft: State-of-the-art parameter-
efficient fine-tuning methods. https://github.
com/huggingface/peft, 2022.

8

https://openreview.net/forum?id=NjNfLdxr3A
https://openreview.net/forum?id=NjNfLdxr3A
https://openreview.net/forum?id=B1VZqjAcYX
https://openreview.net/forum?id=B1VZqjAcYX
https://aclanthology.org/2021.emnlp-main.243
https://aclanthology.org/2021.emnlp-main.243
https://github.com/tatsu-lab/alpaca_eval
https://github.com/tatsu-lab/alpaca_eval
https://aclanthology.org/2021.acl-long.353
https://aclanthology.org/2021.acl-long.353
https://openreview.net/forum?id=LzPWWPAdY4
https://openreview.net/forum?id=LzPWWPAdY4
https://aclanthology.org/2022.acl-short.8
https://aclanthology.org/2022.acl-short.8
https://github.com/huggingface/peft
https://github.com/huggingface/peft

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Lottery Ticket Adaptation: Mitigating Destructive Interference in LLMs

Matena, M. S. and Raffel, C. A. Merging models with fisher-
weighted averaging. Advances in Neural Information
Processing Systems, 35:17703–17716, 2022.

McCloskey, M. and Cohen, N. J. Catastrophic interfer-
ence in connectionist networks: The sequential learning
problem. In Psychology of learning and motivation, vol-
ume 24, pp. 109–165. Elsevier, 1989.

Mihaylov, T., Clark, P., Khot, T., and Sabharwal, A. Can a
suit of armor conduct electricity? a new dataset for open
book question answering. In EMNLP, 2018.

Nikdan, M., Tabesh, S., and Alistarh, D. Rosa: Accu-
rate parameter-efficient fine-tuning via robust adaptation.
arXiv preprint arXiv:2401.04679, 2024.

OpenAI. Gpt-4 technical report, 2023.

Ostapenko, O., Su, Z., Ponti, E. M., Charlin, L., Roux, N. L.,
Pereira, M., Caccia, L., and Sordoni, A. Towards modular
llms by building and reusing a library of loras, 2024.

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C.,
Mishkin, P., Zhang, C., Agarwal, S., Slama, K., Ray, A.,
et al. Training language models to follow instructions
with human feedback. Advances in neural information
processing systems, 35:27730–27744, 2022.

Qi, X., Zeng, Y., Xie, T., Chen, P.-Y., Jia, R., Mittal, P.,
and Henderson, P. Fine-tuning aligned language models
compromises safety, even when users do not intend to!,
2023.

Ramasesh, V. V., Lewkowycz, A., and Dyer, E. Effect of
scale on catastrophic forgetting in neural networks. In
International Conference on Learning Representations,
2022. URL https://openreview.net/forum?
id=GhVS8_yPeEa.

Razdaibiedina, A., Mao, Y., Hou, R., Khabsa, M., Lewis,
M., and Almahairi, A. Progressive prompts: Contin-
ual learning for language models. In The Eleventh
International Conference on Learning Representations,
2023. URL https://openreview.net/forum?
id=UJTgQBc91_.

Rebuffi, S.-A., Kolesnikov, A., Sperl, G., and Lampert, C. H.
icarl: Incremental classifier and representation learning.
In Proceedings of the IEEE conference on Computer
Vision and Pattern Recognition, pp. 2001–2010, 2017.

Romanov, A., Rumshisky, A., Rogers, A., and Donahue, D.
Adversarial decomposition of text representation. arXiv
preprint arXiv:1808.09042, 2018.

Ruder, S. An overview of multi-task learning in deep neural
networks. arXiv preprint arXiv:1706.05098, 2017.

Sap, M., Rashkin, H., Chen, D., LeBras, R., and Choi, Y.
Socialiqa: Commonsense reasoning about social interac-
tions, 2019.

Scott Weiner. California sb 1047, 2024.
https://leginfo.legislature.ca.gov/
faces/billNavClient.xhtml?bill_id=
202320240SB1047.

Sheng, Y., Cao, S., Li, D., Hooper, C., Lee, N., Yang, S.,
Chou, C., Zhu, B., Zheng, L., Keutzer, K., Gonzalez, J. E.,
and Stoica, I. S-lora: Serving thousands of concurrent
lora adapters, 2023.

Tanaka, H., Kunin, D., Yamins, D. L., and Ganguli, S. Prun-
ing neural networks without any data by iteratively con-
serving synaptic flow. Advances in neural information
processing systems, 33:6377–6389, 2020.

