
Published as a conference paper at ICLR 2024

ROLE OF LOCALITY AND WEIGHT SHARING IN IMAGE-
BASED TASKS: A SAMPLE COMPLEXITY SEPARATION
BETWEEN CNNS, LCNS, AND FCNS

Aakash Lahoti1, Stefani Karp1,2, Ezra Winston1, Aarti Singh1 & Yuanzhi Li1
1Machine Learning Department, Carnegie Mellon University, 2Google Research
{alahoti, shkarp, ewinston, aarti, yuanzhil}@andrew.cmu.edu

ABSTRACT

Vision tasks are characterized by the properties of locality and translation invariance.
The superior performance of convolutional neural networks (CNNs) on these tasks
is widely attributed to the inductive bias of locality and weight sharing baked into
their architecture. Existing attempts to quantify the statistical benefits of these
biases in CNNs over locally connected convolutional neural networks (LCNs) and
fully connected neural networks (FCNs) fall into one of the following categories:
either they disregard the optimizer and only provide uniform convergence upper
bounds with no separating lower bounds, or they consider simplistic tasks that do
not truly mirror the locality and translation invariance as found in real-world vision
tasks. To address these deficiencies, we introduce the Dynamic Signal Distribution
(DSD) classification task that models an image as consisting of k patches, each of
dimension d, and the label is determined by a d-sparse signal vector that can freely
appear in any one of the k patches. On this task, for any orthogonally equivariant
algorithm like gradient descent, we prove that CNNs require Õ(k + d) samples,
whereas LCNs require Ω(kd) samples, establishing the statistical advantages of
weight sharing in translation invariant tasks. Furthermore, LCNs need Õ(k(k+ d))
samples, compared to Ω(k2d) samples for FCNs, showcasing the benefits of locality
in local tasks. Additionally, we develop information theoretic tools for analyzing
randomized algorithms, which may be of interest for statistical research.

1 INTRODUCTION

Convolutional Neural Networks (CNNs) exhibit state-of-the-art performance across computer vision
tasks, including Image Classification, Object Detection, and Out of Distribution Detection (Liu et al.
(2022); Fang et al. (2022); Wang et al. (2022)). This efficacy is commonly attributed to the biases of
locality and weight sharing encoded into CNNs’ short convolutions. The rationale is that these biases
align with the properties of vision tasks, where local and mobile signals determine the output (Gens &
Domingos (2014); Marcus (2018)). In contrast, Locally Connected Neural Networks (LCNs) encode
only locality, while Fully Connected Neural Networks (FCNs) encode neither locality nor weight
sharing, thus resulting in a larger sample complexity compared to CNNs.

Previous works have attempted to quantify the statistical benefit of these architectural biases in CNNs.
For example, Vardi et al. (2022), Du et al. (2018) and Long & Sedghi (2020) derived Empirical Risk
Minimization (ERM) bounds for CNNs which are tighter than that for FCNs. However, they do not
provide separating lower bounds for FCNs on the same task, and cannot rule out the possibility that
FCNs can adaptively yield better bounds when the input satisfies locality and translation invariance.
In fact, as noted in Li et al. (2021), without taking the training algorithm into consideration, standard
lower bound techniques cannot be used to show a separation between the three models. This is because
an algorithm can simulate CNNs and LCNs within FCNs. Thus, if the algorithm is unconstrained, the
minimax lower bound for FCNs cannot be greater than any upper bound for CNNs or LCNs.

1

Published as a conference paper at ICLR 2024

Figure 1: From the Cats Dataset Zhang et al. (2008). The cat, which is the class-determining signal,
varies in position across images, showing the translation property amidst background noise.

Recently, Li et al. (2021) established a sample complexity separation between CNNs and FCNs
that were trained on the restricted class of equivariant algorithms like gradient descent 1. Wang
& Wu (2023) further extended this line of work to show a separation between FCNs, LCNs and
CNNs. However, the data models employed in these works are not truly reflective of the locality and
translation invariance of vision tasks. Typically in such tasks, the output is determined by some local
pattern, also known as “signal”. For example, a cat within images labeled “cat”. Often, this signal is
embedded within uninformative background, also known as “noise”, and can freely translate within
the image, i.e. it can appear in any patch within the image, without changing the label (as illustrated
in figure 1). In contrast, in both Li et al. (2021) and Wang & Wu (2023), the data model considered is
as follows: the input x ∼ N (0, I4d), and the label is given by f(x), and g(x) respectively,

f(x) =

2d∑
i=1

x2
i −

4d∑
i=2d+1

x2
i , g(x) = (

d∑
i=1

x2
2i − x2

2i+1)(

2d∑
i=d+1

x2
2i − x2

2i+1). (1)

Both of these data models fail to capture the aforementioned desiderata of a model for a vision task.
Additionally, they lack the requisite structure to demonstrate how sample complexity varies with the
“degree” of locality and translation invariance within the input, or establish conditions on the input
under which the differences between CNNs, LCNs, and FCNs are more pronounced.

Furthermore, it is worth noting that the driving force for their separation results is the interaction
between two halves of the input. Specifically, their lower bound selects “hard instances” from the class
of functionsH = {x⊤

1:dUxd+1:2d}, where U is a d× d orthonormal matrix, learning which results
in a lower bound of Ω(d2). While the interaction between the patches is an interesting phenomenon,
it is not the primary characteristic of locality and translation invariance found in images.

We introduce the Dynamic Signal Distribution (DSD) task, which is inspired by the setting in Karp
et al. (2021), as our data model for vision tasks. The input x ∈ Rkd is comprised of k consecutive
patches, each of dimension d. From amongst these k patches, one of them is randomly filled with a
noisy signed signal. The remaining patches are filled with isotropic Gaussian noise of variance σ2.
The binary label is set as the sign of the signal, so that all images with the same signal in any one of
the patches have the same label. By encapsulating concepts of signal, noise, locality, and translation
invariance, the DSD task offers a higher fidelity to the complexities found in real-world vision tasks.

On this task, we establish a sample complexity separation of Ω(σ2k2d) vs Õ(σ2k(k + d)) samples
between FCNs and LCNs, as well as a separation of Ω(σ2kd) vs Õ(σ2(k+d)) samples between LCNs
and CNNs. Our analysis indicates that due to no architectural biases, FCNs incur a multiplicative
cost factor of k for each of the two reasons: identifying the location of the k patches, and learning the
signal vector for each patch. The factor of d arises due to learning the signal which is d dimensional.
For LCNs, we can eliminate the k cost for identification of the patches since the location of all
the patches is baked into the architecture. Finally for CNNs both these costs are removed as the
architecture not only localizes all the patches, it also allows the signal to be jointly learnt across all
patches via weight sharing. It is noteworthy that both the LCN and the CNN upper bound feature a
k + d factor instead of the expected factor of d. This is an artifact of the gradient descent analysis,
and is suggestive of being a potential cost for the algorithmic efficiency of gradient descent.

1Formally, equivariance is defined on the pair of the network architecture and the training algorithm. For
brevity, we may refer to an algorithm as equivariant, when the underlying network(s) are clear from the context.

2

Published as a conference paper at ICLR 2024

Our approach diverges from Li et al. (2021); Wang & Wu (2023), because in our task, the marginal
over the input is not a 0-mean Gaussian, but a mixture of k Gaussians, which is not an orthogonally
invariant distribution. As a consequence, for deriving lower bounds, we cannot apply the Benedek-Itai
bound from Benedek & Itai (1991) as done in Li et al. (2021), nor can we directly use Fano’s Theorem
as done in Wang & Wu (2023) owing to the absence of the semi-metricness of l2 loss under an
invariant distribution, and analyzing the expected risk under a mixture of Gaussians is analytically
difficult. Instead, we utilize a novel technique that leverages the randomness of the training algorithm
to break the original minimax lower-bound problem into k simpler problems using a simulation-style
argument. In case of FCNs, we prove sample complexity lower bounds for the k the simpler problems
using a novel boosting technique to derive a reduction to the Gaussian mean estimation problem on the
unit sphere. To prove sample complexity lower bounds for the simpler problems in the case of LCNs,
we prove a variant of Fano’s Theorem that can be used for randomized algorithms. Distinctively, our
variant does not require the semi-metric property to hold on the entire space of output functions, as is
needed in the "Fano’s Theorem for Random Estimators" developed in Wang & Wu (2023).

Our sample complexity upper bounds depend on the analysis of an equivariant gradient descent style
algorithm on LCNs and CNNs. This is unlike the separation proved in Wang & Wu (2023), where
they use covering number-based arguments for ERM analysis. The advantage of doing a gradient
descent analysis over an ERM analysis is two fold: First, it demonstrates a sample complexity
separation for computationally-efficient (poly time) equivariant algorithms. This distinction is crucial
because while a separation may exist for computationally inefficient algorithms, the separation might
disappear under constraints of computational efficiency. Second, for a valid separation, it is important
to ensure that both the upper and lower bounds are derived for equivariant algorithms since non-
equivariant algorithms could potentially be more sample-efficient than their equivariant counterparts.
Furthermore, our approach differs significantly from Karp et al. (2021), which analyzes population
gradients by assuming enough (poly(k, d)) samples at each iteration to yield a representational gap
between CNNs and CNTKs (Convolutional Neural Tangent Kernels). Since we are interested in
sample complexity separation, we adopt a more direct analysis of empirical gradients.

2 OTHER RELATED WORKS

We already discussed some of the most relevant works, including Li et al. (2021); Wang & Wu
(2023); Karp et al. (2021); Vardi et al. (2022) in the introduction. Here, we will highlight a couple of
additional works.

Another work, Malach & Shalev-Shwartz (2020), proved a computational separation between FCNs
and CNNs on a "k-pattern" classification task. In the task, the inputs are from the hypercube {−1, 1}n,
and the label is based on a set of k consecutive coordinates. They employ random-feature analysis to
establish that CNNs, with 2k hidden nodes, can learn this task in O(2kn) samples. In contrast, we
only require O(k) nodes and samples. Furthermore, they do not provide lower bounds for FCNs, and
instead argue that the gradient is too small for a finite precision machine. Additionally, since their
task does not encode translation invariance, they cannot prove a separation between LCNs and CNNs.

3 NOTATION

Vector and Matrix Notation: We use bold lowercase letters, such as x,y, to represent vectors, and
bold uppercase letters, such as U,V, to represent matrices. Let [n] denote the set {1, . . . , n}. We
denote the standard basis of Rn by Bn and the individual basis vectors by ei. We define the function
idxn : Bn → [n], idxn(el) = l, for all l ∈ [n]. For any x, indexed from 1, we use x[i : j] ∈ Rj−i+1

to represent a slice from its i-th to its j-th entry. For a set {xi}ni=1, we employ (x1, . . . ,xn) to denote
the sequential length-wise concatenation of the vectors, and (x1; . . . ;xn) to denote the sequential
row-wise stacking of the vector transposes into a matrix. Conversely, for any x constructed via (;) or
(,) notation, we denote its ith component vector by x(i). We use U = Block({U1, . . .Un}) to be
the matrix having diagonal blocks of Ui’s in-sequence, with other entries set to zero. Conversely, for
any U constructed via Block(·), we denote its ith component matrix by U(i). The Euclidean norm
for vectors and the spectral norm for matrices are both denoted by ∥·∥.
Group Notation: Let U1, and U2 be any two subgroups of GL(n,R). Then, we define then binary
operation ⋆ such that U1 ⋆ U2 = {U1U2..Un | Ui ∈ U1 ∪ U2, n ∈ N}. It is easy to see that U1 ⋆ U2

3

Published as a conference paper at ICLR 2024

is also a subgroup of GL(n,R). We denote O(n) to be the group of orthonormal matrices on Rn×n

and Op(n) be the group of permutation matrices on Rn×n.

Task Notation: Let X ⊆ Rp, and Y ⊆ R denote the input and output space of a p dimensional
problem. Let P be any distribution over (X ,Y) and τ : X → X be any function, then we define the
distribution τ ◦ P over (X ,Y) by sampling (x, y) ∼ P and returning (τ(x), y). Let P be a set of
distributions over (X ,Y), then we define the set τ ◦ P := {τ ◦ P | P ∈ P}. Alternatively, let T be a
set of functions from X → X , then we define T ◦ P := {τi ◦ P | τi ∈ T}.
Model Notation: We denote a parametric model byM and its parameter set byW . The model along
with its parameter is a function from X to R. Specifically, ∀w ∈ W ,M[w] : X → R.

We will use O(·), Ω(·), and Θ(·) as the Big-O, Big-Omega, and Big-Theta notation respectively. The
notation Õ(·), Ω̃(·), and Θ̃(·) hides logarithmic factors.

4 OUR SETTING

We introduce the Dynamic Signal Distribution, an image-like task which is inspired from Karp et al.
(2021). We also specify the FCN, LCN, and CNN architectures that we consider for our analysis.

4.1 DYNAMIC SIGNAL DISTRIBUTION (DSD)

In many vision-based tasks, the output often relies on a local "signal" in the image, a property referred
to as locality. Often, this signal is enveloped in random noise, and satisfies translation invariance, that
is its movement within the image does not alter the output. The DSD task is designed to capture the
both locality and translation invariance properties into an analyzable task.

We define the input space as X = Rkd and the output space as Y = R. Any input vector x ∈ X is
structured as (x(1), ..,x(k)), with each x(i) being a vector in Rd, and representing the ith patch of x.
Thus, each input consists of k consecutive patches of dimension d. To model the local signal, we
employ an unknown unit vector w⋆ ∈ Rd, with ∥w⋆∥ = 1. To include translation invariance in the
task, this signal w⋆ can reside within any one of the k patch locations, described above. Specifically,
for each i in [k], we define a d-sparse mean vector µi ∈ Rkd, such that µi[(i− 1)d+ 1 : id] = w⋆

and all its other entries are zero. The noise is chosen to be isotropic Gaussian, with variance σ2 ∈ R+.

Formally, DSD is a distribution over (X ,Y) with the generative story: sample the index i ∼ Unif([k]),
and the label y ∼ Unif({−1, 1}). Then, sample the input data as x|(y, i) ∼ N (yµi, σ

2Ikd). Observe
that the probability density function (pdf) of DSD is,

p(x, y) = 1

2k(
√
2πσ2)kd

k∑
i=1

exp
(
−∥x−yµi∥2

2σ2

)
. (2)

We also define the Static Signal Distribution (SSDt), which is the conditional distribution of DSD
when the index parameter is fixed at i = t. Specifically, the label is chosen as y ∼ Unif({−1, 1}),
and then input data is sampled as x|y ∼ N (yµt, σ

2Ikd). We will use this distribution in proving the
lower bounds in theorem 6.1, 7.1, by reducing the problem of learning DSD to learning each SSDt.

4.2 NEURAL NETWORK ARCHITECTURES

We now introduce the model architectures that we consider for our analysis. We adopt the Local
Signal Adaptivity (LSA) activation function, first introduced in Karp et al. (2021), for all models,

ϕb(x) : R→ R := ReLU(x− b)− ReLU(−x− b), (3)

where b ∈ R+ is the trainable bias parameter. The rationale for choosing ϕb(x) is its capability
to ’filter out’ noise below the magnitude of b, while letting signals of magnitude larger than b to
propagate through the network. This denoising helps the network learn the signal with fewer samples.
We also note that the LSA activation function, also known as the “soft-thresholding function” , is
extensively used in high-dimensional sparse recovery problems (Section 18.2 Hastie et al. (2009)).
Since our task involves recovering the sparse mean vector, it futher justifies its use for the DSD task.

4

Published as a conference paper at ICLR 2024

FCN: We consider a one-hidden-layer network with k hidden nodes. Each hidden node i, is associated
with a parameter vector wi ∈ Rkd, such that ∥wi∥ ≤ 1. The complete model parameter vector is
given by v = [w1, ..,wk, b] ∈ W , whereW = Rk2d × R+. The function form for FCN is,

MF [v](x) : X → R :=

k∑
i=1

ϕb(w
T
i x). (4)

LCN: Similar to FCN, we consider a one-hidden-layer network featuring k hidden nodes. The i-th
node is associated with the parameter vector wi ∈ Rd, ∥wi∥ ≤ 1. The complete model parameter
vector is given by v = [w1, ..,wk, b], andW = Rkd × R+. The function form for LCN is,

ML[v](x) : W → R :=

k∑
i=1

ϕb(w
T
i x

(i)) (5)

CNNs: We consider a one hidden-layer CNN has k hidden nodes. The parameter w ∈ Rd, ∥w∥ ≤ 1
is the shared across all nodes. The composite vector v = [w, b] is our complete model parameter
vector, andW = Rd × R+. The function form for CNN is,

MC [v](x) : W → R :=

k∑
i=1

ϕb(w
Tx(i))

The subscripts F , L, and C denotes that the model corresponds to a FCN, LCN, and CNN respectively.

5 MATHEMATICAL BACKGROUND

5.1 TECHNICAL DEFINITIONS

Definition 1 (Loss Function). We define the loss function for our task as err : (Y,Y)→ R+,

err(ȳ, y) = (ȳ − y)2. (6)

Definition 2 (Risk). Let F = YX , and let P be the set of all distributions over (X ,Y). Then, we
define the risk R : (F ,P)→ R+ of a function f ∈ F with respect to the distribution P ∈ P as,

R(f, P) = E
(x,y)∼P

[err(f(x), y)] . (7)

Definition 3 (Algorithm). Let F ⊆ YX , Ξ be the sample space that encapsulates all algorithmic
randomness, and PΞ be some fixed distribution over Ξ. Then, a randomized algorithm denoted by
θ : ((X ,Y)n,Ξ)→ F , is a function defined from the product space of input data and randomness to
the space of possible functions. The randomness is realized by sampling from the distribution PΞ.

We may omit (X ,Y) and Ξ from the notation when they are clear from the context and use the random
variable notation θn instead, where n denotes the number of samples.
Definition 4 (Iterative (Randomized) Algorithm). Consider a parametric modelM, and its parameter
setW , such that for any w ∈ W ,M[w] is a maps from the input space X to the output space Y .
Let F = {M[w] | w ∈ W}. Let the model parameters be initialized via a distribution W overW ,
w0 ∼ W . Let T be the number of iterations and F t : (W, Sn) → W be the update functions for
each iteration t. Then the function θ : ((X ,Y)n,W;M[W], {F t}t)→ F 2 is an iterative algorithm
if it adheres to the procedure 1.

