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Abstract
Proteins typically exist in complexes, interact-
ing with other proteins or biomolecules to per-
form their specific biological roles. Research
on single-chain protein modeling has been exten-
sively and deeply explored, with advancements
seen in models like the series of ESM and Al-
phaFold2. Despite these developments, the study
and modeling of multi-chain proteins remain
largely uncharted, though they are vital for un-
derstanding biological functions. Recognizing
the importance of these interactions, we introduce
APM (All-Atom Protein Generative Model), a
model specifically designed for modeling multi-
chain proteins. By integrating atom-level infor-
mation and leveraging data on multi-chain pro-
teins, APM is capable of precisely modeling inter-
chain interactions and designing protein com-
plexes with binding capabilities from scratch. It
also performs folding and inverse-folding tasks
for multi-chain proteins. Moreover, APM demon-
strates versatility in downstream applications: it
achieves enhanced performance through super-
vised fine-tuning (SFT) while also supporting
zero-shot sampling in certain tasks, achieving
state-of-the-art results. We released our code at
https://github.com/bytedance/apm.

1 Introduction
The application of AI technology in protein design has be-
come a prominent research direction across biology, mate-
rials science, and artificial intelligence (Notin et al., 2024).
The existing works can be categorized into two distinct ap-
proaches: general protein foundation models and protein
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Figure 1. Interactions cause minor atom-level protein structure
changes in the binding surface (middle colored part). Blue indi-
cates the isolated structure, pink indicates the binding structure.

design models for specific functions. The former includes
methods such as protein folding models (Jumper et al., 2021;
Lin et al., 2023; Baek et al., 2021), inverse-folding mod-
els (Dauparas et al., 2022; Hsu et al., 2022; Zheng et al.,
2023), co-design models (Shi et al., 2023; Campbell et al.,
2024), and protein language models (Lin et al., 2023). These
works are not specifically designed for any particular pro-
tein design task but aim to learn the general distribution
of protein sequences and structures from extensive protein
data. The latter approach focuses on the design of proteins
with explicit biological activities, such as antibodies (Kong
et al., 2023a), binding peptides (Li et al., 2024), and en-
zymes (Song et al., 2024).
General protein foundation models have demonstrated im-
pressive performance across a broad range of tasks. How-
ever, these approaches focus solely on modeling single-
chain proteins. In contrast, when dealing with proteins
involved in specific functions, the target proteins usually ap-
pear in the form of complexes. Furthermore, in multi-chain
protein modeling, inter-chain interactions that occur at the
atom-level play a crucial role (Figure 1). This necessitates
incorporating models with atom-level information to enable
precise learning of these interactions, which is fundamental
for the effective modeling of multi-chain proteins.
To bridge this gap, we propose a novel method: APM (All-
Atom Protein Generative Model). APM facilitates the gen-
eration of multi-chain protein complexes with all-atom
structures and can be applied to various tasks involving
multi-chain protein complexes, including generation, fold-
ing, inverse-folding, and specific functional protein designs.
To develop such a generative model that can be used for
designing bioactive complexes, we identify three core chal-
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lenges: multi-chain protein modeling, all-atom represen-
tation, and sequence-structure dependency.
Multi-Chain Protein Modeling. Some efforts have at-
tempted to adapt single-chain models for multi-chain pro-
tein tasks by using a poly-G pseudo sequence to connect
different chains, treating them as a single chain, includ-
ing AlphaFold2 (Jumper et al., 2021), ESMFold (Lin et al.,
2023), and Linker-Tuning (Zou et al., 2023). This enables
compatibility with multi-chain data but constrains the struc-
tural connectivity to head-to-tail linking, which is not repre-
sentative of natural complex formations. In this work, we
adopt a native method for modeling multi-chain proteins
through both data integration and modeling strategies. For
data, we use a mixture of single and multi-chain data in the
training of APM. We believe that intra-chain modeling will
benefit from the extensive amount of single-chain data. For
modeling, our efforts include improving the model design
and introducing conditional generation tasks. Key changes
in model design focus on encoding more information with-
out altering the overall model structure, such as introducing
inter-chain or intra-chain attention, thereby maintaining con-
sistency across single and multi-chain proteins.
All-Atom Representation. In protein design with all-atom
structures, the fundamental challenge lies in how to effec-
tively represent atomic structures as different amino acid
types have distinct atomic types, numbers, and basic struc-
tures. When the protein sequence is not determined, the
representation of its atom-level structure directly influences
the modeling approach. Chu et al. (2024b) utilized an
ensemble-based method to model the sidechain coordinates
of all amino acid types simultaneously. Martinkus et al.
(2024) represented sidechain structures by merging non-
rotatable atoms into virtual atoms. Qu et al. (2024) fol-
lowed the method used in AlphaFold3 (Abramson et al.,
2024) to model all-atom coordinates directly. We choose
to enhance residue-level information with the sidechain for
all-atom protein representation that includes amino acid
type, backbone structure, and the sidechain conformation
parameterized by four torsion angles. This approach main-
tains computational efficiency while supplying atom-level
information for modeling inter-chain interactions.
Sequence-Structure Dependency. The strong dependency
between protein sequence and structure is the foundation for
the success of folding and inverse-folding models. However,
in the joint generation of protein structure and sequence,
this dependency is disrupted during the independent nois-
ing process of each modality. This issue hampers effective
learning of the dependency between sequence and structure.
In APM, two strategies are implemented to enhance the
dependency between the sequence and structure modalities.
First, we decoupled the noising process for sequences and
structures so that the noising level for each modality does
not completely align, minimizing disruption of their depen-

dency. Second, there is a 50% probability of performing a
folding/inverse-folding task, compelling the model to learn
the dependencies from both directions.
Finally, APM has demonstrated its capability in modeling
multi-chain proteins and generating bioactive complexes. It
achieved state-of-the-art (SOTA) performance in antibody
design and binding peptide design. Besides, APM also
exhibited exceptional performance in conventional single-
chain protein-related tasks.
We highlight our main contributions as follows:

• APM natively supports the modeling of multi-chain
proteins without the need to use pseudo sequence to
connect different chains;

• APM generates proteins with all-atom structures ef-
ficiently by utilizing an innovative integrated model
structure;

• Experiments related to general protein demonstrate that
APM is capable of generating tightly binding protein
complexes, as well as performing multi-chain protein
folding and inverse folding tasks;

• Experiments in specific functional protein design tasks
show that APM outperforms the SOTA baselines in an-
tibody and peptide design with higher binding affinity.

2 Related Work
Protein Foundation Models. The breakthrough achieve-
ments in protein structure prediction, marked by AlphaFold
series (AlphaFold1-3 (Senior et al., 2020; Jumper et al.,
2021; Abramson et al., 2024) and RoseTTAFold (Baek
et al., 2021; Krishna et al., 2024), have revolutionized the
field of protein science. With these developments, protein
language models (Rives et al., 2019; Madani et al., 2020)
have emerged as powerful tools. The series of ESM (Rives
et al., 2019; Lin et al., 2023; Hayes et al., 2025), trained
on large-scale protein sequence data, have demonstrated
remarkable capabilities in protein understanding and gen-
eration. Meanwhile, certain methods considered protein
design workflow in two stages: RFdiffusion (Watson et al.,
2023) tackles backbone structure generation using diffusion
models, while ProteinMPNN (Dauparas et al., 2022) spe-
cializes in sequence design through message-passing neural
networks. FrameFlow (Yim et al., 2024; 2023b) and Fold-
Flow (Bose et al., 2023) present developments applying
SE(3) flow matching approaches to protein structure genera-
tion. FoldFlow2 (Huguet et al., 2024) further demonstrates
the integration of protein language models for structure
generation. Besides, Chroma (Ingraham et al., 2023) intro-
duces a unified approach to protein design through a genera-
tive model that can directly sample novel protein structures
and sequences while being conditioned to target specific
properties and functions The field has also seen approaches
like Multiflow (Campbell et al., 2024), ProteinGenerator
(Lisanza et al., 2024), and Protpardelle (Chu et al., 2024a),
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Figure 2. Overview of APM. APM consists of three modules: (1) A flow-matching based Seq&BB Module for generating backbone
structure and sequence simultaneously; (2) a Sidechain Module for generating the all-atom structure based on the previous module’s
generation; (3) A Refine Module adjusts the sequence and structure with all-atom information. The iterative denoising process enables
the generation of multi-chain proteins with all-atom structure. The detailed architecture of each module are presented below.

which enable generation of both sequence and structure.
More recently, SaProt (Su et al., 2024a;b;c) and DPLM se-
ries (Zheng et al., 2023; Wang et al., 2024a;b; Hsieh et al.,
2025) have further advanced protein token modeling by
incorporating structural information into the pre-training
process, enabling better understanding of protein sequences.
Functional Protein Design. Target-specific protein design
has made remarkable advances recently. In antibody design,
approaches like HERN (Jin et al., 2022), DiffAb (Luo et al.,
2022), MEAN (Kong et al., 2023a), and dyMEAN (Kong
et al., 2023b) have demonstrated the ability to generate func-
tional antibodies. Besides, Wu & Li (2024), Zhu et al.
(2024), and Gao et al. (2023) introduced pre-trained protein
language models as sequence priors to improve antibody de-
sign. For peptide design, methods such as PPFlow (Lin et al.,
2024), PepFlow (Li et al., 2024), PepGLAD (Kong et al.,
2024) and CpSDE (Zhou et al., 2025) focus on designing
bioactive peptides.

3 APM
In this section, we present APM, an all-atom generative
protein model for designing bioactive complexes with the
all-atom structure. We first define how we represent the all-
atom structure in Section 3.1. Then we introduce the model
architecture of APM in Section 3.2, and in Section 3.3,
we introduce the learning objective and training process.
Finally, we introduce the sampling method in Section 3.4.

