
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

RTDIFF: REVERSE TRAJECTORY SYNTHESIS VIA DIF-
FUSION FOR OFFLINE REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

In offline reinforcement learning (RL), managing the distribution shift between
the learned policy and the static offline dataset is a persistent challenge that can
result in overestimated values and suboptimal policies. Traditional offline RL
methods address this by introducing conservative biases that limit exploration
to well-understood regions, but they often overly restrict the agent’s generaliza-
tion capabilities. Recent work has sought to generate trajectories using genera-
tive models to augment the offline dataset, yet these methods still struggle with
overestimating synthesized data, especially when out-of-distribution samples are
produced. To overcome this issue, we propose RTDiff, a novel diffusion-based
data augmentation technique that synthesizes trajectories in reverse, moving from
unknown to known states. Such reverse generation naturally mitigates the risk
of overestimation by ensuring that the agent avoids planning through unknown
states. Additionally, reverse trajectory synthesis allows us to generate longer,
more informative trajectories that take full advantage of diffusion models’ gen-
erative strengths while ensuring reliability. We further enhance RTDiff by intro-
ducing flexible trajectory length control and improving the efficiency of the gener-
ation process through noise management. Our empirical results show that RTDiff
significantly improves the performance of several state-of-the-art offline RL algo-
rithms across diverse environments, achieving consistent and superior results by
effectively overcoming distribution shift.

1 INTRODUCTION

Deep reinforcement learning (RL) has become a powerful tool for tackling complex challenges
across a wide array of fields, including mastering board games (Silver et al., 2016), achieving su-
perhuman performance in video games (Mnih et al., 2015), and improving continuous control in
robotics (Lillicrap et al., 2016). The success of deep RL algorithms is primarily due to their abil-
ity to interact with and learn from extensive datasets generated through environmental interactions.
However, in real-world applications, accumulating such a vast amount of exploratory data is often
impractical and costly. In critical domains like healthcare (Gottesman et al., 2019) and autonomous
driving (Yu et al., 2018), every interaction carries significant costs or risks, making online data col-
lection infeasible and unsafe. Offline RL (Lange et al., 2012; Levine et al., 2020) offers a solution
by training agents on pre-existing datasets, thereby avoiding the risks and costs of online data gener-
ation. Nevertheless, the transition from online to offline RL is challenging. Directly applying online
RL techniques to offline RL tasks usually results in poor performance (Fujimoto et al., 2019; Wu
et al., 2019). This is mainly due to the distribution shift between the policy derived from the offline
data and the policy that originally generated the data. Such a shift can lead to overestimation of the
unseen data in the offline dataset, producing inaccurate value estimates and suboptimal policies.

A typical solution is to develop advanced offline RL algorithms that incorporate a conservative bias
into the learning process. These algorithms limit the policy search to regions within the offline
dataset where there is high confidence. Model-free offline RL approaches, such as those proposed
by Fujimoto et al. (2019) and Wu et al. (2019), embed this bias directly into their policy or value
functions through conservative regularizations or specialized network architectures. Although these
strategies effectively mitigate the problems associated with distribution shift, they may overly restrict
the policy search, limiting the agent’s ability to generalize beyond the specific confines of the offline
dataset. Conversely, model-based offline RL methods (Kidambi & Rajeswaran, 2020; Yu et al.,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

(a) The main paradigm of RTDiff. (b) Illustrative example.

Figure 1: Illustration of RTDiff. (a) RTDiff is used to augment the training dataset for reinforce-
ment learning agents. It receives initial states s from the offline dataset D and synthesizes reverse
trajectories. Both real and synthesized trajectories are utilized to train the RL agent. (b) An illustra-
tive example is shown. In this figure, blue arrows represent trajectories inside the offline dataset, red
arrows represent trajectories synthesized in the forward direction, and green arrows represent tra-
jectories synthesized in the reverse direction. Forward trajectories include paths from known areas
to dangerous areas, which might hinder performance. In contrast, reverse trajectories only include
paths from dangerous areas to known areas, which do not adversely affect the agent.

2020; Lee et al., 2021; Yu et al., 2021) adopt a different strategy. These methods begin by learning
a forward dynamics model that integrates conservative estimates from the offline dataset. They
then use this model to generate imaginary trajectories, thereby expanding the dataset with high-
confidence synthetic data.

Inspired by the promise of data synthesis, we turn our focus to state-of-the-art generative models.
Diffusion models, known for their generative capabilities in computer vision and natural language
processing, have been noticed by the RL researchers. Janner et al. (2022) and Ajay et al. (2023)
introduce a foundational approach for decision-making in RL by generating full trajectories through
a single denoising process. Building on the use of diffusion models in planning, Lu et al. (2023) pro-
pose synthesizing transitions using diffusion models trained on offline datasets to augment available
data. More recent work (Yang & Wang, 2024; He et al., 2023) has expanded these ideas, applying
diffusion models to generate trajectories that accelerate RL training. However, these approaches
face the persistent challenge of distribution shift in data synthesis, which can lead to overestimation
of values when out-of-distribution data are synthesized relative to the offline dataset.

To address this issue, in this paper, we propose a simple yet effective strategy overlooked by the
community: generating reverse trajectories instead of forward ones. Our key insight lies in the
intuition that overestimating a trajectory that begins from an unknown state and moves to a known
state does not affect performance, as the agent will not pass through the unknown state during plan-
ning. Here, known states refer to states that are close to the distribution of states in the offline dataset,
while unknown states are relatively far from this data distribution. During the planning phase, the
agent always starts from a known state, where an overestimated trajectory originating from such
states may risk leading the agent to unknown states, ultimately harming performance. However, by
replacing such trajectories with those starting from unknown states and moving to known states, these
risks are naturally reduced. Therefore, reverse synthesis directly addresses the issue of distribution
shift. Additionally, by eliminating concerns about overestimating out-of-distribution trajectories,
we can generate longer trajectories, providing the agent with more information and leveraging the
ability of diffusion models to produce long, reliable trajectories.

Based on this insight, our work introduces a novel paradigm in offline RL by incorporating a dif-
fusion model with reverse synthesis, termed Reverse Trajectory Diffuser (RTDiff). As illustrated
in Fig. 1, our approach generates trajectories that converge towards target states already present in
the offline dataset. By incorporating flexible generation length control, we can extend the trajectory
length as much as possible to maximize the benefits of the diffusion model while ensuring the reli-

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

ability of the generated data. Furthermore, by controlling the initial noise received by the diffusion
model, we enhance the generation efficiency of our model.

Our contributions are three-fold. (i) We propose RTDiff, a novel diffusion-based approach that
synthesizes reverse trajectories to address distribution shifts in offline reinforcement learning, which
is general and can be integrated into a variety of offline reinforcement learning algorithms to improve
their performance. (ii) We develop an out-of-distribution detector-based method that automatically
adjusts the length of the generated trajectories. (iii) We reduce the number of generated samples by
improving the generation efficiency through noise control. Empirical evaluation shows that RTDiff
consistently achieves state-of-the-art performance across a variety of offline reinforcement learning
environments.

2 RELATED WORK

Offline RL. In the realm of offline reinforcement learning, researchers focus on generalizing to out-
of-distribution (OOD) data and avoiding the overestimation bias. These methods can be categorized
into two main types: model-free and model-based algorithms. Model-free offline RL methods typ-
ically restrict their policy search to the offline dataset. This can be achieved through various ways,
such as explicitly constraining the learning policy to remain close to the dataset (Fujimoto et al.,
2019; Liu et al., 2020b), learning a conservative value function (Kumar et al., 2020), and applying
importance sampling-based algorithms (Precup et al., 2001; Liu et al., 2020a). Additionally, they
may estimate uncertainty quantification for the value function (Levine et al., 2020; Agarwal et al.,
2020).