Definition 5 (Sample Complexity). Let P be a distribution over (X ,Y) and θn be a randomized
algorithm as defined in 3. Let Sn ∼ Pn be n i.i.d. data points sampled from P . For any δ ∈ [0, 1],
we define the δ-sample complexity of θn as,

nδ(θn, P) = min
n∈N
{n ∈ N | E [R(θn, P)] ≤ δ} , (8)

where the expectation is over the input data Sn, and the algorithmic randomization.

We may omit the distribution P from the sample complexity notation nδ(θn, P) and use the shorthand
nδ(θn) instead, when P is clear from the context.

2In the proofs, we will employ a generalization of this definition, wherein the parameter W will be replaced
by a general space Ξ and an associated fixed, data-independent distribution PΞ. Ξ includes parameters as well
as other random quantities. All definitions presented henceforth also hold for this generalization.

5

Published as a conference paper at ICLR 2024

Algorithm 1 Iterative Algorithm
Require: Update functions {F t}T , Set of n i.i.d. data samples Sn, Parameter initialization w0,

t← 1
while t ≤ T do

wt ← F t(wt−1, Sn)
t← t+ 1

end while
return wT

5.2 EQUIVARIANT ALGORITHMS

We introduce the concept of equivariant algorithms, originally presented in Li et al. (2021). To keep
it concise, we provide a simplified version which is sufficient for our purposes.

To motivate the definition of equivariant algorithms, we review the following thought experiment.
Consider a neural network parameterized as f(Ax, b), where A ∈ Rq×p is the parameter of the first
linear layer, while b ∈ Rq encapsulates the remaining parameters. We initialize the parameters as
(A0, b0) and use gradient descent, with learning rate η, to train the network on the dataset {xi, yi}n.
In parallel, we train another network initialized as (A0UT , b0), with the dataset {Uxi, yi}n. Here,
U ∈ O(p) such that A0UT and A0 are identically distributed.

Observe that at the first iteration, the output of the first hidden layer for both networks is the same,
A0UTUx = A0x. This implies that the gradients with respect to the pre-activations of the first layer
are also equal. Consequently, the gradients with respect to the matrix parameters satisfy the relation,
d

dA0 loss(A0)UT = d
dA0UT loss(A0UT) := ∆UT . Thus, after the first iteration, the parameter sets

for the two neural networks are,

(A1, b1) = (A0 − η∆, b1), (A1UT , b1) = (A0UT − η∆UT , b1), (9)

respectively. By induction, this property is preserved across all iterations t, resulting in the parameters
for the two neural networks being (At, bt) and (AtUT , bt), respectively.

The key idea is that the risk of a network parameterized as (At, bt) on any data {x, y} is the same
as its counterpart with parameters (AtUT , bt) on the transformed data {Ux, y}. Now since A0UT

and A0 have the same distribution, we can infer that the expected risk of this network trained with
gradient descent is invariant to the transformation U of the input distribution. In other words, the
network learns the original distribution and the transformed distribution equally well. Formally,

Definition 6 (U-equivariant algorithm). Under the notation established in definition 4, let the input
space X ⊆ Rp, the output space Y ⊆ R, and the parameter setW ⊆ Rm. Let U ⊆ O(p), then an
iterative algorithm θ̄n is is U-equivariant if there exists a set V ⊆ O(m), such that,

1. For all U ∈ U , there exists V ∈ V such that for all x ∈ X , and w ∈ W ,
M[w](x) =M[Vw](Ux).

2. For all U ∈ U , the same V ∈ V as defined in (1) satisfies ∀{xi, yi}n ∈ (X ,Y)n, ∀t ∈ [T],
and w ∈ W , VF t (w, {xi, yi}n) = F t (Vw, {Uxi, yi}n)

3. If w ∼W , then for all V ∈ V , Vw
d
= w.

And, equivariant algorithms satisfy the following property,

Lemma 5.1. (Section 4.1 Li et al. (2021)) If θ̄n is a U -equivariant algorithm, then ∀x ∈ X ,U ∈ U ,

θ̄({xi, yi}n)(x)
d
= θ̄({Uxi, yi}n)(Ux), (10)

where the randomness is over initialization.

This property formalizes the conclusion drawn in the thought experiment. That is the performance of
an equivariant algorithm when trained on n i.i.d. samples from P1 and tested on P2 would be the
same, in distribution, had it been trained on n i.i.d. samples from U ◦ P1 and tested on U ◦ P2.

6

Published as a conference paper at ICLR 2024

5.3 MINIMAX FRAMEWORK

We present the minimax framework by closely following the notation established in Duchi (2021).
Let P denote a set of distributions over (X ,Y) and F ⊆ YX represent a set of functions from X
to Y . Let θ⋆ : P → F be some unknown target mapping, and let Θ = {θ | θ : ((X ,Y)n,Ξ)→ F}
be a set of algorithms with a common distribution PΞ over the sample space Ξ that encapsulates
randomness. Let ρ : F × F → R+ be some symmetric positive function.
Definition 7 (Minimax Risk). Under the notation from above, we define the minimax risk of learning
the set of tasks P using the set of algorithms Θ as,

Mn(Θ,P) := inf
θn∈Θ

sup
P∈P

E [ρ(θn, θ
⋆(P))] . (11)

For brevity, we may omit P from the notation, when it is clear form context. The primary change
in our adaptation of the minimax framework is that we allow for randomized algorithms, whose
randomness is independent of the input data distribution. In contrast, the original framework is only
applicable to deterministic algorithms, typically referred to as estimators.

We now present our Fano’s Theorem for Randomized Algorithms to lower bound the minimax risk
11. In this variant, we relax the constraint that ρ is a semi-metric on the space F . Specifically, given a
set of “hard problem” instances PV , and their associated target functions FV , we only require that if
a function f ∈ F is “close enough”, in ρ, to any g ∈ FV , then it is “far enough”, in ρ, to all FV \ {g}.
This relaxation helps us prove lower bounds when the stronger semi-metric property does not hold.
Theorem 5.1 (Fano’s Theorem for Randomized Algorithms). Under the notation established above,
let V be an index set of finite cardinality of some chosen subset of P . Then, we define PV := {Pv |
∀v ∈ V}, and FV := {θ⋆(Pv) | ∀v ∈ V}. For some fixed parameter δ > 0, let ρ satisfy the condition
that, for all fu ̸= fv ∈ FV and f ∈ F , if ρ(f, fu) < δ, then ρ(f, fv) > δ. And, for all Pu, Pv ∈ PV ,
u ̸= v, let the KL divergence satisfy KL(Pu ∥ Pv) ≤ D for some D > 0. Then,

Mn(Θ) ≥ δ
(
1− nD+ln(2)

ln(|V|)

)
.

The proof of this theorem is presented in appendix B.
Remark 1. We only need to define ρ on the subset F ×FV of its domain F ×F and θ⋆ on the subset
PV of its domain P to apply the above theorem.

6 FCNS VS LCNS SEPARATION RESULTS

We now present the separation result between FCNs and LCNs, along with an outline of the proof.
Specifically, we establish that FCNs, when trained with any equivariant algorithm, require Ω(σ2k2d)
samples to learn DSD upto some constant risk δ. Conversely, there exists an equivariant algorithm
that can train LCNs with Õ(σ2k(k + d)) samples, to achieve a risk less than δ.
Theorem 6.1 (Sketched). Consider the group U = O(kd), then any U -equivariant algorithm that is
used to train FCNs, requires Ω(σ2k2d) samples to achieve some constant risk δ.

Proof. We justify the choice of U = O(kd), in light of the intuition for equivariance presented in
section 5.2. Note that the parameter of the first layer of FCNs, A ∈ Rk×kd, is given by (w1; . . . ;wk).
We establish equivariance if, for every transformation U ∈ U , AUT corresponds to a valid FCN, and
if there exists an initialization such that AUT and A are identically distributed. Indeed, AUT =
(Uw1; . . . ;Uwk), corresponds to a FCN with the parameter vectors Uw1, . . . ,Uwk. And, if each
wi is initialized as wi ∼ N (0, Ikd), then AUT and A share the same distribution.

Our proof proceeds in two steps. First, we establish that learning U ◦ DSD with m samples requires
learning k "nearly independent" subtasks, {U ◦ SSDt}k, with m/k samples each. The underlying
rationale of this result is that learning U ◦ DSD entails recovering each mean vector {Uµt}k. Note
that these mean vectors are pair-wise orthogonal, (Uµi)

T (Uµj) = µT
i µj = 0. Therefore, even

with the knowledge of {Uµt}t ̸=i, the only information we have about Uµi is the kd− k + 1 ≃ kd
dimensional subspace in which it lies. Thus, to learn DSD, we have to recover all the means vectors,
{Uµt}k, "nearly independently" from each other.

7

Published as a conference paper at ICLR 2024

In the second step, we reduce the problem of learning SSDt, into a problem of Gaussian mean
estimation. For this, we show that if there exists an algorithm that learns SSDt, then we can extract a
weakly aligned mean estimate of Uµt from the FCN returned by the algorithm. We propose a scheme
that reliably boosts this estimate, to generate a strongly aligned mean estimate. This is necessary
because standard information theoretic tools do not work with weakly aligned mean estimates. We
then bound the sample complexity for any algorithm that is able to return a strongly aligned Gaussian
mean estimate using our Fano’s Theorem for Randomized Estimators 5.1 as m/k = Ω(σ2kd). This
implies that m = Ω(σ2k2d), proving the result.

The formal statement of the theorem and its proof can be found in appendix C

Theorem 6.2. (Sketched) Consider the groups U1 := {Block ({U1, . . . ,Uk}) | Ui ∈ O(d)}, and
U2 := {U ∈ Op(kd) | idxkd(Ue(i−1)d+1) + j − 1 = idxkd(Ue(i−1)d+j), ∀i ∈ [k], j ∈ [d]}. Let
U = U1 ⋆ U2. Then there exists a U-equivariant algorithm that trains LCNs with Õ(σ2k(k + d))
samples, to achieve a risk less than δ.

Proof. To justify our choice of U for LCNs, we establish equivariance under U1 and U2 separately.
The equivariance under U simply follows from an induction on the number of finite combinations of
elements of U1 ∪ U2.

Equivariance under U1

Consider an input x ∈ Rkd, then any transformation U ∈ U1 operates on x on a per-patch basis.
On each patch, U induces, a possibly distinct, orthogonal transformation. We now show equiv-
ariance under the notation from section 5.2. The linear layer parameter A ∈ Rk×kd is given by
Block(w1, . . . ,wk). Observe that, AUT = Block(U(1)w1, . . . ,U

(k)wk), which corresponds to a
LCN with parameter vectors {U(1)w1, . . . ,U

(k)wk}. And if each wi is sampled as wi ∼ N (0, Id),
then AUT and A share the same distribution.

Equivariance under U2
A transformation U ∈ U2 permutes the k input patches amongst each other, while retaining each
internal structure of each patch. Let π : [k]→ [k], be the permutation function corresponding to U.
Then observe that AUT = Block(wπ(1), . . . ,wπ(k)), which corresponds to a LCN with parameter
vectors {wπ(1), . . . ,wπ(k)}. And, if wi ∼ N (0, Id), then AUT and A share the same distribution.

Our training uses gradient descent, accompanied by a projection on the unit ball after every descent
step. We included this projection to simplify the analysis, though we note that it can be removed
without changing the core proof structure. The training proceeds in two steps. We show that after the
first update, each parameter vector achieve an alignment of (w⋆)Twi = Ω(

√
(k + d)/kd). In the

second step, we use this alignment to reliably filter out the noise patches, while retaining the signal
patches. This denoising enables us to prove a stronger Ω(1) alignment, which implies that the model
has successfully recovered signal vector. Consequently, the model has a small risk ≤ δ.

Detailed theorem statements and proofs are available in appendix C.2.

7 LCNS VS CNNS SEPARATION RESULTS

We now present the separation results between LCNs and CNNs, along-with their sketched proofs.
Specifically, we show that a LCN trained with any equivariant algorithm, requires Ω(σ2kd) samples
to learn DSD upto a risk of δ. On the other hand, there exists an equivariant algorithm that can train
CNNs with Õ(σ2(k + d)) samples to achieve a risk that is less than δ.

Theorem 7.1. (Sketched) Consider the groups U1 := {Block ({U1, . . . ,Uk}) | Ui ∈ O(d)}, and
U2 := {U ∈ Op(kd) | idxkd(Ue(i−1)d+1) + j − 1 = idxkd(Ue(i−1)d+j), ∀i ∈ [k], j ∈ [d]}. Let
U = U1 ⋆ U2. Then any U-equivariant algorithm that is used to train LCNs requires Ω(σ2k2d)
samples to achieve a risk of δ.

Proof. We have already justified the choice of U for LCNs in the sketched proof of theorem 6.2.

8

Published as a conference paper at ICLR 2024

We follow in the footsteps of the proof of theorem 6.1. First, we establish that learning U ◦ DSD
with m samples requires learning k independent subtasks, {U ◦ SSDt}k, with m/k samples each.
The distinction from the proof of theorem 6.1, is that the subtasks are fully independent. This is
because, the group U does not permit interaction amongst the k patches. In other words, the vectors
{U(1)µ1, . . . ,U

(k)µk} are all d-sparse, and occupy non-overlapping subspaces. Therefore, even if
we have the knowledge of {U(t)µt}t ̸=i, we would still have no information about U(i)µi. Thus, we
have to recover all the d-sparse mean vectors independently of each other.

In the second step, we prove an information-theoretic lower bound to learn U ◦ SSDt with m/k
samples. We find a function that lower bounds the risk incurred by a LCN on SSDt. This function
satisfies the weakened conditions of theorem 5.1. Finally, we use theorem 5.1 together with the
Gilbert-Varshamov lemma A.1.1, to show that m/k = Ω(σ2d). And implies that m = Ω(σ2kd).

The complete statement of the theorem with its proof can be found in appendix D.1

Theorem 7.2. (Sketched) Define U1 := {Block ({U1, . . . ,Uk}) | Ui = Uj ,Ui ∈ O(d)}, and
U2 := {U ∈ Op(kd) | idxkd(Ue(i−1)d+1) + j − 1 = idxkd(Ue(i−1)d+j), ∀i ∈ [k], j ∈ [d]}. Let
U = U1 ⋆ U2. Then there exists a U-equivariant algorithm that trains CNNs, as defined in 6, with
Õ(σ2(k + d)) samples, to achieve a risk of less than δ.

Proof. To justify our choice of U for CNNs, we establish equivariance under U1 and U2 separately.
The equivariance under U follows from induction on the number of finite combinations in U1 ⋆ U2.

Equivariance under U1

Consider an input x ∈ Rkd, then any transformation U ∈ U1 induces the same orthogonal transfor-
mation on every patch of x. Moreover, it does not allow for any inter-patch interaction. To prove
equivariance, observe that the parameter A ∈ Rk×kd is given by Block(w, .. k times ..,w). Note
that, AUT = Block(U(1)w, . . . ,U(k)w) = Block(U(1)w, . . . ,U(1)w), which corresponds to a
CNN with parameter vectors {U(1)w, . . . ,U(1)w}. And if the parameter vector, w, is initialized as
w ∼ N (0, Id), then AUT and A share the same distribution.

Equivariance under U2
A transformation U ∈ U2 permutes the k input patches, while retaining the internal structure of each
patch. Equivariance follows directly from the argument in the proof of theorem 6.2.

Our approach exactly follows the proof theorem 6.2. We train the CNN using gradient descent,
followed by a projection on the unit ball. The training algorithm has two iterations. We show an
alignment of Ω(

√
(k + d)/kd) after the first update, and a stronger alignment of Ω(1) via denoising

after the second update. This implies that the model has successfully recovered signal vector, and
consequently it has a small risk ≤ δ.

Detailed theorem statements and proofs are available in appendix D.2.

8 CONCLUSION AND FUTURE WORK

In this paper, we established a sample complexity separation between FCNs, LCNs, and CNNs that
are trained using equivariant algorithms on the Dynamic Signal Distribution (DSD) task. Unlike
previous works, this task encodes the concepts of signal, noise, locality, and translation invariance,
thus incorporating the salient characteristics of vision-based tasks. We quantify the benefits of locality
and weight sharing on the DSD task. Specifically, we show that FCNs incur an extra multiplicative
cost of k2 because they lacks both architectural biases, LCNs incur a k cost because of the absence of
weight sharing, whereas CNNs avoid these costs because it exhibits both locality and weight sharing.

In future work, we plan to incorporate second-order characteristics of images into the data model. For
instance, allowing multiple signals to appear across different patches simultaneously would mirror
real-world scenarios where multiple objects occur. Additionally, an interesting direction would be to
analyze the role of depth in a CNN in capturing dependency between different patches.

9

Published as a conference paper at ICLR 2024

REFERENCES

Gyora M. Benedek and Alon Itai. Learnability with respect to fixed distributions. Theor. Com-
put. Sci., 86:377–390, 1991. URL https://api.semanticscholar.org/CorpusID:
33054388.

Simon S Du, Yining Wang, Xiyu Zhai, Sivaraman Balakrishnan, Russ R Salakhutdinov, and
Aarti Singh. How many samples are needed to estimate a convolutional neural network?
In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Gar-
nett (eds.), Advances in Neural Information Processing Systems, volume 31. Curran Asso-
ciates, Inc., 2018. URL https://proceedings.neurips.cc/paper_files/paper/
2018/file/03c6b06952c750899bb03d998e631860-Paper.pdf.

John Duchi. Lecture notes for statistics 311/electrical engineering 377, 2021. URL https://web.
stanford.edu/class/stats311/lecture-notes.pdf. Stanford University.

Yuxin Fang, Wen Wang, Binhui Xie, Quan Sun, Ledell Wu, Xinggang Wang, Tiejun Huang, Xinlong
Wang, and Yue Cao. Eva: Exploring the limits of masked visual representation learning at scale,
2022.

Robert Gens and Pedro M. Domingos. Deep symmetry networks. In NIPS, 2014. URL https:
//api.semanticscholar.org/CorpusID:267009.