Team, G., Anil, R., Borgeaud, S., Wu, Y., Alayrac, J.-B., Yu,
J., Soricut, R., Schalkwyk, J., Dai, A. M., Hauth, A., et al.
Gemini: a family of highly capable multimodal models.
arXiv preprint arXiv:2312.11805, 2023.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi,
A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P.,
Bhosale, S., Bikel, D., Blecher, L., Ferrer, C. C., Chen,
M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W.,
Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn,
A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez,
V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P. S.,
Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y.,
Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog,
I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi,
K., Schelten, A., Silva, R., Smith, E. M., Subramanian, R.,
Tan, X. E., Tang, B., Taylor, R., Williams, A., Kuan, J. X.,
Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur,
M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S.,
and Scialom, T. Llama 2: Open foundation and fine-tuned
chat models, 2023.

Wang, C., Zhang, G., and Grosse, R. Picking winning
tickets before training by preserving gradient flow. In
International Conference on Learning Representations,
2020. URL https://openreview.net/forum?
id=SkgsACVKPH.

Wang, L., Zhang, X., Su, H., and Zhu, J. A comprehen-
sive survey of continual learning: Theory, method and
application. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2024.

Wang, Y., Mishra, S., Alipoormolabashi, P., Kordi, Y.,
Mirzaei, A., Naik, A., Ashok, A., Dhanasekaran, A. S.,
Arunkumar, A., Stap, D., Pathak, E., Karamanolakis,
G., Lai, H., Purohit, I., Mondal, I., Anderson, J., Kuz-
nia, K., Doshi, K., Pal, K. K., Patel, M., Moradshahi,

9

https://openreview.net/forum?id=GhVS8_yPeEa
https://openreview.net/forum?id=GhVS8_yPeEa
https://openreview.net/forum?id=UJTgQBc91_
https://openreview.net/forum?id=UJTgQBc91_
https://leginfo.legislature.ca.gov/faces/billNavClient.xhtml?bill_id=202320240SB1047
https://leginfo.legislature.ca.gov/faces/billNavClient.xhtml?bill_id=202320240SB1047
https://leginfo.legislature.ca.gov/faces/billNavClient.xhtml?bill_id=202320240SB1047
https://openreview.net/forum?id=SkgsACVKPH
https://openreview.net/forum?id=SkgsACVKPH

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Lottery Ticket Adaptation: Mitigating Destructive Interference in LLMs

M., Parmar, M., Purohit, M., Varshney, N., Kaza, P. R.,
Verma, P., Puri, R. S., Karia, R., Doshi, S., Sampat, S. K.,
Mishra, S., Reddy A, S., Patro, S., Dixit, T., and Shen,
X. Super-NaturalInstructions: Generalization via declar-
ative instructions on 1600+ NLP tasks. In Goldberg, Y.,
Kozareva, Z., and Zhang, Y. (eds.), Proceedings of the
2022 Conference on Empirical Methods in Natural Lan-
guage Processing, pp. 5085–5109, Abu Dhabi, United
Arab Emirates, December 2022. Association for Compu-
tational Linguistics. doi: 10.18653/v1/2022.emnlp-main.
340. URL https://aclanthology.org/2022.
emnlp-main.340.

Wortsman, M., Ilharco, G., Gadre, S. Y., Roelofs, R.,
Gontijo-Lopes, R., Morcos, A. S., Namkoong, H.,
Farhadi, A., Carmon, Y., Kornblith, S., et al. Model
soups: averaging weights of multiple fine-tuned models
improves accuracy without increasing inference time. In
International conference on machine learning, pp. 23965–
23998. PMLR, 2022.

Wu, C., Gan, Y., Ge, Y., Lu, Z., Wang, J., Feng, Y., Luo, P.,
and Shan, Y. Llama pro: Progressive llama with block
expansion. arXiv preprint arXiv:2401.02415, 2024.

Xiao, G., Lin, J., Seznec, M., Wu, H., Demouth, J., and Han,
S. Smoothquant: Accurate and efficient post-training
quantization for large language models. In International
Conference on Machine Learning, pp. 38087–38099.
PMLR, 2023a.

Xiao, S., Liu, Z., Zhang, P., and Xing, X. Lm-cocktail:
Resilient tuning of language models via model merging.
arXiv preprint arXiv:2311.13534, 2023b.

Xu, J. and Zhang, J. Random masking finds winning tick-
ets for parameter efficient fine-tuning. arXiv preprint
arXiv:2405.02596, 2024.

Yadav, P., Tam, D., Choshen, L., Raffel, C., and Bansal,
M. TIES-merging: Resolving interference when merg-
ing models. In Thirty-seventh Conference on Neural
Information Processing Systems, 2023. URL https:
//openreview.net/forum?id=xtaX3WyCj1.

