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Abstract

Online min-max optimization has recently gained considerable interest due to its rich ap-
plications to game theory, multi-agent reinforcement learning, online robust learning, etc.
Theoretical understanding in this field has been mainly focused on convex-concave settings.
Online min-max optimization with nonconvex geometries, which captures various online
deep learning problems, has yet been studied so far. In this paper, we make the first effort
and investigate online nonconvex-strongly-concave min-max optimization in the nonstation-
ary environment. We first introduce a natural notion of local Nash equilibrium (NE)-regret,
and then propose a novel algorithm coined SODA to achieve the optimal regret. We further
generalize our study to the setting with stochastic first-order feedback, and show that a
variation of SODA can also achieve the same optimal regret in expectation. Our theoretical
results and the superior performance of the proposed method are further validated by em-
pirical experiments. To our best knowledge, this is the first exploration of efficient online
nonconvex min-max optimization.

1 Introduction

Online optimization (Cesa-Bianchi & Lugosi, 2006) is a powerful paradigm for modeling many applications
that require decision making based on information available sequentially. Specially, at each time instance, an
online player needs to make a decision based on the history information, and then receives a feedback (which
can be a possibly adversarial and nonstationary reward or loss value) that may be used in the future. There
have been extensive studies in this field for various scenarios, such as online convex optimization (Shalev-
Shwartz, 2012; Hazan et al., 2016), online bilevel optimization (Tarzanagh & Balzano, 2022), online federated
learning (Chen et al., 2020), etc. Recently, the online min-max (i.e., saddle point) problem has gained
considerable interest due to its broad applications in game theory (Roy et al., 2019; Zhang et al., 2022a),
multi-agent reinforcement learning (Bugoniu et al., 2010; Zhang et al., 2021), online robust learning (Gabrel
et al., 2014; Ben-Tal et al., 2015), to name a few.

On the theoretical side, a line of works have explored provably efficient algorithms for online min-max
optimization. Specifically, Cardoso et al. (2019); Fiez et al. (2021); Immorlica et al. (2019); Zhang et al.
(2022b) considered the zero-sum matrix games where the online objective function takes a bilinear form.
Rivera et al. (2018); Roy et al. (2019) studied a more general online min-max problem, where the objective
is strongly-convex and strongly-concave. Noarov et al. (2021) focused on multi-objective online min-max
games, where the reward is convex-concave in each coordinate.

Despite many efforts so far, existing literature on online min-max optimization has mainly focused on on-
line convex-concave problems and did not take nonconvexity into consideration. However, in practice,
nonconvexity occurs very often in online min-max problems, particularly those that apply deep neural
networks (DNNs) for decision making. For instance, in the time-varying two-player zero-sum stochastic
games (Mertens & Neyman, 1981; Roy et al., 2019; Zhang et al., 2022b), where the payoffs change with
time, the policies are modeled by DNNs with strong regularization, and hence the online objective function
is nonconvex-strongly-concave.

Motivated by the aforementioned practical problems, the goal of this paper is to take the first step towards
exploring the online nonconvex-strongly-concave min-max problem with dynamic (and hence non-
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stationary) loss functions. Due to the nonconvexity and nonstationarity nature of the problem, two new
challenges arise as we explain below.

First, how to define an appropriate notion of regret for the monstationary environment under the online
nonconvex setting? The standard notion of Nash Equilibrium (NE)-regret, e.g., (Rivera et al., 2018) for
online convex-concave problems, which quantifies the difference between the cumulative loss of players and
the min-max value of the cumulative payoff loss, is highly unreasonable for nonconvex-concave setting, since
the min-max comparator is intractable for a nonconvex-concave function. Hence, new surrogate for regret is
in demand.

Second, with a desirable notion of regret, how to design efficient algorithms? A natural strategy to handle the
nonstationarity is that at each round, the decision maker first learns a good enough decision based on history
losses and then applies it to the adversarial loss of current round. Two key difficulties will arise during this
process. First, how to identify a good decision? In nonconvex min-max problems, a good decision usually
refers to a stationary point. The standard definition of a stationary point involves an optimization oracle,
which is unknown to the decision maker. Thus the decision maker needs to find a surrogate to identify a
near stationary point at each round. Second, when applying the decision based on history information to
the adversarial loss, mismatch errors arise due to the variability of the environment, which motivates the
need for nonstationarity measures.

1.1  Our contributions

In this paper, we handle the aforementioned challenges by introducing a new regret measure and develop-
ing efficient algorithms for online nonconvex min-max problem with optimal regret guarantees. The main
contributions are highlighted below.

o We first introduce a novel notion of dynamic regret for online nonconvex-strongly-concave min-max
problem, called local Nash equilibrium (NE)-regret, which jointly captures the nonconvexity,
nonstationarity, and min-max nature of our problem.

e Based on the regret notion, we propose an efficient online min-max optimization algorithm, named
time-Smoothed Online gradient Descent Ascent (SODA). The main idea underlying SODA is to
output a near-stationary point at each round by performing two-timescale gradient descent ascent
and utilizing a specially designed stop criterion component.

« We show that the local NE-regret of SODA scales as O(-1;) with a iteration complexity of O(Tw),
which matches the Q(-%;) regret lower bound and the order of iteration complexity of O(T'w) pro-
vided in Hazan et al. (2017a) for online minimization (where we set the maximization to be over
a singleton). Thus, SODA achieves the optimal performance for online nonconvex-strongly-concave
min-max optimization.

e We further generalize our study to the setting with stochastic first-order feedback and show that a
variation of SODA can also achieve a regret of O(Z;).

To our best knowledge, this is the first study on online nonconvex min-max optimization with theoretical
characterization of the regret performance.

1.2 Related Work

Online min-max optimization. Recently, online min-max optimization, also known as online saddle-
point game, has emerged as an interesting optimization framework, and has been studied under various
settings. More specifically, the zero-sum matrix game considers the special case that the function is bilinear
with a payoff matrix A;, where the objective function is given by f;(x,y) = x' A;y;. Several works, for
example, Cardoso et al. (2019); Fiez et al. (2021); Immorlica et al. (2019); Zhang et al. (2022b) proposed
and analyzed algorithms with respect to different notions of regret. For more general objective functions,
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Rivera et al. (2018); Roy et al. (2019) studied the case where the loss function f; is strongly-convex-strongly-
concave. Very recently, Noarov et al. (2021) formulated a general multi-objective framework, where the goal
is to minimize the maximum coordinate of the cumulative vector-valued loss with convex-concave function in
every coordinate. We emphasize that all of the above studies did not consider nonconvexity in their objective
functions, which is the focus of our study here.

Online nonconvex optimization. As online nonconvex optimization is an active research area, var-
ious works have taken different approaches to handle the nonconvexity. Assuming access to an offline
nonconvex optimization oracle to approximate minimizers of perturbed nonconvex functions, Suggala &
Netrapalli (2020); Agarwal et al. (2019) studied the performance of “follow the perturbed leader” (FTPL)
algorithm (Kalai & Vempala, 2005), and their regrets are all static regret. Further, Hazan et al. (2017a);
Hallak et al. (2021); Aydore et al. (2019) considered online nonconvex problems under nonstationary en-
vironments, and utilized sliding windows method with window size w. They proposed different notions of
dynamic regrets and algorithms, and achieved an order of O(%) according regret notions. Additionally,
Héliou et al. (2020) studied online nonconvex optimization with imperfect feedback. Except first-order opti-
mization, Héliou et al. (2020); Roy et al. (2022) considered zeroth-order online nonconvex optimization and
Lesage-Landry et al. (2020) studied second-order online nonconvex optimization.

Offline min-max optimization. There is a rich literature that studies a diverse set of algorithms for
min-max optimization with nonconvexity in the offline setting. We next describe only those studies highly
relevant to our study here. One celebrated approach is the nested-loop type algorithm (Rafique et al., 2021;
Nouiehed et al., 2019; Thekumparampil et al., 2019; Kong & Monteiro, 2021), where the outer loop can
be treated as an inexact gradient descent on a nonconvex function while the inner loop aims to find an
approximate solution to the maximization problem (see Lin et al. (2020a) and references therein for a good
collection of such studies). Another approach, manifesting in the recent works of Lu et al. (2020) and Lin
et al. (2020a) considers less complicated single-loop structures. Specifically, the two-timescale GDA analyzed
in Lin et al. (2020a) is closest to the implementation at each round of our proposed SODA method. But it is
not straightforward to generalize the design to the online setting, and our analysis of the new local NE-regret
for online optimization is also very different from such a offline min-max problem.