On the other hand, model-based offline RL methods have explored several different strategies. These
include model-uncertainty quantification (Kidambi & Rajeswaran, 2020; Yu et al., 2020; Ovadia
et al., 2019), representation learning (Lee et al., 2021), and constraining the policy to imitate the
behavioral policy (Matsushima et al., 2020). They also use conservative estimation of the value
function to enhance performance (Yu et al., 2021). Recently, new strategies have emerged for solving
offline RL, such as treating RL problems as a sequence generation problem (Chen et al., 2021; Janner
et al., 2021) or repurposing diffusion models for planning (Janner et al., 2022; Ajay et al., 2023).

Diffusion Models in RL. Diffusion models have demonstrated impressive capabilities in rein-
forcement learning, particularly in enhancing long-term planning and policy expressiveness. Prior
work (Janner et al., 2022; Ajay et al., 2023) introduces a paradigm where diffusion models are used
to construct full trajectories through conditioned sampling, guided by various criteria such as re-
wards, goal-oriented navigation, and skill deployment. These methods exploit the unique ability of
diffusion models to generate extensive trajectories, effectively addressing challenges like long hori-
zons and sparse rewards in RL. Other work (Du et al., 2023; He et al., 2023) extends this paradigm
to generate visual-based data using diffusion models. Lu et al. (2023) employs a diffusion model
to generate transitions that supplement the replay buffer, offering a distinctive strategy compared to
earlier approaches. He et al. (2023) further positioned diffusion models as data synthesizers for gen-
erating trajectories to solve multi-task RL problems. More recently, ATraDiff (Yang & Wang, 2024)
introduces a general framework that leverages offline data to generate full synthetic trajectories,
improving the performance of online RL methods.

Data Augmentation in RL. Data augmentation has become a key technique for improving RL
performance. Traditional methods (Yarats et al., 2021; Laskin et al., 2020; Sinha et al., 2021) in-
corporate various data augmentations like adding noise or random translation on observations for
visual-based RL. Such approaches aim to help the agent to learn on multiple views of the same ob-
servation to improve the robustness. Some other works focus on generating synthetic data based on
the models learned from the offline dataset (Yu et al., 2020; Wang et al., 2021). Recently, different
from disturbing existing data points, researchers have focused on generating new data points from
models learned from the original dataset and upsampling the original dataset. Representative work
includes using diffusion models to generate data (Lu et al., 2023; Ajay et al., 2023; Du et al., 2023;
He et al., 2023; Yang & Wang, 2024).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3 BACKGROUND

Markov Decision Process. In this paper, we explore sequential decision-making tasks that can be
represented as a Markov Decision Process (MDP), denoted by M = ⟨S,A, T,R, γ⟩. In this frame-
work, S denotes the set of states, A denotes the set of actions, and γ ∈ [0, 1) is the discount factor.
The functions T (s′|s, a) and R(s, a) describe the transition dynamics and reward structure, respec-
tively. At each time step t, the agent selects an action a ∈ A, resulting in a new state s′ based on the
transition function T (s′|s, a) and receives an immediate reward R(s, a). A trajectory in this context
is a sequence of states and actions, expressed as (s1, a1, r1, s2, a2, r2, . . . , st, at, rt), where sl, al
and rl represent the state, action, and reward at time step l, respectively. Similarly,we define the re-
verse trajectory starting from the state sl is the sequence (sl, al, rl, sl−1, al−1, rl−1, . . . , s1, a1, r1).

Diffusion Models. Diffusion probabilistic models conceptualize the process of generating data
as an iterative denoising sequence, represented by pθ(τ

i−1|τ i). This sequence reverses a forward
diffusion mechanism, q(τ i|τ i−1), which incrementally adds noise to the data over N steps, thus
degrading its structure. The resulting data distribution is described by:

pθ(x
0(τ)) =

∫
p(xN (τ))

N∏
i=1

pθ(x
i−1(τ)|xi(τ))dτ1:N ,

where p(τN) acts as a standard Gaussian prior, and p(τ0) corresponds to the original noiseless
data. The model parameters, θ, are optimized by minimizing a variational bound on the negative
log-likelihood of the denoising process: θ∗ = argminθ −Eτ0 [log pθ(τ

0)]. This reverse process is
typically modeled as a Gaussian distribution with fixed, timestep-specific covariances:

pθ(x
i−1(τ)|xi(τ)) = N (xi−1(τ)|µθ(x

i(τ), i),Σi).

Offline RL. Offline RL is a type of reinforcement learning algorithm where the agent will be offered
with an offline dataset D = {(s, a, r, s′)} and try to learn a policy πD from the offline dataset D. In
offline RL, the agent will not be allowed to interact with the environment for online data collecting.
The offline dataset is usually collected through multi-source policies.

4 METHOD

We now present our approach to augmenting the offline dataset by training our generative model
RTDiff on the offline dataset to synthesize trajectories reversely. We begin by introducing how we
design and train RTDiff (Sec. 4.1) and then decide the length of the generated trajectories to support
flexible generation space (Sec. 4.2). Finally, we introduce how to further improve the generation
efficiency by adjusting the input noise of the diffusion model (Sec. 4.3).

4.1 TRAJECTORY GENERATOR

To capture the trajectory data distribution of the offline dataset, we train a diffusion model to solve
a conditional generation problem:

max
θ

Eτ∼D[log pθ(x
0(τ)|y(τ))], (1)

where x0(τ) is the final generated reverse trajectory and y(τ) is the generation condition. In the
experiments our paper focuses on, we use proprioceptive information as the state. So, the gener-
ated trajectories should be relatively low-dimensional. Specifically, we define the generated reverse
trajectory at t-th diffusion step with length L as the following 2D array:

xt(τ) =

st0 st−1 st−2 . . . st−L

at0 at−1 at−2 . . . at−L

rt0 rt−1 rt−2 . . . rt−L

 . (2)

In Eqn. 2, the i + 1-th column of xt(τ) is a concatenation of state s−i, action a−i and reward r−i,
in which index 0 means the current step, −i means the i-th last step. The generation condition is set
to be the initial state y(τ) = s0.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Algorithm 1 Augment Offline Dataset D with RTDiff

Require: Offline dataset D, augmentation size M
1: Initialize the synthesized dataset Ds = ∅
2: Train RTDiff pθ with the dataset D
3: while |Ds| < M do
4: Sample state s0 ∈ D from the offline dataset
5: Generate the trajectory τ = (s0, a0, r0, s−1, a−1, r−1, . . . , s−L, a−L, r−L) with RTDiff
6: Cut the trajectory with the OOD detector τ = (s0, a0, r0, s−1, a−1, r−1, . . . , s−l, a−l, r−l)
7: Add all the transitions of the trajectory τ to the synthesized dataset Ds = Ds ∪ τ
8: end while
9: Combine the synthesized dataset to the original dataset D = D ∪Ds

Training. To obtain the training dataset of the diffusion model, we first sample trajectories with
fixed length L from the offline dataset. For a trajectory with length n in the offline dataset, we
divide it into n−L+1 trajectories with length L so that the whole dataset becomes a larger dataset
with fixed length L. For the training of the diffusion model with N denoising steps, we use the
following loss:

L(θ) = Et∼u(N),ϵ∼N (0,I)

[
||ϵ− ϵθ(x

t(τ), y(τ), t)||2
]
, (3)

where u(N) is the uniform distribution on {1, 2, . . . , N}.

Architecture. Since our experimental tasks focus on proprioceptive environments, the generation
content is relatively low-dimensional compared with pixel-based generation, and we thus do not use
a similar U-Net architecture as image works. We parameterize ϵθ with an MLP with skip connections
from the previous layer followed as (Lu et al., 2023) but increase the network width to 4096. For
the sampling process, we use EDM (Karras et al., 2022) as the sampling method and we set the
diffusion steps to 128.