Yao, X. and Klimovic, A. Deltazip: Multi-tenant language
model serving via delta compression. arXiv preprint
arXiv:2312.05215, 2023.

Yildiz, C., Ravichandran, N. K., Punia, P., Bethge, M., and
Ermis, B. Investigating continual pretraining in large
language models: Insights and implications, 2024.

Yu, L., Yu, B., Yu, H., Huang, F., and Li, Y. Language mod-
els are super mario: Absorbing abilities from homologous
models as a free lunch. arXiv preprint arXiv:2311.03099,
2023.

Yu, T., Zhang, R., Yang, K., Yasunaga, M., Wang, D., Li,
Z., Ma, J., Li, I., Yao, Q., Roman, S., et al. Spider:
A large-scale human-labeled dataset for complex and
cross-domain semantic parsing and text-to-sql task. arXiv
preprint arXiv:1809.08887, 2018.

Yu, Z., Gao, C., Yao, W., Wang, Y., Ye, W., Wang, J., Xie, X.,
Zhang, Y., and Zhang, S. Kieval: A knowledge-grounded
interactive evaluation framework for large language mod-
els. arXiv preprint arXiv:2402.15043, 2024.

Yuan, F., Ma, C., Yuan, S., Sun, Q., and Li, L. Ks-lottery:
Finding certified lottery tickets for multilingual language
models. arXiv preprint arXiv:2402.02801, 2024.

Yue, X., Qu, X., Zhang, G., Fu, Y., Huang, W., Sun, H.,
and Yu Su, W. C. Mammoth: Building math generalist
models through hybrid instruction tuning. arXiv preprint
arXiv:2309.05653, 2023.

Zellers, R., Holtzman, A., Bisk, Y., Farhadi, A., and Choi,
Y. Hellaswag: Can a machine really finish your sen-
tence? In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, 2019.

Zhan, Q., Fang, R., Bindu, R., Gupta, A., Hashimoto, T.,
and Kang, D. Removing rlhf protections in gpt-4 via
fine-tuning, 2024.

Zhang, J., Liu, J., He, J., et al. Composing parameter-
efficient modules with arithmetic operation. Advances
in Neural Information Processing Systems, 36:12589–
12610, 2023a.

Zhang, Q., Chen, M., Bukharin, A., He, P., Cheng, Y.,
Chen, W., and Zhao, T. Adaptive budget allocation for
parameter-efficient fine-tuning. In The Eleventh Interna-
tional Conference on Learning Representations, 2023b.

Zhang, Y. and Yang, Q. A survey on multi-task learning.
IEEE Transactions on Knowledge and Data Engineering,
34(12):5586–5609, 2021.

Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z.,
Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E. P., Zhang,
H., Gonzalez, J. E., and Stoica, I. Judging llm-as-a-judge
with mt-bench and chatbot arena, 2023.

Zhong, V., Xiong, C., and Socher, R. Seq2sql: Generating
structured queries from natural language using reinforce-
ment learning. CoRR, abs/1709.00103, 2017.

10

https://aclanthology.org/2022.emnlp-main.340
https://aclanthology.org/2022.emnlp-main.340
https://openreview.net/forum?id=xtaX3WyCj1
https://openreview.net/forum?id=xtaX3WyCj1

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

Lottery Ticket Adaptation: Mitigating Destructive Interference in LLMs

A. Related Work
Model Pruning & Quantization Model pruning and quantization have been receiving increased attention for efficient
storage and/or inference of large models. While most of the existing methods prune (Frantar & Alistarh, 2023; Dettmers
et al., 2023b; Kim et al., 2023) or quantize (Frantar et al., 2023; Dettmers et al., 2022; Xiao et al., 2023a; Lin et al., 2023)
the model weight directly, some focus specifically on compressing the task vectors (Isik et al., 2023; Liu et al., 2024a; Yao &
Klimovic, 2023) through post-training sparsification or quantization, assuming that the base model is worth the storage cost
since it is being used frequently for many tasks. Our proposed PEFT method, LoTA, builds on this observation that the task
vectors are highly compressible through sparsification and imposes this sparsity constraint at the beginning of fine-tuning to
train sparse task vectors.