3.1 Representation for Protein All-Atom Structure
In this study, we divide the goal of our approach into two
parts: 1, foundational modeling of intra-chain sequences
and structures (determining what constitutes a plausible
protein sequence and structure); 2, modeling of inter-chain
interactions (understanding how proteins interact with each
other). Residue-level information is generally sufficient
for intra-chain modeling of protein sequences and struc-
tures. Methods such as AlphaFold2 (Jumper et al., 2021),
ESMFold (Lin et al., 2023), and ProteinMPNN (Dauparas
et al., 2022), which leverage residue-level information, have
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demonstrated high-quality protein structure modeling. How-
ever, these models often require an additional relaxation step
to resolve atomic clashes on the sidechains due to the lack of
finer detail modeling. Therefore, we enhance residue-level
information by incorporating sidechain conformations into
the protein representation.
While modeling the all-atom coordinates provides the most
detailed view of interactions, it considerably raises complex-
ity and limits the ability to model longer proteins, especially
for multi-chain proteins. Sidechains of amino acids are not
entirely free in their structures but have some conforma-
tions. Each amino acid has up to four rotatable bonds in
its sidechain while maintaining a largely consistent atomic
structure between these bonds. Therefore, combining amino
acid type with sidechain torsion angles offers a comprehen-
sive representation of sidechain conformation.
Ultimately, we adopted a representation that includes amino
acid type, backbone structure, and sidechain torsion an-
gles. This approach maintains computational efficiency
while providing richer information for modeling inter-chain
interactions.
Notations. The all-atom protein structure is represented
as a collection of amino acid types, backbone frames, and
sidechain torsion angles (Jumper et al., 2021; Lehninger
et al., 2005). A multi-chain protein complex P is com-
posed of K chains and N =

∑
k kN residues in total.

For the k-th chain, the amino acid sequence is denoted
as Sk = [Sk1

k , Sk2

k , . . . , SkN

k ], where Ski

k ∈ A and A is
the set of 20 standard amino acids. Meanwhile, the back-
bone structure of this chain is characterized by rigid frames
Tk =

[
T k1

k , T k2

k , . . . , T kN

k

]
, where each T ki

k ∈ SE(3)

consists of a rotation Rki

k ∈ SO(3) and a translation vec-
tor xki

k ∈ R3, mapping rigid transformations from ideal
peptide geometry (Engh & Huber, 2006). The sidechain
torsion angles are denoted as χk = [χk1

k , χ
k2

k , . . . , χ
kN ],

where χki

k ∈ [0, 2π)4 corresponds to the torsions of rotat-
able bonds in the sidechain of i-th residue. For brevity,
we slightly abuse the notation such that S =

⋃
k Sk,

T =
⋃

k Tk, χ =
⋃

k χk, where chain indices (i.e., k)
are omitted hereafter unless needed.

3.2 An Integrated Architectural Design of APM
3.2.1 OVERALL ARCHITECTURE

To implement an All-Atom Protein Generative Model, we
designed the APM consisting of three distinct modules:
the Seq&BB Module, the Sidechain Module, and the
Refine Module (Figure 2). The Seq&BB Module is a
flow-matching-based protein generative model that handles
the co-generation of sequence and structure at the residue
level. The Sidechain Module serves as an all-atom com-
pletion model, predicting the sidechain conformations for
proteins generated by the Seq&BB Module. The Refine
Module is an All-Atom Protein Refinement model, refining

the generated proteins to make them more akin to natural
proteins while resolving structural clashes.
When using APM for protein generation, the final result is
progressively generated from noise to data, with timestep
t from 0 to 1. Notably, the Sidechain Module and
Refine Module are activated only after timestep t ≥
T (T = 0.8 here). We believe that the quality of proteins
produced by the Sidechain Module with t far from data
time (1) is insufficient to support high-quality predictions
by the Sidechain Module and causes the meaningless in
the refinement by the Refine Module.
The motivation for designing this integrated architecture,
rather than using a single model to directly generate pro-
teins with all-atom structures lies in the incompatibility of
training the sidechain prediction model with the sequence
and structure flow-matching model. Two key reasons pre-
vent us from doing this: (1) sidechain prediction requires
real sequences and structures to obtain accurate sidechain
conformation labels, while the flow-matching model uses
noised sequences and structures as input; (2) while it is
possible to generate sidechain conformations using a flow-
matching approach rather than a packing model (one-step
prediction), this would require providing a noised sidechain
conformation, χt, which still contains amino acid type infor-
mation, leading to sequence information leakage (details
in Appendix C). This is evidenced by the rapid convergence
of amino acid type loss during training. During sampling,
the absence of truly noised torsion angles, χt, significantly
degrades the model’s performance in the inference phase.
With the generation of sequence & backbone structures sep-
arated from sidechain conformations, an additional module
is necessary to allow all-atom information to influence the
design of the backbone structure accordingly. For this pur-
pose, we developed the third module of APM, the Refine
Module. It receives outputs from both the Seq&BB Module
and Sidechain Module, making it all-atom aware. Based
on this comprehensive information, the Refine Module
further optimizes the sequence and backbone structure to
ensure the overall structure more closely resembles natural
proteins.

3.2.2 SUB-MODULE ARCHITECTURES

The core structure of the three submodules is essentially
the same. We use stacked structure modules derived from
AlphaFold2 as the trunk of APM. Each structure module is
composed of IPA (Jumper et al., 2021) and a Transformer
Encoder, which is employed to update residue informa-
tion and pair-residue information. The differences among
the submodules lie in the encoding of the input and the
distinctions in the output, driven by the various model-
ing tasks. Apart from this, the Seq&BB Module and the
Refine Module maintain consistent model sizes, whereas
the SidechainModule has fewer structure module blocks
and a smaller hidden dimension. We believe that predict-

4



An All-Atom Generative Model for Designing Protein Complexes

Figure 3. The two-phase of the training process of APM. In training phase I, the Seq&BB Module and Sidechain Module are trained
separately. In training phase II, the three modules form the integral APM, and are trained in an iterative paradigm. In any phase, the
training data is a mixture of PDB (Berman et al., 2000) single/multi-chain proteins, Swiss-Prot proteins, and AFDB (Varadi et al., 2022)
proteins.

ing sidechain conformations is a relatively simple task, and
utilizing a smaller model for enhancing efficiency.

3.2.3 INTEGRATION OF PROTEIN LANGUAGE MODEL

A robust understanding of protein sequences requires a large-
scale model trained on tens of millions of sequence data (like
the 3B-parameters ESM2 in ESMFold, which is trained on
65 million unique sequences, is responsible for sequence
understanding), or alternatively, using MSA as the sequence
representation (like AlphaFold2/3). APM is trained on pro-
tein data with structural information, yet the available vol-
ume of such data is not sufficient to support learning the
intricacies of protein sequence understanding. To address
this, we integrated protein language models (PLMs) into all
modules to enhance protein sequence understanding.
We utilized ESM2-650M, the widely adopted protein lan-
guage model, to represent the input sequences. Drawing
from ESMFold’s approach, we used learnable weights to
aggregate the representations from each layer of the protein
language model, yielding the final amino acid encodings.
It’s important to note that ESM2 is only trained on single-
chain data. Therefore, when encoding multi-chain proteins
with ESM2, each chain is encoded individually.

3.3 Training of APM
In order to train APM with the integrated architecture, we
designed a two-phase training approach (Figure 3). In phase
I, Seq&BB Module and Sidechain Module are trained
separately. In phase II, the three modules are joint-trained in
an iterative paradigm. All the details refer to Appendix B.

3.3.1 TRAINING OF SEQ&BB MODULE

Seq&BB Module is the foundation model in APM to gener-
ate the sequence and backbone structure trained in a flow-
matching manner with tasks of unconditional generation,
conditional generation, folding, and inverse folding. The
primary learning objective is reconstructing either sequence

or structure, or both, from a noisy state. As we decou-
ple the noising processes of the two modalities, we de-
note the noised sequence as StS and the noised structure as
TtT , where tS , tT ∼ U(0, 1) represent intermediate time
steps. We also denote the original sequence and structure
as S1 and T1. Then the learning objectives of Seq&BB
Module are: pSeq&BB(S1,T1|StS ,TtT , tS , tT ) for uncon-
ditional generation; pSeq&BB(S1|StS ,T1, tS) for inverse-
folding; pSeq&BB(T1|S1,TtT , tT ) for folding.
For each of the three tasks, there is a conditional version for
multi-chain data, in which part of the target modalities is set
as the noiseless state. The flow-matching loss Lflow-matching
is defined over sequence and backbone structure as:

Lflow-matching = Ldiscrete + LSE(3)

It consists of two components. For the sequence, Ldiscrete
measures the cross-entropy between the predicted sequence
distribution pSeq&BB(Ŝ1|StS ,TtT ) against the true sequence
S1. For the structure, it is the mean squared error between
the vector fields calculated from the noisy structure TtT

to the generated structure T̂1 and to the true structure T1.
For the complete mathematical formulation, refer to Ap-
pendix A.
The refinement by the Refine Module can be consid-
ered as a posterior correction, where the generated protein
(Ŝ1, T̂1) at each sampling step is corrected to (S̃1, T̃1) be-
fore being noised for the next step. We hope to ensure that
the direction of correction at each step is as consistent as
possible. By achieving this, the corrections at each step can
accumulate, leading to improved performance. This con-
sistency necessitates that the predicted (Ŝ1, T̂1) at each
(tS , tT ) is aligned, which in turn requires the Seq&BB
Module to maintain a smoother generative trajectory. To fa-
cilitate this, we incorporated a consistency loss, Lconsistency,
into the Seq&BB Module to minimize the variations be-
tween predictions for adjacent t (details in Appendix B.1).
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The final training loss of Seq&BB Module is defined as:

LSeq&BB = Lflow-matching + 0.3× Lconsistency

The training loss is consistent in two phases, the only differ-
ence is the learning rate.
3.3.2 TRAINING OF SIDECHAIN MODULE

