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Abstract

Video prediction has witnessed the emergence of RNN-based models led by ConvLSTM,
and CNN-based models led by SimVP. Following the significant success of ViT, recent works
have integrated ViT into both RNN and CNN frameworks, achieving improved performance.
While we appreciate these prior approaches, we raise a fundamental question: Is there a sim-
pler yet more effective solution that can eliminate the high computational cost of RNNs while
addressing the limited receptive fields and poor generalization of CNNs? How far can it go
with a simple pure transformer model for video prediction? In this paper, we propose Pred-
Former, a framework entirely based on Gated Transformers. We provide a comprehensive
analysis of 3D Attention in the context of video prediction. Extensive experiments demon-
strate that PredFormer delivers state-of-the-art performance across four standard bench-
marks. The significant improvements in both accuracy and efficiency highlight the potential
of PredFormer as a strong baseline for real-world video prediction applications. The source
code and trained models are released at https://github.com/yyyujintang/PredFormer.

1 Introduction

Video Prediction (Wang et al., 2018c; Chang et al., 2021; Gao et al., 2022a), also named as Spatio-Temporal
predictive learning (Wang et al., 2017; 2018b; Tan et al., 2023a;b) involves learning spatial and temporal
patterns by predicting future frames based on past observations. This capability is essential for various
applications, including weather forecasting (Rasp et al., 2020; Pathak et al., 2022; Bi et al., 2023), traffic
flow prediction (Fang et al., 2019; Wang et al., 2019), precipitation nowcasting (Shi et al., 2015; Gao et al.,
2022b) and human motion forecasting (Zhang et al., 2017b; Wang et al., 2018a).

Despite the success of various video prediction methods, they often struggle to balance computational cost
and performance. On the one hand, high-powered recurrent-based methods (Shi et al., 2015; Wang et al.,
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Figure 1: Main categories of video prediction framework. (a) Recurrent-based Framework (b) CNN Encoder-
Decoder-based Recurrent-free Framework. (c) Pure transformer-based Recurrent-free Framework.

2017; 2019; Chang et al., 2021; Yu et al., 2019; Tang et al., 2023; 2024) rely heavily on autoregressive RNN
frameworks, which face significant limitations in parallelization and computational efficiency. On the other
hand, efficient recurrent-free methods (Gao et al., 2022a; Tan et al., 2023a), such as those based on the
SimVP framework, use CNNs in an encoder-decoder architecture but are constrained by local receptive
fields, limiting their scalability and generalization. The ensuing question is Can we develop a framework that
autonomously learns spatiotemporal dependencies without relying on inductive bias?

An intuitive solution directly adopts a pure transformer (Vaswani et al., 2017) structure, as it is an efficient
alternative to RNNs and has better scalability than CNNs. Transformers have demonstrated remarkable
success in visual tasks (Dosovitskiy et al., 2020; Liu et al., 2021; Bertasius et al., 2021; Arnab et al., 2021;
Tarasiou et al., 2023). Previous video prediction methods try to combine Swin Transformer (Liu et al.,
2021) in recurrent-based frameworks such as SwinLSTM (Tang et al., 2023) and integrate MetaFormer (Yu
et al., 2022) as a temporal translator in recurrent-free CNN-based encoder-decoder frameworks such as Open-
STL (Tan et al., 2023b). Despite these advances, pure transformer-based architecture remains underexplored
mainly due to the challenges of capturing spatial and temporal relationships within a unified framework.
While merging spatial and temporal dimensions and applying full attention is conceptually straightforward,
it is computationally expensive because of the quadratic scaling of attention with sequence length. Several
recent methods (Bertasius et al., 2021; Arnab et al., 2021; Tarasiou et al., 2023) decouple full attention and
show that spatial and temporal relations can be treated separately in a factorized or interleaved manner to
reduce complexity.

In this work, we propose PredFormer, a pure transformer-based architecture for video prediction. PredFormer
dives into the decomposition of spatial and temporal transformers, integrating self-attention with gated linear
units (Dauphin et al., 2017) to more effectively capture complex spatiotemporal dynamics. In addition to
retaining spatial-temporal full attention encoder and factorized encoder strategies for both spatial-first and
temporal-first configurations, we introduce six novel interleaved spatiotemporal transformer architectures,
resulting in nine configurations. We explore how far this simple framework can go with different strategies of
3D Attention. This comprehensive investigation pushes the boundaries of current models and sets valuable
benchmarks for spatial-temporal modeling.

Notably, PredFormer achieves state-of-the-art performance across four benchmark data sets, including syn-
thetic prediction of moving objects, real-world human motion prediction, traffic flow prediction and weather
forecasting, outperforming previous methods by a substantial margin without relying on complex model
architectures or specialized loss functions.
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The main contributions can be summarized as follows:

• We propose PredFormer, a pure gated transformer-based framework for video prediction. By elim-
inating the inductive biases inherent in CNNs, PredFormer harnesses the scalability and general-
ization capabilities of the transformers, achieving significantly enhanced performance ceilings with
efficiency.

• We perform an in-depth analysis of spatial-temporal transformer factorization, exploring full-
attention encoders and factorized encoders along with interleaved spatiotemporal transformer ar-
chitectures, resulting in nine PredFormer variants. These variants address the differing spatial and
temporal resolutions across tasks and datasets for optimal performance.

• We conduct a comprehensive study on training ViT from scratch on small datasets, exploring regu-
larization and position encoding techniques.

• Extensive experiments demonstrate the state-of-the-art performance of PredFormer. It outperforms
SimVP by 48% while achieving 1.5× faster inference speed on Moving MNIST. Besides, PredFormer
surpasses SimVP with 8×, 5×, and 3× inference speed on TaxiBJ, WeatherBench, and Human3.6m,
while achieving higher accuracy.

2 Related Work

Recurrent-based video prediction. Recent advancements in recurrent-based video prediction models
have integrated CNNs, ViTs, and Vision Mamba (Liu et al., 2024) into RNNs, employing various strategies
to capture spatiotemporal relationships. ConvLSTM (Shi et al., 2015), evolving from FC-LSTM (Srivastava
et al., 2015), innovatively integrates convolutional operations into the LSTM framework. PredNet (Lotter
et al., 2017) leverages deep recurrent convolutional neural networks with bottom-up and top-down connec-
tions to predict future video frames. PredRNN (Wang et al., 2017) introduces the Spatiotemporal LSTM
(ST-LSTM) unit, which effectively captures and memorizes spatial and temporal representations by propa-
gating hidden states horizontally and vertically. PredRNN++ (Wang et al., 2018b) incorporates a gradient
highway unit and Causal LSTM to address the vanishing gradient problem and adaptively capture temporal
dependencies. E3D-LSTM (Wang et al., 2018c) extends the memory capabilities of ST-LSTM by integrating
3D convolutions. The MIM model (Wang et al., 2019) further refines the ST-LSTM by reimagining the forget
gate with dual recurrent units and utilizing differential information between hidden states. CrevNet (Yu
et al., 2019) employs a CNN-based reversible architecture to decode complex spatiotemporal patterns. Pre-
dRNNv2 (Wang et al., 2022) enhances PredRNN by introducing a memory decoupling loss and a curriculum
learning strategy. MAU (Chang et al., 2021) adds a motion-aware unit to capture dynamic motion infor-
mation. SwinLSTM (Tang et al., 2023) integrates the Swin Transformer (Liu et al., 2021) module into the
LSTM architecture, while VMRNN (Tang et al., 2024) extends this by incorporating the Vision Mamba
module. Unlike these approaches, PredFormer is a recurrent-free method that offers superior efficiency.