1.3 Notations

[T] = {1,...,T}. We use bold lower-case letters to denote vectors as in x,y, and denote its fo-norm as || - |.
We use calligraphic upper case letters to denote sets as in ), and use the notation Py to denote projections
onto the set. For a differentiable function ®(-) : R™ — R, we let V®(x) denote the gradient of ® at x. For
a function f(-,-) : R™ x Y — R of two variables, Vi f(x,y) (or Vy f(x,y)) denotes the partial gradient of f
with respect to the first variable (or the second variable) at the point (x,y). We also use V f(x,y) to denote
the full gradient at (x,y) where Vf(x,y) = (Vxf(x,¥), Vyf(x,¥y)). Finally, we use the notation O(-) and
Q(-) to hide constant factors which are independent of problem parameters.

2 Problem Setup
We consider solving the following online min-max (i.e., saddle-point) problem:

mingepm Maxyey fi(x,y), t€ [T (1)

where f; : R™ x R™ — R is generally nonconver in x but concave in y and where ) is a convex set. At
each round ¢ € [T, the environment first incurs a loss function f;. Without knowing the knowledge of f;,
the x-learner and y-learner are tasked with predicting x; and y; respectively to solve eq. (1) based on loss
functions up to round ¢ — 1, i.e., {f;}!Z]. The learners then observe the function f;(-) and suffer a loss of

fe(xt,¥¢t)-
The following regularity assumptions for f; are made throughout the entire paper:

Assumption 1 (Smoothness). f; is ¢-smooth YVt € [T], i.e., ¥V(x,y),(x',¥’), it holds that ||V fi(x,y) —
VA Yy < ixy) = &yl
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Assumption 2 (Strong Concavity). The function fi(x,-) is p-strongly concave Vt € [T}, i.e., given x € R™,
Vy,y', it holds that fi(x,y) < fi (x,¥') + (Vy fr (x,¥),y —¥') = & ly = ¥'II*.

Assumption 3 (Boundness). The set Y is a convex and bounded set with diameter D > 0. There exists
M >0, st |fi(x,y)| <M, Vte[T],x eR™ ye ).

The above assumptions are standard in the literature of online learning (Hazan et al., 2017b) and min-max
optimization (Lin et al., 2020a;b).

When the loss f; is fixed for all ¢, our framework specializes to the standard nonconvex-strongly-concave
min-max optimization (Lin et al., 2020a;b). Putting into the context of online min-max optimization,
our formulation is similar to those in Roy et al. (2019); Rivera et al. (2018); Zhang et al. (2022b), where
they studied only the case where f; is convex-concave. However, their standard regret minimization and
equilibrium computation will be computationally infeasible for general nonconvex-strongly-concave losses.

3 How to Measure the Performance?

3.1 Local Nash Equilibrium (NE)-Regret

We introduce a new definition of a local regret that suits online nonconvex-strongly-concave min-max prob-
lems. Our new metric is motivated by the online nonconvex optimization literature; see for example Hazan
et al. (2017a); Hallak et al. (2021). Specifically, for each ¢, we first define the smoothed functions of f; over
a sliding-window of size w as:

def

Fru(xy) = L350 fii(x,y). (2)

For notation convenience, we treat fi(x,y) as 0 for all ¢ < 0. Moreover, since the averaging preserves strongly-
convexity, which implies F} ,, is strongly-concave in y, the maximization problem maxyey F} ., (x,y) can be
solved efficiently. Then, we can naturally define the following function:

def
(I)t,w(x) = maXyey Ft,w (Xa Y)~ (3)

The overall goal of online min-max optimization can be viewed as online minimization over the above defined
Dy 4 (+) function.Thus, we define the following regret metric with respect to @y ., (+).

Definition 1 (Local Nash Equilibrium (NE)-Regret). Let f; be a sequence of functions satisfying Assumption
1-3, with ®; ., () defined in eq. (3). The w-local Nash Equilibrium (NE)-Regret is defined as:

R ne(T) Z ST VP02 (4)

V&, ,, is well-defined since ®, ,, is differentiable for nonconvex-strongly-concave min-max problem (Lin et al.,
2020a). We next justify the above notion of the local NE-regret from three aspects.

Why norm of gradient as metric? In online convez-concave min-max optimization, it is standard to
consider the Nash Equilibrium (NE)-Regret (Rivera et al., 2018) metric, defined as:

T . T
‘ Zt:1 ft (Xh Yt) — MlNxcrm MaXycy Zt:1 ft (X7 Y)|

However, the above metric of NE-regret is inappropriate and face a major issue in the online nonconvez-
concave formulation. The core challenge is that, even in the offline case (' = 1), it is hard to efficiently
find the global optimum of minyecpm maxyey f1(x,y) in the hindsight. Clearly, the problem is equivalent to
minyepm P(x), where ®(-) = maxyey fi(-,y) is generally nonconvex, and hence finding the global minimum
for ®(x) is NP hard. A common surrogate for the global minimum of ® in the offline nonconvex-strongly-
concave min-max literature is the notion of e-stationary point (Lin et al., 2020a;b) for differentiable ®, i.e.,
there exists some iterate x; for which ||[V®(x;)||?> < e. If € = 0, then x; is a stationary point. Therefore,
it is reasonable to leverage such a norm of gradient as the optimality criterion from the offline nonconvex
min-max analysis.
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Why sliding-window averaging? The motivation behind the window averaging is two-fold: (¢) F},, and
®, ., represent the average performance during the window, which is widely adopted to handle noises and
fluctuations when the environment and the loss function f; encounter mild perturbations and variations.
For instance, when each loss function f; is an unbiased noisy realization of some f, the expected gradient
norm of a randomly selected update inside the window is a standard measure in the nonconvex stochastic
optimization literature (Bottou et al., 2018) and can reduce the variation caused by noises. Such smoothed
notion is also a common practice in the field of online nonconvex optimization' (Hazan et al., 2017a; Hallak
et al., 2021; Aydore et al., 2019; Zhuang et al., 2020). (i7) The average performance itself is also a typical
notion that people are interested in real-world applications. Suppose a decision maker in a time-varying
environment (with loss functions f;) has only finite term memory w. Then she naturally wishes to find the
best decision based on the entire finite term memory and will choose the average loss function F3 ,, and @, ,,
as the performance metrics. As another example, if the environment varies in a periodic manner, such an
average performance metric during a whole period is naturally adopted in time series forecasting problems.

Why capturing the dynamic nature? It is desirable that the regret can capture how well the players
adapt their actions to the best decision at each round if the environment is nonstationary and changes over
time. In the well-studied online convex-concave setting, the notion of dynamic regret (Zhang et al., 2022b) is
defined for this purpose, since its definition of | 23:1 fe(xe,y¢) — Zle mingerm Maxycy fi(x,y)| evaluates
the gap to the min-max comparator at each round instead of the min-max solution of the sum of functions
over all rounds. For the nonconvex min-max setting, the best min-max comparator at each round can be
set as the stationary point of the window function ®;,,(-), which has zero gradient. Hence, our local regret
in eq. (4) can be interpreted as evaluating the gap between ||[V®; ,,(x:)||* and its comparator (which equals
zero gradient) at each round, and thus implicitly captures the player’s adaption to the dynamic setting.

3.2 Variability of Environment

Intuitively, if the environment (and hence the loss function f;) changes drastically over time, it will be
hard to obtain meaningful guarantees efficiently. To handle this problem, dynamic (Roy et al., 2019; Zhang
et al., 2022b) or local (Hallak et al., 2021) regret serves as better performance metrics to take the changing
environment into consideration. Such notions typically rely on certain nonstationarity measures of the envi-
ronment in order to reflect how the system dynamics affects the performance. Therefore, in this subsection,
we introduce such measures of variation for loss functions, which will be crucial in our analysis and capture
the nonstationarity of our online min-max settings.