The learning objective of Sidechain Module is to predict
the sidechain torsions, χ, given a protein with sequence and
backbone structure. In the training phase I, the learning
objective is packing, pSidechain(χ|S1,T1), which is no dif-
ferent from the normal packing model. While in phase II, the
learning objective is switched to pSidechain(χ|Ŝ1, T̂1), which
means the reconstruction of the ground truth sidechain
from the predicted (Ŝ1, T̂1). Besides, we also want
Sidechain Module to keep the ability of packing, so
there is a 50% probability that packing will continue to be
used as the learning objective in phase II.
Training loss of Sidechain Module is also different for
each learning objective. For packing, the loss consists of
supervised torsion angle loss and all-atom Frame Aligned
Point Error (FAPE) loss (Jumper et al., 2021), is defined as:

LPacking = Lχ + LFAPE

For reconstruction, we only maintain torsion angle loss,
Lχ, as the input protein sequence and structure may not
match the ground truth, resulting in the inappropriateness
for calculating error on all frames (details in Appendix B.2).
3.3.3 TRAINING OF REFINE MODULE

The Refine Module pRefine(S̃1, T̃1|Ŝ1, T̂1, tS , tT , χ̂) is
tasked to predict the real protein based on the generated
one, (Ŝ1, T̂1), with the all-atom level information formed
with the predicted sidechain torsions χ̂. Thus, we define
a correction loss on the corrected protein (S̃1, T̃1) as the
learning objective as:

Lcorr = − log p(S1|S̃1) + ∥x̃1 − x1∥2 + ∥R̃1 −R1∥2

Besides, we also incorporate auxiliary objectives in the train-
ing of Refine Module, including backbone FAPE loss,
LBB-FAPE, and residue distogram prediction loss, Ldist (de-
tails in Appendix B.3). Finally, the training loss of Refine
Module is defined as: LRefine = Lcorr + 0.25× LBB-FAPE +
0.25× Ldist.
3.3.4 TRAINING IN PHASE II
In the second phase of the training, we did not train the three
modules simultaneously as each module requires a distinct t
range. Instead, we employed an iterative approach for train-
ing these three modules. Given that the modules of Seq&BB
and Sidechain were already trained in phase I, they are
only trained for 2 steps in each iteration in phase II, whereas
the Refine module requires 8 steps of training. Each cycle
comprises 12 steps, with the steps of 2-2-8 respectively.

The ultimate training loss of APM is defined as the expecta-
tion over timesteps and each residue in the protein:

L = Et∼U [0,1] [LSeq&BB + LPacking + LRefine]

3.4 Sampling Strategy
For structure sampling, we directly use the structure pre-
dicted by Seq&BB Module or the Refine Module cor-
rected one as the model output if it is activated.
For sequence sampling, the strategy is different. To fully
leverage the Protein Language Model, we update all the
residues at each inference step and only keep the residues
located in the positions with top max(log(prob)). For the
top K positions (where K is the number of amino acids to be
unmasked at the current t), we sample the amino acid types
based on the corresponding logits with a carefully designed
strategy composed of temperature annealing sampling and
argmax. The remaining positions are set to [MASK] token
(details refer to Appendix D.1). This decoding strategy also
led us to abandon the flow-matching training approach for
the Sidechain Module, as the amino acid type at each
position may change during the sampling process, making
it inappropriate for the Sidechain Module to rely on the
sequence from the previous step for prediction.

4 Experiments
4.1 Data Curation
Single-chain data is built from three sources: PDB (Berman
et al., 2000), Swiss-Prot (Boeckmann et al., 2003), and
AFDB (Varadi et al., 2022). For PDB samples, we followed
the data processing flow in MultiFlow, resulting in 18684
samples. For Swiss-Prot samples, we selected the samples
with a pLDDT (Jumper et al., 2021; Mariani et al., 2013)
greater than 85, resulting in 140769 samples. For AFDB
samples, we take a more rigorous filter, leaving samples
with a pLDDT greater than 95, which resulted in 28041
samples. Finally, we got 187494 single-chain samples.
Multi-chain data is built from PDB Biological Assem-
blies (Rose et al., 2016). To prevent potential information
leakage in downstream tasks, we discarded samples that met
any of the following conditions: (1) the sample’s PDB ID
is present in SAbDab (Dunbar et al., 2014); (2) the sample
contains at least one chain with length less than 30, which
is considered a peptide (Kong et al., 2024; Tsaban et al.,
2022). The last condition led to the removal of a substantial
number of samples (12,163). In many cases, the peptides
played crucial roles in stabilizing the complexes and only
removing peptides is unreasonable. Consequently, we opted
to exclude this subset of data entirely from training. We also
removed samples with lengths exceeding 2048 or lacking
cluster IDs. Finally, we got 11620 multi-chain samples.
Cropping. During the training process, we performed
random cropping (Evans et al., 2021) on multi-chain sam-
ples with residues exceeding 384 to prevent out-of-memory.
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Table 1. Performance comparison of protein folding (blue high-
lighted) and inverse-folding tasks (pink highlighted). For each
metric, we report the average/median performance.

Method RMSD ↓ TM ↑ scTM ↑ AAR(%) ↑ ppl ↓

ESMFold 2.84/1.19 0.93/0.97 - - -
ProteinMPNN - - 0.94/0.97 46.58/46.76 11.44/11.48

ESM3(1.4B) 4.71/2.27 0.83/0.91 0.94/0.97 49.50/49.42 8.64/7.90
MultiFlow* 15.64/16.08 0.53/0.49 0.94/0.96 37.74/37.59 10.86/10.94

APM 4.83/2.64 0.86/0.91 0.94/0.97 50.44/50.41 8.74/8.10

Table 2. Performance comparison of different methods for various
protein lengths. We evaluate the methods on three different length
ranges (100, 200, 300) using scTM and scRMSD.

Method Length 100 Length 200 Length 300

scTM scRMSD scTM scRMSD scTM scRMSD

NativePDBs 0.91 2.98 0.88 3.24 0.92 3.94

ESM3(1.4B) 0.72 13.80 0.63 21.18 0.59 25.5
MultiFlow* 0.86 4.73 0.86 4.98 0.86 6.01
ProteinGenerator 0.91 3.75 0.88 6.24 0.81 9.26
ProtPardelle 0.56 12.90 0.64 13.67 0.69 14.91

APM 0.96 1.80 0.89 4.25 0.87 5.96

Cropping was centered around the randomly selected inter-
chain residue pair at the binding interface, retaining the 384
amino acids nearest to the pair. PLM encodes the sequence
of cropped samples before cropping.

4.2 Single-Chain Protein Related Tasks

While APM is specifically designed for modeling multi-
chain proteins, it also possesses the capabilities of those
foundation models designed for single-chain proteins, in-
cluding folding and inverse-folding. We validated the fold-
ing and inverse-folding capabilities of APM on a PDB date
split used by MultiFlow. We compared it with specialized
models, including ESMFold and PorteinMPNN, as well as
co-design models capable of performing multiple tasks, in-
cluding ESM3 and MultiFlow*(without distillation). We
utilize RMSD and TMscore (Zhang & Skolnick, 2005) be-
tween predicted and ground truth structures to evaluate fold-
ing performance, and self-consistency (Trippe et al., 2022)
TMscore (scTM), amino acid recovery (AAR) and perplex-
ity to evaluate inverse-folding performance. The perplexity
(ppl) is provided by ProGen2-base (Madani et al., 2020;
Nijkamp et al., 2023). The results are shown in Table 1.
APM can also perform unconditional protein generation.
Besides ESM3 and MultiFlow*, we compared two meth-
ods capable of all-atom design, ProteinGenerator and Prot-
Pardelle. For this task, we followed the evaluation methods
in ProteinBench (Ye et al., 2024) and presented the average
scRMSD and scTM for proteins with lengths of 100-300 in
Table 2. APM achieved competitive performance compared
to other co-design methods in all three tasks.

Table 3. Performance comparison in multi-chain protein folding
(blue highlighted) and inverse-folding tasks (pink highlighted).
Method RMSD ↓ TM ↑ scTM ↑ AAR(%) ↑

Boltz-1 w/MSA 5.40/1.95 0.87/0.97 - -
Boltz-1 w/oMSA 17.86/18.43 0.44/0.45 - -
ProteinMPNN - - 0.90/0.96 46.17/46.37

APM 12.6/13.67 0.64/0.62 0.85/0.95 61.26/59.48

4.3 Multi-Chain Protein Related Tasks
4.3.1 FOLDING & INVERSE-FOLDING

We also initially examined APM’s capabilities in modeling
multi-chain proteins through folding and inverse-folding
tasks. In these tasks, we used samples missing cluster IDs
that were dropped during training as the test set, and we also
removed samples exceeding a length of 512. The final test
set comprised 273 proteins with a number of chains of 2-6.
Furthermore, in the two tasks, we only compared APM with
two specialized models, Boltz-1 (Wohlwend et al., 2024)
and ProteinMPNN, as there are almost no other models that
support multi-chain proteins. For the inverse-folding task,
we employed Boltz-1 with MSA to refold the predicted
sequences for calculating scTM. As depicted in Table 3,
folding for multi-chain proteins represents an extreme chal-
lenge. Even with the use of MSA, Boltz-1 exhibits a decline
in prediction accuracy compared to single-chain proteins.
Without MSA, achieving effective prediction becomes con-
siderably more difficult. Although the performance of APM
also degrades, it still surpasses that of Boltz-1 without MSA.
Conversely, APM exhibits commendable performance in
inverse-folding for multi-chain proteins, with the scTM
nearly matching the folding performance of Boltz-1 when
using reference sequences.