Recurrent-free video prediction. Recent recurrent-free models, e.g., SimVP (Gao et al., 2022a), are
developed based on a CNN-based encoder-decoder with a temporal translator. TAU (Tan et al., 2023a)
builds upon this by separating temporal attention into static intra-frame and dynamic inter-frame compo-
nents, introducing a differential divergence loss to supervise inter-frame variations. OpenSTL (Tan et al.,
2023b) integrates a MetaFormer model as the temporal translator. Additionally, PhyDNet (Guen & Thome,
2020) incorporates physical principles into CNN architectures, while DMVFN (Hu et al., 2023) introduces a
dynamic multi-scale voxel flow network to enhance video prediction performance. EarthFormer (Gao et al.,
2022b) presents a 2D CNN encoder-decoder architecture with cuboid attention.WAST (Nie et al., 2024)
proposes a wavelet-based method, coupled with a wavelet-domain High-Frequency Focal Loss. In contrast
to prior methods, PredFormer advances video prediction with its recurrent-free, pure transformer-based ar-
chitecture, leveraging a global receptive field to achieve superior performance, outperforming prior models
without relying on complex architecture designs or specialized loss.

Recurrent-based approaches struggle with parallelization and performance, while CNN-based recurrent-free
methods often sacrifice scalability and generalization despite their strong inductive biases. In contrast
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Figure 2: Overview of the PredFormer framework.

to prior methods, PredFormer advances video prediction with its recurrent-free, pure transformer-based
architecture, leveraging a global receptive field to achieve superior performance, outperforming prior models
without relying on complex model designs or specialized loss designs.

Vision Transformer (ViT). ViT (Dosovitskiy et al., 2020) has demonstrated exceptional performance on
various vision tasks. In video processing, TimeSformer (Bertasius et al., 2021) investigates the factorization of
spatial and temporal self-attention and proposes that divided attention where temporal and spatial attention
are applied separately yields the best accuracy. ViViT (Arnab et al., 2021) explores factorized encoders, self-
attention, and dot product mechanisms, concluding that a factorized encoder with spatial attention applied
first performs better. On the other hand, TSViT (Tarasiou et al., 2023) finds that a factorized encoder
prioritizing temporal attention achieves superior results. Latte (Ma et al., 2024) investigates factorized
encoders and factorized self-attention mechanisms, incorporating both spatial-first and spatial-temporal
parallel designs, within the context of latent diffusion transformers for video generation. Despite these
advancements, most existing models focus primarily on video classification, with limited research on applying
ViTs to spatio-temporal predictive learning. Moving beyond earlier methods that focus on factorizing self-
attention, PredFormer explores the decomposition of spatial and temporal transformers at a deeper level by
integrating self-attention with gated linear units and introducing innovative interleaved designs, allowing for
a more robust capture of complex spatiotemporal dynamics.

3 Method

To systematically analyze the transformer structure of the network model in spatial-temporal predictive
learning, we propose the PredFormer as a general model design, as shown in Fig 2. In the following sections,
we introduce the pure transformer-based architecture in Sec 3.1. Next, we describe the Gated Transformer
Block (GTB) in Sec 3.2. Finally, we present how to use GTB to build a PredFormer layer and architecture
variants in Sec 3.3.

3.1 Pure Transformer Based Architecture

Patch Embedding. Follow the ViT design, PredFormer splits a sequence of frames X into a sequence of
N =

⌊
H
p

⌋ ⌊
W
p

⌋
equally sized, non-overlapping patches of size p, each of which is flattened into a 1D tokens.
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Encoders with Binary, Triplet, and Quadrupled design

These tokens are then linearly projected into hidden dimensions D and processed by a layer normalization
(LN) layer, resulting in a tensor X ′ ∈ RB×T ×N×D.

Position Encoding. Unlike typical ViT approach, which employs learnable position embeddings, we incor-
porate a spatiotemporal position encoding (PE) generated by sinusoidal functions with absolute coordinates
for each patch.

PredFormer Encoder. The 1D tokens are then processed by a PredFormer Encoder for feature extraction.
PredFormer Encoder is stacked by Gated Transformer Blocks in various manners.

Patch Recovery. Since our encoder is based on a pure gated transformer, without convolution or resolution
reduction, global context is modeled at every layer. This allows it to be paired with a simple decoder, forming
a powerful prediction model. After the encoder, a linear layer serves as the decoder, projecting the hidden
dimensions back to recover the 1D tokens to 2D patches.

3.2 Gated Transformer Block

The Standard Transformer model (Vaswani et al., 2017) alternates between Multi-Head Attention (MSA)
and Feed-Forward Networks (FFN). The attention mechanism for each head is defined as:

Attention(Q, K, V) = Softmax
(

QK⊤
√

dk

)
V, (1)

where in self-attention, the queries Q, keys K, and values V are linear projections of the input X, represented
as Q = XWq, K = XWk, and V = XWv, with X, Q, K, V ∈ RN×d. The FFN then processes each position
in the sequence by applying two linear transformations.

Gated Linear Units (GLUs) (Dauphin et al., 2017), often used in place of simple linear transformations,
involve the element-wise product of two linear projections, with one projection passing through a sigmoid
function. Various GLU variants control the flow of information by substituting the sigmoid with other
non-linear functions. For instance, SwiGLU (Shazeer, 2020) replaces the sigmoid with the Swish activation
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Table 1: Benchmark datasets used in our experiments. “Interval” denotes the temporal gap between two
consecutive frames in the sequence (e.g., frame-level sampling, 30 minutes, or 1 hour).

Dataset Training size Testing size Channel Height Width Input T Output T ′ Interval

Moving MNIST 10,000 10,000 1 64 64 10 10 -
Human3.6m 73,404 8,582 3 256 256 4 4 frame
WeatherBench-S 52,559 17,495 1 32 64 12 12 30 min
TaxiBJ 20,461 500 2 32 32 4 4 1 hour

function (SiLU) (Hendrycks & Gimpel, 2016), as shown in Eq 2.

Swishβ(x) = xσ(βx)
SwiGLU(x, W, V, b, c, β) = Swishβ(xW + b) ⊗ (xV + c) (2)

SwiGLU has been demonstrated to outperform Multi-layer Perceptrons (MLPs) in various natural language
processing tasks(Shazeer, 2020). Inspired by the SwiGLU’s success in these tasks, our Gated Transformer
Block (GTB), incorporates MSA followed by a SwiGLU-based FFN, as illustrated in Fig 3(a). GTB is
defined as:

Yl = MSA(LN(Zl)) + Zl

Zl+1 = SwiGLU(LN(Yl)) + Yl (3)

3.3 Variants of PredFormer

Modeling spatiotemporal dependencies in video prediction is challenging, as the balance between spatial
and temporal information differs significantly across tasks and datasets. Developing flexible and adaptive
models that can accommodate varying dependencies and scales is thus critical. To address these, we explore
both full-attention encoders and factorized encoders with spatial-first (Fac-S-T) and temporal-first (Fac-T-S)
configurations, as shown in Fig 3(b). In addition, we introduce six interleaved models based on PredFormer
layer, enabling dynamic interaction across multiple scales.