Deployment. As stated in Algorithm 1, to augment the given offline dataset, we first train our
RTDiff on the given offline dataset. Then we repeatedly sample a state s0 as the initial state from
the original dataset D, and synthesize a reverse trajectory from the initial state s0. After that, we
will cut the trajectory by an out-of-distribution (OOD) detector which will be introduced in the next
section, and add all the transitions in the trajectory to the synthesized dataset. We repeat this process
until the size of the synthesized dataset reaches our expected size M .

4.2 GENERATION LENGTH CONTROL

RTDiff is limited to generating fixed-length trajectories due to the inherent characteristics of diffu-
sion models. Our investigation indicates that the quality of the augmented dataset is sensitive to the
length of these trajectories. When the generated trajectories are too short, the agent gains limited
benefit from the diffusion model’s capacity to produce extended, reliable trajectories, thereby re-
stricting RTDiff’s performance enhancement. Conversely, if the generated trajectories are too long,
they will go into out-of-distribution regions, causing hallucinations. An excess of these unrealistic
generations can significantly decrease performance. For a deeper empirical analysis of the perfor-
mance of different generation lengths, please refer to Sec. 5.2.

Therefore, we aim to design a flexible length control mechanism that can automatically adjust the
generation length. This mechanism will ensure that each generated trajectory is as long as possible
without excessively entering out-of-distribution regions.

We train an out-of-distribution detector d(s) on the state space with the offline dataset, where it
measures the distance of a state s to the distribution of the given offline dataset. Ideally, we con-
sider d(s) > 1 to represent that s is an out-of-distribution state. To cut the generated trajectory
(s0, a0, r0, s−1, a−1, r−1, . . . , s−L, a−L, r−L), we find the smallest l + 1 that d(s−(l+1)) > disM ,
then we drop the trajectory after s−l. Here disM is a hyperparameter of our method, the details
about how we choose this hyperparameter are included in Appendix C.3

Out-of-Distribution Detector. We train the OOD detector only by using the data points in the
offline dataset. We design the OOD detector following the classic OOD work SSD (Sehwag et al.,

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

2021). The main training scheme is: we first train a feature representation method to get the features
of the states. Then, we partition the offline dataset into m clusters based on the trained features,
denoting each cluster as Zm. Finally, the distance of a state is defined as d′(s) = minDm(s, Zm)
where Dm(,) is the Mahalanobis distance. We normalize the distance by dividing the maximum
distance of states in the offline dataset D, d(s) = d′(s)

maxs′∈D d′(s′) to make this threshold generalizable
to all the environments.

4.3 IMPROVING GENERATION EFFICIENCY

Although RTDiff can enhance the performance of offline RL by augmenting the dataset, the number
of generated samples can still be quite large, resulting in increased time and cost. To address this,
we propose a technique aimed at improving the generation quality of RTDiff, thereby reducing the
number of samples required in the data augmentation process and increasing sample efficiency.

Intuitively, if we generate two similar trajectories from the same initial state, the information car-
ried by the two trajectories will be less than two independent trajectories. Therefore, we need to
maximize the dissimilarity between all generated trajectories, which means reducing the correlation
between the generated trajectories.

To this end, we propose a simple strategy that controls the noise xN (τ) we choose for the diffusion
model. Instead of separately generating the noises xN

1 (τ), xN
2 (τ), . . . , xN

n (τ) for one single initial
state, we generate these noises together so that they will be evenly located within the space. That is
we generate the noises by minimizing:

min
xN
1 (τ),xN

2 (τ),...,xN
n (τ)

n∑
i=1

n∑
j=1

xN
i (τ) · xN

j (τ), (4)

which repulses noise vectors from each other.

Conceptually, this strategy is effective. As the diffusion model itself has the ability to generate
diversified trajectories at a sufficiently high probability (this means the diffusion model will not
always generate the same trajectory for all noises), we can assume that: for a trajectory τA generated
by noise xN

A (τ), with high probability, another trajectory τB generated from a randomly sampled
noise xN

B (τ) ∼ N(0, 1) is sufficiently different from trajectory τA, say d(τA, τB) > d0, where d0
is a constant. We can regard the full sampling process as a function from noise to trajectory. As the
diffusion model’s network and noise samplers are continuous, such sampling process is a continuous
function. Using such continuity, we reach the conclusion that if we sample noise xN

B (τ) only from
the neighborhood of noise xN

A (τ), with a high probability the generated trajectory τB from xN
B (τ)

will be close to trajectory τA. Therefore, intuitively if we choose xN
B (τ) which is located far from

xN
A (τ), we can avoid the neighborhood region (that fails at high probability) and have a higher

probability to get a different trajectory.

5 EXPERIMENTS

We conduct a variety of experiments to verify the effectiveness of RTDiff. First, we validate that
our approach can improve the performance of state-of-the-art offline RL algorithms in various envi-
ronments (Sec. 5.1). Moreover, we conduct ablation studies to validate the effectiveness of different
components in our approach (Sec. 5.2). Finally, we conduct additional experiments on visual RL
tasks to show that our method can be extended to visual-based methods (Sec. 5.3). For evaluation,
all results in this section are presented with the median performance over 5 random seeds.

5.1 MAIN RESULTS

We first show the overall performance of RTDiff, validating that RTDiff can improve the perfor-
mance of state-of-the-art offline RL algorithms. We conduct experiments on 4 different environ-
ments from D4RL (Fu et al., 2020): Maze2d, AntMaze, Locomotion, and Kitchen. For comparison,
we selected IQL (Kostrikov et al., 2022) and TD3+BC (Fujimoto & Gu, 2021) as benchmark of-
fline RL algorithms, both widely regarded as state-of-the-art baselines. Additionally, we include

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Overall results of D4RL Maze, Antmaze, and Kitchen environments. The number de-
notes the performance increase by the data augmentation method compared to the original
result. RTDiff consistently enhances the performance of offline reinforcement learning algorithms
in all these environments. In particular, RTDiff significantly improves the performance in maze and
kitchen environments.

Environment Data Type IQL (Kostrikov et al., 2022) TD3+BC (Fujimoto & Gu, 2021)
RTDiff SynthER ATraDiff RTDiff SynthER ATraDiff

maze2d
umaze 8.3±3.5 4.3±4.1 5.6±5.0 10.2±4.7 8.3±4.3 9.3±0.5

medium 3.3±2.7 0.8±3.2 2.1±5.6 9.8±2.5 6.3±2.5 7.4±3.3

large 14.3±3.3 11.4±2.8 12.4±4.8 7.7±4.5 4.8±3.6 4.3±3.7

antmaze-umaze fixed 5.2±3.3 4.9±3.7 4.4±4.0 5.7±3.5 5.4±3.8 2.5±4.6

diverse 4.3±2.7 4.3±3.1 4.7±4.9 4.2±3.1 3.9±2.8 3.5±4.4

antmaze-medium play 7.9±4.2 7.5±3.6 6.6±3.5 8.3±3.2 8.4±2.7 7.6±5.5

diverse 9.2±3.8 8.5±3.6 8.8±4.6 8.9±2.4 8.3±3.6 8.7±3.1

antmaze-large play 6.5±3.5 5.4±2.8 5.7±4.0 5.4±2.5 4.8±2.0 5.0±4.5

diverse 6.3±3.4 5.7±2.5 4.4±4.5 6.2±5.5 4.7±6.2 4.9±7.1

kitchen
complete 6.6±7.4 3.4±8.3 5.4±9.2 5.3±7.2 3.6±6.5 5.6±7.5

partial 13.6±6.3 8.3±7.2 11.3±7.9 14.2±7.8 6.4±6.8 12.3±9.1

mixed 11.3±8.5 6.2±9.1 8.4±9.4 10.3±7.5 7.2±7.7 9.3±8.6

Table 2: Overall results of D4RL Locomotion environment. The number denotes the performance
increased by the data augmentation method compared to the original result. RTDiff improves
the performance of various offline RL methods in different tasks, achieving the state of the art
performance.