4.3.2 MULTI-CHAIN PROTEIN GENERATION

The most significant difference between the APM and pre-
vious methods is its ability to directly generate multi-chain
protein complexes. These generated complexes do not re-
quire the starting amino acids of each chain to be spatially
close to the previous chain. Instead, they have indepen-
dent spatial positions, yet each chain possesses precise and
complementary binding interfaces with the others. How-
ever, evaluating these generated complexes poses challenges.
Calculating the self-consistency of the complexes does not
accurately assess APM ’s capabilities in complex generation
as folding models cannot reliably predict structures. Evalu-
ating each single-chain independently for self-consistency
is also not entirely appropriate because single-chain pro-
teins may undergo significant conformational changes upon
binding, such as 1AKE to 4AKE, or some might only fold
correctly in the presence of other proteins.
As APM has demonstrated its single-chain protein gener-
ation capability in Section 4.2. We focus on the binding
affinity between each chain in multi-chain proteins in this
task. We use ∆G to represent the binding strength between
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Table 4. The inter-chain binding affinity between generated com-
plexes. For each metric, we report the average/median value.
APMBB means using APM in a residue-level manner by only acti-
vating the Seq&BB Module. We additionally use ProteinMPNN
to redesign sequences for Chroma.(marked with *)
Length Model ∆GRSC ∆GRAA RMSD

50-100 Chroma 133.64/46.51 -83.96/-86.66 1.33/1.22
Chroma* -27.53/-41.71 -78.41/-77.09 1.44/1.28
APM -72.44/-71/91 -112.65/-116.98 1.05/0.95
APMBB -64.30/-67.30 -114.94/-114.45 1.06/1.03

100-100 Chroma 89.47/22.97 102.33/48.34 1.46/1.39
Chroma* -31.09/-31.51 -62.15/-59.36 1.40/1.30
APM -91.61/-94.54 -130.31-134.57 1.04/0.94
APMBB -36.74/-69.30 -117.53/-118.13 1.17/1.12

100-200 Chroma 79.97/35.86 -59.32/-54.30 1.58/1.48
Chroma* -32.14/-31.79 -62.79/-59.74 1.58/1.39
APM -44.02/-39.42 -93.21/-73.09 1.35/1.21
APMBB -3.42/-33.71 -85.79/-69.12 1.58/1.42

two chains of multi-chain proteins with lengths of 50-100,
100-100, and 100-200 (the generation of more chain combi-
nations is shown in the Appendix D.3). We report two types
of ∆G: ∆GRSC, for sidechain-only relaxed complexes; and
∆GRAA, for all-atom relaxed complexes (both relaxation and
∆G calculation are performed by pyRosetta (Alford et al.,
2017; Chaudhury et al., 2010)). Additionally, we report
the RMSD between the two structures. The average/median
results are shown in Table 4. For comparison, we utilized
Chroma (Ingraham et al., 2023) to sample unconditional
complex with the same length combinations. Besides, we
also performed the same task with only Seq&BB Module
activated (APMBB), which means generated multi-chain
proteins at residue-level. As shown in Table 4, compared
with using all-atom information, APMBB achieved weaker
binding strength and higher RMSD, which proves the im-
portance of the all-atom information in the inter-chain
interactions modeling.
By default, APM generates all chains simultaneously. Un-
der this manner, we observed that for complexes with chain
length combinations of 50-100 and 100-100, APM tends
to generate multi-chain proteins in a “single-chain protein
mode”, leading to strong inter-chain interactions. Con-
versely, in complexes with chain lengths of 100-200, APM
generates two relatively independent single-chain proteins
that are bound tightly, resulting in normal binding energies
(Figure 4). APM also supports an alternative generation
manner called chain-by-chain, raised from the conditional
generation task in APM’s training. The chain-by-chain ap-
proach yields significantly different results, with each chain
appearing to fold independently before ultimately binding
together. Related results can be found in Appendix D.3.

4.4 Downstream Tasks

We further verify the capacity of APM on specific tasks
including antibody design and peptide design, in both su-
pervised fine-tuning (SFT) and zero-shot manner. Details

Figure 4. Showcases of the three length combinations. For each
case, the gray structure represents APM’s generated structure and
the colored structure represents the backbone relaxed structure.
Different chain is highlighted with different colors. We also report
the two ∆G and the RMSD between the two structures.

about SFT refer to Appendices B.4, D.4 and D.5.

4.4.1 ANTIBODY CDR-H3 CO-DESIGN

Setup. The design of Complementarity Determining Re-
gions(CDRs) is a crucial step in developing potent thera-
peutic antibodies, especially CDR-H3. Following the data
preprocessing pipeline introduced in (Ye et al., 2024; Zhou
et al., 2024), we conduct training on the Structural Antibody
Database (Dunbar et al., 2014) and perform evaluation on
the RAbD benchmark (Adolf-Bryfogle et al., 2018).
We compare our model with four antigen-specific anti-
body design methods (dyMEAN (Kong et al., 2023b), Dif-
fAb (Luo et al., 2022), AbDPO (Zhou et al., 2024) and
its variant AbDPO++). Following previous works (Ye
et al., 2024), we use multiple metrics to evaluate the qual-
ity of designed CDRs: AAR and Cα RMSD for generated
sequence and backbone structure; Total Energy (E)
and Binding Energy (∆G) for atomic rationality and
functionality, which are provided by pyRosetta.
Results. As indicated in Table 6, APM performs signifi-
cantly superior to other methods in all metrics. With re-
spect to accuracy related metrics, including AAR and RMSD,
APM’s superior performance demonstrates its capability in
generating antibodies that resemble natives. On rational
and functional metrics, APM’s generated antibodies exhibit
the highest rationality and binding capability. Additionally,
antibodies generated in a zero-shot manner display excellent
∆G, proving APM’s capacity in inter-chain interacted pro-
tein generation, while the abnormal AAR/RMSD highlight
the different binding patterns between general proteins and
antibodies (refer to Appendix D.4 for details).

4.4.2 PEPTIDE DESIGN

Setup. The design of functional and binding peptides plays
a crucial role in pharmacological applications and targeted
therapeutic development. To evaluate our APM’s perfor-

8



An All-Atom Generative Model for Designing Protein Complexes

Table 5. Comprehensive evaluation of peptide design methods across three key aspects: Functionality, Foldability, and Accuracy. The best
results are highlighted in bold. 5 out of 93 ground truth samples exhibit ∆G greater than 0, are visualized in Appendix D.5.

Method Functionality Foldability Accuracy

∆G ↓ % <0 ↑ pLDDT ↑ ipTM ↑ Success ↑ DockQ ↑ % ≥0.8 ↑
GroundTruth -24.54 94.62 88.31 0.94 100.00% 1.00 100.00

PPFlow -8.56 16.72 55.72 0.57 13.01% 0.27 0.00
DiffPP -12.40 38.17 55.10 0.57 16.55% 0.33 0.90
PepGLAD -12.45 37.10 51.69 0.57 12.50% 0.35 0.00
RFDiffusion -23.27 78.58 69.65 0.73 46.28% 0.28 0.00

APMSFT -19.90 69.34 60.36 0.66 29.22% 0.40 11.29
APMzero-shot -23.71 62.18 60.97 0.62 27.20% 0.24 0.12

Table 6. Performance comparison of antibody design methods on
RAbD benchmark. The best results are shown in bold.

Method AAR (%) ↑ RMSD ↓ E ↓ ∆G ↓
RAbD 100.00 0.00 -16.76 -15.33

dyMEAN 40.05 2.36 1239.29 612.75
DiffAb 35.04 2.53 495.69 489.42
AbDPO 31.29 2.79 270.12 116.06
AbDPO++ 36.25 2.48 338.14 223.73

APMSFT 41.20 2.08 137.74 91.64
APMzero-shot 28.35 5.81 284.24 81.12

mance in receptor-targeted peptide design, we use the Pep-
Bench (Kong et al., 2024) dataset for training and validation
and use the LNR (Tsaban et al., 2022) dataset as the test set.
We compare our model with: PepGLAD (Kong et al., 2024),
PPFlow (Lin et al., 2024), and DiffPP (Lin et al., 2024).
We also include RFDiffusion (Watson et al., 2023), which
utilizes ProteinMPNN for sequence design. The peptide
candidates are comprehensively evaluated across three key
aspects: Functionality, Foldability, and Accuracy. For
functionality, we evaluate the binding energy (∆G) and the
proportion of candidates with ∆G below zero, % <0. For
foldability, we use Boltz-1(wMSA) to fold sequences of
generated peptides, then evaluate the folded structure in two
confidence metrics: predicted Local Distance Difference
Test (pLDDT) and interface predicted Template Modeling
(ipTM) (Zhang & Skolnick, 2004; Xu & Zhang, 2010) score.
We also report a comprehensive metric, defined as the pro-
portion of candidates with both a pLDDT score ≥ 70 and
an ipTM score ≥ 0.8, donated as Success. For accuracy,
we evaluate the DockQ (Basu & Wallner, 2016; Mirabello
& Wallner, 2024) score and the proportion of candidates
achieving a DockQ score of at least 0.8 (% ≥0.8), which is
the threshold considered as high-quality.
Results. As indicated in Table 5, APM exhibits competitive
performance across all three key aspects. For functionality,
APM generates peptides with an average binding energy of
-19.90 and achieves negative ∆G in 69.34% samples, sig-
nificantly outperforming other methods. The performance
in foldability metrics demonstrates APM’s superiority in
sequences generation, with the high pLDDT and ipTM. For

accuracy, APM stands out as nearly the only method capable
of generating peptides with a DockQ score exceeding 0.8.
Additionally, the peptides generated by APM in a zero-shot
manner perform similarly to antibodies, with high affinity
but do not resemble natural ones. This is reflected in the
comparable performance in functionality & foldability and
the significant degradation in accuracy. We also present
more results on longer binder design in Appendix F.