Definition 2 (Variation of Sliding-window). Let us denote y; ,,(x) = argmaxyey F; .,(x,y). The sliding-
window variation in X is defined as:

View[T] i= Y12y sWbxeron |V fi (3%, ¥70(%)) = Vefimw (3%, 77,0(%)) |17 (5)

Moreover, the sliding-window variation in 'y is defined as:

Vi wlT] = S0y $UPxeren IV fr (%, ¥50(%)) = Vi frmw (%, ¥51,0 (%)) 1 (6)

Remark 1. Clearly, Vi ,[T] and V5, ,[T] are O(T') if the gradients of f, are bounded and can be zero in the
offline setting, i.e., T = 1. A key observation is that if the loss function encounters a periodic shift with
certain period length of w*, i.e., fi4w+ = fi, then for w = w*, f; = fi—, and yj ,, = y{_1 4, Which is implied
by the fact that Fyi1., = Ftw. As a consequence, for the well-tuned w, the sliding-window variations could
be considerably small compared to T', especially Vi ,[T] = V4 .[T] = 0 in the above case.

4 SODA: Time-Smoothed Online Gradient Descent Ascent

In this section, we present our proposed method, named time-Smoothed Online gradient Descent Ascent
(SODA), for online nonconvex-strongly-concave problem, and we show that our approach is capable of
efficiently achieving a favorable local NE-regret bound.

Hf we view ) to be singleton, the local NE-regret degenerates to local regret proposed in Hazan et al. (2017a).
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Algorithm 1 Time-Smoothed Ounline Gradient Descent Ascent (SODA)
Input: window size w > 1, stepsizes (1x, 1y ), tolerance 6 > 0
Initialization: (x1,y1)
1: fort=1to T do
2:  Predict (x¢,y¢). Observe the cost function f; : R™ x R* — R
Set (Xt41,¥e+1) < (Xe,¥e)
repeat
Xet1 ¢ Xep1 — Nx Ve Frw (Xeq1, Yit1)
Y1 & Py (Ye+1 + 1y VyFrw (Xe41, Yi+1)) ,
until 5 [[yer1 =Py (Yerr + 0y VyFrw (Xe41, Yer1)) 12+ VPt w0 (Xe41, Ye41) I < 523
end for

4.1 Proposed Algorithm

At the high-level, our algorithm plays following the-leader iterates, aiming to find a suitable approximating
stationary point at each round using two-timescale gradient descent ascent (GDA). At each round ¢, SODA
performs gradient descent over the variable x with the stepsize 1y and gradient ascent over the variable y
with the stepsize ny on function F; ,(x,y) until the stop condition is satisfied. Then, SODA observes the
loss function fi11 to be used in the next round. The pseudocode of SODA is summarized in Algorithm 1.

Discussions about stopping criterion. Due to the online nature, the design of the stopping condition is
to guarantee that the learner outputs a good x;,; with small local regret at round ¢, i.e., ||V®;  (x;11)]|? is
small enough. However, we do not have direct access to the first order oracle of ®; ,,. To circumvent this issue,
we adopt the global error bound condition from the seminal paper Drusvyatskiy & Lewis (2018) to translate
conditions on V®; ,,(x¢41) into restrictions on tractable VF; ,,. Specifically, we prove that ||[V®; ,(x¢41)]?
is upper bounded by the left-hand side of inequality in Algorithm 1 line 7 (see Lemma A.3). Therefore,
alternatively we can utilize the accessible information of VF} ., to terminate the inner loop iterations at time
t.

Last-iterate guarantee. At each round ¢, the stop condition will be triggered only when the local regret
of last iteration is small enough. Such a last-iterate type guarantee is different by nature from existing
offline nonconvex-strongly-concave min-max results (Lin et al., 2020b;a), which are only guaranteed to visit
an e-stationary point within a certain number of iterations, i.e., where the return x is uniformly drawn
from previous iterations. Crucially, we will establish the total iteration bound (see Theorem 2) in the next
subsection, which indicates that such last-iterate type outputs can be obtained efficiently. Furthermore, since
the stopping criterion leads to stronger guarantee, our result is incomparable with former offline iteration
complexity in the special case that T' = 1.

4.2 Theoretical Guarantees

In this subsection, we provide the regret and computational complexity guarantees of our algorithm under
local NE-regret and highlight several connections with the existing results from offline min-max optimization
and online nonconvex problem.

Theorem 1 (Local NE regret minimization). Let x = £/u denote the condition number. Under Assump-
tions 1-3, and letting the stepsizes be chosen as 1y = © (1/&3@ and ny = O(1/L), then Algorithm 1 enjoys
the following local NE-regret bound:

R 7y =T |ve 2. < 3 (7§24 mw” T] + Viw|T
w-nNE(T) Zt:1 [ t,w(Xt)H > w?( + (w—1)2 y,w[ 1+ x7w[ ).

Theorem 2 (Iteration bound). Let 7 denote the total number of iterations incurred by Algorithm 1. Then
T can be upper bounded as:

480K3 ¢ MwT k2T 256D2k302w? w2k
< — +256—— 512 Vo wlT].
TS B Py Wl
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Furthermore, the number of first-order gradient calls is bounded by O(w).

Theorems 1 and 2 together reveal the trade-off between the impact of sliding-window size w on the regret
and the computational complexity, where larger w leads to smaller regret bound but incurs more gradient
calls.

Robustness of SODA. Our results in Theorems 1 and 2 are expressed in terms of variation measures
Va,w|T) and V5 ., [T] of the environment introduced in Section 3.2. If we make the more restrictive assumption
similar to that in Hazan et al. (2017a) that the gradient of f; is bounded, the above theorems provide a
robust guarantee for SODA; namely, no matter how the environment changes at each round, SODA always
ensures O(Z;) local NE-regret with O(Tw) iterations since Vi ,,[T] and Vy ,,[T] are O(T) by definitions.
Therefore, the regret can be made sublinear in T if w is selected accordingly. Interestingly, following SODA,
the local NE-regret can achieve the same order without the bounded gradient assumption depending on the
nonstationarity. Particularly, as we discussed in Remark 1, for the scenario that f; is periodic with period
w, Vi w[T] = Vy,w[T] = 0.

Optimality of regret bound. Note that the basic online nonconvex minimization problem can be viewed
as a special case of our online nonconvex min-max problem, if f;(x, y) takes values independent of y. In such a
degenerate case, our local NE-regret is equivalent to the local regret analyzed in Hazan et al. (2017a); Hallak
et al. (2021). Consequently, the adversarial example that incurs the local regret of Q(w%) constructed in
Hallak et al. (2021) can also serve as a worst case example for our online noncovex min-max setting. Moreover,
under the same assumption made in Hazan et al. (2017a) (which is more restrictive than our assumption
here), we achieve a robust regret upper bound of O(%) (as discussed in the previous paragraph), which
matches the worst-case lower bound, indicating that our bound Theorem 1 for online nonconvex min-max
problem is optimal.

Comparison to offline min-max optimization. When the environment is fixed, i.e. f; = f or T = 1 with
w = 1, our problem specializes to offline min-max optimization and Vi ., [T| = Vi .,[T] = 0 will disappear
from our results. Therefore, an immediate implication from our theorems is that GDA is guaranteed to find
e-stationary point with O(k3¢~2) iteration complexity. The best known complexity bound for GDA in offline
min-max optimization is O(k%e~2) (Lin et al., 2020a). However, as we discussed in Section 4.1, SODA aims
to output x with last-iterate type guarantee, which is a stronger notion than that considered in Lin et al.
(2020a), where GDA are only guaranteed to visit an e-stationary point within a certain number of iterations.
Thus, these results are not directly comparable.

5 SODA with Stochastic First-order Oracle

In this section, we extend our online min-max framework to an online stochastic version. This setting is
motivated by the fact that, in real world application, such as training a neural network, an oracle with
access to the gradient of loss function is hard to reach. Instead, a stochastic first-order oracle (SFO) is used
to approximate the ground truth gradient. Similar settings have been studied in Nemirovski et al. (2009);
Hazan et al. (2017a); Hallak et al. (2021). Specifically, the formal SFO definition is as follows.