T. Hastie, R. Tibshirani, and J.H. Friedman. The Elements of Statistical Learning: Data Mining,
Inference, and Prediction. Springer series in statistics. Springer, 2009. ISBN 9780387848846.
URL https://books.google.com/books?id=eBSgoAEACAAJ.

Stefani Karp, Ezra Winston, Yuanzhi Li, and Aarti Singh. Local signal adaptivity: Provable feature
learning in neural networks beyond kernels. In A. Beygelzimer, Y. Dauphin, P. Liang, and
J. Wortman Vaughan (eds.), Advances in Neural Information Processing Systems, 2021. URL
https://openreview.net/forum?id=oAjn5-AgSd.

Zhiyuan Li, Yi Zhang, and Sanjeev Arora. Why are convolutional nets more sample-efficient than
fully-connected nets? In International Conference on Learning Representations, 2021. URL
https://openreview.net/forum?id=uCY5MuAxcxU.

Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie.
A convnet for the 2020s. CoRR, abs/2201.03545, 2022. URL https://arxiv.org/abs/
2201.03545.

Philip M. Long and Hanie Sedghi. Generalization bounds for deep convolutional neural networks,
2020.

Eran Malach and Shai Shalev-Shwartz. Computational separation between convolutional and fully-
connected networks, 2020.

Gary Marcus. Deep learning: A critical appraisal. CoRR, abs/1801.00631, 2018. URL http:
//arxiv.org/abs/1801.00631.

Pascal Massart, Jean Picard, and École d’été de probabilités de Saint-Flour. Concentration inequalities
and model selection. 2007. URL https://api.semanticscholar.org/CorpusID:
119022238.

Gal Vardi, Ohad Shamir, and Nathan Srebro. The sample complexity of one-hidden-layer neural
networks, 2022.

Haoqi Wang, Zhizhong Li, Litong Feng, and Wayne Zhang. Vim: Out-of-distribution with virtual-
logit matching, 2022.

Zihao Wang and Lei Wu. Theoretical analysis of inductive biases in deep convolutional networks,
2023.

Weiwei Zhang, Jian Sun, and Xiaoou Tang. Cat head detection - how to effectively exploit shape
and texture features. In European Conference on Computer Vision, 2008. URL https://api.
semanticscholar.org/CorpusID:2441648.

10

https://api.semanticscholar.org/CorpusID:33054388
https://api.semanticscholar.org/CorpusID:33054388
https://proceedings.neurips.cc/paper_files/paper/2018/file/03c6b06952c750899bb03d998e631860-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/03c6b06952c750899bb03d998e631860-Paper.pdf
https://web.stanford.edu/class/stats311/lecture-notes.pdf
https://web.stanford.edu/class/stats311/lecture-notes.pdf
https://api.semanticscholar.org/CorpusID:267009
https://api.semanticscholar.org/CorpusID:267009
https://books.google.com/books?id=eBSgoAEACAAJ
https://openreview.net/forum?id=oAjn5-AgSd
https://openreview.net/forum?id=uCY5MuAxcxU
https://arxiv.org/abs/2201.03545
https://arxiv.org/abs/2201.03545
http://arxiv.org/abs/1801.00631
http://arxiv.org/abs/1801.00631
https://api.semanticscholar.org/CorpusID:119022238
https://api.semanticscholar.org/CorpusID:119022238
https://api.semanticscholar.org/CorpusID:2441648
https://api.semanticscholar.org/CorpusID:2441648

Published as a conference paper at ICLR 2024

A RESTATED GILBERT VARSHAMOV BOUND

Theorem A.1 (Massart et al. (2007), Lemma 4.7). Let {0, 1}N be equipped with Hamming distance
δ and given 1 ≤ D < N define {0, 1}ND =

{
x ∈ {0, 1}N : δ(0, x) = D

}
. For every α ∈ (0, 1) and

β ∈ (0, 1) such that D ≤ αβN , there exists some subset Θ of {0, 1}N with the following properties,

δ(θ, θ′) > 2(1− α)D ∀(θ, θ′) ∈ Θ2, θ ̸= θ′, (12)

ln |Θ| ≥ ρD ln

(
N

D

)
, (13)

where,

ρ =
α

− ln(αβ)
(− ln(β) + β − 1). (14)

Corollary A.1.1. Let S be the set of all unit vectors of RN , that is, S := {u | u ∈ RN , ∥u∥ = 1}.
Then for any constant c ≥ 2

N , there exists some subset S̃ ⊆ S of size ln(|S̃|) ≥ N such that, for all
u,v ∈ S̃, uTv < c.

Proof. We set the value of D = N
2 . Consider the set S1 := { u√

D
| u ∈ {0, 1}N , ∥u∥0 = D}. It

is easy to see that S1 ⊆ S. Observe that for any u,v ∈ S1, δ(u,v) > N(1 − c
2) if and only if

uTv < c. Now, we set α = c
2 , β = 1

c , and apply Gilbert-Varshamov Bound,

ln(|S̃|) ≥ (c ln(c)− c+ 1)N. (15)

11

Published as a conference paper at ICLR 2024

B PROOF OF THEOREM 5.1

The following helper lemma derives the KL divergence between two transformations of SSDt, namely
U ◦ SSDt and V ◦ SSDt.
Lemma B.1. For any U,V ∈ O(kd), then the KL Divergence between U ◦ SSDt and V ◦ SSDt is,

KL(U ◦ SSDt || V ◦ SSDt) =
1−cos(α)

σ2 (16)

where cos(α) = (Uµt)
TVµt

Proof.

KL(U ◦ SSDt || V ◦ SSDt) = E
(x,y)∼U◦SSDt

ln

 exp

(
−

∥x−yUµt∥2

2σ2

)

exp

(
−

∥x−yVµt∥2

2σ2

)
 (17)

= E
y

E
x=yUµt+σϵ

ln

 exp

(
−

∥x−yUµt∥2

2σ2

)

exp

(
−

∥x−yVµt∥2

2σ2

)
 (18)

= E
y

E
x=Uµt+σϵ

ln

 exp

(
−

∥x−Uµt∥2

2σ2

)

exp

(
−

∥x−Vµt∥2

2σ2

)
 (19)

= E
x=Uµt+σϵ

ln

(
exp(xTUµt/σ

2)
exp(xTVµt/σ2)

)
(20)

= E
x=Uµt+σϵ

[
xTUµt/σ

2 − xTVµt/σ
2
]

(21)

= µT
t U

TUµt/σ
2 − µT

t U
TVµt/σ

2 (22)

= 1−cos(α)
σ2 , (23)

which proves the required result.

Theorem 5.1 (Fano’s Theorem for Randomized Algorithms). Under the notation established above,
let V be an index set of finite cardinality of some chosen subset of P . Then, we define PV := {Pv |
∀v ∈ V}, and FV := {θ⋆(Pv) | ∀v ∈ V}. For some fixed parameter δ > 0, let ρ satisfy the condition
that, for all fu ̸= fv ∈ FV and f ∈ F , if ρ(f, fu) < δ, then ρ(f, fv) > δ. And, for all Pu, Pv ∈ PV ,
u ̸= v, let the KL divergence satisfy KL(Pu ∥ Pv) ≤ D for some D > 0. Then,

Mn(Θ) ≥ δ
(
1− nD+ln(2)

ln(|V|)

)
.

Proof. From the definition of minimax risk,

Mn(Θ) = inf
θ∈Θ

sup
P∈P

E
Sn∼Pn,ξ∼P (Ξ)

[ρ(θ(Sn, ξ), θ⋆(P))] ,

≥ inf
θ∈Θ

sup
P∈PV

E
Sn∼Pn,ξ∼P (Ξ)

[ρ(θ(Sn, ξ), θ⋆(P))] ,

= inf
θ∈Θ

sup
Q∈Qn

V

E
(Sn,ξ)∼Q

[ρ(θ(Sn, ξ), θ⋆(Q))] ,

where Qn
V := {Q(Sn, ξ) := Pn(Sn) ∗ PΞ(ξ) | P ∈ PV}, and we overload the target mapping

notation and set θ⋆(Q) = θ⋆(P), where P is the distribution corresponding to Q. First, observe that
for all Qu, Qv ∈ Qn

V , u ̸= v, the KL divergence between the two distributions is given by,

KL(Qu ∥ Qv) = E
(Sn,ξ)∼Qu

Qu(S
n,ξ)

Qv(Sn,ξ) = E
Sn∼Pn

u ,ξ∼PΞ

Pn
u (Sn)PΞ(ξ)

Pn
v (Sn)PΞ(ξ)

,

= E
Sn∼Pn

u

Pn
u (Sn)

Pn
v (Sn) = KL(Pn

u ∥ Pn
v) = nKL(Pu ∥ Pv) = nD.

12

Published as a conference paper at ICLR 2024

We follow in the footsteps of the proof of Fano’s Theorem [Prop 7.3 Duchi (2021)]. For any Q ∈ Qn
V ,

E
Q
[ρ(θn, θ

⋆(Q))] ≥ E
Q
[δ 1{ρ(θn, θ⋆(Q)) ≥ δ}] ≥ δ P[ρ(θn, θ⋆(Q)) ≥ δ].

We define the testing function, Ψ: F → V as,

Ψ(f) := argmin
v∈V

{ρ(f, θ⋆(Qv))},

where ties can be broken arbitrarily and the analysis would still hold. Let v be the uniform random
variable over V . Recall the assumption on ρ that, if ρ(f,Qu) < δ, then ρ(f,Qv) > δ,

sup
Q∈Qn

V

P[ρ(θn, θ⋆(Q)) ≥ δ] ≥ 1

| V |
∑
v∈V

P[ρ(θn, θ⋆(Qv)) ≥ δ | v = v],

≥ 1

| V |
∑
v∈V

P[Ψ(θn) ̸= v | v = v],

≥ inf
Ψ

P[Ψ(θn) ̸= v].

From the above, 24, and Prop 7.10 and Eq 7.4.5 from Duchi (2021), we have the result,

Mn(Θ) ≥ δ
(
1− nD+ln(2)

ln(|V|)

)
.

13

Published as a conference paper at ICLR 2024

C FCNS VS LCNS SEPARATION RESULTS

C.1 FCN SSD LOWER BOUND

Lemma C.1. Let Sn ∼ (SSD1)
n be n i.i.d. data samples drawn from SSD1. Define the equivariance

group U := O(kd). Define the subset Ũ ⊆ U such that, for all U ∈ Ũ , t ∈ {2, . . . , k}, Uµt =

ekd−k+t. LetP := {U◦P |U ∈ Ũ} be the set of problem distributions. Let Ξ be the sample space that
encapsulates algorithmic randomness, and PΞ be a distribution over Ξ. Let Θ := {θ : (Xm,Ξ)→
Skd−1} be the set of U-equivariant randomized algorithms that estimate the mean of the input
distribution using n i.i.d. samples. If,

inf
θn∈Θ

sup
U∈Ũ

E
Sn∼(U◦P)n,ξ∼PΞ

∥θn −Uµ1∥ ≥ 0.25, (24)

then n = Ω(σ2kd), for large enough k, d.

Proof. We will prove this statement using Fano’s Theorem for Randomized Algorithms 5.1. Observe
that since ∥·∥ is already a metric, the relaxed semi-metric property holds for all δ.

We begin by constructing a 2δ, δ = 0.25, packing of the set of means S = {Uµ1 | U ∈ Ũ}. Observe
from the construction of Ũ that,

S ⊃ S1 := {u | u ∈ Rkd, ∥u∥ = 1,u ∈ Span({e1, · · · , ekd−k})}
∼= S2 := {u | Rkd−k, ∥u∥ = 1},
⊃ S3 := {u | Rkd−k, ∥u∥ = 1,u[j] = 1√

kd−k
, j ∈ [kd−k

2]},

∼= S4 := {u | R
kd−k

2 , ∥u∥ = 1
2},

where ∼= denotes the fact that S1,S2, and S3, S4 are isometric sets under the Euclidean norm.
Therefore, it is enough to find a 2δ packing of S4 to find a 2δ packing of S1. Now, define the set

S5 := {u | R
kd−k

2 , ∥u∥ = 1}, and observe that (S4, 2 ∗ ∥·∥) and (S5, ∥·∥) are isometric. Therefore,
it is enough to find a 4δ packing of S5.

Now observe that for any u,v ∈ S5, ∥u − v∥ ≥ 4 ∗ 0.25 ⇐⇒ uTv ≤ 1
2 . Therefore, for large

enough k, d, by Corollary A.1.1, we have that the size (N) of a 2δ packing of S satisfies,

ln(N) ≥ 0.15kd. (25)

Note from Lemma B.1, that the KL divergence between any two distinct distributions, P,Q, corre-
sponding to the 2δ packing satisfies KL(P ∥ Q) ≤ 1

2σ2 . Applying Fano’s Theorem for Randomized
Algorithms 5.1, we get,

Mn(Θ) ≥ 0.25
(
1− n/2σ2+ln(2)

0.15kd

)
, (26)

which implies that n = Ω(σ2kd), completing the proof.

Theorem C.1. Let F denote the class of functions represented by the set of fully connected neural
network models,MF [W], as defined in 4. Let Sn ∼ (SSD1)

n be the n i.i.d. data samples drawn
from SSD1, with σ = Õ(1/

√
k), and k = O(exp(d)). Define the equivariance group U := O(kd).

Define the subset Ũ ⊆ U such that, for all U ∈ Ũ , t ∈ {2, . . . , k}, Uµt = ekd−k+t. Let ξ ∈ Ξ
encapsulate the randomization, and let ξ ∼ PΞ. Let Θ = {θ | θ : ((X ,Y)n × Ξ)→ F} be the set of
U-equivariant algorithms, such that bT = bmin := 10−2, then for large enough k, d,

inf
θ∈Θ

sup
U∈Ũ

E
ξ∼PΞ

E
Sm∼(U◦SSD1)m

[R (θ(Sm, ξ),U ◦ SSD1)] ≤ δ, (27)

iff n = Ω(σ2kd), for δ = 0.5× 10−2.

Proof. The proof proceeds by reducing the problem of finding a fully-connected neural network with
a small expected risk to a problem of estimating the unknown mean of a Gaussian distribution. We
then use Lemma C.1 to establish the required sample complexity bound.

14

Published as a conference paper at ICLR 2024

For brevity, we refer to the distribution SSD1 by P . If any algorithm θ̄n ∈ Θ achieves the maximum
expected risk of δ, then we have,

sup
U∈Ũ

E
[
R
(
θ̄n,U ◦ P

)]
≤ δ =⇒ ∀U, E

[
R
(
θ̄n,U ◦ P

)]
≤ δ (28)

Markov
=⇒ ∀U, P

[
R
(
θ̄n,U ◦ P

)
≥ 0.5

]
≤ 2δ (29)

Let the parameter vector of the fully connected neural network (FCN) that is returned by the algorithm
θ̄n be given by v = [w1, ..,wk, b]. We define cos(αi) = (Uµ1)

Twi as the alignment between the
mean of the U ◦ P distribution and the parameter wi. Then, the following holds:

R
(
θ̄n,U ◦ P

)
< 0.5 =⇒ ∃ i ∈ [k], cos(αi) ≥ b/2. (30)

We prove this via contradiction. For an i.i.d. data sample (x, y) ∼ U ◦ P , consider the the push-
forward of the sample yx through the FCN. If for all i ∈ [k], cos(αi) < b/2, then the probability
that the for each FCN node, its push-forward is < 0, is given by ≥ 1 − kΦ(−bmin/2σ) := 1 − p,
where p can be made arbitrarily small for large enough k, d. Therefore (y −

∑k
i=1 ϕb(w

T
i x))

2 ≥ 1
with probability ≥ 1− p, which results in a contradiction, because the expected risk is ≤ δ.

Mean estimation minimax problem
Consider the following problem: Let P := {U ◦ P |U ∈ Ũ} be the set of distributions. Let
m = (n + 1)100/b2min be the number of samples. Let Ξ1 be the sample space that encapsulates
algorithmic randomness, and PΞ1

be a distribution over Ξ1. Let Θ1 := {θ : (Xm,Ξ1)→ Skd−1} be
the set of U -equivariant randomized algorithms that estimate the mean of the input distribution using
m i.i.d. samples. Then the minimax problem is,

inf
θm∈Θ1

sup
U∈Ũ

E
Sm∼(U◦P)m,ξ∼PΞ1

∥θm −Uµ1∥ (31)

We will now propose an U-equivariant algorithm θ̂m for the above problem, that uses the algorithm
θ̄n as a subroutine such that it achieves a constant max error of 1/4,

sup
U∈U

E
Sm∼(U◦P)n,ξ∼PΞ1

∥θ̂m −Uµ1∥ ≤ 1/4. (32)

Identification procedure
Before we define θ̂m, we provide a method, which given a FCN, can identify (one of) the parameter
wi such that cos(αi) ≥ bmin/2, with probability ≥ 1− p, if there exists such a parameter. Otherwise,
the method returns nothing, indicating that such a parameter does not exist, and this indication is
correct with probability≥ 1−p. The method is to push-forward an i.i.d. data sample (x, y) ∼ U◦P ,
through the neural network, and return the parameter corresponding to the first node whose output
was positive. In the first case, the probability that none of the nodes with cos(αi) ≥ bmin/2 have a
positive output, or any nodes with cos(αi) < bmin/2 has a positive output is ≤ kΦ(−bmin/2σ) = p.
In the second case, the probability that none of the nodes with cos(αi) < bmin/2 have a positive
output is also ≥ 1− kΦ(−bmin/2σ) = 1− p. This concludes the proof.

θ̂m definition and analysis
The algorithm θ̂m, divides the data into S = 1000/b2min sections, each of size n+ 1. In each section,
s, it runs the algorithm θ̄n on n training samples, and uses the remaining sample to identify the
parameter ws, such that wT

s Uµ1 ≥ bmin/2 using the procedure outlined above. If this procedure
returns nothing, then we set ws = 0. Finally, it projects the sum of these s vectors to the unit sphere,
µ̂ =

∑
s ws

∥
∑

s ws∥ . In case, the sum
∑

s ws = 0, the algorithm returns e1.