5 Discussions
In this paper, we introduce APM, a generative model for pro-
tein complexes designing at all-atom level. APM is capable
of generating tightly bound protein complexes, executing
high-quality single-chain protein-related tasks, and achiev-
ing remarkable performance in specific functional protein
design tasks. Despite APM’s potential in AI-based func-
tional protein design tasks, several limitations remain to
be addressed. These limitations are primarily in these as-
pects: (1) the performance in folding tasks requires further
improvement; (2) the functionality of Refine Module is
relatively restricted; (3) the number of downstream tasks is
limited. Future works are detailed in the Appendix G.

Impact Statement
Our work on multi-chain protein generation can be used
in developing potent therapeutic macromolecues such as
antibodies and accelerating the research process of drug
discovery. Our method may be adapted to other scenarios
of computer-aided design, such as small molecule design,
material design, and chip design. It is also needed to ensure
the responsible use of our method and refrain from using it
for harmful purposes.
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L., Green, T., Qin, C., Žı́dek, A., Nelson, A. W., Bridg-
land, A., et al. Improved protein structure prediction
using potentials from deep learning. Nature, 577(7792):
706–710, 2020.

Shi, C., Wang, C., Lu, J., Zhong, B., and Tang, J. Pro-
tein sequence and structure co-design with equivariant
translation. In ICLR, 2023.

Song, Y. and Dhariwal, P. Improved techniques for training
consistency models. In ICLR, 2024.

Song, Z., Zhao, Y., Shi, W., Jin, W., Yang, Y., and Li,
L. Generative enzyme design guided by functionally
important sites and small-molecule substrates. arXiv
preprint arXiv:2405.08205, 2024.
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A Model
A.1 SE(3) Flow Matching
Flow Matching (FM) (Lipman et al., 2023) offers an efficient framework for learning continuous normalizing flows by
directly learning a time-dependent vector field that transforms samples from a prior distribution to a target data distribution,
eliminating the need for expensive likelihood evaluations or ODE solving during training.
Consider a prior distribution p0 and a target distribution p1. FM learns a time-dependent vector field vt : Rd × [0, 1] → Rd

that guides the transformation through a continuous-time flow ψt : Rd → Rd, governed by the ordinary differential equation
(ODE):

d

dt
ψt(x) = vt(ψt(x)), ψ0(x) = x (1)

where samples x ∼ p0 are drawn from the prior distribution and transformed to follow the target distribution p1 at t = 1.
To enable tractable training, FM introduces an interpolant ϕt(x0,x1) that defines a smooth path between pairs of points
x0 ∼ p0 and x1 ∼ p1. The conditional vector field ut is derived as the time derivative of this interpolant. The conditional
flow matching objective then becomes:

LCFM(θ) = Et∼U [0,1],x0∼p0,x1∼p1

[
∥vθ(xt, t)− ut(xt|x0,x1)∥2

]
(2)

where xt = ϕt(x0,x1). After training, new samples are generated by solving:

d

dt
xt = vθ(xt, t), x0 ∼ p0 (3)

When applying this framework to SE(3), we need to consider both translations and rotations. For translations in R3, we
employ linear interpolation:

ϕtrans
t (xi

0,x
i
1) = (1− t)xi

0 + txi
1, xi

0,x
i
1 ∈ R3 (4)

with the corresponding conditional vector field:

utrans
t (xi

t|xi
0,x

i
1) = xi

1 − xi
0 =

xi
1 − xi

t

1− t
(5)

For rotations in SO(3), following (Chen & Lipman, 2024; Campbell et al., 2024; Yim et al., 2023a), we utilize geodesic
interpolation on the manifold. During training, we use a linear schedule:

ϕrot
t (Ri

0, R
i
1) = expRi

0
(t · logRi

0
(Ri

1)), Ri
0, R

i
1 ∈ SO(3) (6)

where exp(·) and log(·) denote the exponential and logarithm maps on SO(3). During inference, we employ an exponential
schedule κ(t) = e−ct with c = 10:

ϕrot
t (Ri

0, R
i
1) = expRi

0
((1− e−ct)logRi

0
(Ri

1)) (7)

The conditional vector field in the tangent space TRtSO(3) takes different forms during training and inference. During
training, following the linear schedule, it is given by:

urot
t (Ri

t|Ri
0, R

i
1) =

logRi
t
(Ri

1)

1− t
(8)

while during inference, with the exponential schedule, it becomes:

urot
t (Ri

t|Ri
0, R

i
1) = clogRi

t
(Ri

1) (9)

For the choice of distributions, we consider the geometric properties of SO(3). We use the uniform distribution over SO(3)
during training and sampling.
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For training, we define separate loss terms that jointly guide the learning of the vector field. The translation loss follows the
Euclidean Flow Matching objective:

Ltrans(θ) = Et∼U [0,1],x0,x1

[
1

N

N∑
i=1

∥vtrans
θ (xi

t, t)− utrans
t (xi

t|xi
0,x

i
1)∥2

]
(10)

For rotations, following the Riemannian geometry of SO(3), we define the loss using the geodesic distance on the Lie
algebra:

Lrot(θ) = Et∼U [0,1],R0,R1

[
1

N

N∑
i=1

∥∥vrot
θ (Ri

t, t)− urot
t (Ri

t|Ri
0, R

i
1)
∥∥2

SO(3)

]
(11)

where Ri
t = ϕrot

t (Ri
0, R

i
1) represents the interpolated rotation at time t, and vrot

θ (Ri
t, t) ∈ so(3) is the predicted velocity in

the Lie algebra. The complete SE(3) Flow Matching objective combines both terms:

LSE(3)(θ) = Ltrans(θ) + Lrot(θ) (12)

During inference, we solve the ODE using the exponential schedule for rotations while maintaining the linear schedule for
translations.

A.2 Discrete Flow Matching
While continuous Flow Matching effectively handles continuous data in R3 and SO(3), discrete data such as amino acid
sequences require a different approach. We adopt Discrete Flow Matching (Campbell et al., 2024), and define a path from a
masked token distribution to the data distribution. Let S1 = [S1

1 , ..., S
N
1 ] be a sequence from the data distribution, and M

denote the mask token. The interpolant between S1 and the fully masked sequence is a categorical distribution defined via
the Kronecker delta. We define the i-th token Si

t at intermediate time t as:

pt|1(S
i
t|Si

1) = tδ{Si
t,S

i
1}+ (1− t)δ{Si

t,M} (13)

where δ{a, b} = 1 if a = b and 0 otherwise. This interpolant linearly mixes the clean sequence and the mask state over time.
The loss function is the cross-entropy between the predicted and data distributions, written as:

Ldiscrete(θ) = E t∼U [0,1]
St∼pt|1(·|S1)

[
− log pθ1|t(S1|St)

]
(14)

where St ∼ pt|1(·|S1) samples a corrupted sequence at time t using the above conditional interpolant, pθ1|t(S1|St) is the
neural network’s predicted distribution given the corrupted sequence St.

A.3 Sub-module Architectures
The detailed structure is shown in Figure 2. In Sidechain Module, the protein language model is only activated in
training phase II, and the protein language model encoding is weighted with a learnable zero-initialized parameter before
merging into residue representation.
The resdiue level and pair-residue level information are encoded in 384 and 192 dim in Seq&BB Module and Refine
Module, while the dims are 256 and 128 in Sidechain Module. For model size, the overall APM contains 127M
parameters, of which Seq&BB Module contains 52M, Sidechain Module contains 22M, and Refine Module contains
54M parameters.
Refine Module is initialized to apply zero change to the Seq&BB Module generated protein to ensure that Refine
Module does not undergo negative optimization.

B Training Details
B.1 Loss for Seq&BB Module
Flow-matching Loss. The detailed flow-matching loss, Lflow-matching, refers to Appendix A.1 and Appendix A.2.
Consistency Loss. For arbitrary t for each modality (tS for sequence, tT for backbone structure), we can get the
corresponding noised data (StS means noised sequence with tS , TtT means noised structure with tT ) and predict the final
sample by the Seq&BB Module in APM, APMSeq&BB:

L̂1, T̂1 = APMSeq&BB(StS ,TtT , tS , tT ) (15)
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We can also get the noised data from the adjacent t, StS+∆t and TtT+∆t, and predict the final sample:

L̂′
1, T̂

′
1 = APMSeq&BB(StS+∆t,TtT+∆t, tS +∆t, tT +∆t) (16)

Consistency loss is defined as the gap between the two predictions on the two modalities. Since the predictions from the t
closer to 1 are more accurate, we set the predictions from t+∆t as a teacher. For sequence, the gap is the KL divergence
between the two predicted logits:

Lconsistency S = KL
(
log

(
softmax(L̂1)

)
, log

(
softmax(L̂′

1).detach()
))

(17)

For structure, the gap is the MSE between the two predicted structures:

Lconsistency T = MSE
(

trans(T̂1), trans(T̂′
1).detach()

)
+ MSE

(
Mat2Vec

(
rot(T̂1)

)
,Mat2Vec

(
rot(T̂′

1)
)
.detach()

)
(18)

Considering that the quality of the APM’s predictions is not high when t approaches 0, it is unreasonable to demand
consistency at this point. Thus, we scale the consistency loss with respect to t, reducing the impact of consistency loss on
model training when t is small. Additionally, we also followed the construction method for consistency loss proposed by
Song & Dhariwal (2024). Finally, the consistency loss used in Seq&BB Module is defined as:

Lconsistency = t2S × ( 2

√
Lconsistency S

2 + c2S − cS) + t2T × ( 2

√
Lconsistency T

2 + c2T − cT ) (19)

cS = 0.00054 ∗ 2
√

dimS , cT = 0.00054 ∗ 2
√

dimT (20)

B.2 Loss for Sidechain Module
We followed AlphaFold2 (Jumper et al., 2021) to build the loss for Sidechain Module, Lχ and LFAPE. Lχ is built ac-
cording to Algorithm 27 in the supplementary information of AlphaFold2 and LFAPE is built according to Algorithm
28.