Environment Data Type IQL (Kostrikov et al., 2022) TD3+BC (Fujimoto & Gu, 2021)
RTDiff SynthER ATraDiff RTDiff SynthER ATraDiff

walker2d

random 0.8±1.3 0.1±1.9 0.3±1.3 0.0±0.2 0.1±0.3 0.0±0.3

mixed 1.3±2.3 0.7±4.3 0.4±5.1 4.3±2.5 4.2±2.6 3.7±2.3

medium 1.1±4.7 0.7±3.7 0.8±3.6 3.1±2.6 2.6±2.2 1.9±2.3

medexp 0.2±0.4 0.0±0.4 0.4±0.3 0.2±0.2 0.3±0.3 0.1±0.1

hopper

random 1.2±0.2 0.5±0.3 0.6±0.5 5.3±0.4 3.6±0.5 1.5±0.8

mixed 17.2±1.7 18.4±2.4 13.5±5.9 7.4±9.5 5.4±4.9 3.6±6.3

medium 10.7±6.0 9.8±4.8 7.8±5.4 8.2±3.9 4.6±7.3 2.5±8.3

medexp 3.6±4.4 2.4±5.2 3.8±7.3 7.2±1.7 5.8±1.3 2.9±6.7

halfcheetah

random 3.5±1.2 2.1±2.1 2.7±2.3 1.6±1.5 1.8±2.0 1.2±2.8

mixed 4.2±0.5 3.3±0.4 3.8±1.7 4.2±1.2 3.7±1.7 2.4±1.9

medium 2.4±0.2 1.5±0.3 0.9±1.2 1.4±0.1 1.2±0.1 0.6±0.3

medexp 0.6±0.2 0.2±0.1 0.5±0.3 0.5±0.4 0.1±0.3 0.0±0.4

experimental results for CQL (Kumar et al., 2020) and Decision Transformer (Chen et al., 2021),
though these are omitted in the main paper due to space constraints; full results can be found in
Appendix C.1. We select several data augmentation methods as baselines, including SynthER (Lu
et al., 2023) and ATraDiff (Yang & Wang, 2024).

As illustrated by the results shown in Tables 1 and 2, our RTDiff consistently improves the per-
formance of the offline RL algorithms in a wide range of environments. Meanwhile, our method
outperforms the other data augmentation baselines including SynthER (Lu et al., 2023) and ATraD-
iff (Yang & Wang, 2024), which shows that RTDiff could generate data with the higher quality to
enhance the offline dataset.

In particular, RTDiff significantly enhances the performance of offline RL algorithms in the Maze2D
and Kitchen environments. We hypothesize two main reasons for this improvement. First, for tasks
with long horizons, RTDiff leverages diffusion models to generate extended yet reliable trajecto-
ries, which are crucial for performance gains. Second, in environments where the state space is
large relative to the states covered by the offline dataset—resulting in a sparsely populated offline
dataset—RTDiff can more effectively utilize reverse synthesis to fill in the gaps, thus providing
greater benefits.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

5.2 ABLATION STUDIES

To verify the effect of different components in our RTDiff, we conduct several ablation studies.

Is reverse synthesis important to the performance? The key contribution of our work is to syn-
thesize trajectories reversely. We argue that reverse synthesis is better than normal synthesis for
data augmentation. To show the importance of reverse synthesis, we conduct an ablation study com-
paring our method with a normal synthesis algorithm. Here the method ‘Normal’ represents the
algorithm that synthesizes trajectories in the forward order, with all other details the same with RT-
Diff. And the method ‘Short’ represents the algorithm synthesizing trajectories in the forward order,
but the generation length has been set to be 3, which we found to be the best choice in forward
synthesis. The results shown in Table 3 illustrate that reverse synthesis significantly outperforms
normal synthesis. Meanwhile, we found that if we perform normal synthesis, we cannot benefit
from long trajectory generation, as the performance of synthesizing ‘Short’ trajectories outperforms
synthesizing ‘Normal’ trajectories.

Table 3: Ablation study on reverse synthesis and normal synthesis with different generation lengths.
The results indicate that reverse synthesis significantly outperforms normal synthesis. Additionally,
increasing the generation length in normal synthesis leads to a decrease in performance.

Environment Data Type IQL (Kostrikov et al., 2022) TD3+BC (Fujimoto & Gu, 2021)
RTDiff Normal Short RTDiff Normal Short

maze2d
umaze 8.3±3.5 4.3±4.0 5.8±3.8 10.2±4.7 3.5±4.1 8.5±3.9

medium 3.3±2.7 2.4±3.2 5.9±4.1 9.8±2.5 3.4±3.0 6.1±3.6

large 14.3±3.3 3.2±3.5 7.8±4.0 7.7±4.5 2.4±3.7 8.1±4.2

kitchen
complete 6.6±7.4 1.5±7.0 3.1±7.2 5.3±7.2 0.8±6.8 2.6±6.9

partial 13.6±6.3 3.0±6.5 8.2±6.8 14.2±7.8 3.5±7.1 5.9±7.4

mixed 11.3±8.5 1.9±8.0 5.4±8.3 10.3±7.5 3.2±7.7 7.7±7.9

Effect of the generation length. The flexible generation length control is also an important com-
ponent of our method. We found that the quality of the generated data is very sensitive to the length
of the trajectories. Here we conduct an ablation study to show the performance of RTDiff with
different fixed generation lengths. From the experimental results in Table 4, we can see that the
performance of different generation lengths varies significantly and our generation length control
strategy outperforms every fixed generation length setting.

Table 4: Ablation study on the effect of generation lengths. Our method significantly outperforms
approaches using fixed generation lengths. We observed that as the generation length increases,
performance improves as well. However, if the generation length becomes too long, performance
begins to decline.

Environment Data Type CQL (Kumar et al., 2020)
RTDiff L=1 L=3 L=5 L=10

maze2d
umaze 12.3±3.5 8.3±3.0 9.4±3.2 10.4±3.4 6.4±2.8

medium 8.3±2.7 6.2±2.5 6.6±2.6 7.2±2.7 5.3±2.4

large 11.3±3.3 8.3±3.0 9.2±3.1 10.4±3.2 7.2±2.9

kitchen
complete 6.6±7.4 3.8±6.5 4.5±6.8 5.8±7.1 4.3±6.3

partial 13.6±6.3 9.4±5.5 10.3±5.8 11.4±6.0 10.5±5.3

mixed 11.3±8.5 7.4±7.5 8.5±7.8 9.3±8.0 8.4±7.2

The effect of noise control. We conduct an ablation study on the noise control component of
RTDiff. We test RTDiff with and without the noise control part, using three different quantities
of generated samples. The results, shown in Table 5, indicate that the noise control component
enhances overall performance. Notably, as the number of generated samples decreases, the perfor-
mance improvement due to noise control becomes more noticeable.

5.3 VISUAL REINFORCEMENT LEARNING

Finally, we demonstrate the applicability of RTDiff to visual reinforcement learning tasks, using
Meta-World (Yu et al., 2019) as the benchmark. We selected tasks with varying difficulty levels,

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 5: Ablation study on the effect of noise control. The noise control component indeed improves
the overall performance of RTDiff, especially when the number of generation samples is smaller.