Lottery Ticket Hypothesis Motivated by the success of pruning methods at extreme sparsity ratios (Han et al., 2015),
(Frankle & Carbin, 2019) proposed the lottery ticket hypothesis (LTH), claiming the existence of sparse subnetworks (or
lottery tickets) that could be trained from scratch to a performance comparably to training the dense model from scratch.
While this could potentially provide a way to train models sparsely more efficiently rather than training them densely and
pruning them later, finding the lottery tickets, i.e., the sparsity masks, is costly. Initially, (Frankle & Carbin, 2019) proposed
first training the models densely and then extracting the sparsity mask based on the magnitude of the trained dense model’s
weights. Later, a number of more efficient methods were proposed to find the sparsity masks more efficiently, earlier in the
dense training stage (Frankle et al., 2021; Lee et al., 2019; Wang et al., 2020; Tanaka et al., 2020). Our work shows that
LTH works successfully for fine-tuning LLMs as well–giving us a sparse adaptation tool, LoTA. We extensively study the
tradeoff between the cost of finding the sparsity masks and the performance of the sparsely fine-tuned model. Unlike other
studies on LTH for LLM adaptation (Yuan et al., 2024; Xu & Zhang, 2024), our main focus and motivation is to mitigate
destructive interference in multi-task adaptation.

Parameter-Efficient Fine-Tuning (PEFT) Many practitioners fine-tune already pre-trained LLMs with less data and
compute instead of training them from scratch (Liu et al., 2022a; Wang et al., 2022; Ouyang et al., 2022). While this
reduces the cost of LLM training significantly, fine-tuning each and every parameter of these large models for each (or
a few) task is still very costly. This has led to a number of parameter-efficient fine-tuning (PEFT) methods reducing the
number of trainable parameters during fine-tuning (Zhang et al., 2023b; Li & Liang, 2021; Liu et al., 2022b; Lester et al.,
2021; Edalati et al., 2022; Hu et al., 2023; Nikdan et al., 2024; Guo et al., 2020). Among different PEFT methods, low-rank
adaptation (LoRA) (Hu et al., 2022) and its variants (Dettmers et al., 2023a; Guo et al., 2024; Li et al., 2024; Kopiczko
et al., 2024) have shown similar performance to full fine-tuning in many tasks while reducing the number of trainable
parameters through low-rank approximation to model updates during fine-tuning. Our PEFT method, LoTA, while reducing
the number of trainable parameters significantly via sparsity, has various other benefits in different applications, such as
avoiding catastrophic forgetting (of especially safety alignment), enabling fine-tuning on new tasks more successfully, model
merging using sparse task vectors, unlearning, and communication-efficient federated learning (FL). We demonstrate that
full fine-tuning and the existing PEFT methods fall short in these applications and significantly underperform LoTA.

Catastrophic Forgetting When LLMs go through sequential (or continual) multitask learning, i.e., fine-tuned on different
tasks sequentially, they often suffer from performance loss on earlier tasks–known as catastrophic forgetting (McCloskey &
Cohen, 1989; Dong et al., 2023; Ramasesh et al., 2022; Luo et al., 2023; Wang et al., 2024). To mitigate this, a number of
data-centric and architectural solutions have been proposed for language and other domains. Replay-based methods (Rebuffi
et al., 2017; Romanov et al., 2018) add a portion of the previously learned data during fine-tuning on a new task, which raises
privacy concerns as it requires constant access to previously learned data. Regularization-based approaches (Huang et al.,
2021; Aljundi et al., 2018) tend to have poor adaptability to specific tasks. An architecture-based approach, “progressive
prompts” (Razdaibiedina et al., 2023), sequentially concatenates soft prompts as they are being learned for each task–showing
some resistance against forgetting. However, they require access to task identifiers at inference for each task, which is not
always feasible. Other architecture-based approaches add additional modules to learn task-specific abilities (Dou et al.,
2023; Wu et al., 2024)–requiring customized deployment due to architecture change. Closest to our work, (Hui et al., 2024)
updates a randomly selected subset of the parameters at each iteration of fine-tuning to preserve the earlier tasks in the
not-updated parameters of that iteration. Despite similarities, our work LoTA (1) uses a fixed sparsity mask throughout
fine-tuning instead of a new mask at every iteration, which yields sparse task vectors that are useful for other applications
such as model merging and communication-efficient FL, and (2) finds data-dependent masks rather than the randomly
selected masks in (Hui et al., 2024). Furthermore, unlike (Hui et al., 2024), LoTA not only preserves the earlier tasks on

11

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Lottery Ticket Adaptation: Mitigating Destructive Interference in LLMs

frozen parameters but also constraints the new tasks on a highly sparse subnetwork–providing resistance to catastrophic
forgetting even when malicious users attempt to overwrite the earlier tasks via FFT.