B.3 Loss for Refine Module
Correction Loss. The correction loss, Lcorr, is similar to Seq&BB Module’s flow-matching loss.
Auxiliary Loss. The auxiliary loss consists of backbone FAPE loss, LBB-FAPE, and residue distogram prediction loss, Ldist.
LBB-FAPE is the simplified version of LFAPE which only considers the backbone atoms.
Ldist is the gap between the real residue-pair distance and the generated residue-pair distance. For a protein with the length
of N , the distance between any two residues i and j is donated as dij . The Ldist is defined as:

Ldist =
1

N(N − 1)

N∑
i=1

N∑
j=1,j ̸=i

||dij − d̂ij ||2 (21)

B.4 Training
training phase I. In training phase I, the Seq&BB Module was trained on 64×H100 GPUs with 257,000 steps, with a
learning rate of 1e-4. The Sidechain Module was trained on 8×H100 GPUs, accumulating a total of 836,901 steps, also
with a learning rate of 1e-4.
training phase II. In training phase II, APM was trained on 64×H100 GPUs with 235,000 steps . The learning rate for the
Seq&BB Module is set to 1e-5.
SFT. In the SFT phase, we used 8×H100 GPUs to fine-tune APM for antibody design and peptide design. The SFT phase
lasted for 1200 epochs for every task. The learning rate for each module is set to 5e-5 and the training cycle is adjusted to
10-1-1.
Protein Language Model. We used a drop-in replacement for the ESM protein language model implementation named
FAESM (Fred Zhangzhi Peng & contributors, 2024). We thank the authors for providing an efficient FlashAttention-
based (Dao et al., 2022) implementation, which significantly accelerated the training speed.
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C Sidechain Torsion Angles Distribution
We calculated the sidechain torsion angles for each amino acid in 22,281 single-chain proteins sourced from the PDB, with
protein lengths ranging from 50 to 20,000. Subsequently, we analyzed the distribution of each sidechain torsion angle for
each type of amino acid. As shown in Figure 5, it is evident that the number and distribution of sidechain torsion angles
differ among various types of amino acids. There are exceptions, such as phenylalanine (F), tyrosine (Y), and tryptophan
(W), which have similar sidechain torsion angle distributions due to their structural similarity. In the BLOSUM62 matrix
(Henikoff & Henikoff, 1992), the substitution scores between these three amino acids are positive, indicating that they can
be substituted with each other to some extent. Therefore, the sidechain torsion angles retain substantial information about
the amino acid types even being noised.

D Experimental Details
D.1 Sequence Sampling

The predicted sequence Ŝ1 is sampled from the predicted logits L̂1. If APMRefine is activated, the L̂1 comes from two
modules, Seq&BB Module and Refine Module:

L̂1 =

{
APMSeq&BB(StS ,TtT , tS , tT ), if tS < 0.8

0.8× APMSeq&BB(StS ,TtT , tS , tT ) + 0.2× APMRefine(Ŝ1, T̂1, tS , tT , χ̂), if tS ≥ 0.8
(22)

Then, the Ŝ1 is sampled following:

Ŝ1 =

{
Categorical(Softmax(L̂1/T )), if tS < 0.85

argmax(L̂1), if tS ≥ 0.85
(23)

where the temperature T follows an exponential decay schedule:

T = Tmax × exp(−λ× tS) (24)

with hyperparameters Tmax = 30 and decay rate λ = 30. When noising the Ŝ1 for the next step, we sort all the positions
with their scores and only keep the amino acid with the top K scores, for a protein with the length of N , K = int(tS ×N).
The score, Si, for any position i is defined as :

Si = log(Softmax(L̂i
1))[Ŝ

i
1] + (1− tS)× log(log(R+ 10−8) + 10−8), R ∼ N (0, 1) (25)

where log(log(R+10−8)+ 10−8) is a random term used to avoid decoding sequences in local optima. We denote the score
of the Kth highest as SK , then the sequence for the next sampling step is defined as:

ŜtS+∆t = {Ŝi
tS+∆t|i ∈ [1, N ]}, Ŝi

tS+∆t =

{
Ŝi
1, if Si ≥ SK

[MASK], if Si < SK

(26)

D.2 Statistical Validation on Folding
We conducted folding with APM and ESM3 using 20 random seeds. For RMSD, ESM3 shows a marginally better mean
(4.708±0.094 vs 4.828±0.077) with statistical significance (p < 0.05). For TM-score, APM achieves better performance
(0.856±0.002 vs 0.828±0.002) with statistical significance (p < 0.05). The detailed results are shown below with the format
of (average±std).

Table 7. Folding performance comparison between ESM3 and APM
Method RMSD ↓ TM ↑
ESM3 (1.4B) 4.708±0.094 0.828±0.002
APM 4.828±0.077 0.856±0.002

D.3 Multi-Chain Protein
MULTI-CHAIN PROTEIN GENERATION WITHOUT ALL-ATOM

During the phase II of APM training, the loss for the Seq&BB Module is computed directly based on its own output, rather
than relying on the output from the Refine Module and then back-propagating to Seq&BB Module. As a result, once the
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Figure 5. The distribution of four sidechain torsion angles in all amino acid types.
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Figure 6. APM generated proteins with chain lengths of 50-100, 100-100, 100-150, 100-200, 100-300, and 200-200.

entire training process is completed, the Seq&BB Module can be used independently, allowing for protein generation at the
residue level. To verify the importance of all-atom information in multi-chain protein design, we conducted an ablation study
by generating multi-chain proteins at the residue level using only the Seq&BB Module, and report the results in the main
text (Table 4). Although the backbone structure tends to stabilize when the Sidechain Module and Refine Module are
activated during the last 20% of steps, the two different versions of the model still exhibit significant energy differences.
When the design is carried out at the residue level, the inter-chain binding strength significantly decreases. Additionally, the
difference in ∆G and structure before and after all-atom relaxation becomes more pronounced, indicating that information
at the amino acid level alone is insufficient for modeling multi-chain interactions, as opposed to the complete APM.
Furthermore, for proteins with lengths of 100-200, without using all-atom information, ∆G of the model-generated structures
yields a mean value close to 0 and a median of -33. This suggests the presence of clashes at the binding interfaces, a
situation not observed in the complete APM. These findings underscore the importance of all-atom information in modeling
inter-chain protein interactions.

MORE CHAIN LENGTH COMBINATIONS

Length Combinations. In the main text, we have reported the results of multi-chain protein generation with chain length
combinations of 50-100, 100-100, and 100-200. Here, we present metrics for additional chain length combinations, including
50-200, 100-150, 100-300, and 200-200 in Table 8. Furthermore, we show more cases of each length combination in
Figure 6.

Table 8. ∆G and the RMSD before and after all-atom relaxation for more chain length combinations. The trend of affinity change is
consistent with that in the main text.

Length ∆GRSC ∆GRAA RMSD

100-150 -63.34/-53.04 -102.74/-90.41 1.28/1.10
50-200 -42.38/-63.71 -117.19/-110.37 1.19/1.10
200-200 -28.41/-49.67 -90.10/-83.55 1.61/1.37
100-300 -23.43/-28.67 -73.03/-60.93 1.78/1.46

Chain Numbers. Theoretically, APM supports the generation of protein complexes composed of any number of chains.
However, we observed that APM’s performance declines when the generated complex contains more than two chains. This
is evident in the increased presence of unstructured backbones or abnormally high ratios of α-helix/β-sheet structures (over
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Figure 7. APM generated proteins with more than 2 chains. The top row, generated protein complexes composed of 4 chains; the bottom
row, generated protein complexes composed of 3 chains. The length of each chain is highlighted with a unique color.

90% of single secondary structure) in the generated complexes. Interestingly, these structures still exhibit no obvious clashes
in the binding interface. We do not apply detailed metric calculations since ∆G only computes the binding strength between
two components. Instead, we present some cases for proteins composed of more chains in Figure 7.
We attribute the degradation in performance of APM with more chains to two main reasons: 1) The majority of the complex
samples consist of two chains, and complexes with more chains are significantly less; 2) With more chains, the overall
length of the protein increases, which also results in reduced model generation quality.

CHAIN-BY-CHAIN GENERATION

By default, APM generates all the chains within a multi-chain protein simultaneously. However, we have also implemented
an iterative generation manner, called “chain-by-chain”. APM supports this manner because its training task of performing
conditional generation, which means generating the remaining chains based on one or more chains of a multi-chain protein.
During the “chain-by-chain” generation, after completing a chain, we need to translate the generated parts. This is necessary
because APM requires initialization at the origin when generating structures to meet the requirements of SO(3) invariance.
Therefore, we need to move the generated parts away from the origin to make space for the next chain to be generated (we
also tried not translating the parts, but found that the subsequently generated chains tended to wrap uniformly around the
preceding chains).
The location where the generated parts are moved to determines where the binding interfaces of the complex appear, and this
process can be manually specified. To avoid bias introduced by the manual specification of binding interfaces, we randomly
select an amino acid on the generated part to serve as the binding site (we calculated the distance of each amino acid to the
protein’s center, then sorted them based on these distances, then we randomly selected from amino acids whose distances
are ranked between the 33rd and 66th percentile). Subsequently, we translate the generated parts until the coordinate of the
chosen binding site amino acid is at the origin, and continue to translate a small distance with the same direction (default
1Å). APM then begins generating the next chain.

Table 9. ∆G and the RMSD before and after all-atom relaxation for generated multi-chain proteins in “chain-by-chain” manner. Both of
the two metrics show significant differences.

Length ∆GRSC ∆GRAA RMSD

50-100 312.66/-14.05 -54.46/-54.45 1.64/1.44
100-100 235.52/-13.77 -31.79/-26.71 2.05/1.70
100-200 1073.51/-11.01 -40.29/-46.05 2.47/1.87
50-200 1012.53/-6.84 -10.96/-50.67 2.79/2.12
100-300 323.44/-10.94 -58.24/-53.81 2.42/2.00

APM shows significant differences in generating multi-chain proteins in the chain-by-chain manner compared to generating
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Figure 8. Samples generated by APM in the “chain-by-chain” manner. The generation order is from short chain to long chain, the length
of each chain is highlighted with a unique color.

all chains simultaneously. As shown in Table 9, there are three main differences observed in multi-chain proteins generated
in the chain-by-chain manner:

• The binding strength between chains shows a considerable decrease;
• The structural differences before and after relaxation become more pronounced;
• Without performing relaxation, structural clashes between chains are observed.