A PredFormer layer is a module capable of simultaneously processing spatial and temporal information.
Building on this design principle, we propose three interleaved spatiotemporal paradigms, Binary, Triplet,
and Quadruplet, which sequentially model the spatial and temporal views. Ultimately, they yield six distinct
architectural configurations. A detailed illustration of these nine variants is provided in Fig 3.

For full attention layers, given input X ∈ RB×T ×N×D, attention is computed over the sequence of length
T × N . As illustrated in Fig 3 (b.1), we merge and flatten the spatial and temporal tokens to compute
attention through several stacked GTBst.

For Binary layers, each GTB block processes temporal or spatial sequence independently, which we denote as
a binary-TS or binary-ST layer. The input is first reshaped, and processed through GTB1

t , where attention
is applied over the temporal sequence. The tensor is then reshaped back to restore the temporal order.
Subsequently, spatial attention is applied using another GTB2

s, where the tensor is flattened along the
temporal dimension and processed.

For Triplet and Quadruplet layers, additional blocks are stacked on top of the Binary structure. The
Quadruplet layer combines two Binary layers in different orders.

4 Experiments

We present extensive evaluations of PredFormer and state-of-the-art methods. We conduct experiments
across synthetic and real-world scenarios, including long-term prediction(moving object trajectory prediction
and weather forecasting), and short-term prediction(traffic flow prediction and human motion prediction).
The statistics of the data set are presented in the tab 1. These datasets have different spatial resolutions,
temporal frames, and intervals, which determine their different spatiotemporal dependencies.
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Table 2: Quantitative comparison on Moving MNIST. Each model observes 10 frames and predicts the
subsequent 10 frames. We highlight the best experimental results in bold red and the second-best in blue.

Method Paras(M) Flops(G) FPS Memory (MB) MSE ↓ MAE ↓ SSIM ↑

ConvLSTM 15.0 56.8 113 68.8 103.3 182.9 0.707
PredRNN 23.8 116.0 54 107.6 56.8 126.1 0.867
PredRNN++ 38.6 171.7 38 164.1 46.5 106.8 0.898
MIM 38.0 179.2 37 160.6 44.2 101.1 0.910
E3D-LSTM 51.0 298.9 18 270.1 41.3 86.4 0.910
PhyDNet 3.1 15.3 182 149.5 24.4 70.3 0.947
MAU 4.5 17.8 201 35.4 27.6 86.5 0.937
PredRNNv2 24.6 708.0 24 109.0 48.4 129.8 0.891
SwinLSTM 20.2 69.9 62 96.4 17.7 - 0.962

SimVP 58.0 19.4 209 284.7 23.8 68.9 0.948
TAU 44.7 16.0 283 322.9 19.8 60.3 0.957
OpenSTL_ViT 46.1 16.9 290 331.8 19.0 60.8 0.955
OpenSTL_Swin 46.1 16.9 290 331.9 18.3 59.0 0.960

PredFormer
Full Attention 25.3 21.2 254 135.9 17.3 56.0 0.962
Fac-S-T 25.3 16.5 368 117.4 20.6 63.5 0.955
Fac-T-S 25.3 16.5 370 117.4 16.9 55.8 0.963
Binary-TS 25.3 16.5 301 117.4 12.8 46.1 0.972
Binary-ST 25.3 16.5 316 117.4 13.4 47.1 0.971
Triplet-TST 25.3 16.4 312 118.0 13.4 47.2 0.971
Triplet-STS 25.3 16.5 321 118.0 13.1 46.7 0.972
Quadruplet-TSST 25.3 16.5 302 118.0 12.4 44.6 0.973
Quadruplet-STTS 25.3 16.4 322 118.0 12.4 44.9 0.973

Implementation Details Our method is implemented in PyTorch. The experiments were conducted on a
single 24GB NVIDIA RTX 3090. PredFormer is optimized using the AdamW (Loshchilov & Hutter, 2019)
optimizer with an L2 loss, a weight decay of 1e-2, and a learning rate selected from {5e-4, 1e-3} for best
performance. OneCycle scheduler is used for Moving MNIST and TaxiBJ, while the Cosine scheduler is
applied for Human3.6m and WeatherBench. Dropout (Hinton, 2012) and stochastic depth (Huang et al.,
2016) regularization prevent overfitting. Further hyperparameter details are provided in the Appendix.
For different PredFormer variants, we maintain a constant number of GTB blocks to ensure comparable
parameters. In cases where the Triplet model cannot be evenly divided, we use the number of GTB blocks
closest to the others.

Evaluation Metrics We assess model performance using a suite of metrics. (1) Pixel-wise error is
measured using Mean Squared Error (MSE), Mean Absolute Error (MAE), and Root Mean Squared Error
(RMSE). (2) Predicted frame quality is evaluated using the structural similarity index measure (SSIM)
metric (Wang et al., 2004). Lower MSE, MAE, and RMSE values, combined with higher SSIM, signify
better predictions. (3) Computational efficiency is assessed by the number of parameters, floating-point
operations (FLOPs), and inference speed in frames per second (FPS) on a NVIDIA A6000 GPU. This
evaluation framework comprehensively evaluates accuracy and efficiency.

4.1 Synthetic Moving Object Prediction

Moving MNIST. The moving MNIST dataset (Srivastava et al., 2015) serves as a benchmark synthetic
dataset for evaluating sequence reconstruction models. We follow (Srivastava et al., 2015) to generate Moving
MNIST sequences with 20 frames, using the initial 10 frames for input and the subsequent 10 frames as the
prediction target. We adopt 10000 sequences for training, and for fair comparisons, we use the pre-generated
10000 sequences (Gao et al., 2022a) for validation.

On the Moving MNIST dataset, following prior work (Gao et al., 2022a; Tan et al., 2023a), we train our
models for 2000 epochs and report our results in Tab 2. We train OpenSTL methods with ViT and Swin
Transformer as temporal translators for 2000 epochs as recurrent-free baselines. We cite other results from
each original paper for a fair comparison.

Compared to SimVP, PredFormer achieves substantial performance gains while maintaining a lightweight
structure. Specifically, it reduces MSE by 48% (from 23.8 to 12.4), significantly improving prediction accu-
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Table 3: Quantitative comparison on Human3.6m. Each model observes 4 frames and predicts the subse-
quent 4 frames.