Model Merging Merging multiple task-specific models into a single model with multitask abilities (Wortsman et al., 2022;
Jin et al., 2022; Zhang et al., 2023a) has been an appealing alternative to sequential multitask learning, which suffers from
catastrophic forgetting and could be inefficient, especially if task vectors are already available. The existing model merging
methods include averaging weights of task-specific models (Wortsman et al., 2022), task arithmetic through combining task
vectors (Ilharco et al., 2022), weighted aggregation of parameters (Matena & Raffel, 2022; Xiao et al., 2023b), combining
task vectors after some post-processing such as trimming low-magnitude deltas (Yadav et al., 2023) or sparsifying the
deltas (Yu et al., 2023; Davari & Belilovsky, 2023). Our method, LoTA, directly learns sparse task vectors, obviating the
need to post-process the task vectors, and outperforms existing model merging methods. Most importantly, LoTA enables
merging task vectors trained on heterogeneous datasets, while the other model merging methods are often limited to similar
datasets. This advancement is an important step towards scalable FL (Kairouz et al., 2021) with LLMs as it enables merging
sparse task vectors, which brings communication efficiency, trained over heterogeneous datasets (of each edge device).

We note that we test model merging with LoTA specifically for highly dissimilar datasets to show its compatibility with
FL, which considers edge devices with heterogeneous datasets. When used in FL, LoTA can reduce communication and
memory costs significantly, which is a main bottleneck when scaling FL to large models. The successful use of LoTA for
model merging and arithmetic further shows its promise for unlearning (Ilharco et al., 2022) as well.

B. LoTA Algorithm
Algorithm 1 describes the workflow of LoTA.

Algorithm 1 Lottery Ticket Adaptation (LoTA)

Require: Adaptation algorithm A, alignment dataset D, pre-trained weights wP , sparsity ratio s, learning rate η, number of
calibration iterations T , number of sparse training iterations T .

1: Mask Calibration:
2: wF ← wP

3: for τ ∈ 0, . . . , T do
4: ∇ = AD(wF) {Compute gradient for weights}
5: wF = wF − η · ∇ {Update the model}
6: end for
7: Mask Extraction:
8: ∆ = wF − wp {Find the task vector}
9: m = Sparsify(∆, s) {Create the sparsity mask by thresholding the task vector based on magnitude}

10: Sparse Adaptation:
11: w ← wP

12: for t ∈ {0, . . . , T} do
13: ∇ = AD(w) {Compute gradient for weights}
14: ∇̂ = ∇⊙m {Apply sparse mask to gradient}
15: w = w − η · ∇̂ {Update the model}
16: end for
17: ŵF ← w
output ŵF

C. Additional Experimental Details
C.1. Experimental Setup

In this section, we provide details of the experimental setup, including the baselines, model, dataset, and metric selection.
We are limited to an academic computing budget, and all results are conducted with a single A100 GPU. We typically
do 1 − 3 epochs of training for each dataset as this is a standard choice in LLM fine-tuning and indicate it specifically
for single-epoch fine-tuning. We use the RMSProp optimizer with default hyperparameters.

12

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

Lottery Ticket Adaptation: Mitigating Destructive Interference in LLMs

Baselines & Hyperparameters. Across all three multi-task adaptation paradigms, we compare LoTA against FFT and
LoRA. We extensively tune the hyperparameters for FFT and LoRA to ensure that we are comparing against strong
baselines. We do not tune hyperparameters for LoTA and directly transfer the hyperparameters from FFT. We fix the
sparsity ratio hyperparameter in LoTA to 90%, so that the number of parameters updated roughly matches that of the
best-performing LoRA rank of 256. We provide an ablation study with higher sparsity levels in Section C.10. We report
all ranges for hyperparameters in Appendix C.

Models. We use the best performing open-weights model families, Mistral (Jiang et al., 2023) and Llama 3 (AI@Meta, 2024;
Touvron et al., 2023), specifically Mistral-7B and Llama-3-8B – the largest models we can adapt with FFT on a single GPU.

Tasks We consider six capabilities: instruction following, safety, math, coding, summarization, and reasoning. We now
briefly discuss each capability, the datasets we use to fine-tune and evaluate the presented methods, and the motivation
behind the choices.

Instruction Following. The most widely-used instruction-tuned LLMs are the “Instruct” or “chat” versions of base models,
such as Llama-3-8B-Instruct (AI@Meta, 2024). This is because the process of tuning models on human instructions
aligns models to human preferences across a range of tasks (Ouyang et al., 2022). For this, we adapt models to data from
UltraFeedback (Cui et al., 2023), which contains a mixture of datasets covering truthfulness, honesty, and helpfulness
in addition to instruction-following. We measure the instruction following ability by length-controlled AlpacaEval2
Win Rate (Li et al., 2023), which we refer to as “winrate”. A high winrate means that GPT-4 (OpenAI, 2023) prefers
the responses of our model on a set of representative prompts over its own responses. Winrate is the metric most
closely correlated with human rating preference (Dubois et al., 2024). Another common benchmark for “chat” models
is MT-Bench (Zheng et al., 2023), but there is a significant degree of data contamination between MT-Bench and other
task-specific training datasets (Yu et al., 2024)–hence, we do not evaluate on MT-Bench.