These variations may arise due to several reasons:
• In the chain-by-chain manner, the chains are more independent from another chain, which leads to reduced binding

strength;
• The binding interface also impacts binding strength, and a randomly chosen binding interface may not be optimal;
• Once a chain is generated, its structure remains unchanged, which might result in some local structural clashes that the

model cannot entirely resolve.
The samples generated in in chain-by-chain manner are shown in Figure 8.

D.4 Antibody Design
Data. Following (Ye et al., 2024; Zhou et al., 2024), we use the Structural Antibody Database (Dunbar et al., 2014) under
IMGT (Lefranc et al., 2003) scheme as the dataset. We collected antigen-antibody complexes with both heavy and light
chains and protein antigens and discarded the duplicate data with the same CDR-L3 and CDR-H3 sequence. The remaining
complexes are used to cluster via MMseqs2 (Steinegger & Söding, 2017) with 40% sequence similarity as the threshold
based on the CDR-H3 sequence of each complex. We then select the clusters that do not contain complexes in RAbD
benchmark (Adolf-Bryfogle et al., 2018) and split the complexes into training and validation sets with a ratio of 9:1 (1786
and 193 complexes respectively). The test set consists of 55 eligible complexes from the RAbD benchmark.
Methods. We follow the evaluation pipeline and results in Ye et al. (2024). We generate 64 candidates for each antigen. As
our method directly generates all-atom structures, no additional sidechain packing tools are required.
Evaluation. Besides the traditional metrics like AAR and RMSD, we mainly focus on the quality in terms of generated
CDR-H3’s rationality and functionality towards the specific antigens. We utilize pyRosetta to perform the sidechain-only
relaxation and calculate energy terms. Baseline methods only design the backbone structure, while energy calculations
require the all-atom structure. Therefore, sidechain packing is indispensable. To avoid performance bias introduced by
packing methods and conduct a fair comparison, we keep backbone structures fixed while applying relaxation to sidechain
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only.
Additionally, we also followed the procedure in the actual experiments, where both sidechain and backbone undergo
relaxation before energy calculation, even though the structure at this point differs from the one designed by the model. The
results are shown in Table 10, APM still achieves the best performance.

Table 10. Performance comparison of antibody design methods on RAbD benchmark. (↑/↓) indicate whether higher or lower values are
better. The best results are shown in bold.

Method E ↓ ∆G ↓
dyMEAN 72.76 36.43
DiffAb 14.56 2.29

APMSFT -3.72 -4.08
APMzero-shot 10.38 -1.77

Zero-shot. We observed that antibodies generated in a zero-shot manner exhibited stronger binding energy compared to
those generated using the SFT model. However, there is a significant decrease in performance in terms of accuracy/similarity
to natural antibodies. This phenomenon is expected since APM is trained to generate proteins capable of binding to other
chains, allowing it to produce binding-capable antibodies without SFT. However, because we excluded all antibody data
from the training set, APM generates antibodies following the patterns of general proteins. As a result, the generated
CDR-H3, in both sequence and structure, differs from the natural ones, highlighting the differences between antibodies
and general proteins. Moreover, as we do not specify binding sites when designing proteins by using APM, the CDR-H3
designed without knowledge of antibody binding patterns might randomly bind antigens or antibody light chains. To further
illustrate this phenomenon, we selected some typical samples for visualization, as shown in the Figure 9.

D.5 Peptide Design

Data. The training and evaluation datasets are derived from PepBench (Kong et al., 2024) and LNR (Tsaban et al., 2022).
Following Lin et al. (2024); Kong et al. (2024), we extract receptor pockets based on their spatial distances to the peptides.
For data structure compatibility, we drop peptide-receptor samples that have non-standard amino acids during preprocessing.
Methods. For baselines, we follow the official open-source code for training and sampling. We directly use the official
checkpoint and scripts of PepGLAD1 to sample candidates. For PPFlow and DiffPP, we carefully use their official code2 for
data preprocessing and follow their training instructions to obtain checkpoints at 200k steps. We also include RFDiffusion
as a comparison method. Following the official guidelines3, we generate peptide structures using 50 diffusion timesteps and
employ ProteinMPNN for sequence design. Additionally, we define the 6 amino acids on the receptor that are closest to the
peptide as hot-spot residues, as we extract receptor pockets for other methods.
Evaluation. Following Kong et al. (2024), we generate 40 peptide candidates for each sample using all methods. Note
that the length of each generated peptide is predefined to match its corresponding ground-truth sequence. We evaluate the
binding capabilities of generated peptide candidates from multiple perspectives.

• Functionality. We follow the approach used by Kong et al. (2024). Both relaxation and energy calculations are
performed using pyRosetta. The evaluation proceeds by identifying the best candidate for each receptor, and reporting
the median performance values across all receptors. Note that both the backbone and sidechain are applied relaxation.
This procedure could achieve lower binding energies (∆G < 0) rather than the hundreds in antibody designing. It
should be noted that this procedure may fail to achieve perfect relaxation in specific cases. For instance, 5 out of 93
ground truth samples still retained slight clashes, resulting in a ∆G slightly above 0(illustrated in Figure 10).

• Foldability. We only fold generated sequences with lengths greater than or equal to 10 residues (46 peptide-receptor
pairs in total). As indicated in the documentation of Boltz-1 and AlphaFold3, the ipTM scores may not be reliable
for sequences that are too short. To ensure reliability, we only consider peptide-receptor pairs where the ground-truth
samples achieve successful confidence scores in Boltz-1 (pLDDT≥ 70 and ipTM≥ 0.8.), filtering out cases where
even the ground truth structures fail to meet the confidence threshold. The two threshold values are adopted from
the official output documentation4 of AlphaFold3 and paper (Abramson et al., 2024). Considering the computational
cost and MSA retrieval time, we select the top 16 sequences ranked by ∆G and perform folding 8 times for each
peptide-receptor pair. For each sequence, we select the best folding result, then average these results across all 16

1https://github.com/THUNLP-MT/PepGLAD
2https://github.com/EDAPINENUT/ppflow
3https://github.com/RosettaCommons/RFdiffusion
4https://github.com/google-deepmind/alphafold3/blob/main/docs/output.md
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sequences to obtain the final confidence score.
• Accuracy. We measure the interface structural accuracy using the DockQ score, which provides quality measures to

quantify different aspects between generated and reference structures. Concretely, we utilize DockQv25 from their
official codebase. Due to extreme structural conflicts observed in some samples generated by baseline methods, we
only calculate DockQ score for samples with ∆G ≤ 0.

Visualization
• Generated Structure. We present the peptides designed by different methods in Figure 11. The showcased examples

include peptides with diverse secondary structures (loops, helices, and sheets). As observed in the visualization,
our method demonstrates the ability to understand and generate appropriate secondary structures while maintaining
reasonable interactions with the receptor.

• Folded Structure. As shown in Figure 12, we visualize the folded structures of sequences generated by different
methods using Boltz-1. The structures are colored according to the pLDDT confidence, where blue regions indicate
high confidence. We borrow the color bar from AlphaFold server website6. Receptors are shown in gray with 20%
transparency for better visualization. The visualization demonstrates that our method generates sequences capable of
folding into stable structures with high confidence scores, indicate the quality of the generated sequences.

E Extended Related Works
Sidechain Prediction. Accurate prediction of sidechain conformation is crucial for protein design. Recent deep learning
approaches have significantly advanced this field. DiffPack (Zhang et al., 2024) employs a torsional diffusion model that
learns the joint distribution of sidechain torsion angles by diffusing and denoising in torsional space. It autoregressively
generates the four torsion angles. AttnPacker (McPartlon & Xu, 2023) directly incorporates backbone 3D geometry to
simultaneously compute all sidechain coordinates without relying on discrete rotamer libraries or conformation search.
Motif-Scaffolding. Motif-scaffolding, the design of proteins that incorporate specific functional motifs emerged as a
powerful approach in functional protein design. Structure-based methods like RFDiffusion (Watson et al., 2023) and
FrameFlow (Yim et al., 2023a) enable the generation of backbone scaffolds that can accommodate predefined motifs while
maintaining overall structural stability. Sequence-based approaches including EvoDiff (Alamdari et al., 2023), DPLM (Wang
et al., 2024a), and ESM3 (Hayes et al., 2025) present capabilities by designing sequences that fold into structures compatible
with functional motifs. These methods collectively provide a comprehensive toolkit for designing proteins with specific
functional properties.
Protein Structure Refinement. Structure refinement is essential for optimizing protein designs to achieve native-like stabil-
ity and function. Physics-based methods such as Rosetta relax (Alford et al., 2017) and OpenMM minimization (Eastman
et al., 2017) remain widely used for local refinement of protein structures. These refinement methods play a crucial role in
the protein design pipeline, helping to bridge the gap between computational designs and experimentally viable proteins.