Analysis: We now show that for all U, E∥µ̂−Uµ1∥ ≤ 1/4. We begin with the observation that if
the identification procedure did not fail, then the random variable ws can be written as,

ws = λµ1 +
√
1− λ2µ⊥

1 , (33)

where λ,µ⊥
1 are both random variables, such that λ ≥ b, and µT

1 µ
⊥
1 = 0. We define the kd − 2

dimensional unit sphere S = {u|uTµ⊥
1 = 0, ∥u∥ = 1}. Then, we claim that µ⊥

1 ∼ Uniform(S).
To see this, consider two points u,v ∈ S. Then, there exists a U1 ∈ U , such that U1µ1 = µ1,
and U1u = v. Now consider running θ̂m on the input data {xi, yi}m ∼ U ◦ P such that µ⊥

1 = u.

15

Published as a conference paper at ICLR 2024

Instead, if we were to run θ̂m on {U1xi, yi}m ∼ U1U ◦ P , then observe that µ⊥
1 = v. Therefore,

PU[µ⊥
1 = u] = PU1U[µ⊥

1 = v]. Also, note that UU1 ◦ P = U ◦ P , because Gaussian is an
equivariant distribution. Therefore, PU[µ⊥

1 = u] = PU[µ⊥
1 = v]. Since U,u,v were arbitrary, this

proves the claim that µ⊥
1 ∼ Uniform(S).

Let m̃ be the number of sections for which ws ̸= 0. By Chernoff bound on the Bernouilli random
variable corresponding to the event R

(
θ̄n,U ◦ P

)
≥ 0.5, and the Identification procedure analysis,

m̃ ≥ 100/b2min with probability ≥ 1− exp(−450/b2min)− 1000p/b2min ≥ 1− 10−10. Now observe,

µT
1

(∑
ws ̸=0 ws

m̃

)
= µT

1

(∑
ws ̸=0 λsµ1+

√
1−λ2

sµ
⊥
1,s

m̃

)
(34)

≥ bmin + µT
1

∑
ws ̸=0

√
1−λ2

sµ
⊥
1,s

m̃ (35)

≥ bmin + µT
1

(
1
m̃

∑
ws ̸=0

√
1− λ2

s
ϵs

∥ϵs∥

)
, (36)

where ϵs ∼ N (0, Ikd). By the concentration of Gaussian norm, 0.5
√
kd ≤ ∥ϵs∥ ≤ 2

√
kd, for all s,

with probability ≥ 1− 10−10, for large enough k, d.

µT
1

(∑
ws ̸=0 ws

m̃

)
≥ bmin + µT

1

(
1
m̃

∑
ws ̸=0

√
1− λ2

s
µT

1 ϵs
∥ϵs∥

)
, (37)

≥ bmin +

(
1
m̃

∑
ws ̸=0

√
1− λ2

s
ϵs

∥ϵs∥

)
, (38)

≥ bmin +

(
1
m̃

∑
ws ̸=0

√
1− λ2

s
ϵs

∥ϵs∥

)
≥ 0.99bmin, (39)

with probability ≥ 1− 10−10, for large enough k, d, using the Gaussian CDF. Also, we analyze,

1
m̃∥

∑
ws ̸=0

ws∥ ≤
∥∥∥∥∑ws ̸=0 λsµ1+

√
1−λ2

sµ
⊥
1,s

m̃

∥∥∥∥ (40)

≤ bmin +

∥∥∥∥∑ws ̸=0

√
1−λ2

sϵ
⊥
1,s

∥ϵ1,s∥m̃

∥∥∥∥ (41)

≤ bmin +

∥∥∥∥∑ws ̸=0 2
√

1−λ2
sϵ

⊥
1,s√

kd m̃

∥∥∥∥ (42)

≤ bmin +
∥∥∥2 ϵ√

kd
√
m̃

∥∥∥ ≤ bmin + 0.4bmin ≤ 1.4bmin. (43)

Combining the dot-porduct and norm analyses, µ̂Tµ1 ≥ 0.7 with probability ≥ 1− 10−9. Therefore
the expected risk of θ̂m is,

E∥θ̂m −Uµ1∥ ≤
√
2(1− 0.7)−

√
2 ∗ 10−9 ≤ 1/4. (44)

Using Lemma C.1, we have that,
100
b2min

(n+ 1) = Ω(σ2kd) =⇒ n = Ω(σ2kd). (45)

Theorem 6.1 (Formal). Let F denote the class of functions represented by the set of fully connected
neural network models,MF [W], as defined in 4. Let Sn ∼ (DSD)n be the n i.i.d. data samples
drawn from DSD, with σ = Õ(1√

k
), and k = O(exp(d)). Define the equivariance group U = O(kd),

let {F t}T be a set of update functions, and let the model parameters be initialized as w0 ∼ W ,
for some distribution W . If the algorithm, θ̄n(Sn,w0;MF [W], {Ft}T), is U-equivariant, such that
bT ≥ bmin, then for large enough k, d,

nδ(θ̄n) = max(Ω
(
σ2k2d

)
, 40k), (46)

where δ = 0.25× 10−2, bmin := 10−2.

16

Published as a conference paper at ICLR 2024

Proof. For simplicity we refer to the distribution DSD by P , and the distribution SSDt by Qt, for
t ∈ [k]. Since the algorithm θ̄n is U-equivariant, lemma 5.1 gives us that for all U ∈ U ,

θ̄({xi, yi}n)(x)
d
= θ̄({Uxi, yi}n)(Ux), (47)

err
(
θ̄({xi, yi}n)(x), y

) d
= err

(
θ̄({Uxi, yi}n)(Ux), y

)
, (48)

E
Sn∼Pn

E
(x,y)∼P

err
(
θ̄({xi, yi}n)(x), y

)
= E

Sn∼Pn
E

(x,y)∼P
err
(
θ̄({Uxi, yi}n)(Ux), y

)
, (49)

E
Sn∼Pn

[
R
(
θ̄n, P

)]
= E

Sn∼(U◦P)n

[
R
(
θ̄n,U ◦ P

)]
, (50)

= E
Sn∼(U◦P)n

1

k

k∑
i=1

[
R
(
θ̄n,U ◦Qi

)]
, (51)

=
1

k

k∑
i=1

E
Sn∼(U◦P)n

[
R
(
θ̄n,U ◦Qi

)]
. (52)

To simplify 52, we begin by showing that the expected risk incurred by the algorithm is the same for
every distribution U ◦Qi. Specifically, for all i, j ∈ [k],

E
Sn∼(U◦P)n

[
R
(
θ̄n,U ◦Qi

)]
= E

Sn∼(U◦P)n

[
R
(
θ̄n,U ◦Qj

)]
. (53)

For i = j, the 53 trivially holds. So we can assume that i ̸= j. From the definition of DSD, note that
for any α, β ∈ [k], we have that µT

αµβ = 1[α = β]. Consequently, for any U ∈ U , we observe that,

(Uµα)
TUµβ = µT

αU
TUµβ = µT

αµβ = 1[α = β] (54)

The above fact ensures that for all U ∈ U , there exists a U1 ∈ U , such that for all α ∈ [k] \ {i, j},
U1Uµα = Uµα, and that U1Uµi = Uµj and U1Uµj = Uµi. In other words, the map U1 swaps
the vectors Uµi, and Uµj , and keeps the other vectors unchanged. We again use the U -equivariance
of θ̄n to infer from lemma 5.1 that,

θ̄({xi, yi}n)(x)
d
= θ̄({U1xi, yi}n)(U1x), (55)

err
(
θ̄({xi, yi}n)(x), y

) d
= err

(
θ̄({U1xi, yi}n)(U1x), y

)
, (56)

E
Sn∼(U◦P)n

E
U◦Qi

[
err
(
θ̄({xi, yi}n)(x), y

)]
= E

Sn∼(U◦P)n
E

U◦Qi

[
err(θ̄({U1xi, yi}n)

(U1x), y)
]
, (57)

E
Sn∼(U◦P)n

E
U◦Qi

[
err
(
θ̄({xi, yi}n)(x), y

)]
= E

Sn∼(U1U◦P)n
E

U1U◦Qi

[
err
(
θ̄({xi, yi}n)

(x), y
)]
. (58)

From construction of U1, we know that U1U ◦ P
d
= U ◦ P , and U1U ◦Qi

d
= U ◦Qj ,

E
Sn∼(U◦P)n

E
U◦Qi

[
err
(
θ̄({xi, yi}i)(x), y

)]
= E

Sn∼(U◦P)n
E

U◦Qj

[
err
(
θ̄({xi, yi}i)(x), y

)]
, (59)

E
Sn∼(U◦P)n

[
R
(
θ̄n,U ◦Qi

)]
= E

Sn∼(U◦P)n

[
R
(
θ̄n,U ◦Qj

)]
. (60)

This proves the claim 53. Substituting it back into 52,

E
Sn∼Pn

[
R
(
θ̄n, P

)]
= E

Sn∼(U◦P)n

[
R
(
θ̄n,U ◦Q1

)]
, (61)

= sup
U∈Ũ

E
Sn∼(U◦P)n

[
R
(
θ̄n,U ◦Q1

)]
, (62)

where, we define Ũ ⊆ U such that, for all U ∈ Ũ , t ∈ {2, . . . , k}, Uµt = ekd−k+t. Let Ξ = W ,
PΞ = W , and Θ = {θ | θ : ((X ,Y)n,Ξ) → F} be the set of O(kd) equivariant algorithms, such
that bT ≥ bmin. It is easy to note that θ̄n ∈ Θ. Therefore,

E
Sn∼Pn

[
R
(
θ̄n, P

)]
≥ inf

θn∈Θ
sup
U∈Ũ

E
Sn∼(U◦P)n

[R (θn,U ◦Q1)] , (63)

17

Published as a conference paper at ICLR 2024

We will now perform a series of reductions to lower bound the above minimax problem, with the
minimax problem of learning SSD1. The central concept behind these reductions is to demonstrate
that a given minimax problem can be ‘simulated’ by a more tractable one, and thus the tractable
problem serves as a lower bound on the original problem.

Let Θ1 = {θ | θ : (((X ,Z+),Y)n,Ξ)→ F} be the set of algorithms that are U1 = {Block(U, I1) |
U ∈ O(kd)} equivariant, and bT ≥ bmin. Define the set Ũ1 ⊆ U1, Ũ1 = {Block(U, I1) | U ∈ Ũ}.
Define P̃ to be the indexed distribution with the generative story: Sample j ∼ Unif[k], then sample
(x, y) ∼ Qj , and return ((x, j), y). We can then lower bound the minimax expression 63 as,

≥ inf
θ∈Θ1

sup
U1∈Ũ1

E
w∼W

E
((x,j),y)n∼(U1◦P̃)n

[R (θ(((x, j), y)n,w),U ◦Q1)] . (64)

The inequality follows from the fact that for every θan ∈ Θ, there exists θbn ∈ Θ1, that discards the
index j and returns the output of θan.

Let n1 be the random variable that denotes the number of samples drawn from U1 ◦ P̃ when j = 1.
Using Berstein’s inequality, we get that, n

2k ≤ n1 ≤ m := 3n
2k , with probability≥ c := 1−2 exp(−n

10k).
We will refer to the event, n

2k ≤ n1 ≤ m, as E. Then, we can lower bound 64 as,

≥ c inf
θ∈Θ1

sup
U1∈Ũ1

E
w∼W

E
((x,j),y)n∼(U1◦P̃)n

[R (θ(((x, j), y)n,w),U ◦Q1) | E] . (65)

For the next reduction, we generalize the definition of n1, and define ni to be the random variable
corresponding to the number of samples drawn from the distribution U ◦ Qi, for all i ∈ [k]. Let
y ∼ (Unif[Y])n be a uniform random vector over {+1,−1} of size n, and ϵ ∼ N (0nkd, Inkd) be
a vector of i.i.d. standard Gaussian random variables. Let Θ2 = {θ | θ : ((X ,Y)m × ((Rkd)k−1 ×
(N ∪ {0})k × (R)n × Rnkd × W)) → F} be a set of O(kd) equivariant algorithms that take as
input the training data, {Uµ}ki=2 mean vectors, the number of samples to be drawn from each mean,
pre-sampled values of y and ϵ, and the parameter initialization respectively. It subsequently returns a
function within F . Then we can bound 65 as,

≥ c inf
θ∈Θ2

sup
U∈Ũ

E
w∼W

E
{ni}k

1

E
y,ϵ

E
Sm∼(U◦Q1)m

[
R
(
θ(Sm, ({Uµi}k2 , {ni}k1 ,y, ϵ,w)),U ◦Q1

)
| E
]
.

(66)

The last inequality follows from the fact that for every θan ∈ Θ1, there exists θbn ∈ Θ2, that first
deterministically creates the indexed dataset using Sm, {Uµi}k2 , {ni}k1 ,y, ϵ and then runs θan.

For notational brevity, we define Ξ1 := (Rkd)k−1× (N∪{0})k × (R)n×Rnkd×W , to encapsulate
the randomness in {Uµi}k2 , {ni}k1 ,y, ϵ, and w. We denote its associated product distribution by
PΞ1 . Recall that this distribution must be independent of the input data distribution. To see this, we
recall that from the construction of Ũ , that for all U ∈ Ũ , t ∈ {2, . . . , k}, Uµt = ekd−k+t, which
are fixed deterministic quantities. Rewriting 66, we get,

= c inf
θ∈Θ2

sup
U∈Ũ

E
ξ∼PΞ1

E
Sm∼(U◦Q1)m

[R (θ(Sm, ξ),U ◦Q1)] , (67)

We have effectively reduced solving the original problem P into solving its constituent problem Q1

with approximately n/k samples. We have already proven a lower bound for the SSD problem in
Theorem 4. Using that result, we have,

E
Sn∼Pn

[
R
(
θ̄n, P

)]
≥ c ∗ 0.5 ∗ 10−2, (68)

iff m = Ω(σ2kd), which implies that n = Ω(σ2k2d). Since, c ≥
(
1− 2 exp(−n

10k)
)
, using n ≥ 40k,

we can bound c ≥ (1− 2 exp(− ln(4))) = 1
2 . Therefore,

E
Sn∼Pn

[
R
(
θ̄n, P

)]
≥ 0.25 ∗ 10−2 (69)

iff n = Ω(σ2k2d), proving the result.

18

Published as a conference paper at ICLR 2024

C.2 LCN UPPER BOUND

Theorem 6.2 (Formal). LetF denote the class of functions represented by the set of locally connected
neural network modelsML, defined in equation 5. Let the input data samples be drawn from the DSD
distribution, Sn ∼ (DSD)n, with σ = Õ(1√

k
), and k = O(exp(d)). Define the following groups:

U1 := {Block (U1, . . . ,Uk) | Ui ∈ O(d)}, U2 := {U ∈ Op(kd) | idxkd(Ue(i−1)d+1) + j − 1 =
idxkd(Ue(i−1)d+j), ∀i ∈ [k], ∀j ∈ [d]}, and U := U1 ⋆ U2. Then, there exist update functions
{Ft}T , and a model parameter initialization distribution W , such that θ̄n(ML, {Ft}T ,W, Sn) is a
U-equivariant algorithm, and for large enough k, d,

nδ(θ̄n) = max(O
(
σ2k(d+ k) ln(kd)

)
, 80k ln(kd)), (70)

for δ = O(1).

Proof. We begin by defining the algorithm θ̄n, we then establish that θ̄n is a U -equivariant algorithm,
and then we analyze each iteration of the algorithm to prove the required sample complexity bound.

1. Algorithm Definition

To define the algorithm θ̄n(ML, {Ft}T ,W, Sn), we need to specify the initialization distribution
W , and the update functions {Ft}T . At iteration t = 0, we initialize the model parameter v0 =
[w0

1, ..,w
0
k, b

0] as follows: for each i ∈ [k], the vector w0
i is independently sampled from the

distribution N (0, γId), where γ−1 = 100k2d2, and bias is set as b0 = 0. The superscript denotes
the iteration number. We define the empirical loss function for N ∈ Z+ data samples as,

l : (W, (X ,Y)N)→ R := 1
N

N∑
j=1

(
yj −

k∑
i=1

ϕb(w
T
i x

(i)
j)
)2
. (71)

The algorithm proceeds in T = 2 iterations. For simpler analysis, we split the input dataset Sn into
two equal sized datasets Sm

1 , and Sm
2 , with m := n

2 samples each. Then, for each t ∈ {1, 2},

Ft(v, S
n) :=

[
w1−ηt∇w1

l(v;Sm
t)

∥w1−ηt∇w1 l(v;S
m
t)∥ , . . . ,

wk−ηt∇wk
l(v;Sm

t)

∥wk−ηt∇wk
l(v;Sm

t)∥ , bt

]
, (72)

where η1 = 1, η2 = k × 103, b1 = 1
32

√
(k+d) ln(kd)

kd , b2 = 10−4.

2. Algorithm is Equivariant

To establish that θ̄n is U-equivariant, we only need to show that it is both U1- and U2-equivariant,
because, every element in U is a finite matrix product of elements from U1 and U2. We define groups
V1 := {Block(V1, . . . ,Vk, I1) | Vi ∈ O(d), i ∈ [k]}, where I1 is the identity matrix of size 1× 1,
V2 := {Block(U, I1) | U ∈ U2}, and V := V1 ⋆ V2.