Definition 3 (Stochastic first-order oracle). A stochastic first-order oracle (SFO) is a function Sy such
that, given a point (x,y) € R™ x Y, a random seed ¢, and a smooth function h : R™ x Y — R satisfies:

o S,(x,¥;C, h) is an unbiased estimate of Vh(x,y) : E(S(x,y;(,h) — Vh(x,y)) =0;

o S,(x,¥;¢, h) has variance bounded by o> >0 : E (||S(x,y;§,h) — Vh(x, y)||2) < o2

5.1 Proposed Algorithm

With the above definition of SFO, we introduce the stochastic version of Algorithm 1, named SODA-SFO (see
Algorithm 2). Similarly, SODA-SFO also follows the-leader iterates using two-time scale GDA. Taking the
noise brought by SFO into consideration, nested loops and special stopping criterion (in line 6 in Algorithm 2)
are modified accordingly. Specially, (i) SFO results in different coefficients in stop criterion compared to
SODA. (ii) The stopping criterion in SODA-SFO only ensures that ||[V®; . (x¢+1)||* is bounded by the
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Algorithm 2 SODA with Stochastic First-order Oracle (SODA-SFO)

Input: window size w > 1, stepsizes (1x, 1y ), tolerance 6 > 0
Initialization: (x1,y1)

1: fort=1to T do

2:  Cost function f; : R™ x R™ — R is updated;

3: Samgle ﬁft (XtaYt) fsa/w (Xtayt;Caft) B B

40 Set VFy . (x¢,y¢) = VF_1.0 (~XtaYt) + %(vftfw (Xtyyt) =V fi (%¢,51))

5: Set X? = X, yg =Y Gg,t = vth,w (Xt7yt)7 Gg)/,t = Vy—Ft,w (Xtayt)u k=0
. K‘/z

6:  while 2777}2,”3’;€ — Py (y;tC + nyGI;:}t) 12+ HGi,t”2 > 6% /3w?* do

7: xf'H — Xf — nxGi,t

sy e Py (yi+nyGy )

9: Sample vfi(xf_‘_l?}%f—‘rl) A S%(Xf+17Y{t€+1; Ca fl) fOI‘ t=t—w + 1a e 7t7

10: Set GFT = (GFLL, G = L5 VAT v

11: k< Ek+1

12:  end while
130 Xep1 = X5, yer1 = yr, and VF, o (Xe41,Yi41) = GF
14: end for

threshold plus the variation of SFO. But the variation here does not play an important role, since sliding
windows serve variance reduction purpose to reduce the variation in the final expectation regret.

5.2 Theoretical Guarantees

Denote 7y as the number of iterations of inner loop at round ¢ and thus 7 = ZZ;I 7. We first establish that
for each round ¢, the inner loop terminates with finite iterations 74 provided that J is not too small (recall
that ¢ is the tolerance for stopping criterion), which justifies that SODA-SFO is computation tractable.

Theorem 3 (Finite iteration with SFO). Let k = ¢/u denote the condition number, and let the stepsizes be
chosen as nx = © (1/k3() and ny = ©(1/¢). Under Assumptions 1-3, for any t € [T], if 6,w and o satisfy
that 62 = O(M), then 7+ and 7 is finite with high probability. Specially, when K € R is large enough,

w

P(r, > K) = O(1/K).

With the finite step stopping guarantee on hand, we next characterize the performance of SODA-SFO with
expectation local NE-regret formally in terms of w, T, Vi [T, Vi w[T].

Theorem 4 (Expectation local NE-regret with SFO). Under the setting of Theorem 3, SODA-SFO enjoys
the following expectation local NE regret bound:

k249)0? 2
By wp(D)] < 5 (307 + L0 ) o ot r] o+ i)

Beyond finite stopping and the regret bound, people may wonder whether the inner loop is meaningful if
the per-stage calls of SFOs increase greatly, and are also interested in the total complexity of SFO calls.
To address such an issue, we further provide an upper bound on the complexity of SFO calls similar to
Theorem 2. In the stochastic online nonconvex min-max setting, we further need the following widely
adopted assumption (Li & Orabona, 2019; Hallak et al., 2021) to control the noise caused by SFO calls.

Assumption 4. Given any point (x,y) € R™ x Y, random seed (, and smooth function h: R™ x Y, the
SFO defined in Definition 3 satisfys that ||S(x,y;¢, h) — Vh(x,y)H2 < o2,

Remark 2. We remark here that Theorems 3 and 4 do not require Assumption 4, and Theorem 3 provide
the finite iteration guarantee with high probability and Theorem 4 provides an upper bound for expectation
regret. With Assumption 4, which is slightly stronger than the assumptions in Definition 3, we are able to
provide the following deterministic bound on iterations and the number of SFO calls as in Theorem 5. Fur-
thermore, Theorem 5 can provide deterministic guarantees rather than high probability guarantees because
Assumption 4 controls the variation of noise in an absolute and deterministic manner.
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Theorem 5 (Iterations and SFO calls bounds). Under the setting of Theorem 3 and Assumption 4, and
suppose that 62 > 540k*02. Then the total number of iterations satisfies

2 2 2, .2

1 2MTw + 732431 + 3#2?57_1)2 VywlT] +w?M + 5@2210

TS (32— 20402 '
x 27

Furthermore, the number of SFO calls is bounded by O(wT).

The above results also provide a robust guarantee for SODA-SFO, where SODA-SFO achieves a expectation
regret of O(Z;) with at most O(Tw) iterations and hence O(Tw?) calls of SFO, as long as Vi, [T] and
Vy.wlT) scale with O(T'). Following the similar discussions from Remark 1 and Section 4.2, such condition
can hold with relaxed assumptions depending on nonstationarity.

Specially, if the variance of SFO defined in Definition 3 is zero, then SFO reduces to perfect first order
feedback. Hence, as discussed in Section 4.2, the adversarial example provided by Hazan et al. (2017a)
is also applicable to the stochastic setting, and thus indicates that the expectation regret O(%) reaches
optimality. If the set ) is a singleton, online nonconvex min-max problem with SFO reduces to the online
nonconvex problem with SFO. In this case, the term consisting of V5, ,,[T] will disappear in our analysis, and
our theorems recover the results in Hallak et al. (2021).

6 Conclusions

This paper provides the first analysis for the online nonconvex-concave min-max optimization problem. We
introduced a novel notion of local Nash Equilibrium regret to capture the nonconvexity and nonstationary
of the environment. We developed and analyzed algorithms SODA and its stochastic version with respect
to the proposed notions of regret, establishing favorable regret and complexity guarantees.
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A Missing Proof of Section 4

A.1 Technical Lemma

Recall that ®;,(x) = maxyecy I o(X,y) and y;,(x) = argmaxyey F} . (X,y). In this section, we first
present some technical lemmas to characterize the structure of the function ®; ,, and y;j ,, in the nonconvex-
strongly-concave setting, which will be essential throughout the analysis.

Lemma A.1. @ (-) is (¢ + kl)-smooth with V® () = ViFrw (Y50 ()) - Also, y,,(-) is k-Lipschitz.

Proof. Since the averaging maintains the strongly-nonconcavity and smoothness, i.e. Fi,(x,y) is still p-
strongly-convave in y and ¢-smooth. Thus, the proof directly follow Lemma 4.3 in Lin et al. (2020a) and we
omit the details. O

Furthermore, we derive the following lemma to provide the smoothness property of y; ,,(x) with respect to
t. In other words, given any fixed x, the movement of y; ,(x) when ¢ changes can be controlled by the
variability of environment of the sliding window.