Method Paras(M) Flops(G) FPS Memory(MB) MSE ↓ MAE ↓ SSIM ↑ PSNR ↑ LPIPS ↓

ConvLSTM 15.5 347.0 52 142.7 125.5 1566.7 0.9813 33.40 0.03557
PredNet 12.5 13.7 176 120.8 261.9 1625.3 0.9786 31.76 0.03264
PredRNN 24.6 704.0 25 327.2 113.2 1458.3 0.9831 33.94 0.03245
PredRNN++ 39.3 1033.0 18 402.3 110.0 1452.2 0.9832 34.02 0.03196
MIM 47.6 1051.0 17 434.8 112.1 1467.1 0.9829 33.97 0.03338
E3D-LSTM 60.9 542.0 7 548.9 143.3 1442.5 0.9803 32.52 0.04133
PhyDNet 4.2 19.1 57 67.9 125.7 1614.7 0.9804 33.05 0.03709
MAU 20.2 105.0 6 371.2 127.3 1577.0 0.9812 33.33 0.03561
PredRNNv2 24.6 708.0 24 350.5 114.9 1484.7 0.9827 33.84 0.03334

SimVP 41.2 197.0 26 556.4 115.8 1511.5 0.9822 33.73 0.03467
TAU 37.6 182.0 26 551.8 113.3 1390.7 0.9839 34.03 0.02783
OpenSTL_ViT 11.0 142.2 35 1170.0 136.3 1603.5 0.9796 33.10 0.03729
OpenSTL_Swin 38.8 188.0 28 562.3 133.2 1599.7 0.9799 33.16 0.03766

PredFormer
Full Attention 12.7 155.0 16 1120.7 113.9 1412.4 0.9833 33.98 0.03279
Fac-S-T 12.7 65.0 76 352.7 153.4 1630.7 0.9784 32.30 0.04676
Fac-T-S 12.7 65.0 75 356.7 118.4 1504.7 0.9820 33.67 0.03284
Binary-TS 12.7 65.0 75 352.7 111.2 1380.4 0.9838 34.13 0.03008
Binary-ST 12.7 65.0 78 348.7 112.7 1386.3 0.9836 34.07 0.03017
Triplet-TST* 12.7 60.8 88 352.7 112.4 1406.2 0.9834 34.05 0.02748
Triplet-STS* 12.7 69.3 64 356.7 111.8 1410.3 0.9834 34.07 0.02933
Quadruplet-TSST 12.7 65.0 72 352.7 110.9 1380.3 0.9839 34.14 0.03069
Quadruplet-STTS 12.7 65.0 74 356.7 113.4 1405.7 0.9835 34.04 0.02918

For * models, we add a skip connection for each PredFormer Layer for stable training.

racy. Meanwhile, PredFormer requires far fewer parameters (25.3M vs. 58.0M in SimVP) and operates with
lower FLOPs (16.5G vs. 19.4G), showcasing its superior efficiency.

Notably, even when SimVP incorporates ViT and Swin Transformer as the temporal translator, its perfor-
mance remains far below that of PredFormer. This is because, while SimVP benefits from the inductive bias
of using CNNs as the encoder and decoder, this design inherently limits the model’s performance ceiling.
In contrast, PredFormer effectively models global spatiotemporal dependencies, allowing it to surpass these
constraints and achieve superior predictive accuracy.

Compared to SwinLSTM, PredFormer achieves higher accuracy. Although SwinLSTM outperforms SimVP
in terms of MSE (17.7 vs. 23.8), its reliance on an RNN-based structure results in significantly higher
computational cost. SwinLSTM exhibits high FLOPs (69.9G) and lower FPS, making it less efficient for
large-scale deployment. This highlights the limitations of recurrent structures in video prediction, whereas
PredFormer, with its recurrence-free framework, achieves both higher accuracy and superior efficiency.

Among the PredFormer variants, Quadruplet-TSST achieves the best MSE of 12.4, followed closely by
Quadruplet-STTS. These results highlight PredFormer’s ability to fully leverage global information fully,
further validating its effectiveness in video prediction.

4.2 Real-world Human Motion Prediction

Human3.6m. The Human3.6M dataset (Ionescu et al., 2014) comprises 3.6 million unique human poses
with their corresponding images, serving as a benchmark for motion prediction tasks. Human motion
prediction is particularly challenging due to high resolution input and complex human movement dynamics.
Following OpenSTL (Tan et al., 2023b), we downsample the dataset from 1000×1000×3 to 256×256×3. We
use four observations to predict the next four frames.

PredFormer achieves SOTA on Human3.6M. Compared to SimVP, PredFormer Quadruplet-TSST reduces
MSE from 115.8 to 110.9, significantly improving human motion prediction. At the same time, PredFormer
requires only 12.7M parameters, much fewer than SimVP’s 41.2M. Furthermore, its computational cost is
only 65G FLOPs, less than one third of SimVP’s 197G, while maintaining a higher inference speed.

PredFormer also substantially reduces the computational cost compared to PredRNN++. While Pre-
dRNN++ requires 1033G FLOPs, PredFormer Quadruplet-TSST achieves comparative MSE and superior
MAE and SSIM using only one-tenth of the computation.
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Table 4: Quantitative comparison on TaxiBJ. Each model observes 4 frames and predicts the subsequent 4
frames.

Method Paras(M) Flops(G) FPS Memory(MB) MSE ↓ MAE ↓ SSIM ↑

ConvLSTM 15.0 20.7 815 67.0 0.485 17.7 0.978
PredRNN 23.7 42.4 416 105.5 0.464 16.9 0.977
PredRNN++ 38.4 63.0 301 162.8 0.448 16.9 0.971
MIM 37.9 64.1 275 158.4 0.429 16.6 0.971
E3D-LSTM 51.0 98.2 60 240.5 0.432 16.9 0.979
PhyDNet 3.1 5.6 982 149.3 0.362 15.5 0.983
PredRNNv2 23.7 42.6 378 106.8 0.383 15.5 0.983
SwinLSTM 2.9 1.3 1425 22.0 0.303 15.0 0.984

SimVP 13.8 3.6 533 183.9 0.414 16.2 0.982
TAU 9.6 2.5 1268 175.0 0.344 15.6 0.983
OpenSTL_ViT 9.7 2.8 1301 174.8 0.317 15.2 0.984
OpenSTL_Swin 9.7 2.6 1506 274.3 0.313 15.1 0.985

PredFormer
Full Attention 8.4 2.4 2438 42.3 0.316 14.6 0.985
Fac-S-T 8.4 2.2 3262 42.4 0.320 15.2 0.984
Fac-T-S 8.4 2.2 3224 42.4 0.283 14.4 0.985
Binary-TS 8.4 2.2 3192 42.4 0.286 14.6 0.985
Binary-ST 8.4 2.2 3172 42.4 0.277 14.3 0.986
Triplet-TST 6.3 1.6 4348 34.4 0.293 14.7 0.985
Triplet-STS 6.3 1.6 4249 34.4 0.277 14.3 0.986
Quadruplet-TSST 8.4 2.2 3230 42.4 0.284 14.4 0.986
Quadruplet-STTS 8.4 2.2 3259 42.4 0.293 14.6 0.985

Compared to OpenSTL-ViT and OpenSTL-Swin Transformer, which rely on ViT-based architectures but
struggle with prediction accuracy, PredFormer utilizes the Transformer structures more effectively for video
prediction. OpenSTL-ViT and OpenSTL-Swin both perform worse than SimVP, indicating that simply
applying Transformers does not guarantee strong results. In contrast, PredFormer outperforms them while
maintaining an efficient design, demonstrating its capability in spatiotemporal modeling.