F Binder Design
Settings. We further explore APM’s zero-shot capabilities in binder design, focusing specifically on longer protein binders
rather than short peptides. Following previous works (Watson et al., 2023; Zambaldi et al., 2024), we selected several
important targets: Interleukin-7 Receptor-α(IL-7RA), SARS-CoV-2 spike protein receptor-binding domain (SC2RBD),
MDM2, Programmed Death-1 (PD1), Programmed Death-Ligand 1 (PD-L1), and CD3-epsilon (CD3E). We extracted the
corresponding target chains and reference binders from PDB: 3di3, 6m0j, 1ycr, 4zqk, 4z18, and 1xiw, respectively.
The evaluation settings remain consistent with peptide design experiments. However, due to uncertainty about which amino
acids should be defined as hot-spot residues for these targets, we did not define hot-spot residues for RFDiffusion nor
extract pockets for APM. Consequently, we do not report DockQ for this task. Additionally, due to computational resource
constraints, we folded only the top 8 sequences rather than 16 as in previous experiments. The results of average metrics are
presented in Table 11, with the ’Success’ representing the proportion of samples (out of 8) that achieve both pLDDT > 80
and ipTM > 0.8. We present the generated binders across different methods and their corresponding folded structures with
the highest pLDDT sequences in Figure 13.
Discussion. Overall, APM is comparable to RFDiffusion. Although these metrics have been proven by many studies
to be predictive of wet lab experimental results (Zambaldi et al., 2024; Bennett et al., 2025), the actual effectiveness still
requires validation through wet lab experiments. We observed that both APM and RFdiffusion encounter cases where some
samples exhibit lower pLDDT and ipTM scores. The pLDDT score can vary significantly along a protein chain. This means

5https://github.com/bjornwallner/DockQ
6https://alphafoldserver.com/
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Table 11. Performance comparison of binder design. APMMPNN represents using ProteinMPNN to redesign sequences.
Target Method ∆G ↓ % <0 ↑ pLDDT ipTM Success

3di3

GroundTruth -23.79 - 95.26 0.85 -
RFDiffusion -50.49 82.50% 87.83 0.30 0%
APMMPNN -80.09 92.50% 83.39 0.29 12.5%

APM -80.10 95.00% 78.91 0.38 12.5%

6m0j

GroundTruth -20.11 - 81.55 0.15 -
RFDiffusion -56.10 67.50% 70.90 0.45 0%
APMMPNN -88.99 65.00% 67.82 0.40 12.5%

APM -96.47 67.50% 69.50 0.48 12.5%

1ycr

GroundTruth -25.24 - 90.42 0.93 -
RFDiffusion -39.47 100% 78.49 0.81 25.0%
APMMPNN -33.27 90.00% 71.10 0.70 50%

APM -37.94 90.00% 66.28 0.67 25.0%

4zqk

GroundTruth -39.36 - 94.03 0.87 -
RFDiffusion -29.35 87.50% 75.79 0.39 0%
APMMPNN -43.33 77.50% 79.10 0.36 0%

APM -45.27 90.00% 80.18 0.39 0%

4z18

GroundTruth -40.89 - 92.08 0.76 -
RFDiffusion -18.69 57.50% 67.39 0.30 0%
APMMPNN -63.37 55.00% 74.28 0.34 0%

APM -54.24 55.00% 69.28 0.35 0%

1xiw

GroundTruth -71.69 - 92.64 0.95 -
RFDiffusion -56.99 95.00% 77.22 0.76 62.5%
APMMPNN -46.96 82.50% 72.08 0.70 12.5%

APM -43.25 85.00% 73.27 0.62 12.5%

the folding model can be very confident in the structure of some regions of the protein, but less confident in other regions.
We hypothesize that the low pLDDT scores stem from the complexity of long binders. Specifically, certain regions may
be naturally highly flexible or intrinsically disordered, leading the folding model to assign low pLDDT scores to these
residues (as indicated in (Guo et al., 2022)). Regarding ipTM, we speculate that the lower scores may result from the larger
binding interfaces typical of long binders, which often involve multiple contact points or complex features such as convex or
polar epitopes, or hydrophobic regions (Zambaldi et al., 2024). These structural complexities and biological properties can
contribute to lower ipTM scores.
Future Directions. As suggested in (Zambaldi et al., 2024; Bennett et al., 2025), pLDDT and ipTM are predictive
of binding success. We would like to discuss potential approaches to improve long binder design. APM was originally
developed as a general-purpose model for complex modeling rather than a task-specific one, which presents challenges in the
context of long binder design. This can be reframed as a question of how to adapt a general model into a domain-specialized
one. Recent work (Bennett et al., 2025), provides valuable practical directions. The authors successfully transformed
RFdiffusion into an antibody-specific model by fine-tuning it on antibody-antigen complex structures, demonstrating that
domain-specific data can significantly enhance performance. Similarly, a feasible approach to enhance APM for long binder
design would be to use a curated dataset of long binder-target complexes, potentially sourced from PDB or synthetic data.
Besides, post-training techniques offer another strategy to optimize the model for generating high-confidence designs. As
demonstrated in (Zambaldi et al., 2024; Bennett et al., 2025), pLDDT and ipTM correlate with binding success. Building on
this insight, we could implement preference optimization focused on these confidence metrics. Applying DPO-like (Rafailov
et al., 2023; Wallace et al., 2024) algorithms, we can then train the model to favor high-confidence designs while avoiding
low-confidence ones.

G Future Works
Model Scaling. We chose not to incorporate triangular attention in APM, which is considered a key feature in the success of
AlphaFold2/3, because we aim to scale the model in the future to observe whether scaling laws exist in our model. Triangular
attention significantly restricts our ability to scale the model size.
Pair Information from PLM. In APM, PLM plays a crucial role by providing the model with a robust understanding of
protein sequences. However, we only utilized the representations of individual amino acids from the PLM, and not the
pair-level information (pair-level information refers to the attention matrix in PLMs). Pair-level information has been proven
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to provide significant benefits for protein structure learning. The reason we did not use pair-level information is to accelerate
the encoding process of sequences by PLM (especially in representing multi-chain data). We used a PLM implemented with
flash attention, which prevented us from obtaining complete pair-level information. In the future, we will attempt to resolve
the encoding speed issue with PLM and use the original PLM implementation to gain the access to pair-level information.
Refine Module. The Refine Module is designed to refine the structure and sequence generated by the Seq&BB Module,
which can be seen as a form of relaxation that allows modifications to the types of amino acids. Currently, our Refine
Module primarily aims to make the generated proteins resemble real proteins more closely. In the future, we will attempt to
incorporate more biological/physical constraints (e.g., force fields) into the Refine Module to achieve better performance.
Interchain Hotspot Residue Assignment. Hotspot residues, the amino acids playing crucial roles in interactions, also
be considered as regions where interactions occur, serving as important parameters in describing the binding proteins.
However, the current version of APM does not support specifying hotspot residues during the generation of complexes or
functional proteins. Instead, APM autonomously determines the regions where interactions occur. This design was made to
avoid the impact of assigning different hotspot residues on the model’s performance during general multi-chain protein
generation. Consequently, this design leads to differences in the binding patterns of proteins generated directly using APM
(in a zero-shot manner) compared to natural samples. In the future, we will address this issue to allow APM to support the
assignment of hotspot residues, thereby enhancing APM’s performance in a zero-shot manner.
Downstream Tasks. We will validate APM ’s capability in designing proteins with biological functions in more downstream
tasks.

H Visualization
All protein visualizations in this paper were completed using ChimeraX (Meng et al., 2023) (Figure 1, Figure 2, Figure 3,
Figure 9, Figure 10, Figure 11, Figure 12, Figure 13) and Protein Viewer (Sehnal et al., 2021) (the remaining visualizations).
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Figure 9. The CDR-H3s generated in a zero-shot manner display distinct patterns compared to natural ones. The antigen is represented
in pink, the antibody heavy chain in purple, and the antibody light chain in blue, with the CDR-H3 highlighted in red. The differences
between CDR-H3 generated in a zero-shot manner and those from natural antibodies can be categorized as follows: A. No obvious
difference, the generated CDR-H3 closely resembles that of a natural antibody. B. The generated CDR-H3 interacts with the antigen but
binds at a different position compared to the reference antibody. C. The generated CDR-H3 binds to the antibody light chain. D. While
the generated CDR-H3 binds correctly with the antigen, its structure predominantly consists of beta-sheets, unlike the common looped
structures in natural antibody CDRs. All the aforementioned differences disappear after undergoing SFT. The CDR-H3s generated by
APMSFT closely resemble that of the natural ones.
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Figure 10. 5 ground truth samples with ∆G exceeding 0. The receptor is shown in white, with the peptide highlighted in red. Slight
clashes are marked by red boxes. Additionally, ∆G for each sample are listed below them.
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GroundTruth APM APM(zero-shot) PepGLAD PPFlow

Figure 11. Visualization of peptides generated by different methods. The blue regions represent the given receptors, while the pink regions
show the generated peptides, with all-atom structures displayed at the interface regions. From left to right: Ground truth structures, APM,
APM zero-shot, PepGLAD, and PPFlow. The PDB IDs for the six cases from top to bottom are: 1jrr, 2cnz, 3ayu, 4dcb, 5frs, and
6qg8.
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GroundTruth APM APM(zero-shot) PepGLAD PPFlow

Figure 12. Folded structures of sequences generated by different methods using Boltz-1. The structures are colored according to the
AlphaFold-style pLDDT confidence scheme. From left to right: Ground truth structures, APM, APM zero-shot, PepGLAD, and PPFlow.
The PDB IDs for the six cases from top to bottom are: 1jrr, 2cnz, 3ayu, 4dcb, 5frs, and 6qg8.
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GroundTruth APM RFDiffusion APM(folded) RFDiffusion(folded)

3di3

6m0j

1ycr

4zqk

4z18

1xiw

Figure 13. Visualization of binder design results across six protein targets. From left to right: (1) GroundTruth: native complex structures,
(2) APM: structures generated by APM, (3) RFDiffusion: structures generated by RFDiffusion, (4) APM(folded): highest pLDDT APM
sequences folded with Boltz, (5) RFDiffusion(folded): highest pLDDT sequences folded with Boltz. The blue regions represent the given
targets, while the pink regions show the generated binders. For folded structures, targets are rendered transparent to highlight binders,
with binders colored according to AlphaFold’s pLDDT scheme. Each row represents a different PDB target: 3di3, 6m0j, 1ycr, 4zqk,
4z18, and 1xiw. 30


