
Lean-STaR:
Learning to Interleave Thinking and Proving

Haohan Lin2∗ Zhiqing Sun1

Sean Welleck1 Yiming Yang1

1Language Technologies Institute, Carnegie Mellon University
2Institute for Interdisciplinary Information Sciences, Tsinghua University

{haohanl,zhiqings,yiming,swelleck}@cs.cmu.edu

https://leanstar.github.io/

Abstract

Traditional language model-based theorem proving assumes that by training on a
sufficient amount of formal proof data, a model will learn to prove theorems. Our
key observation is that a wealth of informal information that is not present in formal
proofs can be useful for learning to prove theorems. For instance, humans think
through steps of a proof, but this thought process is not visible in the resulting code.
We present Lean-STaR, a framework for training language models to produce
informal thoughts prior to each step of a proof, thereby boosting the model’s
theorem-proving capabilities. Lean-STaR uses retrospective ground-truth tactics
to generate synthetic thoughts for training the language model. At inference time,
the trained model directly generates the thoughts prior to the prediction of the
tactics in each proof step. Building on the self-taught reasoner framework, we
then apply expert iteration to further fine-tune the model on the correct proofs
it samples and verifies using the Lean solver. Lean-STaR achieves better results
on the miniF2F-test benchmark within the Lean theorem proving environment,
significantly outperforming base models (43.4% → 46.3%, Pass@64). We also
analyze the impact of the augmented thoughts on various aspects of the theorem
proving process, providing insights into their effectiveness.

1 Introduction

We introduce Lean-STaR, a framework for learning to interleave informal thoughts with steps of
formal proving. Building on the Self-Taught Reasoner (STaR) framework [27], we enable language
models to interleave step-by-step rationales (i.e., thoughts) [15, 23] with formal proving in a two-stage
process. In an initial phase, we prompt a sufficiently capable language model, such as GPT-4 [1],
and generate retrospective thoughts based on a dataset of human-written proofs, such as Mathlib,
the largest collection of human-written proofs in Lean [14]. Subsequently, we fine-tune a thought-
augmented tactic predictor [6, 5, 11, 9] that, given a Lean state, can generate a thought and predict
the subsequent tactic. In a second phase, we optimize this thought-augmented tactic predictor with
the expert iteration algorithm [2, 20], using multi-step success rate in theorem proving as the reward.

∗Work done during the visit at CMU.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://leanstar.github.io/

Figure 1: An example of Lean proof and thoughts generated by Lean-STaR. Note that there is a
calculation error in the thought (in red), but this does not affect the correctness of the proof because
the calculation task is actually completed by the interactive theorem prover (i.e., Lean’s nlinarith)
instead of the language model. This shows a benefit of combining neural and symbolic systems.

We instantiate Lean-STaR by generating roughly 50,000 thought-augmented examples from Lean’s
Mathlib [14], then synthesize an additional 50k examples through two iterations of expert iteration.
To the best of our knowledge, this yields the first thought-augmented dataset for theorem proving.
After fine-tuning an InternLM2-7b base model [26] on our thought-augmented data, our final Lean-
STaR model can solve 34.8% (pass@32) or 36.1% (pass@64) of the problems on miniF2F-test
[28]. Using stronger base model InternLM2-7b-plus, Lean-STaR can achieve 45.4% (pass@32),
significantly surpassing the previous results of 43.4% (pass@32). In summary, Lean-STaR offers a
framework for teaching language models to interleave informal thoughts with formal verification,
advancing the capabilities of language models in automated theorem proving.

2 Our Method: Lean-STaR

We introduce Lean-STaR, a new method for combining informal thoughts with formal theorem
proving.

We describe the data generation and training of the direct tactic prediction model (SFT), the thought-
augmented tactic prediction model trained with synthetic data (Lean-CoT), and the final model trained
with expert iteration (Lean-STaR).

2.1 Direct Tactic Prediction

We define the theorem-proving problem as a Markov Decision Process (MDP) (S,A, Pa, Ra) where
proof states serve as states in MDP and tactics serve as actions. From this perspective, a proof is a
trajectory (s1, a1, r1), (s2, a2, r2), · · · of states si, tactics ai, and rewards ri ∈ R, and the ITP (e.g.,
Lean) provides each new state si+1.

In the typical setting [18], proving a theorem consists of providing a proof state s to the language
model and then generating a tactic from the language model M , i.e., πM (a|s). The language model
can be fine-tuned for this task using a dataset of (proof state, next-tactic) pairs from successful proof
trajectories, i.e. D = {(si, ai) : i = 1, · · · ,M}, where final states have a reward of 1. We refer to a
language model fine-tuned on such a dataset as a supervised fine-tuning (SFT) model.

2.2 Thought-augmented Tactic Prediction

Existing approaches typically train only on formal states and tactics [18]. We hypothesize that
incorporating a latent thought can improve a model’s ability to predict the next tactic. Formally, we

2

introduce a hidden “thought” variable ti prior to each tactic, and then extend the model to the form
πM (ai, ti|si) = πM (ai|ti, si)πM (ti|si). In thought-augmented tactic prediction, the distribution
over the next tactic can then be expressed as: πM (ai|si) =

∑
ti

πM (ai|ti, si)πM (ti|si).