4.3 Traffic Flow Prediction

TaxiBJ. TaxiBJ (Zhang et al., 2017a) includes GPS data from taxis and meteorological data in Beijing.
Each data frame is visualized as a 32 × 32 × 2 heatmap, where the third dimension encapsulates the inflow
and outflow of traffic within a designated area. Following previous work (Zhang et al., 2017a), we allocate
the final four weeks’ data for testing, utilizing the preceding data for training. Our prediction model uses
four sequential observations to forecast the subsequent four frames.

PredFormer achieves SOTA on TaxiBJ. Compared to SimVP, PredFormer significantly improves the accuracy
of the prediction, reducing the MSE from 0.414 to 0.277 (33%) while using fewer parameters (8.4M vs 13.8M)
and a lower computational cost (2.2G FLOPs vs. 3.6G FLOPs). Despite this efficiency, PredFormer also
dramatically increases inference speed, with FPS rising from 533 in SimVP to 4249.

Furthermore, OpenSTL-ViT and OpenSTL-Swin, which adopt ViT-based architectures as temporal trans-
lators, achieve MSEs of 0.317 and 0.313, both worse than PredFormer’s best results. This suggests that
using CNNs for the encoder and decoder provides a strong inductive bias but inherently limits the model’s
performance. Among the variants of PredFormer, Binary-ST and Triplet-STS achieve the best MSE of 0.277.

4.4 Weather Forecasting

WeatherBench. Climate prediction is a critical challenge in spatiotemporal predictive learning. The
WeatherBench (Rasp et al., 2020) dataset provides a comprehensive global weather forecasting resource,
covering various climatic factors. In our experiments, we utilize WeatherBench-S, a single-variable setup
where each climatic factor is trained independently. We focus on temperature prediction at a 5.625◦ resolution
(32 × 64 grid points). The model is trained on data spanning 2010-2015, validated on data from 2016, and
tested on data from 2017-2018, all with a one-hour temporal interval. We input the first 12 frames and
predict the subsequent 12 frames in this setting.
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Table 5: Quantitative comparison on WeatherBench(T2m). Each model observes 12 frames and predicts
the subsequent 12 frames.

Method Paras(M) Flops(G) FPS Memory(MB) MSE ↓ MAE ↓ SSIM ↑

ConvLSTM 14.9 136.0 46 69.8 1.521 0.7949 1.233
PredRNN 23.6 278.0 22 108.2 1.331 0.7246 1.154
PredRNN++ 38.3 413.0 15 165.5 1.634 0.7883 1.278
MIM 37.8 109.0 126 275.9 1.784 0.8716 1.336
PhyDNet 3.1 36.8 177 150.6 285.9 8.7370 16.91
MAU 5.5 39.6 237 56.2 1.251 0.7036 1.119
PredRNNv2 23.6 279.0 22 110.8 1.545 0.7986 1.243

SimVP 14.8 8.0 196 194.7 1.238 0.7037 1.113
TAU 12.2 6.7 229 195.6 1.162 0.6707 1.078
OpenSTL_ViT 12.4 8.0 432 194.9 1.146 0.6712 1.070
OpenSTL_Swin 12.4 6.9 581 195.1 1.143 0.6735 1.069

PredFormer
Full Attention 5.3 17.8 177 185.4 1.126 0.6540 1.061
Fac-S-T 5.3 8.5 888 53.9 1.783 0.8688 1.335
Fac-T-S 5.3 8.5 860 54.9 1.100 0.6469 1.049
Binary-TS 5.3 8.6 837 53.9 1.115 0.6508 1.056
Binary-ST 5.3 8.6 847 51.9 1.140 0.6571 1.068
Triplet-TST 4.0 6.3 1064 48.9 1.108 0.6492 1.053
Triplet-STS 4.0 6.5 1001 49.9 1.149 0.6658 1.072
Quadruplet-TSST 5.3 8.6 802 53.9 1.116 0.6510 1.057
Quadruplet-STTS 5.3 8.6 858 54.9 1.118 0.6507 1.057

Table 6: Ablation on PredFormer Layer Number on Moving MNIST.

TSST Layer Paras(M) Flops(G) FPS MSE ↓ MAE ↓ SSIM ↑

2 8.5 5.5 887 20.1 65.2 0.955
3 12.7 8.3 621 16.2 55.1 0.965
4 16.9 11.0 457 13.5 47.9 0.970
5 21.1 13.7 376 12.7 45.5 0.972
6 25.3 16.5 302 12.4 44.6 0.973
7 29.5 19.2 277 12.3 44.2 0.973
8 33.7 22.0 240 11.7 41.8 0.975

On WeatherBench (T2m), RNN-based models like ConvLSTM and PredRNN have high computational costs
but poor performance. PredRNN and PredRNNv2 reach 278.0G and 279.0G FLOPs, yet their MSE remains
at 1.331 and 1.545, respectively, highlighting the inefficiency of RNN structures for this task.

SimVP reduces parameter count to half of PredRNN, lowers FLOPs to 8.0G, and achieves an improved
MSE of 1.238, making it more efficient than RNN models. PredFormer further improves performance, using
only half the parameters of SimVP while maintaining similar or lower FLOPs, achieving the best MSE of
1.100. The Fac-T-S and Triplet-TST variants deliver the top results. It also demonstrates a significant FPS
advantage, with Binary-TS and Triplet-TST achieving 837 and 1064 FPS, respectively, compared to SimVP’s
196, highlighting the model’s superior efficiency in both computation and prediction speed.

4.5 Ablation Study and Discussion

PredFormer Layer Number. We conduct an ablation study on the number of TSST layers in PredFormer
to evaluate its scalability and potential for performance improvement, as shown in Tab 6. The results show
that as the number of layers increases, PredFormer continues to achieve better results, surpassing the 6-
layer TSST configuration reported in Tab 2. With 2 TSST layers, PredFormer already outperforms SimVP,
achieving a lower MSE of 20.1 while maintaining high efficiency. When increasing to 3 layers, PredFormer
surpasses TAU, OpenSTL-ViT, and OpenSTL-Swin, achieving a lower MSE of 16.2 while requiring only
half the FLOPs of these models and delivering twice their FPS. With 8 layers, PredFormer achieves an
MSE of 11.7, which represents a 51% MSE reduction compared to SimVP. This substantial improvement
demonstrates the scalability of PredFormer.

We conduct ablation studies on PredFormer model design and summarize the results in Tab 7 and Tab 8. We
choose the best Triplet-STS model on TaxiBJ, and the best Fac-T-S model on WeatherBench as baselines.
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Table 7: Ablation on Gate Linear Unit and Position Encoding.

WeatherBench (T2m) TaxiBJ
Model MSE ↓ MAE ↓ RMSE ↓ MSE ↓ MAE ↓

PredFormer 1.100 0.6489 1.049 0.277 14.3

SwiGLU → MLP 1.171 0.6707 1.082 0.306 15.1
PE: Abs → Learnable 1.164 0.6771 1.079 0.288 14.6

Table 8: Ablation on Dropout and Stochastic Depth.