To prove U1-equivariance, we need to verify the three conditions in Definition 6. For any data sample
x, y ∈ (X ,Y), U ∈ U1, wi ∈ Rd; i ∈ [k], b ∈ R+, choose V = Block({U(1), . . . ,U(k), I1}) ∈ V .
Then, the first property 1 holds as,

ML[v](x) =

k∑
i=1

ϕb(w
T
i x

(i)) =

k∑
i=1

ϕb(w
T
i (U

(i))T (U(i))x(i)) =ML[Vv](Ux). (73)

For each iteration t ∈ [2], and Sn ∈ (X ,Y)n, the second property 2 follows as,

Ft (Vv,U ◦ Sn) =

[
U(1)w1−ηt∇U(1)w1

l(Vv;U◦Sm
t)

∥U(1)w1−ηt∇U(1)w1
l(Vv;U◦Sm

t)∥ , . . . , (74)

U(k)wk−ηt∇U(k)wk
l(Vv;U◦Sm

t)

∥U(k)wk−ηt∇U(k)wk
l(Vv;U◦Sm

t)∥ , bt

]
,

=

[
U(1)(w1−ηt∇w1

l(v;Sm
t))

∥U(1)(w1−ηt∇w1
l(v;Sm

t))∥
, . . . ,

U(k)(wk−ηt∇wk
l(v;Sm

t))
∥U(k)(wk−ηt∇wk

l(v;Sm
t))∥

, bt

]
, (75)

=

[
U(1)(w1−ηt∇w1

l(v;Sm
t))

∥w1−ηt∇w1 l(v;S
m
t)∥ , . . . ,

U(k)(wk−ηt∇wk
l(v;Sm

t))
∥wk−ηt∇wk

l(v;Sm
t)∥ , bt

]
, (76)

= VFt (v, S
n) . (77)

19

Published as a conference paper at ICLR 2024

And property 3 can be affirmed by observing that, for all V ∈ V1,

Vv0 = [U(1)w0
1, . . . ,U

(k)w0
k, b

0], (78)
d
= [w0

1, . . . ,w
0
k, b

0] = v. (79)

This proves that θ̄n is U1-equivariant. We now establish U2-equivariance. Observe that action of any
matrix U ∈ U2 is to permute the k patches of the input. Let π : [k]→ [k] be the permutation function
corresponding to U. For this given U, we choose V = Block(U, I1) ∈ V . For any x, y ∈ (X ,Y),
wi ∈ Rd, i ∈ [k], b ∈ R+, property 1 of equivariance holds as,

ML[v](x) =

k∑
i=1

ϕb(w
T
i x

(i)) =

k∑
i=1

ϕb(w
T
π(i)x

π(i)) =ML[Vv](Ux). (80)

For each iteration t ∈ [2], and Sn ∈ (X ,Y)n, the second property 2 follows as,

Ft (Vv,U ◦ Sn) =

[
wπ(1)−ηt∇π(1)l(Vv;U◦Sm

t)

∥wπ(1)−ηt∇wπ(1)
l(Vv;U◦Sm

t)∥ , . . . , (81)

wπ(k)−ηt∇wπ(k)
l(Vv;U◦Sm

t)

∥wπ(k)−ηt∇wπ(k)
l(Vv;U◦Sm

t)∥ , bt

]
,

= V
[

w1−ηt∇w1 l(v;S
m
t)

∥w1−ηt∇w1
l(v;Sm

t)∥ , . . . ,
wk−ηt∇wk

l(v;Sm
t)

∥wk−ηt∇wk
l(v;Sm

t)∥ , bt

]
, (82)

= VFt (v, S
n) . (83)

And finally property 3 can be shown by observing that, for all V ∈ V2,
Vv0 = [w0

π(1), . . . ,w
0
π(k), b

0], (84)
d
= [w0

1, . . . ,w
0
k, b

0] = v. (85)

Thus, the algorithm θ̄n is U2-equivariant, and therefore is U-equivariant.

3. Algorithm Analysis

We analyze each iteration of θ̄n, with n = max(2σ2k(k + d) ln(kd), 80k ln(kd)) samples, and
establish that θ̄n achieve an expected risk of at most δ = 2.5 × 10−3. Since k = O(exp(d)) and
σ = Õ(1√

k
), we assume that

√
d ≥ 20

√
ln(k) and 100

√
k ln(kd)3σ ≤ 1.

The outline of the analysis is as follows: We show that after the first update step, we reliably recover

the unknown signal vector, upto an alignment of Ω(
√

k+d
kd). In the second step, we show that this

alignment is enough to threshold out the "noise" patches while only letting the "signal" patch pass
through the first hidden layer. This enables us to recover the signal upto an alignment of Ω(1), which
results in the expected risk of the learned LCN being smaller than δ.

3a. Update Step 1

For each i ∈ [k], we denote w̃1
i = w0

i −∇w0
i
l(w0

i , 0;S
m
1) to be the unnormalized version of w1

i .

Thus, the alignment of w1
i with the signal can be written as, (w1

i)
Tw⋆ =

(w̃1
i)

Tw⋆

∥w̃1
i ∥

. To compute this

alignment, we begin by simplifying∇w0
i
l([w0

i , 0];S
m
1),

∇w0
i
l([w0

i , 0];S
m
1) = 1

m

m∑
j=1

∇w0
i

(
yi −

k∑
i=1

ϕ0((w
0
i)

Tx
(i)
j)

)2

, (86)

= −2
m

m∑
j=1

(
yj −

k∑
i=1

ϕ0((w
0
i)

Tx
(i)
j)

)(
x
(i)
j ϕ′

0((w
0
i)

Tx
(i)
j)
)
, (87)

= −2
m

m∑
j=1

(
1−

k∑
i=1

yjϕ0((w
0
i)

Tx
(i)
j)

)(
yjx

(i)
j ϕ′

0((w
0)Tx

(i)
j)
)
, (88)

= −2
m

m∑
j=1

(
1−

k∑
i=1

yj(w
0
i)

Tx
(i)
j

)(
yjx

(i)
j

)
, (89)

20

Published as a conference paper at ICLR 2024

where ϕ′
0(x) :=

d
dxϕ0(x), and the last equality follows by observing that ϕ0 is the identity function,

and ϕ′
0 is the constant function 1. As a shorthand, we define αj := 1 −

∑k
i=1 yj(w

0
i)

Tx
(i)
j), and

βij := yjx
(i)
j . Substituting this back into 89,

∇w0
i
l([w0

i , 0];S
m
1) = −2

m

m∑
j=1

αjβij , (90)

To analyze 90, we begin by proving high probability bounds on the range of αj , for each j ∈ [m].

From the initialization procedure described above, we know that w0
i

d
= γϵi, where ϵi is the Gaussian

random vector defined as ϵi ∼ N (0, Id). And with the input distribution being DSD, we know that
x
(i)
j = yjrijw

⋆ + σϵ
(i)
j , for all i in [k], where ϵ

(i)
j ∼ N (0, Id) is also a Gaussian random vector,

and rij = 1, if in the j-th data sample the signal patch appears in the i-th patch, and 0 otherwise.

αj = 1−
k∑

i=1

yj(w
0
i)

Tx
(i)
j , (91)

= 1−
k∑

i=1

γrijy
2
j ϵ

T
i w

⋆ −
k∑

i=1

γσyjϵ
T
i ϵ

(i)
j . (92)

We can now bound the range of αj as,

1 + |
k∑

i=1

γrijϵ
T
i w

⋆|+ |
k∑

i=1

γσϵTi ϵ
(i)
j | ≥ αj ≥ 1− |

k∑
i=1

γrijϵ
T
i w

⋆| − |
k∑

i=1

γσϵTi ϵ
(i)
j |. (93)

We first upper bound maxj |
∑k

i=1 γrijϵ
T
i w

⋆| ≤ maxi |γϵTi w⋆|. Since the norm of the signal is 1,
∥w⋆∥ = 1, we have that ϵTi w

⋆ ∼ N (0, 1). We can now upper bound maxi |γϵTi w⋆| as,

max
i
|γϵTi w⋆| ≤ 1

100k2d2 max
i
|ϵTi w⋆| ≤ 1

8 , (94)

with probability ≥ 1 − 10−7. To derive inequality 94, we have used the concentration inequality,
P[maxi∈[k] |ϵTi w⋆| ≥

√
32 ln(k)] ≤ 2

k9 ≤ 10−7.

And now we seek to bound maxj |
∑k

i=1 γσϵ
T
i ϵ

(i)
j |. By the concentration of the norm of the Gaussian

random vector, P[maxi∥ϵi∥ ≥
√
d + 10

√
ln(k)] ≤ 2k exp(− 100 ln(k)

16) ≤ 2kk−6 ≤ 10−7. Now,
define ui =

ϵi
∥ϵi∥ . Therefore,

max
i∈[k],j∈[m]

|
k∑

i=1

γσϵTi ϵ
(i)
j | ≤ γσ(

√
d+ 10

√
ln(k)) max

j∈[m]
|

k∑
i=1

uT
i ϵ

(i)
j | (95)

d
= γσ(

√
d+ 10

√
ln(k)) max

j∈[m]
|
√
kϵj |, (96)

where ϵj ∼ N (0, 1). The last equality in distribution follows from the fact the sum of k indepen-
dent Gaussian random variables is a Gaussian random variable with variance k. Now, from the
concentration inequality, P[maxj∈[m] |ϵj | ≥

√
32 ln(m)] ≤ 2

m9 ≤ 10−7. Substituting this above,

max
i∈[k],j∈[m]

|
k∑

i=1

γσϵTi ϵ
(i)
j | ≤ γσ(

√
d+ 10

√
ln(k)) max

j∈[m]
|
√
kϵj |, (97)

≤ 3
2γσ
√
kd
√
32 ln(m) (98)

≤ 3
2

1
100k2d2

1

100
√

k ln(kd)3

√
kd
√

32 ln(m) ≤ 1
8 , (99)

Substituting 94 and 99 into 93, we can now bound αj , for all j ∈ [m],

1 + 1
8 + 1

8 ≥ αj ≥ 1− 1
8 −

1
8 , (100)

5
4 ≥ αj ≥ 3

4 , (101)

21

Published as a conference paper at ICLR 2024

We are now in the position to analyze w̃1
i ,

w̃1
i = w0

i − η1∇w0
i
l([w0

i , 0];S
m
1), (102)

90
= w0

i +
1
m

m∑
j=1

2αjβij , (103)

= w0
i +

1
m

m∑
j=1

2yjαj

(
yjrijw

⋆ + σϵ
(i)
j

)
(104)

d
= w0

i +
2
∑m

j=1 rijαj

m w⋆ +
2σ
√∑m

j=1 α2
j

m ϵ̄i, (105)

where ϵ̄i ∼ N (0, Id). Similarly to ϵi, we can use the concentration of the norm of the Gaussian
random vector to show, P[maxi |∥ϵ̄i∥ −

√
d| ≥ 10

√
ln(k)] ≤ 2k exp(− 100 ln(k)

16) ≤ 2kk−6 ≤
10−7. Also note that by using Chernoff and Union bounds, we have m

2k ≤
∑m

j=1 rij ≤
3m
2k , with

probability≥ 1−2k exp(−40k ln(k)
10k) ≥ 1−10−7, for large enough k. Recall that the aim is to bound

(w1
i)

Tw⋆ =
(w̃1

i)
Tw⋆

∥w̃1
i ∥

, for all i ∈ [k]. For this, we first prove an upper bound for ∥kw̃1
i ∥,

∥kw̃1
i ∥ = ∥kw0

i +
2k
∑m

j=1 rijαj

m w⋆ +
2kσ
√∑m

j=1 α2
j

m ϵ̄i, ∥, (106)

≤ ∥kw0
i ∥+ ∥

2k
∑m

j=1 rijαj

m w⋆∥+ ∥ 2kσ
√∑m

j=1 α2
j

m ϵ̄i, ∥, (107)
101
≤ ∥kw0

i ∥+ 5k
2 ∥

∑m
j=1 rij

m w⋆∥+ 5kσ
2

√
1
m∥ϵ̄i∥, (108)

≤ γk∥ϵi∥+ 5k
2 ∥

∑m
j=1 rij

m w⋆∥+ 5kσ
2

√
1
m∥ϵ̄i∥, (109)

Now substituting the facts ∥ϵi∥, ∥ϵ̄i∥ ≤ 3
2

√
d, and that

∑m
j=1 rij ≤

3m
2k ,

∥kw̃1
i ∥ ≤ γ 3k

√
d

2 + 15
4 + 15kσ

4

√
d
m , (110)

≤ 3
√
d

2kd2 + 15
4 + 15σ

4

√
kd

σ2(d+k) ln(kd) , (111)

≤ 3
2kd + 15

4 + 15
4

√
kd

(k+d) ln(kd) , (112)

≤ 4
√

kd
(k+d) ln(kd) . (113)

And similarly, we lower bound ∥w̃1∥,

∥kw̃1
i ∥ ≥ ∥

2kσ
√∑m

j=1 α2
j

m ϵ̄i∥ − ∥kw0
i ∥ − ∥

2k
∑m

j=1 rijαj

m w⋆∥, (114)
101
≥ 3kσ

2

√
1
m∥ϵ̄i∥ − ∥kw

0
i ∥ − 5

2∥
k
∑m

j=1 rij

m w⋆∥, (115)

≥ 3
4

√
kd

(k+d) ln(kd) −
3

2kd −
15
4 , (116)

≥ 1
2

√
kd

(k+d) ln(kd) . (117)

Next, we lower bound k(w̃1
i)

Tw⋆,

k(w̃1
i)

Tw⋆ = k(w0
i)

Tw⋆ +
2k
∑m

j=1 rijαj

m (w⋆)Tw⋆ +
2kσ
√∑m

j=1 α2
j

m (ϵ̄i)
Tw⋆, (118)

= kγϵTi w
⋆ +

2k
∑m

j=1 rijαj

m +
2kσ
√∑m

j=1 α2
j

m (ϵ̄i)
Tw⋆, (119)

101
≥ −|kγϵTi w⋆|+ 3k

2

∑m
j=1 rij

m − 5σk
2
√
m
|(ϵ̄i)Tw⋆|, (120)

≥ − 1
100kd2 |ϵTi w⋆|+ 3

4 −
5σk

2
√

kσ2(k+d) ln(kd)
|(ϵ̄i)Tw⋆|, (121)

≥ − 1
100kd2 |ϵTi w⋆|+ 3

4 −
5

2
√

ln(kd)
|(ϵ̄i)Tw⋆|, (122)

≥ − 1
8 + 3

4 −
1
8 ≥

1
2 , (123)

22

Published as a conference paper at ICLR 2024

where the last inequality follows from the bounds, P[maxi∈[k]
|ϵTi w⋆|
100kd2 ≥

√
32 ln(k)

100kd2] ≤ 2
k9 ≤ 10−7,

and P[maxi∈[k]
|5ϵ̄Ti w⋆|
2
√

ln(kd)
≥ 5
√

32 ln(k)

2
√

ln(kd)
] ≤ 2

k9 ≤ 10−7. And similarly we upper bound (w̃1
i)

Tw⋆,

k(w̃1
i)

Tw⋆ ≤ 1
8 + 3

4 + 1
8 ≤ 1. (124)

Therefore, 2
√

(k+d) ln(kd)
kd ≥ (w1

i)
Tw⋆ ≥ 1

8

√
(k+d) ln(kd)

kd , with probability ≥ 1 − 10−6. We can

now express w1
i as λiw

⋆+
√
1− λ2

iw
⋆
⊥, where 2

√
(k+d) ln(kd)

kd ≥ λi ≥ 1
8

√
(k+d) ln(kd)

kd , ∥w⋆
⊥∥ = 1,

and (w⋆)Tw⋆
⊥ = 0.

3b. Update Step 2

We will now show that the 1
8

√
(k+d) ln(kd)

kd alignment with the signal vector enables us to filter out
the "noise" patches from the "signal" patch. This de-noising effect allows us to achieve a stronger
constant alignment of each parameter vector with the signal vector.

We begin by analyzing the push forward of all the noise in the dataset Sm
2 through the LCN model,

max
i∈[k],j∈[m]

|σ(w1
i)

T ϵ
(i)
j | ≤ 1

100
√

k ln(kd)3
max
i,j
|(w1

i)
T ϵ

(i)
j |, (125)

≤ 1

100
√

k ln(kd)3

√
32 ln(σ2k2(k + d) ln(kd)), (126)

≤ 1
4
√
k
≤ 1

32

√
(k+d) ln(kd)

kd (127)

For inequality 126, we have used the concentration of the maximum of the absolute value of mk i.i.d.
Gaussian random variables, P[maxi,j |(w1

i)
T ϵ

(i)
j | ≥

√
32 ln(mk)] ≤ 2

(mk)9 ≤ 10−7. Recall from
the analysis of the first update step that,

2

√
(k+d) ln(kd)

kd ≥ (w1
i)

Tw⋆ ≥ 1
8

√
(k+d) ln(kd)

kd (128)

From 127, 128, for all j ∈ [m], and i ∈ [k], we have

(2 + 1
32)

√
(k+d) ln(kd)

kd ≥ yj(w
1
i)

Tx
(i)
j ≥ (18 −

1
32)

√
(k+d) ln(kd)

kd where, rij = 1, (129)

1
32

√
(k+d) ln(kd)

kd ≥ yj(w
1)Tx

(i)
j ≥ − 1

32

√
(k+d) ln(kd)

kd , where, rij = 0. (130)

Therefore, with b1 = 1
32

√
(k+d) ln(kd)

kd , we filter out all the noise and let the signal pass through,

2

√
(k+d) ln(kd)

kd ≥ ϕb1(yj(w
1
i)

Tx
(i)
j) ≥ (18 −

1
16)

√
(k+d) ln(kd)

kd , where, rij = 1, (131)

ϕb1(yj(w
1
i)

Tx
(i)
j) = 0, where, rij = 0. (132)

We will now follow in the footsteps of our analysis of update step 1. We seek to prove high probability
upper and lower bounds for (w2

i)
Tw⋆. We define w̃2

i = w1
i − η2∇w1

i
l(w1

i , b1;S
m
2), and therefore

(w2
i)

Tw⋆ =
(w̃2

i)
Tw⋆

∥w̃2
i ∥

. We first evaluate the gradient of the empirical loss function with respect to w,

∇w1
i
l([w1

i , b1];S
m
2) = −1

m

m∑
j=1

2

(
yj −

k∑
i=1

ϕb1((w
1
i)

Tx
(i)
j))

)(
x
(i)
j ϕ′

b1((w
1
i)

Tx
(i)
j))

)
, (133)

= −2
m

m∑
j=1

(
1−

k∑
i=1

ϕb1(yj(w
1
i)

Tx
(i)
j))

)(
yjrijx

(i)
j

)
, (134)

where the last equality follows from 131, and 132. Now, for large enough k, d,

1 ≥ 1− 1
8

√
(k+d) ln(kd)

kd ≥ αj := 1−
k∑

i=1

ϕb1(yj(w
1
i)

Tx
(i)
j)) ≥ 1− 2

√
(k+d) ln(kd)

kd . (135)

23

Published as a conference paper at ICLR 2024

Substituting the definition of αj and simplifying 134,

∇w1
i
l([w1

i , b1];S
m
2) = −1

m

m∑
j=1

2αjyjrijx
(i)
j (136)

d
= −1

m

m∑
j=1

2rijαj

(
w⋆ + σϵ

(i)
j

)
, (137)

d
= −

m∑
j=1

2rijαj

m w⋆ − 2σ
√∑m

j=1 r2ijα
2
j

m ϵ̂i, (138)

where ϵ̂i ∼ N (0, Id). By Chernoff and Union bounds, m
2k ≤ ri :=

∑n
j=m+1

krij
m ≤ 3m

2k , with
probability ≥ 1− 10−7. Also, we note the concentration of the norm of the Gaussian random vector
to show, P[maxi |∥ϵ̂i∥ −

√
d| ≥ 10

√
ln(k)] ≤ 2k exp(− 100 ln(k)

16) ≤ 2kk−6 ≤ 10−7.