Reasoning. We train on the standard set of 8 commonsense reasoning tasks (Christopher et al., 2019; Bisk et al., 2019;
Sap et al., 2019; Zellers et al., 2019; ai2, 2019; Clark et al., 2018; Mihaylov et al., 2018) (Boolq, PIQA, SocialIQA,
Hellaswag, Winograde, ARC-easy, ARC-challenge, OpenBookQA) and report the exact-match accuracy on the test set.
As a representative task, we use ARC-easy.

Math. We use the set of 9 math instruction datasets from (Yue et al., 2023) for fine-tuning and report performance on
the test set of GSM8k (Cobbe et al., 2021). When only considering a single task, we choose GSM8k as the representative
task as it is commonly used as a single training and test task by other papers.

Code Generation. We use data that instructs the model to write SQL queries given some context (b mc2, 2023)(SQL-
create-context) and report the ROUGE-1 F1 score (Lin, 2004) on the test set.

Summarization. We use data from Samsum (Gliwa et al., 2019) and report the ROUGE-1 F1 score on the test set.

Safety. We define safety as a latent capability generated by instruction tuning. A recent concern in AI policy is that, while
frontier models such as GPT-3.5/GPT-4 are aligned, they can also be fine-tuned and this presents an opportunity to misalign
them. Recently, Qi et al. (2023) show that by fine-tuning GPT-3.5 on just 100 harmful examples for a few epochs, they can
ask it to answer harmful queries that it ordinarily would refuse, and Zhan et al. (2024) show the same for GPT-4. Lermen
et al. (2023) show that this can be done with LoRA rather than the fine-tuning method OpenAI are using in their fine-tuning
API (presumably FFT). This is more than an academic concern; SB-1047 (Scott Weiner, 2024), recently passed in California,
requires model developers providing access to frontier models to implement best effort mitigations to prevent users from mis-
aligning those models. We evaluate the safety of our models on HEx-Phi (Qi et al., 2023), a dataset of 330 questions spanning
multiple categories such as malware, fraud, etc. The safety score (higher is better) is the percentage of queries from the test set
where the model refuses to respond. Aligned models such as Llama-3-Instruct will score 100% on this task, but because we
are doing the alignment ourselves starting from a base model, our baseline Instruct model only gets 93% on this task. Given
that we are primarily interested in measuring the forgetting of safety alignment, we do not see this as a major limitation.

C.2. Code

Because we evaluate multiple methods on a wide range of tasks, training on > 20 datasets, we defer all the details on the
prompts, exact dataset format, etc. to our anonymized code repository.

13

https://anonymous.4open.science/r/alignment-durability-33B0/README.md

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

Lottery Ticket Adaptation: Mitigating Destructive Interference in LLMs

C.3. Hyperparameter Ranges

FFT. We tune the learning rate in the range 5e− 7, 1e− 5. We find that 1e− 6 works as a good learning rate across all
tasks. We use a batch size of 32.

LoTA. We do not tune any hyperparameters for LoTA and merely use the same hyperparameters as FFT.

LoRA. LoRA introduces the additional rank hyperparameter, which we tune jointly with the learning rate. This is the rank,
which we tune in 4, 256. Common wisdom seems to be to use larger learning rates for LoRA, so we expand the upper edge
of the LoRA learning rate range to 1e− 4 and indeed find that LoRA typically benefits from a larger learning rate. We set
“lora alpha” to 16. We use LoRA on all linear layers.

TIES-Merging. We consider post-hoc sparsification factors of 0.1, 0.2, 0.3; the best performance is at either 0.1 or 0.2.

C.4. Additional Experiments

In Table 1, we present the results with sparse adaptation for 3 epochs. In Table 3, we provide the corresponding results with
1-epoch sparse adaptation.

Table 3. Performance comparison on single-task datasets for 1 epoch. bold: best method

Method Model Arc GSM8k SQL Summarization

LoRA Mistral 70.40.6 46.31.1 98.60.1 51.80.2
LoTA (ours) Mistral 73.80.7 53.51.0 99.30.1 54.32.5

C.5. Individual Task Results for Averaged Experiments

In the main body we present a number of experiments where we have to report the average performance over a number of
tasks for space constraints. We now present the individual task results in Table 4.