WeatherBench (T2m) TaxiBJ
Model MSE ↓ MAE ↓ RMSE ↓ MSE ↓ MAE ↓

+ DP + Uni SD 1.100 0.6489 1.049 0.277 14.3

W/o Reg 1.244 0.7057 1.115 0.319 15.1
+ DP 1.210 0.6887 1.100 0.283 14.5
+ Uni SD 1.156 0.6573 1.075 0.288 14.6
+ DP + Linear SD 1.138 0.6533 1.067 0.299 14.8

Gate Linear Unit. Replacing SwiGLU with a standard MLP results in a notable performance degra-
dation. On TaxiBJ, the MSE rises from 0.277 to 0.306, and on WeatherBench from 1.100 to 1.171. This
consistent performance degradation highlights the critical role of the gating mechanism in modeling complex
spatiotemporal dynamics.

Position Encoding. Additionally, the performance deteriorates when we replace the absolute positional
encoding in our model with the learnable spatiotemporal encoding commonly used in ViT. On Moving
TaxiBJ, the MSE rises from 0.277 to 0.288, and on WeatherBench from 1.100 to 1.164. These ablation
experiments consistently reveal similar trends across all three datasets, emphasizing the robustness of our
Position Encoding designs.

Model Regularization. Pure transformer architectures like ViT generally require large datasets for ef-
fective training, and overfitting can become challenging when applied to smaller datasets. In our experi-
ments, overfitting is noticeable on WeatherBench and TaxiBJ. We experiment with different regularization
techniques in Tab 8 and find that both dropout(DP) and stochastic depth (SD) individually improve perfor-
mance compared to no regularization. However, the combination of the two provides the best results. Unlike
conventional ViT practices, which use a linearly scaled drop path rate across different depths, a uniform
drop path rate performs significantly better for our tasks.
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(a) Moving MNIST (b) TaxiBJ

Figure 4: Visualizations on Moving MNIST. Error = |Prediction − Target|. We amplify the error for better
comparison.
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Figure 5: Visualizations on WeatherBench for global temperature forecasting.

Visualization. Fig 4, 5 and 6 provide a visual comparison of PredFormer’s prediction results and prediction
errors with Ground Truth. For Moving MNIST, our model accurately captures digit trajectories, with
significantly lower accumulated error compared to TAU. On TaxiBJ, PredFormer effectively reconstructs the
intricate spatial structures of traffic patterns, reducing high-frequency noise present in TAU’s predictions. On
WeatherBench, PredFormer achieves sharper and more precise temperature forecasts, with error heatmaps
showing lower deviations in critical regions. Lastly, for Human3.6m, PredFormer consistently preserves
fine-grained motion details, demonstrating superior temporal coherence in video prediction. Additional
visualizations are provided in the supplementary material.
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Figure 6: Visualizations on TaxiBJ and Human3.6m.

Discussion for PredFormer Variants. Despite our in-depth analysis of the spatiotemporal decompo-
sition, the optimal model is not definite due to the different spatiotemporal dependent properties of the
datasets. We recommend starting with the Quadruplet-TSST model for diverse video prediction tasks,
which consistently performs well across datasets and configurations. Use M Quadruplet-TSST layers and
experiment with models having a total of 4M GTBs to identify the optimal configuration. Then, explore
Triplet-TST and Triplet-STS with M layers to find spatial and temporal dependencies. Unlike the SimVP
framework, which adjusts hidden dimensions and block numbers separately for spatial encoder-decoder and
temporal translator, PredFormer uses fixed hyperparameters for spatial and temporal GTBs, leveraging the
scalability of the Transformer architecture. By simply adjusting the number of PredFormer layers, optimal
results can be achieved with minimal tuning. We provide further theoretical analysis in the Appendix.

5 Conclusion

In this paper, we introduce PredFormer, a pure Transformer-based framework for video prediction, and
systematically study how different spatio-temporal factorization patterns affect efficiency and accuracy.
Across four standard benchmarks, PredFormer achieves strong performance while maintaining favorable
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FLOPs, FPS, and memory usage compared to prior CNN- and RNN-based models, providing a competitive
recurrent-free and convolution-free alternative. On the four benchmarks we study, our experiments suggest
several dataset-dependent tendencies: interleaved spatio-temporal architectures generally offer the best bal-
ance between cost and accuracy; temporal-first factorizations often work particularly well for long-horizon
forecasting, while other interleaved patterns can be preferable when the spatial structure is richer or the hori-
zon is shorter; combining dropout with uniform stochastic depth is especially effective on overfitting-prone
datasets; and absolute positional encoding is consistently more robust than learnable alternatives.
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A Appendix

A.1 Problem Definition

Video prediction is to learn spatial and temporal patterns by predicting future frames based on past obser-
vations. Given a sequence of frames X t:T = {xi}t

t−T +1, which encapsulates the last T frames leading up to
time t, the goal is to forecast the following T ′ frames Yt+1:T ′ = {xi}t+1+T ′

t+1 starting from time t + 1. The
input and the output sequence are represented as tensors X t:T ∈ RT ×C×H×W and Yt+1:T ′ ∈ RT ′×C×H×W ,
where C, H, and W denote channel, height, and width of frames, respectively. The T and T ′ are the input
and output frame numbers. For brevity, we use X and Y to denote X t:T and Yt+1:T ′ in the following sections.

Generally, we adopt a deep model equipped with learnable parameters FΘ for future frame prediction. The
optimal set of parameters Θ∗ is obtained by solving the optimization problem:

Θ∗ = arg min
Θ

L(FΘ(X ), Y) (4)

where L is the loss function measuring the difference between the prediction and the ground truth.

A.2 Data Transform

We provide a detailed description of the data transformation with PredFormer Binary-ST Layer in Eq 5.
The data transformations for other variants follow a similar process.

[B, T, N, D] → [B ∗ T, N, D], xs = GTB1
s(xs.flatten(0, 1))

[B ∗ T, N, D] → [B, N, T, D], xs = xs.reshape(B, T, N, D).T(1, 2)

[B, N, T, D] → [B ∗ N, T, D], xst = GTB2
t (xs.flatten(0, 1))

[B ∗ N, T, D] → [B, T, N, D], xst = xst.reshape(B, N, T, D).T(1, 2) (5)

A.3 Theoretical Complexity Analysis

Setup and notation. We provide a formal complexity analysis of the nine PredFormer variants in terms of
the temporal length T , the number of spatial patches N , and the hidden dimension D. For a fair comparison,
all variants are instantiated under the same overall attention budget: we fix the depth of the network (the
number of spatio-temporal blocks) and only change how the self-attention operations inside each block are
allocated along the temporal and spatial dimensions. In other words, the total number of self-attention
blocks is kept comparable across variants, and the differences in complexity come from the factorization
pattern, rather than from simply increasing the number of layers.

Temporal vs. spatial self-attention. Let a temporal self-attention block operate on N independent
sequences of length T (one for each spatial patch), and a spatial self-attention block operate on T independent
sequences of length N (one for each time step). Ignoring constant factors and linear projections, the dominant
terms are:

• Temporal self-attention over sequences of length T :

Compute ∼ O(T 2ND), Memory ∼ O(T 2N).

• Spatial self-attention over N patches:

Compute ∼ O(TN2D), Memory ∼ O(TN2).