We are now ready to bound (w2
i)

Tw⋆ =
(w̃2

i)
Tw⋆

∥w̃2
i ∥

. We denote ai =
k
m

∑m
j=1 αjrij ≥ 1

3 .

∥w̃2
i ∥ = ∥w1

i + η2

m∑
j=1

2rijαj

m w⋆ + η2
2σ
√∑m

j=1 r2ijα
2
j

m ϵ̂i∥,

≤ 1 + η2

m∑
j=1

∥ 2rijαj

m w⋆∥+ η2∥
2σ
√∑m

j=1 r2ijα
2
j

m ϵ̂i∥,

≤ 1 + 2aiη2

k ∥w
⋆∥+

√
6ση2√
mk
∥ϵ̂i∥,

≤ 1 + 103
(
2ai +

√
6kσ√
m
∥ϵ̂i∥

)
≤ 1 + 103

(
2ai +

√
6kσ√

σ2k(k+d) ln(k+d)

3
√
d

2

)
≤ 1 + 103

(
2ai + 10−3,

)
for a large enough k, d. And the lower bound on (w̃2

i)
Tw⋆ is given by,

(w̃2
i)

Tw⋆ = (w1
i)

Tw⋆ + η2

m∑
j=1

2rijαj

m (w⋆)Tw⋆ + η2
2σ
√∑m

j=1 r2ijα
2
j

m ϵ̂Ti w
⋆, (139)

d
= (w1

i)
Tw⋆ + η2

m∑
j=1

2rijαj

m + η2
2σ
√∑m

j=1 r2ijα
2
j

m ϵ; ϵ ∼ N (0, 1), (140)

≥ −1 + 2ai × 103 −
√
6kσ√

σ2k(k+d) ln(k+d)
ϵ× 103 (141)

≥ −1 + 103(2ai − 10−3), (142)

where we have used P[|
√
6kσϵ√

σ2k(k+d) ln(k+d)
| ≥ 10−3], with probability ≤ 10−7. Therefore,

(w̃2
i)

Tw⋆

∥w̃2
i ∥
≥ −1+103(2ai−10−3)

1+103(2ai+103) ≥ 0.96, (143)

and this occurs with a probability ≥ 1− 2× 10−6.

3c. LCN has Low Risk

We now show that this large constant alignment guarantees a low risk. We bound the push forward of
the noise through the LCN,

|σ max
j∈[m]

((w2
i)

T ϵi)| ≤
6
√

ln(k)

100
√

k ln(kd)3
≤ 10−4 (144)

To derive the last inequality, we have used the concentration of the maximum of the absolute value
of k i.i.d. Gaussian random variables, P[maxj∈[k] |(w2

i)
T ϵj | ≥

√
32 ln(k)] ≤ 2

m9 ≤ 10−6. For this

24

Published as a conference paper at ICLR 2024

data sample, let t ∈ [k] be the index of the signal patch, then,

ϕb2(yj(w
2
i)

Tx
(t)
j) ≥ 0.959, (145)

ϕb2(yj(w
2
i)

Tx
(i)
j) = 0, ∀ i ̸= t. (146)

We note that with probability 1− 3× 10−6, the risk of the classifier less than (1− 0.959)2. To bound
the risk in the failure case, we note that for any v ∈ W ,

E[(y −
k∑

i=1

ϕb(w
T
i x

(i)))2] = E[(1−
k∑

i=1

ϕb(yw
T
i x

(i)))2], (147)

= 1
k

k∑
j=1

E
(x,y)∼SSDj

[(1−
k∑

i=1

ϕb(yw
T
i x

(i)))2], (148)

= 1
k

k∑
j=1

E[(1−
∑
i ̸=j

ϕb(σϵij)− ϕb(cos(αj) + σϵjj))
2], (149)

To evaluate the above expression, we observe that the expectation can be written as,

E[(1−
∑
i ̸=j

ϕb(σϵij)− ϕb(cos(αj) + σϵjj))
2] = Var[(1−

∑
i ̸=j

ϕb(σϵij)− ϕb(cos(αj) + σϵjj))]

+ E[(1−
∑
i ̸=j

ϕb(σϵij)− ϕb(cos(αj) + σϵjj))]
2, (150)

=
∑
i̸=j

Var[ϕb(σϵij)] + Var[ϕb(cos(αj) + σϵjj)] + (E[ϕb(cos(αj) + σϵjj)])
2
, (151)

≤
∑
i

σ2 + cos2(αj) ≤ kσ2 + 1 ≤ 2. (152)

Substituting this back,

E[(y −
k∑

i=1

ϕb(w
T
i x

(i)))2] ≤ 1
k

k∑
j=1

2 = 2 (153)

Therefore, the expected risk of the trained LCN is upper bounded as,

E
[
R
(
θ̄n, P

)]
≤ (1− 0.959)2 + 6× 10−6 ≤ δ (154)

25

Published as a conference paper at ICLR 2024

D LCN VS CNN SEPARATION RESULTS

D.1 LCN LOWER BOUND

The following lemma provides a lower bound on the risk of each function in the class of LCNs
over the set of transformations of SSD1, made using the group U . The group allows for orthogonal
transformations within the patches, and does not allow patches to permute.
Lemma D.1. Let F denote the class of functions represented by the set of locally connected neural
network models,ML[W], as defined in 5. We define U := {Block (U1, . . . ,Uk) | Ui ∈ O(d)}. Let
P be the set of distributions {U ◦ SSD1 | U ∈ U}. We define the target function θ⋆ : P → F as,
θ⋆(U ◦ SSD1) =M[[U(1)w⋆, ..,U(k)w⋆, b⋆]], where w⋆ is the signal vector, and b⋆ is some fixed
value in (0, 1) 3. Let FP be the codomain of θ⋆. Consider ρ : (F ,FP)→ R,

ρ(f, θ⋆(U ◦ SSD1)) =

(
1−max(0, ∥w1∥ cos(α1))

)2

, (155)

where cos(α1) =
wT

1 U(1)w⋆

∥w1∥ . Then, the risk of f ∈ F , on U ◦ SSD1 ∈ P satisfies,

R (f,U ◦ SSD1) ≥ ρ(f, θ⋆(U ◦ SSD1)). (156)

Proof. Observe that,

R (f,U ◦ P) = E
(x,y)∼U◦P

[
(y − f(x))2

]
, (157)

= E
(x,y)∼U◦P

(y − 1

k

k∑
i=1

ϕb(w
T
i x)

)2
 , (158)

= E
ϵ,x=Uw⋆+σϵ

(1− k∑
i=1

ϕb(w
T
i x)

)2
 , (159)

Jensens’
≥

(
E
ϵ,x

[
1−

k∑
i=1

ϕb(w
T
i x)

])2

, (160)

=

1−
k∑

i ̸=1

E
ϵ
[ϕb(∥wi∥σϵ)]− E

ϵ
[ϕb(∥w1∥ cos(αt) + ∥w1∥σϵ)]

2

, (161)

=
(
1− E

ϵ
[ϕb(∥w1∥ cos(αt) + ∥w1∥σϵ)]

)2
, (162)

where in 162, we used the fact that since ϕb(−x) = −ϕb(x), and therefore E[ϕb(∥wi∥σϵ)] = 0, for
all i ̸= 1. For brevity, we define µ̄ = ∥w1∥ cos(α1), and σ̄ = ∥w1∥σ. Then observe that,

E
ϵ
[ϕb(µ̄+ σ̄ϵ)] = E

ϵ
[max(0, µ̄− b+ σ̄ϵ)]− E

ϵ
[max(0,−µ̄− b− σ̄ϵ)], (163)

= E
ϵ
[max(0, µ̄− b+ σ̄ϵ)]− E

ϵ
[max(0,−µ̄− b+ σ̄ϵ)]. (164)

We begin by evaluating Eϵ[max(0, µ̄− b+ σ̄ϵ)],

E
ϵ
[max(0, µ̄− b+ σ̄ϵ)] = 1

2

(
E
ϵ
[µ̄− b+ σ̄ϵ] + E

ϵ
[|µ̄− b+ σ̄ϵ|]

)
, (165)

= 1
2 (µ̄− b) + 1

2

(
σ̄
√

2
π exp

(
− (µ̄−b)2

2σ̄2

)
+

(µ̄− b)
(
1− 2Φ

(
− µ̄−b

σ̄

)))
, (166)

= (µ̄− b)
(
1− Φ

(
− µ̄−b

σ̄

))
+ η1, (167)

3The claim and the proof do not depend on the chosen value of b⋆

26

Published as a conference paper at ICLR 2024

where η1 = σ̄
√

1
2π exp

(
− (µ̄−b)2

2σ̄2

)
. Similarly, for the second term, we have,

E
ϵ
[max(0,−µ̄− b+ σ̄ϵ)] = (−µ̄− b)

(
1− Φ

(
µ̄+b
σ̄

))
+ η2, (168)

where η2 = σ̄
√

1
2π exp

(
− (µ̄+b)2

2σ̄2

)
. Substituting these results back to 164,

E
ϵ
[ϕb(µ̄+ σ̄ϵ)] = (µ̄− b)

(
1− Φ

(
− µ̄−b

σ̄

))
+ η1 + (µ̄+ b)

(
1− Φ

(
µ̄+b
σ̄

))
− η2. (169)

Now observe that,

∂
∂b Eϵ [ϕb(µ̄+ σ̄ϵ)] = −

(
1− Φ

(
− µ̄−b

σ̄

))
− µ̄−b

σ̄

(
Φ′
(
− µ̄−b

σ̄

))
+ µ̄−b√

2πσ̄
exp

(
− (µ̄−b)2

2σ̄2

)
+
(
1− Φ

(
µ̄+b
σ̄

))
− (µ̄+b)

σ̄

(
Φ′
(

µ̄+b
σ̄

))
+ (µ̄+b)√

2πσ̄
exp

(
− (µ̄+b)2

2σ̄2

)
. (170)

Substituting the expression for Φ′,

∂
∂b Eϵ [ϕb(µ̄+ σ̄ϵ)] =

(
1− Φ

(
µ̄+b
σ̄

))
−
(
1− Φ

(
− µ̄−b

σ̄

))
, (171)

= Φ
(

b−µ̄
σ̄

)
− Φ

(
µ̄+b
σ̄

)
. (172)

If µ̄ > 0, then the gradient with respect to b is always negative when b > 0, therefore the maxima
of Eϵ[ϕb(µ̄ + σ̄ϵ)] occurs at b = 0, with the maxima being µ̄ ≤ 1. If µ̄ < 0, then the gradient is
always positive when b > 0, therefore the maxima of Eϵ[ϕb(µ̄+ σ̄ϵ)] occurs at b = +∞, with the
maxima being 0 ≤ 1. And finally, for µ̄ = 0, Eϵ[ϕb(µ̄+ σ̄ϵ)] = 0 < 1, by symmetry. Using these
observations with 162 proves the result,

R (f,U ◦ P) ≥ (1−max(∥w1∥ cos(α1), 0))
2 (173)

The next lemma establishes that the lower bound on the risk, as defined in Lemma D.1, meets the
relaxed conditions of our variant of Fano’s Theorem 5.1.

Lemma D.2. Under the notation established in the statement of Lemma D.1, we define the set Ũ ⊆ U ,
such that for all U ̸= V ∈ Ũ , (U(1)w⋆)T (V(1)w⋆) < 10−3, and for all U ∈ Ũ , t ∈ {2, . . . , k},
U(t)w⋆ = edt. Then, for all U ̸= V ∈ Ũ ,

ρ(f, θ⋆(U ◦ P)) < 10−2 =⇒ ρ(f, θ⋆(V ◦ P)) > 10−2, (174)

Proof. Let cos(α1) =
wT

1 U(1)w⋆

∥w1∥ , and cos(β1) =
wT

1 V(1)w⋆

∥w1∥ . Now,

ρ(f, θ⋆(U ◦ P)) < 10−2 ⇐⇒ (1−max(0, ∥w1∥ cos(α1)))
2
< 10−2, (175)

⇐⇒ max(0, ∥w1∥ cos(α1)) > 0.9. (176)

By the triangle inequality, we can get an upper bound on cos(β1) as,√
2(1− cos(β1)) ≥

√
2(1− 0.001)−

√
2(1− cos(α1)), (177)

cos(βi) ≤ 1− (
√

(1− 0.001)−
√
(1− 0.9))2 ≤ 0.7. (178)

Therefore, max(0, ∥wt∥ cos(βt)) ≤ 0.7, which implies that

(1−max(∥wt∥ cos(βt), 0))
2 ≥ (0.3)2 > 10−2. (179)

In the following lemma, we prove a sample complexity lower bound of Ω(σ2kd) for FCNs on the
sub-problem SSD1 of DSD.

27

Published as a conference paper at ICLR 2024

Lemma D.3. Let F denote the class of functions represented by the set of locally connected neural
network models,ML[W], as defined in 5. Let Sn ∼ (SSD1)

n be the n i.i.d. data samples drawn from
SSD1. Consider the group Ũ ⊆ O(kd), such that for all U ̸= V ∈ Ũ , (U(1)w⋆)T (V(1)w⋆) < 10−3,
and for all U ∈ Ũ , t ∈ {2, . . . , k}, U(t)w⋆ = edt. Let ξ ∈ Ξ encapsulate the randomization, and let
ξ ∼ PΞ. If θ̄(Sn, ξ) is a Ũ-equivariant algorithm then, for large enough k, d,

nδ(θ̄n) = Ω
(
σ2d
)
, (180)

where δ = 0.5× 10−2.

Proof. We refer to the distribution SSD1 by P . Since the algorithm θ̄n is U- equivariant, lemma 5.1
gives us that for all U ∈ Ũ ,

θ̄({xi, yi}n)(x)
d
= θ̄({Uxi, yi}n)(Ux), (181)

err
(
θ̄({xi, yi}n)(x), y

) d
= err

(
θ̄({Uxi, yi}n)(Ux), y

)
, (182)

E
Sn∼Pn

E
(x,y)∼P

err
(
θ̄({xi, yi}n)(x), y

)
= E

Sn∼Pn
E

(x,y)∼P
err
(
θ̄({Uxi, yi}n)(Ux), y

)
, (183)

E
Sn∼Pn

E
(x,y)∼P

[
err
(
θ̄n(x), y

)]
= E

Sn∼(U◦P)n
E

(x,y)∼U◦P

[
err
(
θ̄n(x), y

)]
(184)

E
Sn∼Pn

[
R
(
θ̄n, P

)]
= E

Sn∼(U◦P)n

[
R
(
θ̄n,U ◦ P

)]
. (185)

Taking sup on the right-hand side,

E
Sn∼Pn

[
R
(
θ̄n, P

)]
= sup

U◦P∈Ũ◦P
E
[
R
(
θ̄n,U ◦ P

)]
, (186)

An application of corollary A.1.1 gives the bound ln(|Ū |) ≥ 0.99d.

In order to apply our variant of Fano’s Theorem 5.1, we set the following variables: P = Ũ ◦ P ;
PV = Ũ ◦ P ; F , Ξ, and PΞ are already defined in the lemma; Θ = {θ | θ : ((X ,Y)n,Ξ) → F};
θ⋆(U ◦ P) = M[[U(1)w⋆, ..,U(k)w⋆, b⋆]], where U ∈ Ũ , b⋆ is some fixed value in (0, 1)4; and

ρ(f, θ⋆(U◦P)) = (1−max(0, ∥w1∥ cos(α1)))
2, where U ∈ Ũ , and cos(α1) =

wT
1 U(1)w⋆

∥w1∥ . Recall
from Lemma B.1 that KL(U ◦ P ∥ V ◦ P) ≤ 0.999

σ2 < 1
σ2 .

We are now ready to apply Fano’s Theorem 5.1, using the results from Lemmas D.1,D.2, and 186,

E
Sn∼Pn

[
R
(
θ̄n, P

)]
≥ sup

U◦P∈Ū◦P
E
[
R
(
θ̄n,U ◦ P

)]
, (187)

≥ inf
θ∈Θ

sup
U◦P∈Ū◦P

E [R (θn,U ◦ P)] , (188)

≥ 10−2
(
1− n/σ2+ln(2)

0.99d

)
. (189)

From the above, it is easy to see that with n = 1
4σ

2d samples, the algorithm incurs an expected risk
greater than 1

210
−2, proving the result.

4The claim and the proof do not depend on the chosen value of b⋆.

28

Published as a conference paper at ICLR 2024

We now present the formal statement and the proof of Theorem 7.1, which establishes the Ω(σ2kd)
sample complexity lower bound for LCNs when trained on DSD.

Theorem 7.1 (Formal). LetF denote the class of functions represented by the set of locally connected
neural network models,ML[W], as defined in 4. Let Sn ∼ (DSD)n be the n i.i.d. data samples
drawn from DSD. We define the following groups, U1 := {Block (U1, . . . ,Uk) | Ui ∈ O(d)},
U2 := {U ∈ Op(kd) | idxkd(Ue(i−1)d+1) + j − 1 = idxkd(Ue(i−1)d+j), ∀i ∈ [k], j ∈ [d]}, and
U = U1 ⋆ U2. Let {Ft}T be the set of update functions, and let the model parameters be initialized as
w0 ∼W . If θ̄n(Sn,w0;MF [W], {Ft}T) is a U-equivariant algorithm, then, for large enough k, d,
the sample complexity is given by,

nδ(θ̄n) = max(Ω
(
σ2kd

)
, 40k), (190)

where δ = 0.25× 10−2.