Lemma A.2. For any x € R™, ¢t € [T}, it holds that

< HVyft,w(Xv.V?,w(X)) - vyftfw(x7 yzll,w(x))H
- p(w —1) ’

[¥7 1.0 () = ¥i &)

Proof. By the optimality of y; ,(x) and y;_; ,,(x), for ¥x, we have

(Y = Vi) VyFruw(x,y; (X)) <0,Vy €, (7)
(Y = ¥i1.0() T VyFio1 (X, ¥y, (X)) < 0,Vy € V. (8)

Summing up Equation (7) with y =y}, ,,(x) and Equation (8) with y =y}, (x) yields that
(71,0 (%) = ¥1(0)) T (VyFrw(%,57(%)) = VyFro (%71, (%))) 0. 9)

12
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By the definition of F} ,(x,y), we have
VyFrw(X, ¥ (%)) — VyFt—l,w(XJZ‘ 1w (X))

w—1 w—1

*ZVyft sztw Zvyft i— 1(X yt 1w( ))

; {v)’ft,w(x7 yzw<x>) - Vyftfw(xaﬁq,w (X))}

+ % Z_: {vyft—i(xvyz,w(x)) — Vy fi-i(x, yf_ljw(x))} . (10)

Since for any ¢ and fixed x, the fi(x, ) is p-strongly-concave, we have

(y;&k—l,w( ) ytw {vyft ilX Yt 1 w( )) - Vyft—i(xa yzw(x))}

+,u|| yt—l,w(x)_yt,w X || SO (11)
Plug Equations (10) and (11) into Equation (9), then we have

(¥i—1,0(%) = yi‘,w(X))Ti {Vy fraw 57 0(X) = Vy frouw(yi 1 (%) }

—1
+ wTM (551,00 (%) = ¥ @)[|* < 0.

As a result

< —(.Vle,w(X) - y:,w(X))Ti {Vyfraw(®yiw(®) = Vyfiow(yi1w(x)}

1 * * * *
< E ||Yt—1,w (X) - yt,w(x) || ||vyft,w (Xv Yt,w (X)) - Vyfii—w (X, yt_l,w(x)) || )
where the last inequality follows from Cauchy-Schwartz inequality.

Finally, by some algebra manipulation, we finish the proof as following

* _ v* Hvyft,w(x,y;w(X)) - vyftfw(xv y;—l,w(x))H
HYt—l,w(X) Yt,w(X)H < 1) )

O

The next lemma provides an upper bound for the gradient norm of V&, ,, in term of notions about VF} ,,
which justifies our design of stop conditions.

Lemma A.3. Given a pair (x,y) € R™ x Y, fort € [T] and w > 0, it holds that

2k2
[V, (x)|? SUTHY =Py (y +1yVyFrw (x,¥)) [I?

y
+ 2[| Vi Fy (%, Y)||2
Proof. By Cauchy-Schwartz inequality, we have
V@0 (x)]* <2/ VPe,0(x) = VicFruw(x,3)]|* + 2/ VP (%, ¥) 2
<20y 4 (%) = ¥ 7 + 2/ VP (x, )12

where the last inequality holds by combining Lemma A.1 and the fact that F} ,, is ~smooth. Since F} ,(x, )
is p-strongly-concave over Y, from the global error bound condition in Drusvyatskiy & Lewis (2018), we
obtain

2
. K

1y7. (%) = yII* < 2V P (%) = VaFyw(x,y)|?
y

Thus, we complete the proof. O

13
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A.2 Local Regret: Proof of Theorem 1
Proof of Theorem 1. Recall the definition of ®; ,, and notice that

1

t
1
Pt (x) = mase ._;H filxy) = masc | Pt (x,y) + L (flx,y) = fi-w (%))

Then

19400 (x0)|I = ||V Fro (%1, 7,00 (x0)) |

== Hvth—l,w(Xta y:—l,w(xt)) + vx-FiE—l,u) (Xta y;w (Xt)) - vth—l,w(Xta y:—l,w(xt))
1 2

JFE (fot (Xt,y;w(xt)) — Vi fi—w (Xtayzw(xt)))

32 N "
<3|VP_1 (Xt)H2 + m”vyft (Xtvyt,w(xt)) = Vyft-w (Xt,yls—Lw(Xt)) ||2

3
+ EHvat (Xt7Y;fk,w(Xt)) - vxftfw (Xt7y>tk,w(xt)) ||27 (12)

where the second term in last inequality follows from that

IV F 1,0 (X, ¥i0 (%)) = Ve Fro1,0 (X, Y1, (%))l
< y7w(Xe) = Y1 (%)

(Z) K HVth,w(Xa Yf,w(x)) - Vyft*w <X> y;tkfl,w (X))H
- (w—1)

where (a) is implied by Lemma A.2.

Moreover, for the first term in Equation (12), by Lemma A.3, and the stop condition, we obtain

62

2
[V 1w (x:)]” < o2

Summing over ¢t =1,---,T, and combining the definition of variation measures Vy ., and Vy, ,,, then we have

2

F0) s olT] + View 7))

T
3
2 2
%w—NE(T) = ; ||(I)t,w(xt)|| < E(Ta + (w — 1)2 y,w

A.3 Oracle Queries: Proof of Theorem 2

Denote the sequence generated in the inner loop at time t € [T] by
Xto = Xt XiﬁLl — Xf - nxvth,w (Xicv yic)
v =ve yit e« Py(yi +nyVyFrw (x£,51))

Let 7, be the number of times the gradient update is executed at the t-th iteration. Note that x] = x;41
and yj = yi41-

A.3.1 Supporting Lemmas

We present three key lemmas which are important step descent lemmas. In this section, we focus on a crucial
quantity, 557 w = Hy;w (x]fC ) — yf”z, which are useful for the subsequent analysis. Throughout our analysis,
we choose nx = g2 and 7y = .

14
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Lemma A.4. Denote 7y the total iteration of inner loop at step t, for 0 <k <7 —1

k+1 k T)x 2 ko k\|2 Uxez
(I)t,w (Xt ) S(I)t,w (Xt) - (? - nxﬁg) ||vXFt»w (Xt7yt)” + 2

Proof. Since ®; ,, is (¢ + rf)-smooth and ¢ + rf < 2k, for any z,2T € R™, we have
Py (x1) = P (x) — (x7 = x)—r V&, (x) < KL Hx+ — XH2
Plugging x™ — x = —nxVx F} 4 (X,y) yields that

Py (X+) <Py (%) = 0x |V Frw (X, Y)||2 + 77,2('@5 IV Fw (%, Y)||2
+ Nx (vth,w (ny) - V(I)t,w (x))T vth,w (X7 Y)

By Young’s inequality, we have

(vth,w (X, y) - v(bt,w (X))T vxl'?t,w (X, y)
< ||vth,w (x,y) — V&, . (%) ||2 + ”Vth,w (x,y) H2
- 2

Since V@, 4 (X) = Vi Frw (X, Y7, (X)), we have
IVxFrw (%,5) = V0 (x) | < Elly = y7 ., (x)]?
Putting these pieces together, we obtain

Drw (%) <P (%) = (58 = 02RD) [|VxFr (5, ¥)]°

77X£2 *
+ By v GOl

Lemma A.5. For any t,k > 0, the following statement holds true,
k+1 k(2 2. ok
IyE = yHI? < (- Dot

Proof. By Young’s inequality, we have
Iyt = yil* < 20lyr ™ —yi (x) 12+ 20ly7 . (xF) - il

1 k 2 k
< - = =(4— 2ok,
< (2(1 o) +2) O = (4= 2)3t,,

Lemma A.6. Let 6ﬁw = ||y;w (xF) - yf||2, the following statement holds true,
1
s (1= 50 )l + 2PV )P

Proof. Since fi(x,-) is p-strongly concave and 1, = 1/¢, we have

_ 1 ke
7,0 (1) =¥ < (1= )dt!

By Young’s inequality, we have

15

k
6t,w
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o, < (1 T (1_)> 1¥h (571 = YEIP (U 205 = D)llyi () — vio (<) 12

2
g(” )nytw(’“)yf||2+2n||ym(xt> Vi () |2

2K
(1 - ) SEol 4+ 2nlly i () — v (1) |2 (15)

Since y; () is x-Lipschitz, we have

1y7 0 (x8) =¥ (1) 17 < 26% (I — %71 = 26703 | VaFrw(xi ™y I

Thus, plug into eq. (15)

5 < (1—) 5o 4 22 | VP (L yE )|

O
A.4 Proof of Theorem 2
Proof of Theorem 2. Denote v =1 — %, from Lemma A.6 and using telescoping we have
k-1
6Ew§’7k50 +2’i Z’yk 1= v Ftw(xtaYt>H (16)
7=0

Specially, for ¢t > 1,
51?11; = ||Yt Yi, w(xt)||2
< 20y = Yo (I + 20y () = ¥ (x5
62 2 Tt—1

< w2 + 12w — 1)2||vyft(xt 1Y, (X 7)) — Vyft—w(xt Yo 1w(xtﬁ 11))H2

Then plug Equation (16) into Equations (13) and (14) from Lemmas A.4 and A.5, and sum over outer loop
number.