• Full spatio-temporal self-attention over all TN tokens:

Compute ∼ O
(
(TN)2D

)
, Memory ∼ O

(
(TN)2)

.
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Table 9: Theoretical per-unit compute and memory complexity of the nine PredFormer variants and repre-
sentative CNN/RNN baselines. For PredFormer, T is the temporal length, N is the number of spatial patch
tokens (i.e., N = HW/P 2 for patch size P ), and D is the hidden dimension. For convolutional and recurrent
baselines, we instead use the spatial grid size H · W (pixels or grid cells) to denote the number of spatial
locations. ct and cs denote the number of temporal and spatial self-attention blocks in one spatio-temporal
unit, and cj denotes the number of joint spatio-temporal attention blocks. We report only the leading terms
and omit constant factors and lower-order terms.

Variant / Baseline (ct, cs, cj) Compute Complexity Memory Complexity
PredFormer variants (patch tokens N)
Full Attention (0, 0, 1) O

(
(TN)2D

)
O

(
(TN)2)

Fac-S-T (1, 1, 0) O
(
TN2D + T 2ND

)
O

(
TN2 + T 2N

)
Fac-T-S (1, 1, 0) O

(
TN2D + T 2ND

)
O

(
TN2 + T 2N

)
Binary-TS (1, 1, 0) O

(
TN2D + T 2ND

)
O

(
TN2 + T 2N

)
Binary-ST (1, 1, 0) O

(
TN2D + T 2ND

)
O

(
TN2 + T 2N

)
Triplet-TST (2, 1, 0) O

(
(2T 2N + TN2)D

)
O

(
2T 2N + TN2)

Triplet-STS (1, 2, 0) O
(
(T 2N + 2TN2)D

)
O

(
T 2N + 2TN2)

Quadruplet-TSST (2, 2, 0) O
(
(2T 2N + 2TN2)D

)
O

(
2T 2N + 2TN2)

Quadruplet-STTS (2, 2, 0) O
(
(2T 2N + 2TN2)D

)
O

(
2T 2N + 2TN2)

Recurrent-based baselines (spatial grid H · W )
ConvLSTM / PredRNN-family – O

(
T (HW )D2)

O
(
(HW )D

)
CNN-based baselines (spatial grid H · W )
SimVP-family – O

(
T (HW )D2)

O
(
T (HW )D

)
Let ct and cs denote the number of temporal and spatial self-attention blocks in one spatio-temporal unit
(macro-block), respectively. For the Full Attention baseline, we denote by cj the number of joint spatio-
temporal attention blocks. The per-unit complexity of a factorized variant is then given by:

Compute ∼ O
(
(ctT

2N + csTN2)D
)
, Memory ∼ O

(
ctT

2N + csTN2)
,

while for the Full Attention baseline it is

Compute ∼ O
(
cj(TN)2D

)
, Memory ∼ O

(
cj(TN)2)

.

Since the total depth is fixed, the overall complexity of the full network is linear in the number of units, and
we omit this multiplicative factor for clarity. The resulting per-unit complexities for all nine PredFormer
variants are summarized in Table 9.

Normalization of attention blocks. In our default configuration, we keep the number of spatio-temporal
units the same for all variants, and each unit follows a specific ordering of temporal (T) and spatial (S) self-
attention. For example, on Human3.6m, the Quadruplet-TSST variant is instantiated as TSST×3, which uses
the same number of units as the Full Attention baseline; the only difference is that each unit in Quadruplet-
TSST splits the attention into separate temporal and spatial operations, whereas the Full Attention baseline
applies a joint self-attention over all TN tokens. This design ensures that our factorized variants do not
gain an unfair advantage by simply reducing depth; instead, the observed differences in FLOPs, memory,
and empirical performance can be attributed to the factorization pattern itself.

A.4 Experiment Setting

We provide our hyperparameter setting in Tab 10. For Moving MNIST, we use 24 GTB blocks for all
PredFormer variants, which means 6 Quadruplet-TSST layers, 8 Triplet-TST layers, and 12 Binary-TS
layers, respectively. For the TaxiBJ and WeatherBench datasets, we use 6 GTB blocks for the Triplet
variants and 8 GTB blocks for the other variants.
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Table 10: Hyperparameter Setting.

Hyperparameter Moving MNIST TaxiBJ WeatherBench Human3.6m

Training Hyperparameter
Batch Size 16 16 16 8

Learning Rate 1e-3 1e-3 5e-4 {5e-4, 1e-3}
Learning Scheduler Onecycle Onecycle Cosine Cosine

Optimizer Adamw Adamw Adamw Adamw
Weight Decay 1e-2 1e-2 1e-2 1e-2

Training Epochs 2000 200 50 50

Model Hyperparameter
Patch Size 8 4 4 8

GTB Blocks 24 {6,8} {6,8} 12
GTB Dim 256 256 256 256

GTB Heads 8 8 8 8
SwiGLU Hidden Dim 1024 1024 512 1024
Attention Dropout 0.0 0.1 0.1 0.1
SwiGLU Dropout 0.0 0.1 0.1 0.1
Drop Path Rate 0.0 0.1 0.25 0.1

A.5 More Experiments

A.5.1 Comparison with Recent Recurrent Architectures

Tables 11 and 12 compare PredFormer with two recent recurrent architectures, SwinLSTM and VMRNN,
on the Moving MNIST and TaxiBJ datasets, respectively. Across both benchmarks, PredFormer achieves
lower MSE and higher SSIM while using comparable or fewer parameters and FLOPs. At the same time,
PredFormer provides substantially faster training (shorter epoch time) and higher inference throughput
(FPS), highlighting a favorable trade-off between accuracy and efficiency compared to these recurrent designs.

Table 11: Comparisons of PredFormer, SwinLSTM, and VMRNN on the Moving MNIST dataset.

Method Paras (M) Flops (G) Epoch Time MSE SSIM
SwinLSTM 20.2 69.9 9min 17.7 0.962
VMRNN – – 18min 16.5 0.965
PredFormer 3TSST Layer 12.7 8.3 1.5min 16.2 0.965
PredFormer 6TSST Layer 25.3 16.5 3.5min 12.5 0.973

Table 12: Comparison of PredFormer, SwinLSTM, and VMRNN on the TaxiBJ dataset.

Method Paras (M) Flops (G) Epoch Time FPS MSE MAE SSIM
SwinLSTM 2.9 1.3 – 1425 0.303 15.0 0.9843
VMRNN 2.6 0.9 5min 526 0.289 14.7 0.9858
PredFormer 6.3 1.6 1min 2354 0.277 14.3 0.9864

A.5.2 Ablation on Patch Size

To further analyze the effect of patch size, we fix the architecture to the Triplet-TST variant of PredFormer
and vary the patch size from 8 to 4 on Moving MNIST. As shown in Table 13, using a smaller patch size
(4×4) increases the number of spatial tokens from N = 64 to N = 256, which leads to higher computational
cost (FLOPs 67.6G vs. 16.4G) and lower throughput (FPS 110 vs. 165). This finer granularity yields only a
modest improvement in prediction accuracy (MSE 11.9 vs. 13.4, MAE 42.0 vs. 47.2, SSIM 0.974 vs. 0.971).
Since the Triplet-TST variant with patch size 8 already outperforms all recurrent and convolutional baselines
by a clear margin, we adopt patch size 8 as the default setting in the main experiments to achieve a better
balance between accuracy and efficiency.