Environment Noise Control IQL (Kostrikov et al., 2022) TD3+BC (Fujimoto & Gu, 2021)
0.5M 1M 3M 0.5M 1M 3M

maze2d-umaze Yes 4.1±1.2 6.7±2.0 8.3±3.5 7.2±2.1 10.3±3.0 10.2±4.7

No 2.3±1.0 3.1±1.8 6.3±4.1 4.8±1.5 8.6±2.8 8.3±4.3

maze2d-medium Yes 4.3±1.3 5.8±1.9 3.3±2.7 3.5±1.1 8.5±2.7 9.8±2.5

No 1.4±1.0 2.9±1.8 2.8±3.2 3.4±1.0 6.1±2.0 6.3±2.5

maze2d-large Yes 4.6±1.4 7.3±2.2 14.3±3.3 5.2±1.6 9.4±2.9 7.7±4.5

No 3.4±1.1 6.9±2.1 11.4±2.8 4.3±1.3 8.6±2.6 4.8±3.6

ranging from easy to hard. To adapt RTDiff for image-based inputs, we employed different ar-
chitectures to generate visual trajectories. Building on the general pipeline from ATraDiff (Yang
& Wang, 2024), which synthesizes pixel-based trajectories, we used Stable Diffusion to directly
generate trajectory images. Actions and rewards were then predicted from these generated images
using diffusion layers as the feature map. In addition, we modified the training images used in
ATraDiff to synthesize reverse trajectories by training in reverse order. For evaluation, we applied
offline RL algorithms, including CQL (Kumar et al., 2020), TD3+BC (Fujimoto & Gu, 2021), and
IQL (Kostrikov et al., 2022). We directly compare RTDiff with ATraDiff for the Visual RL setting.
The results, summarized in Table 6, demonstrate that RTDiff generalizes well to visual reinforce-
ment learning, consistently enhancing the performance of offline RL methods.

Table 6: Results of the offline experiments on Meta-World (Yu et al., 2019). The number denotes
the success rate of completing the task. RTDiff consistently improves the performance of various
offline reinforcement learning algorithms in different tasks and outperforms ATraDiff.

Task Name TD3+BC CQL IQL
Original RTDiff ATraDiff Original RTDiff ATraDiff Orignal RTDiff ATraDiff

Basketball 0.13 0.21 0.16 0.02 0.05 0.04 0.16 0.24 0.18
Box Close 0.03 0.07 0.04 0.00 0.01 0.00 0.08 0.12 0.09
Push Wall 0.06 0.12 0.08 0.02 0.03 0.02 0.09 0.14 0.12
Coffee Push 0.53 0.62 0.54 0.46 0.58 0.51 0.61 0.72 0.63
Sweep 0.19 0.24 0.22 0.16 0.21 0.17 0.24 0.26 0.24

6 VISUALIZATION AND ANALYSIS

To better understand why RTDiff improves the performance of offline reinforcement learning algo-
rithms and why reverse synthesis avoids issues present in normal synthesis, we conduct an analysis
using an illustrative environment. We design a task similar to Maze2D but simpler and cleaner for
better analysis. In this task, the agent starts from the bottom-left corner and aims to reach the target
in the top-left corner of the map. The agent receives a reward of 1 for approaching the goal. The left
part of the map contains a dangerous area; if the agent enters this area, the episode ends immediately,
and the agent receives a reward of −10. The offline dataset does not contain a full trajectory from
the start to the end. Instead, there is a small area in the middle of the map that is not covered by any
trajectories in the dataset.

In2Out Out2In In2In Out2Out
Reverse 2.7% 21.6% 48.0% 27.3%

Normal (w/o OOD) 11.2% 5.8% 71.8% 11.2%
Normal (w/ OOD) 18.2% 6.2% 52.1% 23.5%

Table 7: Ratios of different types of transitions generated
by reverse synthesis and normal synthesis on the Maze2D-
large environment. Normal synthesis generates much more
In2Out transitions than reverse synthesis.

We test both reverse synthesis and
normal synthesis in this environment.
As illustrated in Fig. 3, normal syn-
thesis generates trajectories that start
from the lower area and enter the
middle dangerous area. If these
hallucinated trajectories are assigned
relatively higher rewards, they can
mislead the agent into the dangerous
area, ultimately resulting in failed ex-
ecution. Conversely, reverse synthe-
sis generates trajectories that move from the dangerous area to the upper or lower areas. Although

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

(a) (b) (c)

Figure 2: Left: The visualization of the illustrative environment. Middle: The trajectory of the
offline RL agent with normal synthesis. Right: The trajectory of the offline RL agent with reverse
synthesis. Normal synthesis will lead to a trajectory going across the dangerous area, while Reverse
synthesize can help the agent to remain in the known area and reach the goal.

these trajectories are also hallucinations, they do not impact the decision-making process because
the agent will never make decisions from within the dangerous area. Consequently, the agent can
successfully navigate to the goal location.

To further analyze this phenomenon in larger environments, we evaluated the ratio of four types
of transitions: In2In, Out2Out, In2Out, and Out2In. In particular, In2Out transitions, which
move from an in-distribution state to an out-of-distribution (OOD) state, are especially risky, as they
may mislead the agent and degrade performance. In contrast, Out2In transitions, where the agent
moves back from an OOD state to an in-distribution state, are less risky. We measure these ratios
in the Maze2D-large environment for both reverse and normal synthesis methods, with and without
an OOD detector. As shown in Table 7, normal synthesis produces significantly more In2Out
transitions compared to reverse synthesis, even when an OOD detector is applied. This finding
underscores the robustness of reverse synthesis in avoiding risky transitions, ultimately improving
the performance of RL agents.

7 CONCLUSION

We introduce RTDiff, a diffusion-based offline reinforcement learning data augmentation method
that synthesizes reverse trajectories. By incorporating the diffusion models to generate trajectories,
we reversely generate long trajectories to augment the dataset. By using an out-of-distribution detec-
tor, we automatically adapt the length of the generated trajectories, improving the generation quality.
By controlling the noise of the diffusion model, we remove redundant generations and improve the
efficiency of generation. We test RTDiff in various environments and found that RTDiff consistently
improves offline reinforcement learning algorithms, especially in some long-horizon, complicated
environments.

Limitation and Future Work. Our work introduces a novel reinforcement learning data augmen-
tation method that mitigates the issue of distributional shifts. However, our method still necessitates
generating a large number of samples to achieve optimal performance, which results in extended in-
ference running time. In future work, we aim to enhance the noise control component and improve
sample efficiency, enabling us to achieve comparable results with significantly fewer samples.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REPRODUCIBILITY STATEMENT

To facilitate the reproducibility of our work, we plan to open-source the code. To provide more
details about our practical algorithm, we have included the algorithm pseudo-code in Algorithm 1.
We have also included the hyperparameters in Table 8.

ETHICS STATEMENT

This work addresses the distribution shift problem in offline reinforcement learning and introduces a
new strategy to improve decision-making processes. However, improper use of this approach could
lead to unintended negative social impacts. For instance, deploying highly efficient autonomous sys-
tems in the workforce might result in job displacement. Similarly, applying this method to robotics
research could increase the risk of developing unsafe or unpredictable robots. Additionally, since
the work involves generative models, there is a potential risk of personal data leaks or the generation
of misleading, hallucinated results. To maximize its positive impact, this method must be applied
responsibly, ensuring it supports decision-making without contributing to these potential risks.

REFERENCES

Rishabh Agarwal, Dale Schuurmans, and Mohammad Norouzi. An optimistic perspective on offline
reinforcement learning. In ICML, 2020.

Anurag Ajay, Yilun Du, Abhi Gupta, Joshua Tenenbaum, Tommi Jaakkola, and Pulkit Agrawal. Is
conditional generative modeling all you need for decision-making? In ICLR, 2023.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter
Abbeel, Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning
via sequence modeling. 2021.