Te—1 9
(= n2rt = 2 20%) 3 VP (31| < raw (x0) = @ (x40) + 35,
7=0
Tt—1 8 Te—1 . N (12
> IvE = yEIR < 85— 907, + (16 = 2)rtnd 3 ||[VaFrw (xd vl |
j=0 j=0
Letting nx = ﬁ, we have
T¢—1 8
)3 [V (v | 2t ) = B ) + 85282, (17)
Te—1 ) 'rt 1 2
> 60 yE T = i1 < (85— (50267, + Z VxFrw (x50 (18)

=0

16
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Therefore add Equation (17) x = and Equation (18) x = we have

|2 8¢

S [Hv Fow (xo3) |+ 027 = AI2] < @ (00— s (xe) +

10

Denote ®¢,,(x) = 0, we notice that

T
D (x7) Z Dy (xt) — Pro1,0(x4-1))
1

o~
Il

I
B

(Pt,w(xt) — Pp1,w(x)) + Z((I)t—l,w(xt) = Q41w (x¢-1))
1 t=2

o~
I

Il
g~
MH

(Fi (X6, 700 (%0)) = Frm 0 (X, Y51, (%1)))

t=1

M=

(ft(Xuyz,w(Xt)) - ftfw(Xt;yr,w(Xt))) + (‘I)t—l,w(xt) - (I)tfl,w(xtfl))

+
gl
[M]=

~
Il
-

t

[
o

—

[M]=

i)
<

[M]=

(ft(XuY;w(Xt)) - ftfw(Xt,yzk,w(Xt))) + (‘I)t—l,w(xt) - q)tfl,w(xtfl))a

1
w

~
Il
-
~
U
¥

where (i) follows from that y; ; ,,(x¢) is the maximizer of Fy 1 ., (X¢, ).

By some algebra, we have

T
1 *
Z‘I)tw xt)) = (Pt (Xe41) < *Z Je(xe, ¥ (x0)) — ft—w(xta}’t,w(xt))) = @710 (Xr41).
t=1

g

Sum Equation (19) over ¢, we have

x » 52 L k02T
10 2w2 20w?
T 1+—1

Z Z [HV Fiu (Xtayt)H + (k02 ly{ T =yl
d L8
< Z(‘Pt,w (x¢) = Prow (Xe41)) Z 5y

T
< S (e (50) ~ fr a5 Y 60) — )

t=1
8762 164 8¢D?
Vo wlT
thw2 T S5p2(w —1)2 Y 7]+ 5
2MT 8T 164 8¢D?
< —+ M Vo wlT .
- w A 50w? + S5u?(w — 1)2 yulT]+ 5
Hence
480k3 ¢ MwT k2T w?K30? w?Kd 256 D? k302 w?
< —— +256—— + 256 512 Vol _
S P A s el T 5
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B Missing Proof of Section 5

We first make some no:cation in Algoritth 2 clearly here, GFT! = %Zf:t_wﬂ V6t yrth) =
VFw(xPr yitly = (Vthyw(fo,ny),VyFt’w(fo,yf“)). And for casimplification, we denote
yF =y for any k > 7.

Before our theoretical analysis of Algorithm 2 and proof of Section 5, we define the filtration in Algorithm 2
formally to describe clearly what is known and what is unknown at certain stage.

Definition 4 (Filtration). For any t > 1, we denote filtration F; to be the o-fields that corresponds to the
randomness of all gradient feedback up to stage t — 1 and the decision of f: at stage t. In particular, Fi
includes fi,x; and @Ft_Lw(Xt,yt), but doesn’t include V f(x¢,y4), @Ftw(xt,yt).

For any t > 1, k > 1, we denote filtration FF to be the o-fields that corresponds to the randomness of
all gradient feedback up to the k-th iteration in line 6 at stage t in Algorithm 2. In particular, FF includes
fioXE Y8 NV E, (e, ye), AV (% vy ) gy and Gy, but doesn’t include G¥, {V fi(xF, yF) i

B.1 Finite lteration: Proof of Theorem 3
B.1.1 Supporting Lemmas

Generally speaking, the lemmas in this section extends lemmas in Appendix A.3.1 to noisy setting. We first
provide a descend lemma for @, ,,(x) in each iteration of inner loop.

Lemma B.1. Denote 1, the total iteration of inner loop at stage t and 5;“7“, = ||y§7w (xF) —yf||2, for
0 S k S Tt — 1

Puw (xFF1) <@ () = (5 = 1200) | VcFr (9| 4+ 208,
+ H@th,w (X7 Y) - Vth,w <X7 Y) ||2
Proof. Since ®; ,, is (¢ + kf)-smooth, for any z,z" € R™, we have
By (xT) = B (x) — (xT = x)T V&, (x) < Kl |xt — XH2 .

Set xt = xF™ x = xF, we have xt —x = x{ ™ —xF =~V F 4, (xF,y¥), which yeilds that

(I)t,w (Xf—‘rl) S(Dt,’w (Xf) — x ||6th7w (Xf’ yf) ||2 + 77’2(,{6 ||ﬁth7w (Xf’yic) ||2
+ nx (@th,w (Xfa YQC) - vq)t,w (Xf))—r ﬁth,w (Xf7 Yf) . (20)

By Young’s inequality, we have

(VacFra (x5, 55) = VO (xF)) T VieFr (x5, y5)
< H?thﬂu (vayjf) =V, 4 (Xf) ||2 + ||@th,w (X?;Yf) H2

- 2

< 2H@th,w (Xf,yf> = ViFiw (Xf»y{c) H2 + 2Hvth,w (Xf,Yf) =V, 4 (xf) ”2

- 2

~xF w k k) (12

+ ||V t, (Xt?Yt) || ) (21)

2
Since V®; ., (x}) = Vi Frw (XF,y7.,(xF)), we have

IVxFrw (X£557) = VOruw (x0) 2 < Cllys — yiw 0] (22)

18
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Putting Equations (20) to (22) together, we obtain

Buaw (<5°1) <0 () — (B 20) [V ()|

+ 77x62||yiC - yr,w(xt )”2 + ”@th,w (Xfa Yt) VxFy W (Xt s Yt) ”2

The next lemma characterizes the descent property of distance to the maximizer yj .

Lemma B.2. Let 5£ = ||th (Xt) ’

the following statement holds true,
s (1= 4 ) otat + SO Ty P

+ é—f Vs (1 7 Y) = Vo F (x|

Proof. Since f(x,-) is u-strongly concave and ny, = 1/¢, we have

7. (i 7Y) =yl
—Hytw(xt ) =Py (v iy VaFrw(xi Ty )H
= ||viw (£71) = Py (yi !+ 1y VacFrw(x f 1,yk )
+Py (yi 4 0y VaFraw(xE 1 yE ) = Py (vE ! + 1y Vi Ftw( Ly

1
<Ot gy i 67 =Py (08 iy VP vt D)
F(142(s—1)) || Py (v +nyV Frow(xy L yb ) =Py (v 4y Vac P, w(xfflyffl |

2K —
S (1 )55;1 + T Hvth,w(X5717y ) v Ftw 7 H

2

By Young’s inequality, we have
1
8ty < <1+ 1) 1)> Iy7w (071 = vi|
+ (142026 = 1)llyf (xF) = viw (1) 1P
4/{ 1 * * -
< (2(2)) 15 () = Y2 4l () — v (<) 12
< (1 g ) ot o anlyi (xd) - v () 2

2K _ _ ~ _
2 T Fon (YY) — TeFonl )

2

I
Since y; ,,(-) is #-Lipschitz, we have

Hth (Xt) th ( 1) ||2 < 2H2||Xt - Xt H2
= 2623 Vi Py (1 yi )12

Thus, plug into
fwS (1 - ) 0"+ 8RO VP (xf v

2 .
+€—fHVXFt,w( XL yEY) = VP (b Ly )

19
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The next lemma shows that updates over y can be controlled by 5f’w plus a noisy term.