Table 4. Individual task results for the “averaged” results in Table 2. bold: best method.

FT Method on Task A FT Method on Task B Instruction Following Arc GSM8k SQL
FFT FFT 0.450.21 74.1.09 51.90.09 98.90.01

LoTA (ours) FFT 11.480.73 73.30.02 53.90.09 98.90.01
LoTA (ours) LoTTO (ours) 15.880.88 70.30.01 52.50.01 98.60.01

C.6. Storing LoTA Adapters Efficiently

Although FFT generally performs better than PEFT methods, it is typically infeasible to store a full copy of the model
weights for each task. Practitioners, therefore, consider a tradeoff between memory and adaptation performance when
loading task-specific adapters. We now discuss the memory consumption of LoTA and LoRA. Storing the sparse task vector
from LoTA requires 64 bits per parameter, 32 from the parameter, and 32 for the metadata needed to store the location of the
parameter. The latter breaks down as 5 bits for the layer index, 3 bits for the module index within the layer, and 12 bits for
each of the layer input and output dimensions in delta encoding. If we use 90%-sparse LoTA, our task vector is compressed
5×; if we use 99%-sparse LoTA, our task vector is compressed 50×. The memory-utility tradeoff between LoTA and LoRA
can be quantified in terms of each method’s performance at a given level of compression, which translates into the sparsity
level for LoTA and the rank r for LoRA. We provide a further comparison in Section C.10 as ablation.

C.7. Does LoRA Really Forget Less, or Does It Just Learn Less?

Recent work evaluates the performance of pre-trained models before and after fine-tuning on domain-specific tasks with
LoRA (Biderman et al., 2024; Ghosh et al., 2024) and concludes that LoRA is less prone to catastrophic forgetting than
FFT. In Table 2 we find that adapting the FFT Instruct model with LoRA does not lead to less degradation in winrate than
adapting the FFT Instruct model with FFT, but it does lead to worse performance on the downstream task.

14

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

Lottery Ticket Adaptation: Mitigating Destructive Interference in LLMs

C.8. How Much Does Data Reuse Help?

The simplest and arguably most performant method from prior work that we found for mitigating catastrophic forgetting
is simply to mix in some in-distribution data from Task A. This is the line marked with “FFT (Mixed)”, and it does mitigate
forgetting on Task A, but at the cost of performance on Task B. We ablate the amount of data from Task A to be used
between 1− 100% of the dataset size of the data from Task B, and this is the best result in terms of mitigating forgetting on
Task A. As we mix in less and less data from Task A, this method approaches just doing FFT sequentially in performance,
so we omit those results for brevity.

LoTTO adds an additional layer of computational overhead and is somewhat impractical; if we need an additional level
of calibration for each task, we can run out of parameters to update quite fast. However, we find that the mask we calibrate
for GSM8k can be used even when other data is present. We now consider the more challenging setting when we need
to adapt to multiple tasks without catastrophic forgetting while still obtaining good performance on those tasks.

In Table 2 we adapt an Instruct model to a mix of reasoning, math, and SQL data and find a surprising result; the FFT
Instruct model collapses almost completely to a winrate of less than half a percent. As we showed in Table 2 this can
be mitigated by mixing in more instruction following data, albeit at a cost. The LoTA Instruct model still degrades in
performance (19→ 11) but nowhere near as much. In the line marked “LoTTO”, we instead adapt the LoTA Instruct model
to the downstream tasks using the mask calibrated from GSM8k with LoTTO. Applying LoTTO to make the downstream
adaptation be mutually sparse with the initial LoTA Instruct model increases performance significantly on instruction
following and math. Performance on Arc and SQL suffers somewhat because our mask does not consider those tasks, but
this means that our mask is much cheaper to calibrate and is, in fact, generalizable not only across tasks within a domain (as
shown in Table 2) but also across domains.

C.9. Model Merging

Table 5. Model merging of Task A, Instruction Following, and Task B, (varied). Fine-tuning on Tasks A and B is performed using both
full fine-tuning (FFT) and LoTA. The utility of each task is computed after merging the two task vectors. bold: best result, underline:
second best result. We reproduce the baseline for each task on FFT from Table 1 for convenience; note again that for some tasks the LoTA
baseline outperforms the FFT baseline. All results are with Mistral.