Proof. For simplicity will refer to the distribution DSD by P , and the distribution SSDt by Qt, for
t ∈ [k]. Since the algorithm θ̄n is U-equivariant, lemma 5.1 gives us that for all U ∈ U ,

θ̄({xi, yi}n)(x)
d
= θ̄({Uxi, yi}n)(Ux), (191)

err
(
θ̄({xi, yi}n)(x), y

) d
= err

(
θ̄({Uxi, yi}n)(Ux), y

)
, (192)

E
Sn∼Pn

E
(x,y)∼P

err
(
θ̄({xi, yi}n)(x), y

)
= E

Sn∼Pn
E

(x,y)∼P
err
(
θ̄({Uxi, yi}n)(Ux), y

)
, (193)

E
Sn∼Pn

[
R
(
θ̄n, P

)]
= E

Sn∼(U◦P)n

[
R
(
θ̄n,U ◦ P

)]
, (194)

= E
Sn∼(U◦P)n

1

k

k∑
i=1

[
R
(
θ̄n,U ◦Qi

)]
, (195)

=
1

k

k∑
i=1

E
Sn∼(U◦P)n

[
R
(
θ̄n,U ◦Qi

)]
. (196)

To simplify 196, we begin by showing that the expected risk incurred by the algorithm is the same for
every distribution U ◦Qi. Specifically, for all i, j ∈ [k],

E
Sn∼(U◦P)n

[
R
(
θ̄n,U ◦Qi

)]
= E

Sn∼(U◦P)n

[
R
(
θ̄n,U ◦Qj

)]
. (197)

For i = j, the result trivially holds. So we can assume that i ̸= j. Observe that because of the
block structure of U1, Uµi ∈ Span({e(i−1)d+j}j∈[d]) ∀i ∈ [k]. Therefore ∃U1 ∈ U1,U2 ∈ U2,
such that, U1U2Uµl = Uµl for all l /∈ {i, j}, and U1U2Uµi = Uµj , U1U2Uµj = Uµi. Since
Ũ := U1U2 ∈ U and θ̄n is a U-orthogonally equivariant algorithm, from lemma 5.1,

θ̄({xi, yi}n)(x)
d
= θ̄({U1xi, yi}n)(U1x), (198)

err
(
θ̄({xi, yi}n)(x), y

) d
= err

(
θ̄({U1xi, yi}n)(U1x), y

)
, (199)

E
Sn∼(U◦P)n

E
U◦Qi

[
err
(
θ̄({xi, yi}n)(x), y

)]
= E

Sn∼(U◦P)n
E

U◦Qi

[
err(θ̄({U1xi, yi}n)

(U1x), y)
]
, (200)

E
Sn∼(U◦P)n

E
U◦Qi

[
err
(
θ̄({xi, yi}n)(x), y

)]
= E

Sn∼(U1U◦P)n
E

U1U◦Qi

[
err
(
θ̄({xi, yi}n)

(x), y
)]
. (201)

From the construction of U1, we know that U1U ◦ P
d
= U ◦ P , and U1U ◦Qi

d
= U ◦Qj ,

E
Sn∼(U◦P)n

E
U◦Qi

[
err
(
θ̄({xi, yi}i)(x), y

)]
= E

Sn∼(U◦P)n
E

U◦Qj

[
err
(
θ̄({xi, yi}i)(x), y

)]
, (202)

E
Sn∼(U◦P)n

[
R
(
θ̄n,U ◦Qi

)]
= E

Sn∼(U◦P)n

[
R
(
θ̄n,U ◦Qj

)]
. (203)

29

Published as a conference paper at ICLR 2024

This proves the claim 197. Substituting it back into 196,

E
Sn∼Pn

[
R
(
θ̄n, P

)]
= E

Sn∼(U◦P)n

[
R
(
θ̄n,U ◦Q1

)]
, (204)

= sup
U∈Ũ

E
Sn∼(U◦P)n

[
R
(
θ̄n,U ◦Q1

)]
, (205)

where Ũ ⊆ U1 is the set of "hard instances" such that, for all U ̸= V ∈ Ũ , (Uµ1)
T (Vµ1) < 10−3,

and for all U ∈ Ũ , and i ∈ {2, . . . , k}, Uµi = edt, Let Ξ = W , PΞ = W , and Θ = {θ |
θ : ((X ,Y)n,Ξ)→ F}. It is easy to note that θ̄n ∈ Θ. Therefore,

E
Sn∼Pn

[
R
(
θ̄n, P

)]
≥ inf

θn∈Θ
sup
U∈Ũ

E
Sn∼(U◦P)n

[R (θn,U ◦Q1)] , (206)

We will now perform a series of reductions to lower bound the above minimax problem, with the
minimax problem of learning SSD1. The main idea behind these reductions is to demonstrate that a
given minimax problem can be ’simulated’ by a more tractable one, and thus the tractable problem
serves as a lower bound on the original problem.

Define the set of algorithms, Θ1 = {θ | θ : (([k],X ,Y)n,Ξ) → F}, and let U ◦ P̃ be the indexed
distribution with the generative story: Sample j ∼ Unif[k], then sample (x, y) ∼ U ◦Qj , and then
return (j,x, y). We can then lower bound 206 as,

≥ inf
θ∈Θ1

sup
U∈Ũ

E
w∼W

E
(j,x,y)n∼(U◦P̃)n

[R (θ((j,x, y)n,w),U ◦Q1)] . (207)

The inequality follows from the fact that for every θan ∈ Θ, there exists θbn ∈ Θ1, that discards the
index j and returns the output of θan.

We define n1 to be the random variable that corresponds to the number of samples drawn from
U ◦ Q1. Using Berstein’s inequality, we get that n

2k ≤ n1 ≤ m := 3n
2k , holds with probability

≥ c := 1− 2 exp(−n
10k). We will refer to this event as E. Then we can lower bound 207,

≥ c inf
θ∈Θ1

sup
U∈Ũ

E
w∼W

E
(j,x,y)n∼(U◦P̃)n

[R (θ((j,x, y)n,w),U ◦Q1) | E] . (208)

For the next reduction, we define ni to be the random variable corresponding to the number of samples
drawn from the distribution U ◦Qi, for all i ∈ [k]. Let y ∼ (Unif[Y])n be a uniform random vector
over {+1,−1} of size n , and ϵ ∼ N (0nkd, Inkd) be a vector of i.i.d. standard Gaussian random
variables. Let Θ2 = {θ | θ : ((X ,Y)m × (Rkd)k−1 × (N ∪ {0})k × (R)n × Rnkd ×W) → F}
be a set of algorithms that take as input the training data, {Uµ}ki=2 mean vectors, the number of
samples to be drawn from each mean, pre-sampled values of y and ϵ, and the parameter initialization
respectively. It subsequently returns a function within F . Then we can lower bound 208 as,

≥ c inf
θ∈Θ2

sup
U∈Ũ

E
w∼W

E
{ni}k

1

E
y,ϵ

E
Sm∼(U◦Q1)m

[
R
(
θ(Sm, {Uµi}k2 , {ni}k1 ,y, ϵ,w),U ◦Q1

)
| E
]
.

(209)

The last inequality follows from the fact that for every θan ∈ Θ1, there exists θbn ∈ Θ2, that first
deterministically creates the indexed dataset using Sm, {Uµi}k2 , {ni}k1 ,y, ϵ and then runs θan. For
notational brevity, we define Ξ1 := (N∪ {0})k × (R)n ×Rnkd ×W , to encapsulate the randomness
in {ni}k1 ,y, ϵ, and w. We denote its associated product distribution by PΞ1

. Rewriting 209,

= c inf
θ∈Θ2

sup
U∈Ũ

E
ξ∼PΞ1

E
Sm∼(U◦Q1)m

[
R
(
θ(Sm, {Uµi}k2 , ξ),U ◦Q1

)]
. (210)

From the construction of "hard instances", we know that for all U ∈ Ũ , t ∈ {2, . . . , k}, Uµt = edt.
Substituting this back in 210,

= c inf
θ∈Θ2

sup
U∈Ũ

E
ξ∼PΞ1

E
Sm∼(U◦Q1)m

[
R
(
θ(Sm, {edi}k2 , ξ),U ◦Q1

)]
. (211)

Note that the set {edi}ki=2 is fixed and known. Consider, Θ3 := {θ | θ : ((X ,Y)m × Ξ1)→ F}, as
the set of algorithms. For every θan ∈ Θ2, there exists θbn ∈ Θ3 which runs θan using the input data,
randomization ξ, and the known set {edi}ki=2. Therefore, we can bound 211,

≥ c inf
θ∈Θ3

sup
U∈Ũ

E
ξ∼PΞ1

E
Sm∼(U◦Q1)m

[R (θ(Sm, ξ),U ◦Q1)] , (212)

30

Published as a conference paper at ICLR 2024

We have already proven a lower bound for the above problem in Lemma D.3, specifically refer to
equation 186. Substituting that result,

E
Sn∼Pn

[
R
(
θ̄n, P

)]
≥ c10−2

(
1− m/σ2+ln(2)

0.99d

)
, (213)

≥ c10−2

(
1−

3n
2kσ2 +ln(2)

0.99d

)
, (214)

≥
(
1− 2 exp(−n

10k)
)
10−2

(
1−

3n
2kσ2 +ln(2)

0.99d

)
. (215)

Using n ≥ 40k, we can bound c ≥ (1− 2 exp(− ln(4))) = 1
2 . And, choosing n = 1

6σ
2kd, we can

bound
(
1−

3n
2kσ2 +ln(2)

0.99kd

)
=

(
1−

kd
4 +ln(2)

0.99kd

)
≥ 1

2 . Therefore, we have the result,

E
Sn∼Pn

[
R
(
θ̄n, P

)]
≥ 1

410
−2. (216)

31

Published as a conference paper at ICLR 2024

D.2 CNN UPPER BOUND

Theorem 7.2 (Formal). LetF denote the class of functions represented by the set of locally connected
neural network models, MC [W], as defined in 6. Let the input data be drawn from the DSD
distribution, Sn ∼ (DSD)n, with σ = Õ(1√

k
). We define the group U := {Block (U1, . . . ,Uk) |

Ui ∈ O(d),Ui = Uj}. Then there exists a weight initialization distribution W and update functions
{Ft}T such that θ̄n(MC [W], {Ft}T ,W, Sn) is an U-equivariant algorithm and, if k, d are large
enough, then

nδ(θ̄n) = max(O
(
σ2(d+ k) ln(kd)

)
, 10), (217)

for some constant δ = O(1).

Proof. The outline of the proof will run parallel to the approach taken in the proof of Theorem 6.2.
We will first present the algorithm θ̄n, then show it is a U-equivariant algorithm and then derive the
required sample complexity bound upper bound.

1. Algorithm Definition

To define the algorithm θ̄n, we need to specify its components: the modelMC [W], the initialization
distribution W , and the update functions {Ft}T . At iteration t = 0, we initialize the model parameter
v0 = [w0, b0] as w0 ∼ N (0, γId), where γ−1 = 100k2d2, and bias is set as b0 = 0. The superscript
denotes the iteration number. To specify the update functions, we define the empirical loss function,

l : (W, (X ,Y)n)→ R := 1
n

n∑
j=1

(
yi −

k∑
i=1

ϕb(w
Tx

(i)
j)

)2

. (218)

The algorithm has T = 2 iterations. For simpler analysis, we divide the dataset, Sn, into two equal
sized datasets Sm

1 , and Sm
1 , with m := n

2 samples each. The update function for each t ∈ {1, 2} is,

Ft(v, S
m
t) :=

[
w−ηt∇wl(w,b;Sm

t)
∥w−ηt∇wl(w,b;Sm

t)∥ ; bt

]
, (219)

where η1 = 1, η2 = 103, b1 = 1
100

√
kd

(k+d) ln(kd) , b2 = 10−4.

2. Algorithm is Equivariant

To establish that θ̄n is U-equivariant, we verify the three conditions specified in Definition 6. We
define the group, V := {Block(V, I1) | V ∈ O(d)}, where I1 is the identity matrix of size 1.

For x, y ∈ (X ,Y), U ∈ U , w ∈ Rd, b ∈ R+, choose V = Block({U(1), I1}) ∈ V , without loss of
generality, as for all i, j, U(i) = U(j). Then, the property 1 of equivariance holds as,

MC [v](x) =

k∑
i=1

ϕb(w
Tx(i)) =

k∑
i=1

ϕb(w
T (U(1))TU(i)x(i)) =MC [Vv](Ux). (220)

For all t ∈ [2] and Sm
t ∈ (X ,Y)m the second property 2 follows as,

Ft (Vv,U ◦ Sm
t) =

[
U(1)w−ηt∇U(1)w

l(Vv;U◦Sm
t)

∥U(1)w−ηt∇U(1)w
l(Vv;U◦Sm

t)∥ ; bt

]
, (221)

=
[

U(1)(w−ηt∇wl(v;Sm
t))

∥U(1)(w−ηt∇wl(v;Sm
t))∥ ; bt

]
, (222)

=
[
U(1)(w−ηt∇wl(v;Sm

t))
∥w−ηt∇wl(v;Sm

t)∥ ; bt

]
, (223)

= VFt (v, S
m
t) . (224)

And as for property 3, observe that,

Vv0 = [U(1)w0b0],
d
= [w0, b0] = v, (225)

32

Published as a conference paper at ICLR 2024

holds for all V ∈ V .

3. Algorithm Analysis

We analyze the algorithm, with n = max(2σ2(k + d) ln(kd), 10) samples, to establish that θ̄n
achieve an expected risk of at most δ = 2.5× 10−3. We set σ ≤ 1

100
√

k ln(kd)3
. The outline of the

proof is as follows: we first prove that after the first update step, the alignment of w1 with unknown

signal vector w⋆ is Ω(
√

1
k). In the second step, we use this alignment is reliably threshold out the

"noise" patches, while letting the "signal" patch pass through the first hidden layer. We then show
that this denoising effect, enables us to recover the signal with an alignment of Ω(1), which would
imply that the risk of the CNN on the task ≤ δ.

3a. Update Step 1

We define ŵ1 = w0 −∇w0 l(w0, 0;Sm
1) to be the unnormalized parameter vector w1, and therefore

the alignment with the signal is given by (w1)Tw⋆ = (ŵ1)Tw⋆

∥ŵ1∥ . To analyze ŵ1, we first evaluate the
gradient with respect to w0,∇w0 l(w0, 0;Sm

1),

∇w0 l(w0, 0;Sm
1) = 1

m

m∑
j=1

∇w0

(
yi −

k∑
i=1

ϕ0((w
0)Tx

(i)
j)

)2

, (226)

= −2
m

m∑
j=1

(
yj −

k∑
i=1

ϕ0((w
0)Tx

(i)
j))

)(
k∑

i=1

x
(i)
j ϕ′

0((w
0)Tx

(i)
j))

)
, (227)

= −2
m

m∑
j=1

(
1−

k∑
i=1

yj(w
0)Tx

(i)
j)

)(
k∑

i=1

yjx
(i)
j

)
, (228)

:= −2
m

m∑
j=1

αjβj , (229)

where ϕ′
0(x) := d

dxϕ0(x). We have used the facts that ϕ0 is the identity function, and ϕ′
0 is the

constant function 1 . And, αj := 1−
∑k

i=1 yj(w
0)Tx

(i)
j , βj :=

∑k
i=1 yjx

(i)
j .

To further analyze 229, we first prove high probability bounds for αj , j ∈ [m]. From the initialization

distribution W , we know that w0 d
= γϵ, where ϵ is the Gaussian random vector defined as ϵ ∼

N (0, Id). And from the input distribution DSD, we know that x(i)
j = yjrijw

⋆ + σϵ
(i)
j , for all i in

[k]. Here, ϵ(i)j ∼ N (0, Id) is also a Gaussian random vector, and rij = 1, if the signal patch appears
in the j-th data sample appears in the i-th patch, and 0 otherwise.