Lemma B.3. For any t,k > 0, the following statement holds true,

1 4K
lyet™ —yil? < (4 - ;)55@ +

7z ||Vth,w(Xfan) - @th,w(XfaYﬂHZ .

Proof. By Young’s inequality, we have
Iyt = yil® < 20ye™ = yiw (xE) 1P+ 207, (xF) = yil®
< (2(1 - 50 +2) 8+ 2 VPt vh) — Ty
< (4= )+ o [Tl v8) — Vi v
where (i) follows from Equation (23). O

B.1.2 Proof of Theorem 3

Proof. From Lemma B.1

S

5t < <1> 5L+ 8302 Ve Fs (1, yE 1) 2

2K _
+€72HVXFWU(Xf lvyt ) V Ftw( Xt 1;3’? 1)

Denote y =1 — ﬁ, Given Ff~! we have

~ . . 2
vth,w (Xga yg) H

k—1
OF S A67 ., + 8652 | D AR
=0

2K = k—1—j ||& J o N
2 Z’y Hvth,w(Xtvyt) - vth,w(Xt,yt) ’
j=0
Q) 32k4n262 2/$k177.~ o 2
< kD 372 ’Yk 1 Hvth,w(ngyg)_vth,w(Xgayg)’ ) (24)
7=0

where the first term of (7) follows from that 3/ 1s bounded with D, and the second term of (¢) follows from
the stopping criterion of Algorithm 2 and E AF170 < 4k,

Notice that for any fixed ¢,k and j € [k — 1],

_ . . . .12
EHvth,w(Xiv'.Y%) - Vth,w(XLYi)H

|

t—1
Z {@xfl(xgﬂy‘z) - foz(xiayg)}
i=t—w

) \QleH

= E}' [ 2 HVXfZ Xt?Yt xfi(xg’yt‘
i=t—w
(iid) o?
= E_, - 25
. { w] % (25)

2
1 .

(@)
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where (7) follows from the property of conditional expectation, (ii) follows from that the SFO calls in line 9
of Algorithm 2 is independent and (zi¢) follows from definition of SFO and filtration F7.

Thus take expectation over two sides of Equation (24), we have

32641262 8k2o?

E [(ﬂiw] <9*D? + 32 22w3 (26)
Then by Lemma B.2
ét,w (Xf) — q)t,w (Xf+1)
> (B = n2kt) || VFiw (xE,38) |
- nx€2§:{€,w - ||6th,w (va}’?) = VxFiw (vay;g) ”2
157% | =
> 019 F (k)|
- 77x€261{c,w - ”@th,w (Xicv yic) = VxFiw (xéc’ Y?) ||2 (27)
By Lemma B.3
15 15 ~ 157
R+ 37 [ VxPra (b, ¥E) = VaFiu (v |* 2 2% < 2622y =2 (28)
Sum Equation (27) and Equation (28), we have
kY k41 15 50 15 E kY € E k|2
Dy 4 (xt) Dy 4 (Xt ) + " Nty + ] ||Vth7w(xt,yt) Vi Fy (X3 ,yt)H
157 .
> S (262 yE T = P+ [ ViFr (<5 Y5 )
- 7]x€25§,w - ”@th,w (Xf, Yf) = VxFiw (Xz]sﬂa Yf) ”2
Rearranging the term, we have
(I)t;w (Xf) — (I)t,’w (Xf-‘rl)
157 2021 k+1 k2 S ko k(2
> X (2“ Cllyy yil™+ ||vth,w (Xt ’yt)H
15 ~
- 552[27&65&1} B (46 + 1) ”Vth,w (va yic) — VxFiw (Xf’ yf) ||2 (29)

Take expectation over both sides of Equation (29), plug into Equation (26) and follow from the similar step
of Equation (25), we have

E [® (x) — Pt (letﬁ_l)]

02 2kdn2 52 2,2 1 2
>577uf]5 _5H2€2nx<7kD2_~_3"”7x +8/€0>_<5+1)0

3w? 023 4/ w3’

~ ~, 4.2 ~
Because y =1 — ﬁ < 1, there exist a constant K such that v D? < max { 328 1y 8r’o’ } Thus for &k > K,

3w?2 P23
we have

E [@4, (xF) = By (x5H1)]

2 4,252 2,2 1 2
UL Y <35H L L > - <5 + 1) =

32w? 3w? 023 44
> 251,02 - 45K4 02 (15 1 072.
25612 w3 440 w3
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2 o 2304r%0? | 256(4¢+1)0 _ 25mx8%  4bkineo® (15
when 0% > S 4 S S We set @ = S5 o (+1)2 “3 > 0. Then for K > K, we have

where the third equation follows from the Optional Stopping Theorem. Consequently, we have 74 is finite in
probability, which implies that 7 = 23:1 T¢ is finite in probability since it is the finite sum of finite variables
in probability. O

B.2 Local Regret: Proof of Theorem 4

Proof of Theorem 4. Following from Equation (12), we have

V40 ()7 = [|VoeFr o (%1, ¥ (x2))]|°

3K2

+ m”vyft (Xn}’f,w(xt)) = Vyft—w (Xt,y:_Lw(Xt)) ||2

<3 V@1, (x0)])*

3 " *
+ 2V fi (%, Y7 w(Xt)) = VicSimw (%6, y70 (%)) |12 (30)
For the first term

IV 1.0 (x0) ||
= V1w
<3[VP1,w(x'7) = VeFio1w (x50 v ) H
+ 3 | Va7 37 3) = VP 7 v 0|+ 3 | Ve Femrw (5 y7 1)
<30 |lyi s (75 = ¥iH P+ 3 VP 65y
+3 HVXFt—Lw(Xf 1 7ytTt 1) - @th—l w Xt 1Y Tt 1) H

2
I
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: * Tt Tt—1
Consider HYt—l(thl —Yi—1 ||
* Tt—1 Tt—1
||Yt—1 X)) — Yy ||

(i) Tt— Tt
<K 2762 HYszll - Py (Yt +77yvat71,w(xt 15Ye— 11))H2

< 2k7- 252 Hyn " =Py (Yt + ny@yFt—lyw(th—_llvYtTt:f))||2

+ 2% - ,’727 ||7)y (Yt + nyvat—l,w(XZt__ll7}’?__11)) - 7’3} (Yt + nyﬁyFt—l,w(Xt 1 7}’? 11)) ||2
Y

(id) 1 :
< 267 22 [vi =Py (ye + 1y VyFrorw(x) 3yt 11))H2
Yy

2

)

1 Tt Tt
+2“2'[2Hvatfl,w(xt DY) — VythLw(Xt 1Y 11)|

where (7) follows from the global error bound condition in Davis & Drusvyatskiy (2019) and (i%) follows from
the project operator is a contraction.

Then
IIV‘I%—Lw(Xt)II2

< 6r* 7)2 Hyﬂ ! Py (Yt + ny@ythl,w(Xt 1 ayzt 11) H2 +3 H@thfl,w(xt 1 7Y? 11)H2
Yy

+6’€2||Vythlw(Xt B i 11)_@yFt L (X7 Yi) H
+3Hv Ft—Lw(Xt 1 ,y? 11)_?th—1w Xt 1a Tt 1 H

W 52 e -

< *+6’Q2HV Fi 1w(Xt 1Yl 11) _vat—l,w(Xt 1 7th 1 )||2

2

+3 Hvth—Lw(Xt 1 aYtTt 1) - ?th—l,w(Xt 1 aYtT{ 11)‘ ) (31)
where (i) follows from the stopping condition of inner loop and ny, = 1/£.
Plug Equation (31) into Equation (30) and sum over ¢, we have
T
= Z [V®; ()|
(35 2
< Z {wz + 18k HVythl,w(Xt 5y - Vythl,w(Xt L yis 11)H
t=1
Tt = Tt 2
+9 Hvth—l,w(Xt 1Y) — Vth—l,w(Xt 15Ye— 11)”
3‘%2 T Tt—1 Tt—1
+ m”vyft (th 1Y (x5 )) = Vyfi-w (Xt 1 Yio1w(Xe )) 12
3 Tt Tt Tt
+— (Vs fe (x7 Vi) = Vafiow (X057 Y7 W (X150 |l }
376> 3K2 3
= Vo wlT] + —=Vawl[T
wg (w—1)2 y,[]erg ,[]
a 2
+ Z {18"2 ||VyFt—1,w(Xt DY) = Vy P w (x5 v 11)H
t=1
+ 9HVth—1,w(Xf 1 aYtTt 11) V Fi1w Xt 0y tTt 7)) || } (32)
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Notice that for any t € [T]