Yilun Du, Mengjiao Yang, Bo Dai, Hanjun Dai, Ofir Nachum, Joshua B. Tenenbaum, Dale Schu-
urmans, and Pieter Abbeel. Learning universal policies via text-guided video generation. In
NeurIPS, 2023.

E. C. Fieller, H. O. Hartley, and E. S. Pearson. Tests for rank correlation coefficients. Biometrika,
1957.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4RL: Datasets for deep
data-driven reinforcement learning. arXiv: 2004.07219, 2020.

Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning. In
NeurIPS, 2021.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. In ICML, 2019.

Omer Gottesman, Fredrik Johansson, Matthieu Komorowski, Aldo Faisal, David Sontag, Finale
Doshi-Velez, and Leo Anthony Celi. Guidelines for reinforcement learning in healthcare. Nature
medicine, 25(1):16–18, 2019.

Abhishek Gupta, Vikash Kumar, Corey Lynch, Sergey Levine, and Karol Hausman. Relay policy
learning: Solving long-horizon tasks via imitation and reinforcement learning. In CoRL, 2019.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In ICML, 2018.

Haoran He, Chenjia Bai, Kang Xu, Zhuoran Yang, Weinan Zhang, Dong Wang, Bin Zhao, and Xue-
long Li. Diffusion model is an effective planner and data synthesizer for multi-task reinforcement
learning. In NeurIPS, 2023.

Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as one big sequence
modeling problem. In NeurIPS, 2021.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Michael Janner, Yilun Du, Joshua B. Tenenbaum, and Sergey Levine. Planning with diffusion for
flexible behavior synthesis. In ICML, 2022.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
based generative models. In NeurIPS, 2022.

Rahul Kidambi and Aravind Rajeswaran. MORel: Model-based offline reinforcement learning. In
NeurIPS, 2020.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit q-
learning. In ICLR, 2022.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. In NeurIPS, 2020.

Sascha Lange, Thomas Gabel, and Martin Riedmiller. Batch reinforcement learning. In Reinforce-
ment learning, pp. 45–73. Springer, 2012.

Michael Laskin, Kimin Lee, Adam Stooke, Lerrel Pinto, Pieter Abbeel, and Aravind Srinivas. Re-
inforcement learning with augmented data. In NeurIPS, 2020.

Byung-Jun Lee, Jongmin Lee, and Kee-Eung Kim. Representation balancing offline model-based
reinforcement learning. In ICLR, 2021.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tuto-
rial, review, and perspectives on open problems. arXiv:2005.01643, 2020.

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. In ICLR,
2016.

Yao Liu, Adith Swaminathan, Alekh Agarwal, and Emma Brunskill. Off-policy policy gradient
with stationary distribution correction. In Uncertainty in Artificial Intelligence, pp. 1180–1190.
PMLR, 2020a.

Yao Liu, Adith Swaminathan, Alekh Agarwal, and Emma Brunskill. Provably good batch reinforce-
ment learning without great exploration. arXiv:2007.08202, 2020b.

Cong Lu, Philip J. Ball, Yee Whye Teh, and Jack Parker-Holder. Synthetic experience replay. In
NeurIPS, 2023.

Frank J. Massey Jr. The kolmogorov-smirnov test for goodness of fit. Journal of the American
Statistical Association, 1951.

Tatsuya Matsushima, Hiroki Furuta, Yutaka Matsuo, Ofir Nachum, and Shixiang Gu. Deployment-
efficient reinforcement learning via model-based offline optimization. arXiv:2006.03647, 2020.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. Nature, 2015.

Yaniv Ovadia, Emily Fertig, Jie Ren, Zachary Nado, David Sculley, Sebastian Nowozin, Joshua V
Dillon, Balaji Lakshminarayanan, and Jasper Snoek. Can you trust your model’s uncertainty?
evaluating predictive uncertainty under dataset shift. arXiv:1906.02530, 2019.

Doina Precup, Richard S Sutton, and Sanjoy Dasgupta. Off-policy temporal-difference learning
with function approximation. In ICML, 2001.

Vikash Sehwag, Mung Chiang, and Prateek Mittal. SSD: A unified framework for self-supervised
outlier detection. In ICLR, 2021.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature, 529(7587):484–489, 2016.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Samarth Sinha, Ajay Mandlekar, and Animesh Garg. S4RL: surprisingly simple self-supervision for
offline reinforcement learning in robotics. In CoRL, 2021.

Jianhao Wang, Wenzhe Li, Haozhe Jiang, Guangxiang Zhu, Siyuan Li, and Chongjie Zhang. Offline
reinforcement learning with reverse model-based imagination. In NeurIPS, 2021.

Yifan Wu, George Tucker, and Ofir Nachum. Behavior regularized offline reinforcement learning.
arXiv:1911.11361, 2019.

Qianlan Yang and Yuxiong Wang. Atradiff: Accelerating online reinforcement learning with imag-
inary trajectories. In ICML, 2024.

Denis Yarats, Ilya Kostrikov, and Rob Fergus. Image augmentation is all you need: Regularizing
deep reinforcement learning from pixels. In ICLR, 2021.

Fisher Yu, Wenqi Xian, Yingying Chen, Fangchen Liu, Mike Liao, Vashisht Madhavan, and
Trevor Darrell. Bdd100k: A diverse driving video database with scalable annotation tooling.
arXiv:1805.04687, 2018.

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey
Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning.
In CoRL, 2019.

Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Zou, Sergey Levine, Chelsea Finn,
and Tengyu Ma. Mopo: Model-based offline policy optimization. arXiv:2005.13239, 2020.

Tianhe Yu, Aviral Kumar, Rafael Rafailov, Aravind Rajeswaran, Sergey Levine, and Chelsea Finn.
Combo: Conservative offline model-based policy optimization. arXiv:2102.08363, 2021.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Appendices
A ENVIRONMENTS TESTED

Following are the environments we evaluated in Sec. 5:

D4RL Maze2d (Fu et al., 2020). The maze2d task is a navigation task that requires a 2D agent
to reach a fixed goal location in the maze. This task jusitifies the ability of offline RL algorithms
to stitch previously collected subtrajectories to get the shortest path to the goal location. There are
three layouts in this task, including umaze, medium and large. The dataset of this environment is
generated by selecting waypoints randomly and using a planner which could generate subtrajectories
among the waypoints.

D4RL AntMaze (Fu et al., 2020). The Antmaze task is a navigation task that replaces the 2D ball
from Maze2D with a 8-Dof Ant quadraped robot. This task combines the challenges of controlling
the robot and navigting the robot to the goal location. There are three different layouts in this
environment, including umaze, medium, and large. The environment also contains3 three flavors of
datasets, including fixed, diverse, and play, wich differs in the chosen of the start and goal locations.

D4RL Locomotion (Fu et al., 2020). The Locomotion environment contains three different types of
tasks (walker2d, hopper, and halfcheetah), including 12 different offline data with varying levels of
expertise (random, medium, medium-replay, and medium-expert). The medium datasets are gener-
ated by a policy trained with a early-stopping SAC (Haarnoja et al., 2018). The random datasets are
generated by a random initilized policy. The medium-replay datasets consist of samples in the re-
play buffer during the training until the policy reaches the medium performance. The medium-expert
dataset contains part of the expert demonstrations and part of the suboptimal trajectories.

D4RL Kitchen (Fu et al., 2020). The Kitchen task involves a simulated environment where a
9-DoF robot manipulates various objects, such as sliding a cabinet door, switching an overhead
light, and opening a microwave. Initially introduced by (Gupta et al., 2019), this task requires the
robot to complete a sequence of multiple subtasks, each rewarded with a sparse, binary reward
upon successful completion. The offline dataset provided includes only portions of the complete
sequence, necessitating that the agent learn to assemble these sub-trajectories effectively.