A.6 More Visualizations

Fig 7(a) and (b) depict the inflow and outflow at the same time step. In this case, the fourth frame shows
significantly less traffic flow than the previous frames. Constrained by the inductive bias of CNNs, TAU
continues to predict high traffic levels while PredFormer demonstrates superior generalization by accurately
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Table 13: Patch size ablation of PredFormer (Triplet-TST) on Moving MNIST after training for 2000
epochs. Each model observes 10 frames and predicts the subsequent 10 frames with an input resolution of
64 × 64.

Patch Size Resolution Frames (in→out) #Patches N Variant Paras(M) Flops(G) FPS MSE ↓ MAE ↓ SSIM ↑

4 64 × 64 10 → 10 256 Triplet-TST 25.3 67.6 110 11.9 42.0 0.974
8 64 × 64 10 → 10 64 Triplet-TST 25.3 16.4 165 13.4 47.2 0.971

Table 14: Dataset characteristics and optimal PredFormer variants. P denotes patch size, T is the input
temporal length, N is the number of spatial tokens after patch embedding, and N/T measures the spatial–
temporal token ratio. The “Best Variant(s)” and “Best MSE” are taken from the main results tables under
the default hyperparameters.

Dataset Resolution (H × W ) Patch Size P #Patches N T N/T Ratio Best Variant(s) Best MSE ↓

Moving MNIST 64 × 64 8 8 × 8 = 64 10 6 Quadruplet-TSST, Quadruplet-STTS 12.4
Human3.6m 256 × 256 8 32 × 32 = 1024 4 256 Quadruplet-TSST 110.9
TaxiBJ 32 × 32 4 8 × 8 = 64 4 16 Binary-ST, Triplet-STS 0.277
WeatherBench 32 × 64 4 8 × 16 = 128 12 11 Fac-T-S 1.100

capturing this abrupt change. This capability highlights PredFormer’s potential to handle extreme cases,
which could be particularly valuable in applications like traffic flow prediction and weather forecasting.

(a) TaxiBJ InFlow
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(b) TaxiBJ OutFlow
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Figure 7: Visualizations on TaxiBJ InFlow and OutFlow. We amplify the error for better comparison.

A.7 Empirical Discussion on Optimal PredFormer Variants Across Tasks

To better understand why different PredFormer variants become optimal on different benchmarks, we sum-
marize in Table 14 the key spatio-temporal characteristics of each dataset together with the best-performing
PredFormer variant(s). As shown in Table 14, all four benchmarks favor factorized variants of PredFormer
rather than the full-attention baseline, but the specific optimal pattern is dataset-dependent:

On WeatherBench, the temporal horizon is the longest (T = 12) while the spatial fields are relatively smooth.
In this setting, the Fac-T-S variant, which applies temporal attention before spatial attention, performs best,
suggesting that emphasizing temporal modeling early is beneficial for long-range geophysical forecasting.

On Human3.6m, the temporal window is short (T = 4), but the spatial resolution is very high (256×256 with
N/T = 256), and human motion tightly couples spatial joints and temporal evolution. Here, the Quadruplet-
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TSST variant, which interleaves two temporal and two spatial attention stages, works best, indicating that
this dataset benefits from a balanced treatment of temporal and spatial dependencies.

On TaxiBJ, the temporal horizon is also short (T = 4), but the spatial grid is relatively low-resolution (32×32,
N/T = 16) and dominated by structured traffic-flow patterns. In this regime, variants that allocate more
capacity to spatial modeling at the end of the block (Binary-ST and Triplet-STS) perform best, suggesting
that refining spatial correlations is especially important.

On Moving MNIST, both quadruplet variants (TSST and STTS) achieve the best results under the default
patch size P = 8, indicating that a balanced four-stage factorization is robust on this synthetic but relatively
long-horizon (T = 10) benchmark.

Overall, these results indicate that different spatio-temporal regimes (temporal horizon, spatial resolution,
and the N/T ratio) naturally favor different factorization patterns within PredFormer, which explains why
the optimal variant is not universal but dataset-specific.

A.8 Theoretical Analysis on PredFormer Variants’ Performance Differences

We consistently observe that TSST outperforms TS, which in turn outperforms TST on datasets such as
Moving MNIST, TaxiBJ, and Human3.6M. An exception occurs in WeatherBench, where this trend diverges
due to severe overfitting. To analyze this phenomenon, we examine the representational capacity of temporal-
first interleaved models. Unlike prior work that performs spatial-temporal attention factorization with a
shared MLP, our approach allocates a dedicated SwiGLU FFN to each spatial and temporal attention block,
enhancing the model’s learning capacity and expressiveness. Then, the PredFormer encoder can be viewed as
a spatial-temporal transformer sequence (e.g., TSSTTSST). We propose that a key factor influencing model
performance is the number of unique spatial-temporal subsequence (e.g., TS, TST, TSST) partitions enabled
by a given sequence. Sequences with richer and more diverse partition patterns are better able to capture
complex spatio-temporal dependencies. We formalize this intuition through a unique partition counting
algorithm, as described in Fig 8, and report the corresponding statistics in Tab 15. Notably, the number
of unique partitions correlates well with empirical performance across configurations, offering a plausible
explanation for the effectiveness of TSST.

Step1: Enumerate all substrings of 
length 2–4 that contain both S and T to 
form a complete set of valid primitives.

Step2: Recursively find all possible 
partitions of the input sequence using 
only valid primitives.

Step3: Normalize each partition as a 
multiset and retain only semantically 
unique ones.

{'TSST', 'TSS', 'SSTS', 'ST', 'TTSS', 'STTT', 'STST', 'TSTS', 
'SSTT', 'STTS',  'TTS', 'TS', 'TST', 'STT', 'STSS', 'TSTT', 'TTST', 
'STS', 'TTTS', 'SSST', 'TSSS', 'SST'}

Input Sequence
e.g. TSSTTSST

Total unique partitions: 6
[['TS', 'ST', 'TS', 'ST'], ['TS', 'ST', 'TSST'], ['TS', 'STT', 'SST'], ['TS', 'STTS', 'ST'], ['TSS', 
'TTS', 'ST'], ['TSST', 'TSST']]

e.g. TSTSTSTS

Total unique partitions: 5
[['TS', 'TS', 'TS', 'TS'], ['TS', 'TS', 'TSTS'], ['TS', 'TST', 'STS'], ['TST', 'ST', 'STS'], ['TSTS', 
'TSTS']]

Total unique partitions: 3
[['TS', 'TTST'], ['TST', 'TST'], ['TSTT', 'ST']]

e.g. TSTTST

Figure 8: Spatial-Temporal GTB Unique Partition Algorithm.
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Table 15: Analysis of Unique Partition Numbers.

Moving MNIST Human3.6m TaxiBJ
Seq Num ↑ MSE ↓ Seq Num ↑ MSE ↓ Seq Num ↑ MSE ↓

TSST*6 160 12.4 TSST*3 16 110.9 TSST*2 6 0.284
TS*12 116 12.8 TS*6 13 111.2 TS*4 5 0.283
TST*8 94 13.4 TST*4 11 112.4 TST*2 3 0.293
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