EHVyth1 w(xt 1 73’? 11)
(@)

Vy Fiotw(X{5, yi0 11)H2
=Ezra {E [HVyFt—LW( 1) =

> S ‘et
=E,

Tt 1
VyFronw(x Sy || 7
—]E

Tt—1
Xt S Zhe)

) yfz( Tt—1 Tt— 1

> e '

’ ‘f't 1
Tt 1:|]

Z {Vy /il

t—1
(i1) 1 T 7' 1
= Epria L}Q . [Hvyfz X0y = Ve fil oty

Xi—11Yi—1 H
1 o2 o?
= E}-Tt—l 72’1117 =
t—1 w

w2

w3’

where (7) follows from the property of conditional expectation, (ii) follows from that the SFO calls in line 9
of Algorithm 2 is independent and (éi7) follows from definition of SFO
Similarly, for any ¢, we have

2
Tt = Tt 2 g
IEHvth—l w(Xt 1Y 11) vth—l,u;(Xt 1Y~ 11)H
Plug Equations (33) and (34) into Equation (32), we have

w3
T
E[Ru(T)) =3 _E (1Y@ (x0)I1
- 3552 N (w3f21)2vy,w[T] N % Ve ulT] 4 (18x2% + 9) T'o
B.3

Iteration and SFO Calls Bound: Proof of Theorem 5
Proof of Theorem 5

. From Lemma B.1

oF < (1-—=
t,w( 4

) atut SRR Do

w(x Ly I
K _ ~ 2
+€72Hvth,w( y 17 t )7Vth,w( t 1;yf 1)”
Denote vy =1 — 4}@, Given F; we have
k—1 o e
55,11; < ’yk(;o + 8/@ 7k717] Hvth,w (ngyg) ’
7=0
2K - k—1—j || J oo i i
+£72 Z’Y "vthw(Xtv}’t)_vthw Xy Yt H (35)
=0
Then by Lemma B.2
i (1) < @ (xF) = (5 =
+77x£2

210) [ ¥ Foe (5, 55 |
+ ||V Ftw (XtaYt)

VxP;S,iu (Xfa Yf) ||2 (36)
24

o]

(33)



Under review as submission to TMLR

Then plugging Equation (35) into Equation (36) and summing up them over k =0,...,7 — 1, we have

Te—1 Te—1

i (6]') < P (o)) = (B = m260) Y | VicFh (<, 7) |7 40l Y- 2430,
k=0 =
Te—1 k— 0l ) ) 2
LAY St |V (x5 |
7=0
Tt—1 [k—1 L ] ] ] 2
Fomen 0 | S0 [V vh) — V(v
k=0 \j=0
T—1 ~
+ZHvth,w(vayf) VFtw(Xtvyt)”2
k=0
Te—1
< Dy (x]) — (0 = mirt = 326" 020%) Y || VicFh (b, vH) |
k=0
Te—1
+ 4f<mx€262w + (8&277,( + 1) (Z H@th’w(Xf,yf) — Vth,w(Xfan)W) )
k=0

Tt—1 1

where the last inequality follows from that )"~ ¥
over j and k.

< 4k and changing the order of summation

Rearranging the terms, we have

Te—1
(%x — 2kl = 326 30%) 3 ||V () |
k=0

é q>t,u) (Xt) - q>t,u) (Xt+1) + 4F5,’7x£25to,w

T¢—1
+ (8K%nx + 1) <Z |V Frw (x5, y5) — Vth,w(xf,yf)W) .
k=0

By Lemma B.3

1 4 -
Iyt ™ = yil* < (4= =)o, + 7/; Vs Frun (X5, 75) = Vi Fy (x5, 5|
Then
Ti—1 Te—1 ~ )
Z lyi ™t = yFI? < (165 —4)67,, + 128505 > [|[VaFrw (x5, 37)]|
k=0
3652 T |1a E Kk N
7 02 Z Hvth,w(Xt Vi) — Vth,w(xt7Yt)||
k=0

Notice that 68,10 < D? and for any t > 2

= ||Yt Y, w(xt)”2

<2y =y )P 2l () = il ()1
< 2"“2||yﬂ =Py (Ytn a3+ nyG;ttll)

2
+ m”vyﬁ(X? 1Y wXT)) = Vy feow(X{ 0 ¥ w(X:f I)IP

52 2

<
= 402w? + w?(w—1

)2 ||vyft(xt 1Yt w(XtTt 1)) — Vyft—w(xt 1 Yio1 w(XZt 11))”2
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Letting nx = ﬁ7 we have
Te—1 250
= 16 6410463 .,
D (9o (b VI < 2 - (@ () = @ (b)) + =
k=0 x
Te—1
640
+W (Z HV Fiw( XtaYt) Vth,w(vaYf)H2> (37)
k=0
Te—1 1 Te—1 ~ 9
> 250y =yl < 8205000, + 5 D ([VaFiw (x5, 1) |
k=0 k=0
Te—1
+ 7254 <Z |‘Vth,w(xf7yf) - vth,w(vayf)‘ﬁ) . (38)
k=0
Therefore add Equation (37) x < and Equation (38) x ‘&, we have
n Te—1
=y [Hv Fraw (<, y5)|” + 206021y + - nyQ]
k=0
2 430 K302
< 2 (@r (1) = P (xe0) + g 0D,
Te—1
+ 20myk? (Z H@,(Ftyw(xf,yf) — Vth,w(xf,yf)’f) . (39)
k=0

Denote ®¢ ,,(x) = 0, we notice that

D (xT)

Il
B

(Pt (xt) = Pro1,0(x¢-1))

-
I

1

Il
B

(Pt (xs) = Pr_1,w(x¢)) + Z((I)t—l,w(xt) — D1 w(x-1))
P

H
I

1

Il
S
[M]=

(Frot0 (X, Y5 (%0)) = Fro10(Xe, Y510 (X¢)))

~
Il
-

i
g~

B
M)~

(ft(xt,y;w(xt)) - ftfw(xuyz,w(xt))) + ((I)tfl,w(xt) — Dy (x¢-1))

~
Il
-

t

U
N

INS
M’ﬂ
M)~

(ft(xtay;w(xt)) - ftfw(xtvy;w(xt))) + (Pr—1,0(x¢) = Pro1,w(xi-1)),

1
w

-
Il
—
-
||
N

where (i) follows from that y;_; (%) is the maximizer of Fy 1 ., (X¢, ).

By some algebra, we have

> (fex0 ¥ 0 (%)) = frmw(Xe ¥ 0 (%0))) = P11, (X7 41)-

t=1

S

Zq)tw Xt ‘I)t w(Xt+1) <
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Sum Equation (39) over ¢ and take expectation, we have

52 s
(2711)2 — 20Kk u;2> NxT

T Tr—1
< 3PN i (B [+ 206025 — v
t=1 k=0
T T¢—1 B N
_2077x’€42 ( Hvth,w(vayf)_vth,w(va}’f)H >
t=1 k=0

I 430y k302 a
S Z((I)t,w (Xt) - (I)t,w (xt+1)) + T Z 5to,w
t=1

T 32 _ 2
< S (e i (60)) — ok Yia360)) — P ) {(T Lo

—~ 9 4022
9 T
+ m Z ”vyft(xzt:faY;w(x?:f)) - Vyft—w(X:i‘ll,Y?_l,w(XtTi‘f))llz + DZ}
=2
< 2TM M4 43Ty k362 867y k> 12 7] + 430, k302 D?
- 36w?2 9u2(w —1)2 " 9 ’
where the first inequality follows from Assumption 4.
Thus
38T Lw? 2 5¢D?w?
1 2MTw+ 7 + gt VT4 ™M+ 75
T onx (g—i - 20K%0?)
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