Task B Method on Task A Method on Task B Utility of Task A (Drop) Utility of Task B (Drop)

Instruction Following Baseline - 19.0 (-) -

GSM8k

- Baseline - 59.8 (-)
FFT FFT 6.90.5 (12.1) 59.10.1 (0.7)

LoTA (ours) FFT 16.10.8 (2.9) 60.51.1 (+0.7)
FFT LoTA (ours) 14.00.8 (5.0) 59.31.0 (0.5)

LoTA (ours) LoTA (ours) 15.10.8 (3.9) 58.41.1 (1.5)

Samsum

- Baseline - 52.0 (-)
FFT FFT 8.10.7 (10.9) 47.00.0 (5.0)

LoTA (ours) FFT 13.80.8 (5.2) 51.80.2 (0.2)
FFT LoTA (ours) 10.40.7 (8.6) 53.30.1 (+1.3)

LoTA (ours) LoTA (ours) 15.40.9 (3.6) 52.70.1 (0.1)

GSM8k+Samsum

- Baseline - 55.9 (-)
FFT FFT 7.60.6 (11.4) 49.71.1 (6.2)

LoTA (ours) FFT 8.90.6 (10.1) 50.71.1 (5.2)
FFT LoTA (ours) 10.70.7 (8.3) 55.01.1 (0.9)

LoTA (ours) LoTA (ours) 13.10.8 (5.9) 46.61.0 (9.3)

In Table 5 we merge together models trained on GSM8k and Samsum with the Mistral model that we trained for instruction
following. We consider the full combination of merging FFT and LoTA models. The merge of two FFT models performs
poorly in all settings on both tasks, indicating that post-hoc sparsification does not perform well for heterogeneous tasks,
which is in line with recent model merging theory (Daheim et al., 2024). The merges that contain LoTA models have better
performance across all tasks, but there is no combination that is pareto-optimal across all tasks.

C.10. Ablations

Sparsity. We vary the sparsity parameter in LoTA in Table 6. Multiple sparsity thresholds work well; a small amount of
sparsity (i.e., 10%) seems to have a negative impact on the model, but this is within the error bars and may just be variance.
Attempting to achieve 99% sparsity from the task vector of an FFT model does not yield good results. Instead, we can first
obtain a mask with 90% sparsity, then train a LoTA model with this mask, and then use the task vector from the 90%-sparse

15

825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

Lottery Ticket Adaptation: Mitigating Destructive Interference in LLMs

LoTA model to calibrate the mask for our 99%-sparsity model, which we denote as 99%∗. Composing multiple steps of
calibration trades off performance in the high-compression setting with compute overhead.

Table 6. The impact of varying the sparsity ratio on the performance of LoTA. 99%∗ denotes the model calibrated with iterative LoTA.

Sparsity 0% 10% 25% 50% 75% 90% 99% 99%∗

Performance 19.01.0 18.21.0 18.51.0 18.21.0 19.50.9 19.01.0 13.10.8 17.40.9

Compute Overhead. Arguably, the main reason why PEFT methods such as LoRA are commonly used is because they
reduce the memory consumption in the backward pass, thus enabling the use of a larger pass. (Biderman et al., 2024)
recently critically analyzed this and found that to fit tasks such as math and code generation, LoRA needs to use high ranks,
which in turn reduces the speedup to at most 15%. We nevertheless acknowledge that any and all PEFT methods will be
faster than LoTA during training because LoTA requires an initial pass over the dataset to calibrate the sparsity mask.

Table 7. LoTA performance degrades gracefully as a smaller fraction of the data is used on the most challenging task (instruction
following). 0 data usage = just creating a random mask.

Data Used 10% 1% 0

Performance Drop (from 100%) 4.2% 10% 20%

In Table 7, we now consider how the performance drops if we calibrate the mask for a fraction of the overall dataset, including
the baseline where we use a random mask which corresponds to 0% data used. LoTA can be efficiently calibrated, and even
training on a small fraction of the dataset can provide 90% of the performance of the fully calibrated mask. Furthermore,
instruction tuning datasets are generally quite small (we completed all experiments in a few hours on just a single GPU).
Given that the mask can be efficiently calibrated, transferred from other datasets, or in the worst case, calibrated on the entire
dataset in a few hours, we do not anticipate that the compute overhead of LoTA will be a major limitation of the method.

Storage Cost of Adapters. Comparing the compression-utility tradeoff between LoRA and LoTA is challenging because
the size of the saved LoRA adapter is determined by the rank parameter r, and more is not always better (which is why
we have to tune r for every task for LoRA). As a single point of comparison, we can look at the performance on instruction
following, where 99%-sparse LoTA (17.4) outperforms LoRA for any rank (best performance of 15.3 achieved at r = 64,
increasing rank reduces performance), and they both achieve a compression factor of ≈ 50×. For levels of compression
beyond 100×, i.e., LoRA r = 8, LoTA does not perform well.

16