Meta-World (Yu et al., 2019). Meta-World is an extensive platform created to assess and enhance
algorithms in both reinforcement learning and multi-task learning. With 50 unique robotic manip-
ulation tasks, it provides a varied and demanding setting for evaluating how well algorithms can
generalize and rapidly learn new skills.

B HYPERPARAMETERS

We list all the hyperparameters here, which are applied to all the environments. In addition, we will
release our code upon acceptance.

Hyperparameter Value
Batch Size 16

Training Steps 106

Optimizer Adam
Learning Rate 2× 10−4

Trajectory Length 10
Distance Threshold 1.5

Diffusion Steps 128
Number of Generations 5× 106

Table 8: Hyperparameter settings used in our experiments.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Table 9: Results of CQL and Decision Transformer on the D4RL Maze, Antmaze, and Kitchen en-
vironments. The numbers denote the performance increase by the data augmentation method
compared to the original result. RTDiff consistently improves the performance of offline rein-
forcement learning algorithms in all these environments.

Environment Data Type CQL (Kumar et al., 2020) DT (Chen et al., 2021)
RTDiff SynthER ATraDiff RTDiff SynthER ATraDiff

maze2d
umaze 12.3±3.5 6.3±4.1 7.1±4.0 17.2±4.7 8.3±4.3 9.0±4.1

medium 8.3±2.7 5.8±3.2 6.2±3.1 9.8±2.5 6.3±2.5 5.9±2.6

large 11.3±3.3 7.4±2.8 7.8±2.9 12.7±4.5 7.8±3.6 7.5±3.7

antmaze-umaze fixed 5.2±3.3 4.9±3.7 4.8±3.6 5.7±3.5 5.4±3.8 5.5±3.7

diverse 4.3±2.7 4.3±3.1 4.3±3.0 4.2±3.1 3.9±2.8 4.0±2.9

antmaze-medium play 7.9±4.2 7.5±3.6 7.4±3.5 8.3±3.2 8.4±2.7 8.2±2.8

diverse 9.2±3.8 8.5±3.6 8.8±3.7 8.9±2.4 8.3±3.6 8.5±3.4

antmaze-large play 6.5±3.5 5.4±2.8 5.6±3.0 5.4±2.5 4.8±2.0 4.6±2.1

diverse 6.3±3.4 5.7±2.5 5.9±2.7 5.8±5.5 4.7±6.2 5.0±6.0

kitchen
complete 6.6±7.4 3.4±8.3 4.0±8.0 5.3±7.2 3.6±6.5 4.2±6.7

partial 13.6±6.3 8.3±7.2 9.0±7.0 14.2±7.8 6.4±6.8 7.0±6.9

mixed 11.3±8.5 6.2±9.1 6.0±9.0 10.3±7.5 7.2±7.7 7.5±7.6

Table 10: Results of CQL and DT on the D4RL Locomotion environment. The numbers denote
the performance increase by the data augmentation method compared to the original result.
RTDiff improves the performance of these reinforcement learning methods in different tasks.

Environment Data Type CQL (Kumar et al., 2020) DT (Chen et al., 2021)
RTDiff SynthER ATraDiff RTDiff SynthER ATraDiff

walker2d
mixed 5.2±2.3 4.9±4.3 5.1±3.8 2.2±1.3 2.4±2.4 2.2±2.0

medium 2.6±4.7 2.3±3.7 2.5±4.1 2.3±2.1 2.1±2.8 2.2±2.5

medexp 0.1±0.4 0.0±0.4 0.1±0.4 0.6±0.8 0.4±0.7 0.5±0.7

hopper
mixed 16.4±1.7 18.4±2.4 17.6±2.1 11.2±5.3 13.6±4.7 13.2±4.5

medium 6.3±6.0 5.8±4.8 6.1±5.4 4.3±1.5 3.5±2.3 4.0±2.0

medexp 5.3±4.4 3.6±5.2 4.9±4.8 1.6±1.2 1.3±2.2 1.5±1.9

halfcheetah
mixed 2.4±0.8 1.9±0.5 2.3±0.6 2.4±0.8 1.9±0.5 2.3±0.6

medium 0.9±0.3 0.6±0.4 0.8±0.4 0.9±0.3 0.6±0.4 0.8±0.4

medexp 1.3±0.8 0.0±0.6 1.0±0.7 1.3±0.8 0.0±0.6 1.0±0.7

C ADDITIONAL EXPERIMENTAL RESULTS

In this section, we show more experimental results to support the conclusion of our paper.

C.1 RESULTS WITH DIFFERENT BASIC RL ALGORITHMS

To illustrate that our RTDiff indeed improves the performance of general offline RL methods, here
we include more experiments involving Decision Transformer (Chen et al., 2021) and CQL (Kumar
et al., 2020), which are representative sequence modeling baseline and model-free baseline. The
results shown in Tables 9 and 10 illustrate that our method consistently improves the performance
of different offline RL methods.

C.2 ORIGINAL PERFORMANCE REPORT

The performance increase reported in Section 5.1 is measured by the difference between the normal-
ized score with data augmentation and the original normalized score without any data augmentation
methods. The original results are shown in Table 11.

C.3 MORE ABLATION STUDIES

Threshold of the OOD detector. We select the value of this threshold with the following method,
using D4RL Locomotion environment as the representative environment: We use grid search to

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table 11: Original normalized return of the methods we used in our paper on the D4RL Locomotion
environment.

Environment Data Type CQL TD3+BC DT IQL

walker2d
mixed 73.1± 13.2 85.6± 4.0 81.8± 6.9 82.2± 3.0

medium 80.8± 3.3 82.7± 4.8 65.1± 1.6 80.9± 3.2
medexp 109.6± 0.4 110.0± 0.4 110.4± 0.3 111.7± 0.9

hopper
mixed 95.1± 5.3 64.4± 21.5 59.9± 2.7 97.4± 6.4

medium 59.1± 3.8 60.4± 3.5 67.6± 2.5 67.5± 3.8
medexp 95.1± 5.3 101.2± 9.1 107.1± 1.0 107.4± 7.8

halfcheetah
mixed 45.0± 0.3 44.8± 0.6 38.9± 0.5 44.5± 0.2

medium 47.0± 0.2 48.1± 0.2 42.2± 0.3 48.3± 0.2
medexp 95.6± 0.4 90.8± 6.0 91.6± 1.0 94.7± 0.5

find the best choice of the hyperparameter, and then do a cross-validation of the representative
environment to ensure its robustness. After selecting the threshold, we directly apply this threshold
to all the environments we used, without any further tuning. To demonstrate the robustness of our
threshold, we conduct a further ablation study on the environment maze2d. The results shown in
Table 12 illustrate that this threshold disM = 1.5 is reasonable across different environments.

Table 12: Performance of maze2d environments under different thresholds. disM = 1.5 achieves
the overall best performance compared with other threshold choices.

Threshold 1.0 1.3 1.5 2.0
maze2d-umaze 7.2 12.5 12.3 4.1

maze2d-medium 5.7 7.9 8.3 2.8
maze2d-large 7.1 9.6 11.3 3.7

C.4 RESULTS OF OTHER BASELINES WITH OOD DETECTOR AND NOISE CONTROL

To verify the effectiveness of different components in RTDiff, we incorporate them with other base-
lines to show the results.