αj = 1−
k∑

i=1

yj(w
0)Tx

(i)
j , (230)

= 1−
k∑

i=1

rijy
2
jγϵ

Tw⋆ −
k∑

i=1

yjγσϵ
T ϵ

(i)
j , (231)

= 1− γϵTw⋆ −
k∑

i=1

yjγσϵ
T ϵ

(i)
j , (232)

We can now bound the range of αj as,

1 + |γϵTw⋆|+ |
k∑

i=1

γσϵT ϵ
(i)
j | ≥ αj ≥ 1− |γϵTw⋆| − |

k∑
i=1

γσϵT ϵ
(i)
j |. (233)

We first upper bound |γϵTw⋆|. Since the norm of the signal is 1, ∥w⋆∥ = 1, ϵTw⋆ ∼ N (0, 1), and

|γϵTw⋆| ≤ 1
100k2d2 |ϵTw⋆| ≤ 1

8 , (234)

33

Published as a conference paper at ICLR 2024

with probability ≥ 1− 2Φ(−10k2d2) ≥ 1− 10−6, for large enough k, d. Next, we provide an upper
bound for |

∑k
i=1 γσϵ

T ϵ
(i)
j |, for all j. For this we analyze,

max
j∈[m]

|
k∑

i=1

γσϵT ϵ
(i)
j | = γσ max

j∈[m]
|ϵT

k∑
i=1

ϵ
(i)
j |

d
= γσ max

j∈[m]
|
√
kϵT ϵ̄j |, (235)

= γσ
√
k max

j∈[m]
|∥ϵ∥∥ϵ∥ϵ

T ϵ̄j | ≤ 6γσ
√
kd max

j∈[m]

∣∣ ϵT ϵ̄j
∥ϵ∥
∣∣, (236)

with probability ≥ 1− 2× 10−6. The last inequality 236 follows from the concentration of the norm
of a Gaussian random variable, P[∥ϵ∥ ≥ 6

√
d] ≤ 2 exp(− 36d

2d) ≤ 10−6. We define u = ϵ
∥ϵ∥ , and

ϵj = uT ϵ̄j , which is a standard Gaussian random variable. Then, from the concentration inequality,
P[maxj∈[m] |ϵj | ≥

√
32 ln(m)] ≤ 2

m9 ≤ 10−6. Substituting this in 236,

max
j∈[m]

|γσϵT
k∑

i=1

ϵ
(i)
j | ≤ 6γσ

√
kd max

j∈[m]
|ϵj |, (237)

≤ 6 1
100k2d2

1

100
√

k ln(kd)3

√
kd max

j∈[m]
|ϵj |, (238)

≤ 6 1
100k2d2

1

100
√

k ln(kd)3

√
kd
√
32 ln(m) ≤ 1

8 , (239)

for large enough k, d. Using 234, 239 in 233, we bound αj , for all j ∈ [m], as,

1 + |γϵTw⋆|+ |
k∑

i=1

γσϵT ϵ
(i)
j | ≥ αj ≥ 1− |γϵTw⋆| − |

k∑
i=1

γσϵT ϵ
(i)
j |. (240)

5
4 ≥ αj ≥ 3

4 . (241)

Also, note that βj =
∑k

i=1 yjx
(i)
j

d
= w⋆ + σ

√
kϵ̄j . We are now in the position to analyze ŵ1,

ŵ1 = w0 −∇wl(w0, 0;Sm
1), (242)

= w0 + 1
m

m∑
j=1

2αjβj , (243)

d
= w0 + 1

m

m∑
j=1

2αj

(
w⋆ + σ

√
kϵ̄j

)
, (244)

d
= w0 +

2
∑m

j=1 αj

m w⋆ +
2σ
√

k
∑m

j=1 α2
j

m ϵ̄, (245)

where ϵ̄ is the Gaussian random vector ∼ N (0, Id). Note that from the concentration of the norm of
a Gaussian random variable P[∥ϵ̄∥ ≥ 6

√
d] ≤ 2 exp(− 36d

2d) ≤ 10−6, and P[∥ϵ̄∥ ≤
√
d/6] ≤ 10−6,

Recall that our aim is to bound (w1)Tw⋆ = (ŵ1)Tw⋆

∥ŵ1∥ . For this, we first upper bound ∥ŵ1∥,

∥ŵ1∥ = ∥w0 +
2
∑m

j=1 αj

m w⋆ +
2σ
√

k
∑m

j=1 α2
j

m ϵ̄∥, (246)

≤ ∥w0∥+ ∥ 2
∑m

j=1 αj

m w⋆∥+ ∥ 2σ
√

k
∑m

j=1 α2
j

m ϵ̄∥, (247)
241
≤ ∥w0∥+ 5

2∥w
⋆∥+ 5σ

2

√
k
m∥ϵ̄∥, (248)

= γ∥ϵ∥+ 5
2 + 5σ

2

√
k

σ2(d+k) ln(kd)∥ϵ̄∥, (249)

≤ 6
√
d

100k2d2 + 5
2 + 5σ

2

√
6kd

σ2(d+k) ln(kd) ≤ 10
√

kd
(k+d) ln(kd) , (250)

34

Published as a conference paper at ICLR 2024

for large enough k, d. Similarly, we lower bound ∥ŵ1∥,

∥ŵ1∥ ≥ ∥2σ
√

k
∑m

j=1 α2
j

m ϵ̄∥ − ∥w0∥ − ∥ 2
∑m

j=1 αj

m w⋆∥, (251)
241
≥ 3σ

2

√
k
m∥ϵ̄∥ − ∥w

0∥ − 5
2∥w

⋆∥, (252)

≥ 3σ
2

√
kd

6σ2(k+d) ln(kd) −
6
√
d

100k2d2 − 5
2 ≥

1
4

√
kd

(k+d) ln(kd) , (253)

where the last inequality holds for a large enough k, d. Next, we lower bound (ŵ1)Tw⋆,

(ŵ1)Tw⋆ = (w0)Tw⋆ +
2
∑m

j=1 αj

m (w⋆)Tw⋆ +
2σ
√

k
∑m

j=1 α2
j

m (ϵ̄)Tw⋆, (254)

= γϵTw⋆ +
2
∑m

j=1 αj

m +
2σ
√

k
∑m

j=1 α2
j

m (ϵ̄)Tw⋆, (255)

≥ −|γϵTw⋆|+ 3
2 −

5σ
√
k√

m
|(ϵ̄)Tw⋆|, (256)

234
≥ − 1

8 + 3
2 −

5σ
√
k√

σ2(k+d) ln(kd)
|(ϵ̄)Tw⋆|, (257)

≥ 11
8 −

1
12 |(ϵ

1)Tw⋆| ≥ 11
8 −

7
10 ≥

6
10 , (258)

with probability ≥ 1− 2Φ(− 84
10) ≥ 1− 10−6. And similarly we upper bound (ŵ1)Tw⋆,

(ŵ1)Tw⋆ ≤ 5
2 + |γϵTw⋆|+ 5σ

√
k√

m
|(ϵ1)Tw⋆|, (259)

≤ 5
2 + 1

8 + 7
10 ≤ 4. (260)

Therefore, 40
√

kd
(k+d) ln(kd) ≥ (w1)Tw⋆ ≥ 6

100

√
kd

(k+d) ln(kd) , with probability ≥ 1 − 10−5. We

can now express w1 as λw⋆ +
√
1− λ2w⋆

⊥, such that 40
√

kd
(k+d) ln(kd) ≥ λ ≥ 6

100

√
kd

(k+d) ln(kd) ,

∥w⋆
⊥∥ = 1, and (w⋆)Tw⋆

⊥ = 0.

3b. Update Step 2

In this step, we will now show that the 6
100

√
kd

(k+d) ln(kd) alignment achieved in the first step, enables
the network to filter out the noise patches, while letting from the signal patch pass through. This
denoising will enables us to achieve a stronger a 1− 10−3 alignment with the signal vector.

We begin by analyzing the push forward of all noise patches in Sm
2 , through the CNN model,

max
i∈[k],j∈[n]\[m]

|σ(w1)T ϵ
(i)
j | ≤ 1

100
√

k ln(kd)3
max
i,j
|(w1

i)
T ϵ

(i)
j |, (261)

≤ 1

100
√

k ln(kd)3

√
32 ln(σ2k(k + d) ln(kd)), (262)

≤ 1
4
√
k
≤ 1

100

√
kd

(k+d) ln(kd) (263)

To derive inequality 262, we have used the concentration of the maximum of the absolute value of mk

i.i.d. Gaussian random variables, P[maxi,j |(w1)T ϵ
(i)
j | ≥

√
32 ln(mk)] ≤ 2

(mk)9 ≤ 10−6. Recall
from the analysis of the first update step that,

40
√

kd
(k+d) ln(kd) ≥ (w1)Tw⋆ ≥ 6

100

√
kd

(k+d) ln(kd) . (264)

From 263, 264, and b1 = 1
100

√
kd

(k+d) ln(kd) , we filter out the noise and let the signal pass for all j,

40
√

kd
(k+d) ln(kd) ≥ ϕb1(yj(w

1)Tx
(i)
j) ≥ 4

100

√
kd

(k+d) ln(kd) , where rij = 1, (265)

ϕb1(yj(w
1)Tx

(i)
j) = 0, where rij = 0. (266)

We will follow in the footsteps of update step 1 and seek to bound (w2)Tw⋆. First, we define
ŵ2 = w1 − η2∇wl(w1, b1;S

m
2), and therefore (w2)Tw⋆ = (ŵ2)Tw⋆

∥ŵ2∥ . Now, we begin by evaluate
the gradient of the empirical loss function with respect to w1,

35

Published as a conference paper at ICLR 2024

∇w1 l(w1, b1;S
m
2) =

−1
m

m∑
j=1

2

(
yj −

k∑
i=1

ϕb1((w
1)Tx

(i)
j))

)(
k∑

i=1

x
(i)
j ϕ′

b1((w
1)Tx

(i)
j))

)
,

(267)

=
−1
m

m∑
j=1

2

(
1−

k∑
i=1

ϕb1(yj(w
1)Tx

(i)
j))

)(
k∑

i=1

rijyjx
(i)
j

)
(268)

where 268 follows from 265, 266. Define αj := 1 −
∑k

i=1 ϕb1(yj(w
1)Tx

(i)
j)), for j ∈ [n] \ [m].

Then, 1 ≥ 1− 4
100

√
kd

(k+d) ln(kd) ≥ αj ≥ 1− 40
√

kd
(k+d) ln(kd) . We also define x

(t)
j to be the patch

of the j-th data sample that corresponds to the occurrence of the signal, that is rtj = 1. From 268,

∇w1 l(w1, b1;S
m
2) = −1

m

m∑
j=1

2αjyjx
(t)
j

d
= −1

m

m∑
j=1

2αj

(
w⋆ + σϵ

(t)
j

)
, (269)

= −
m∑
j=1

2αj

m w⋆ − 1
m

m∑
j=1

2σαjϵ
(t)
j , (270)

d
= −

m∑
j=1

2αj

m w⋆ − 2σ
√∑m

j=1 α2
j

m ϵ̂, (271)

where ϵ̂ ∼ N (0, Id). We define a :=
∑m

j=1
2αj

m . And, observe that from the concentration of the
norm of a Gaussian random variable P[∥ϵ̂∥ ≥ 6

√
d] ≤ 2 exp(− 36d

2d) ≤ 10−6. With these results, we

are now ready to bound (w2)Tw⋆ = (ŵ2)Tw⋆

∥ŵ2∥ ,

∥ŵ2∥ = ∥w1 + η2

m∑
j=1

2αj

m w⋆ + η2
2σ
√∑m

j=1 α2
j

m ϵ̂∥,

≤ 1 + aη2∥w⋆∥+ 2ση2√
m
∥ϵ̂∥,

≤ 1 + aη2 +
12ση2

√
d√

σ2(k+d) ln(kd)
≤ 1 + η2(a+ 10−3),

for a large enough k, d. And now we lower bound (ŵ2)Tw⋆,

(ŵ2)Tw⋆ = (w1)Tw⋆ + η2

m∑
j=1

2αj

m (w⋆)Tw⋆ + η2
2σ
√∑m

j=1(α
2
j)

m ϵ̂Tw⋆ (272)

d
= −(w1)Tw⋆ + η2

∑m
j=1 2αj

m + η2
2σ
√∑m

j=1(α
2
j)

m ϵ; ϵ ∈ N (0, 1), (273)

≥ −1 + η2a− 2η2σϵ√
m

(274)

≥ −1 + η2a− η2
2σϵ√

σ2(k+d) ln(kd)
≥ −1 + η2(a− 10−3), (275)

where we have used the fact that P[| 2ϵ√
(k+d) ln(kd)

| ≥ 10−3] holds with probability ≤ 10−6, for a

large enough k, d. Therefore the alignment can be lower bounded as,

(ŵ2)Tw⋆

∥ŵ2∥ ≥ 1+103(a+10−3)
1+103(a+10−3) ≥ 0.96, (276)

as 1 ≥ a ≥ 2
3 for large k, d, and this occurs with a probability ≥ 1− 2× 10−5.

3c. CNN has Low Risk

We now show that this large constant alignment guarantees a low risk. We bound the push forward of
the noise through the CNN,

|σ max
j∈[m]

((w2)T ϵi)| ≤
6
√

ln(k)

100
√

k ln(kd)3
≤ 10−4 (277)

36

Published as a conference paper at ICLR 2024

To derive the last inequality, we have used the concentration of the maximum of the absolute value
of k i.i.d. Gaussian random variables, P[maxj∈[k] |(w2)T ϵj | ≥

√
32 ln(k)] ≤ 2

m9 ≤ 10−6. For this
data sample, let t ∈ [k] be the index of the signal patch, then,

ϕb2(yj(w
2
i)

Tx
(t)
j) ≥ 0.959, (278)

ϕb2(yj(w
2
i)

Tx
(i)
j) = 0, ∀ i ̸= t. (279)

To bound the risk in the failure case, we note that for any v ∈ W ,

E[(y −
k∑

i=1

ϕb(w
Tx(i)))2] = E[(1−

k∑
i=1

ϕb(yw
Tx(i)))2], (280)

= 1
k

k∑
j=1

E
(x,y)∼SSDj

[(1−
k∑

i=1

ϕb(yw
Tx(i)))2], (281)

= 1
k

k∑
j=1

E[(1−
∑
i ̸=j

ϕb(σϵij)− ϕb(cos(αj) + σϵjj))
2], (282)

To evaluate the above expression, we observe that the expectation can be written as,

E[(1−
∑
i ̸=j

ϕb(σϵij)− ϕb(cos(αj) + σϵjj))
2] = Var[(1−

∑
i ̸=j

ϕb(σϵij)− ϕb(cos(αj) + σϵjj))]

+ E[(1−
∑
i ̸=j

ϕb(σϵij)− ϕb(cos(αj) + σϵjj))]
2, (283)

=
∑
i̸=j

Var[ϕb(σϵij)] + Var[ϕb(cos(αj) + σϵjj)] + (E[ϕb(cos(αj) + σϵjj)])
2
, (284)

≤
∑
i

σ2 + cos2(αj) ≤ kσ2 + 1 ≤ 2. (285)

Substituting this back,

E[(y −
k∑

i=1

ϕb(w
T
i x

(i)))2] ≤ 1
k

k∑
j=1

2 = 2 (286)

Finally, the risk of the classifier is,

E
[
R
(
θ̄n, P

)]
≤ (1− 0.959)2 + 4× 10−5 ≤ δ. (287)

37

Published as a conference paper at ICLR 2024

E EXPERIMENTS

In this section, we validate our theoretical bounds with empirical results. We begin by presenting the
test-error experiments, where we evaluate the test error of the three models across various training
sample sizes. The results for these experiments show an order-of-magnitude decrease in the sample
efficiency when comparing CNNs to LCNs, and comparing LCNs to FCNs.

We then present our sample complexity experiments, wherein we explicitly calculate the sample
complexity of CNNs and LCNs for various (k, d) pairs. However, these experiments are significantly
more compute-intensive than the test error experiments. While the computational demands are
manageable for CNNs, they increase significantly for LCNs and become prohibitively large for FCNs.
This is primarily because FCNs require at least 10-20 times more samples than LCNs. Nonetheless,
for both CNNs and LCNs, we successfully verify that the empirical sample complexity satisfies the
respective theoretical bounds. Specifically, for CNNs, we show a O(k) sample complexity growth
with a fixed d and a O(d) growth with a fixed k. For LCNs, we establish that the sample complexity
grows as O(k2),Ω(k) with a fixed d and as Θ(d) with a fixed k.

E.1 TEST ERROR EXPERIMENTS

In this experiment, we evaluate the test error of each of the three models when trained with a sample
size of {10, 50, 100, 250, 500} for every (k, d) pair with k, d ∈ {10, 20}. For each training session,
we conduct a grid search over the learning rates for patch parameters being {10−1, 10−2, 10−3},
and for the biases being {10−2, 10−3, 10−4}. We choose the model with the lowest test error. The
experiment is replicated 5 times, and we report the mean and standard deviation of the test errors.

Figure 1: Test error incurred by CNNs, LCNs and FCNs for various values of (k, d)

Across all (k, d) pairs we observe that LCNs require an order-of-magnitude (10-20 times) more
samples than CNNs to achieve comparable test errors. This demonstrates the larger sample efficiency
of CNNs over LCNs. Extrapolating the trend line for FCNs, it is evident that they would need even
orders-of-magnitude more samples than LCNs for comparable error levels. These observations are
consistent with our theoretical predictions of sample complexities: Ω(k2d) for FCNs, O(k(k + d))
and Ω(kd) for LCNs, and O(k + d) for CNNs.

38

Published as a conference paper at ICLR 2024

E.2 SAMPLE COMPLEXITY EXPERIMENTS

In our first experiment, we fix the patch dimension d at 20 and vary the number of patches k across
the range {10, 15, 20, 25, 30}. For each (k, d) pair, we plot the sample complexity for both CNNs
and LCNs. We evaluate the sample complexity via the following steps:

1. Target Loss Evaluation: We compute the optimal loss based on the ground truth and add a
fixed tolerance of 0.03 to establish the target loss.

2. Determining Sample Range: Through trial and error, we determine that a maximum of 1000
samples is sufficient for any model across all k values.

3. Binary Search Method: To find the minimum number of samples required to reach the target
loss, we perform a binary search. In each step, we conduct a grid search over the learning
rates for weights being [10−1, 10−2, 10−3] and biases being [10−2, 10−3, 10−4], and select
the model with the lowest test error.

4. Repetitions for Reliability: We repeat the steps (1-3) five times, plotting the mean and
standard deviation of the sample complexities.

Figure 2: Sample complexity for CNNs (left) and LCNs (right) across various values of k

For a fixed d, the sample complexity for CNNs exhibits an O(k) growth as (Figure 3, left), which
is consistent with our CNN upper bound. Similarly, for LCNs, the complexity growth is consistent
with our theoretical results of O(k2) and Ω(k) (Figure 3, right). Additionally, note that LCNs require
about 10 to 20 times more samples than CNNs, which corresponds to the multiplicative d factor in
LCNs’ sample complexity bound.

In our second experiment, we set the number of patches k at 20 and vary the patch dimension d across
the range [10, 15, 20, 25, 30]. The same steps (1-4) are repeated for this setup.

Figure 3: Sample complexity for CNNs (left) and LCNs (right) across various values of d

39

Published as a conference paper at ICLR 2024

For a fixed k, we observe that the CNN sample complexity grows as O(d) (Figure 4, left), and the
LCN sample complexity grows as Θ(d) (Figure 4, right), both in line with our theoretical guarantees.
Furthermore, akin to our findings in the first experiment, LCNs require approximately 20 times more
samples than CNNs, owing to the multiplicative k factor in their sample complexity.

40

	Introduction
	Other Related Works
	Notation
	Our Setting
	Dynamic Signal Distribution (DSD)
	Neural Network Architectures

	Mathematical background
	Technical Definitions
	Equivariant Algorithms
	Minimax Framework

	FCNs vs LCNs Separation Results
	LCNs vs CNNs Separation Results
	Conclusion And Future Work
	Restated Gilbert Varshamov Bound
	Proof of Theorem 5.1
	FCNs vs LCNs Separation Results
	FCN SSD Lower Bound
	LCN Upper Bound

	LCN vs CNN Separation Results
	LCN Lower Bound
	CNN Upper Bound

	Experiments
	Test Error Experiments
	Sample Complexity Experiments