Specifically, in our method, the OOD detector is used to control the length of the generated trajec-
tories. This is crucial because we aim to generate trajectories that extend beyond the offline data
distribution to provide new information to the agent, while ensuring they do not deviate too far,
which could reduce their usefulness and increase risk. The effectiveness of our OOD detector is
demonstrated in Tables 4 and 12. Our results show that the OOD detector outperforms any fixed-
length generation strategy. Additionally, we observed that setting the threshold too high or too low
negatively impacts performance.

To better understand why reverse synthesis is useful, we want to further show that this OOD detec-
tor is not useful for other synthesis methods. First of all, SynthER only performs transition-level
synthesis, which inherently does not need to control the generation length. Also we want to em-
phasize that with forward synthesis like ATraDiff, generating trajectories going out of the offline
data distribution is more risky, as transitions going from inside to outside may lead to performance
degradation. To validate this, we show the results of combining ATraDiff with an OOD detector
of different thresholds. From the results shown in Table 13, we found that those forward synthesis
methods derive limited benefits from the OOD detector, which validated the unique effectiveness of
reverse synthesis in our framework.

Our proposed noise control is largely independent of the specific generation method and can be
applied to any data augmentation approach using a diffusion-based framework. It demonstrates par-
ticularly effective when the number of examples is limited. Notably, this technique is also applicable
to SynthER and ATraDiff, as demonstrated by the results shown in Table 14. We use SynthER and
ATraDiff to generate both 1M data with and without the random generation.The results in Table 14
illustrate that the noise control can consistently improve the performance.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 13: Performance of ATraDiff with the OOD detector across different thresholds in the Maze2D
environments. Forward synthesis cannot benefit from the OOD detector.

Method RTDiff ATraDiff disM = 1.0 disM = 1.3 disM = 1.5 disM = 2.0
maze2d-umaze 12.3 7.1 7.4 7.0 6.3 6.0

maze2d-medium 8.3 6.2 6.6 6.3 5.6 5.4
maze2d-large 11.3 7.8 7.7 7.8 7.4 7.1

Table 14: Performance of different baselines with and without noise control in the Maze2D envi-
ronments. The number of generated samples is 1M. The noise control technique can consistently
improve the performance of different data augmentation methods.

SynthER w/
Noise control

SynthER w/o
Noise control

ATraDiff w/
Noise control

ATraDiff w/o
Noise control

maze2d-umaze 2.3 1.7 3.1 2.8
maze2d-medium 0.6 0.3 1.6 1.2
maze2d-large 7.3 6.3 8.1 5.2

Table 15: Overall results of D4RL Maze2D environments. The number denotes the performance
increase by the data augmentation method compared to the original result.

Environment Data Type IQL (Kostrikov et al., 2022) TD3+BC (Fujimoto & Gu, 2021)
RTDiff MOPO ROMI RTDiff MOPO ROMI

maze2d
umaze 8.3±3.5 5.1±2.8 5.4±2.4 10.2±4.7 9.6±4.0 9.6±3.3

medium 3.3±2.7 1.7±1.9 2.1±1.8 9.8±2.5 8.8±2.0 9.4±1.7

large 14.3±3.3 5.9±2.5 8.1±2.2 7.7±4.5 2.6±3.8 3.5±3.1

C.5 ADDITION BASELINE RESULTS

In this section, we include more results of baselines including model-based RL methods MOPO (Yu
et al., 2020) and model-based reverse imagination method ROMI (Wang et al., 2021). The results
shown in Table 15 illustrate that RTDiff still outperforms those model-based baselines.

C.6 QUANTITATIVE EVALUATION OF THE GENERATED SAMPLES

In this section, we conduct a quantitative evaluation of the generated samples of RTDiff. To
measure the fidelity of the generated samples, we follow the previous works using two statistics:
Marginal: Mean Kolmogorov-Smirnov (Massey Jr., 1951) and Correlation: Mean Correlation Sim-
ilarity (Fieller et al., 1957). To measure the model error of the generated samples, we calculate the
normalized error of the synthesized states and the real states after transition, which is (T (s, a)−s′)2

for a transition (s, a, s′). The results are presented in Tables 16 and 17.

As expected, the results show that RTDiff does not aim to generate more realistic trajectories, but
rather to produce more diverse samples that lie outside the distribution, thereby benefiting the RL
performance. This is because RTDiff generates adaptive, longer trajectories compared with other
baselines, attributed to our proposed OOD detector and reverse synthesis model.

Therefore, while fidelity is an important factor in assessing data generation in general, our focus
in this paper is more on the “usefulness” of the generated data, specifically how it improves RL
performance.

C.7 COMPARISON WITH VANILLA DIFFUSION MODEL

To clarify that vanilla diffusion models alone cannot match the performance of our RTDiff, we
conducted an additional ablation study. This study involved using diffusion models to generate re-
verse trajectories without incorporating the other components of our method. The results, presented
in Table 18, show that naı̈ve diffusion models significantly underperform compared to our RTDiff.
Furthermore, when comparing the performance of vanilla diffusion models with ROMI, the improve-

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 16: Performance comparison across different datasets for RTDiff, SynthER, and ATraDiff in
terms of Marginal and Correlation metrics.

Dataset RTDiff SynthER ATraDiff
Marginal ↑ Correlation ↑ Marginal ↑ Correlation ↑ Marginal ↑ Correlation ↑

hopper-medium 0.932 0.983 0.985 0.998 0.967 0.994
hopper-medexp 0.953 0.989 0.958 0.992 0.963 0.994
hopper-expert 0.941 0.985 0.934 0.982 0.953 0.991

Table 17: Model errors for RTDiff, SynthER, and ATraDiff across different Maze2D environments.

RTDiff SynthER ATraDiff

maze2d-umaze 0.05 0.02 0.03
maze2d-medium 0.06 0.03 0.03
maze2d-large 0.11 0.07 0.08

Table 18: Overall results of D4RL Maze2D environments with vanilla diffusion models. The num-
ber denotes the performance increase by the data augmentation method compared to the orig-
inal result.

Environment Data Type IQL (Kostrikov et al., 2022) TD3+BC (Fujimoto & Gu, 2021)
RTDiff DM(vanilla) ROMI RTDiff DM(vanilla) ROMI

maze2d
umaze 8.3±3.5 4.3±2.6 5.4±2.4 10.2±4.7 9.3±4.4 9.6±3.3

medium 3.3±2.7 2.3±1.6 2.1±1.8 9.8±2.5 8.9±1.4 9.4±1.7

large 14.3±3.3 9.0±3.1 8.1±2.2 7.7±4.5 4.3±2.6 3.5±3.1

ments, if any, are inconsistent and relatively minor. Therefore, the results validate our contribution,
demonstrating that it extends beyond the straightforward application of diffusion models.

D ADDITIONAL VISUALIZATIONS

In this section, we show some additional visualization results in the D4RL (Fu et al., 2020) Maze2D-
umaze environment. We collect offline data consisting of trajectories going from green ball to red
ball and use it to train the data synthesizer. The normal synthesis will generate trajectories entering
the obstacle area, while reverse synthesis can avoid this problem.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

(a)

(b)

(c)

Figure 3: Top: The trajectory in the offline dataset. Middle: The trajectory of the offline RL agent
with normal synthesis. Bottom: The trajectory of the offline RL agent with reverse synthesis.

19

	Introduction
	Related work
	Background
	Method
	Trajectory Generator
	Generation Length Control
	Improving generation efficiency

	Experiments
	Main results
	Ablation Studies
	Visual Reinforcement Learning

	Visualization and Analysis
	Conclusion
	Environments Tested
	Hyperparameters
	Additional experimental results
	Results with different basic RL algorithms
	Original performance report
	More ablation studies
	Results of other baselines with OOD detector and noise control
	Addition baseline results
	Quantitative evaluation of the generated samples
	Comparison with vanilla diffusion model

	Additional Visualizations