The key challenge is obtaining (state, thought, tactic) pairs for training a model. To this end, we
introduce retrospective rationale generation. Our motivating observation is that the distribution of
natural language thoughts in theorem-proving πM (ti|si) is scarce in the pre-training corpus of large
language models. In turn, we find that even the most powerful GPT-4 model does not perform well in
generating the correct rationale through few-shot prompting [7]. Given a powerful large language
model G, which we refer to as the oracle model2, we give the oracle model the ground-truth tactic
ai and let the oracle model produce the thought ti given the current state si and ground-truth tactic
ai. This helps improve the pass rate and produce thought-augmented data more efficiently. Our
few-shot prompt is provided in Appendix F. The design principle of the prompt is to prevent the
oracle model from generating hindsight-like thoughts. With a new retrospectively annotated dataset
by the oracle model DT , we obtained our first thought-augmented tactic prediction model, Lean-CoT,
by fine-tuning from the SFT model.

2.3 Bootstrapping Thought-augmented Theorem Proving

We propose to apply expert iteration to further improve the performance of Lean-CoT. Specifically,
we start from the initial Lean-CoT model M0 and the initial dataset D = {si : i = 1, · · · ,M},
which consists of all initial states si of the theorems to be proved. In iteration 1, we use
model M to sample K times per problem. Each time the model will produce a proof trajectory
[(s0, t0, a0), (s1, t1, a1), · · · , (sn, tn, an)]. Then we create a new dataset D1 by filtering the gener-
ated trajectories to include only the successful ones. De-duplication is then applied to the collected
trajectories. Now, we can further fine-tune the SFT model M on dataset DT ∪ D1 to produce
Lean-STaR model M1. Then we can similarly produce Lean-STaR model M2 from M1.

3 Experiments

We instantiate Lean-STaR using the best available open language model pre-trained on the Lean
corpus (InternLM2-Math-base-7b [26]), and follow standard practice in using Lean’s Mathlib as the
underlying training set (via the Lean Dojo dataset [25]). Our experimental results show that both
retrospective rationale generation and expert iteration significantly improve the theorem-proving
capabilities of language models in this setting. We describe our setup and findings in detail below.

3.1 Experimental Setup

We use LeanDojo Benchmark 4 v9 as the supervised fine-tuning (SFT) dataset containing 231, 240
data examples. We fine-tune for 1 epoch to obtain the SFT model. For the learning rate, we use a
warmup in the first 20% steps from 0 to 2× 10−5, followed by a cosine schedule decaying to zero.

We randomly select 17, 256 different successful proof trajectories from LeanDojo Benchmark 4
dataset [25], and use GPT-4-0125 [17] to annotate 52, 438 thoughts from those proof trajectories. We
filtered out all proof steps (si, ai) for which ai contains the newline symbol “\n” before annotating.
We perform two iterations of expert iteration, and provide the details in Appendix A.1 due to space.

We evaluate our method on the MiniF2F benchmark [28]. We use a similar evaluation setting as
previous works [25, 24, 26], but use our sampling method instead of best-first search for the evaluation
of our thought-augmented theorem proving model. We choose these settings to resemble the inference
budget used in our baselines, which follow previous work [24, 4, 26].

3.2 Main Results

Our main results are reported in Table 1. Lean-STaR gives a significant improvement. For instance,
with a similar inference budget, Lean-STaR achieves 34.8% versus 30.3% in InternLM2 [26] using
best-first search and 30.7% in COPRA [22] using GPT-4. With a larger compute budget, Lean-STaR’s
performance improves further to 36.1%.

2For instance, in our experiments we use the best available large language model, GPT-4.

3

Table 1: Pass rates on the minif2f-test dataset with Lean. This table shows the pass rates of
previous works and our work. S is the number of tactics attempted at each expanded node (assumed
to be 1 in sampling) and K is the total number of search or sampling attempts per problem. In
sampling we use temperature 0.7, and in search we use beam search when generating the next tactic.
Note that we sample 32 examples twice when K = 64 in sampling.

APPROACH DECODING N K S PASS RATE

GPT-3.5 [1] (FEW-SHOT) SAMPLING 50 1 1 2.8%
GPT-4 [1] (FEW-SHOT) SAMPLING 50 1 1 11.9%
TRANSFORMER [19] (W/O RL) SEARCH 512 1 8 24.6%
LLEMMA-7B [4] (FEW-SHOT) SEARCH 50 1 32 26.2%
REPROVER [25] SEARCH 50 1 64 26.5%
TRANSFORMER [19] (W/ RL) SEARCH 512 1 8 29.6%
INTERNLM2-20B [26] (FEW-SHOT) SEARCH 50 1 32 29.5%
COPRA (WITH GPT-4) [22] CUSTOMIZED - 100 1 30.7%

INTERNLM2-7B [26] (FEW-SHOT) SAMPLING 50 32 1 28.7%
INTERNLM2-7B [26] (FEW-SHOT) SEARCH 50 1 32 30.3%
SFT (INTERNLM2-7B) SAMPLING 50 32 1 29.5%
LEAN-COT (INTERNLM2-7B) SAMPLING 50 32 1 32.8%
LEAN-STAR (ITER-1) (INTERNLM2-7B) SAMPLING 50 32 1 34.0%
LEAN-STAR (ITER-2) (INTERNLM2-7B) SAMPLING 50 32 1 34.8%
LEAN-STAR (ITER-2) (INTERNLM2-7B) SAMPLING 50 64 1 36.1%

INTERNLM2-PLUS-7B [26] (FEW-SHOT) (FROM
PAPER)

SEARCH 1000 1 32 43.4%

INTERNLM2-PLUS-7B [26] (FEW-SHOT) (REPRO-
DUCED)

SEARCH 1000 1 32 42.6%

INTERNLM2-PLUS-7B [26] (FEW-SHOT) SAMPLING 50 32 1 40.9%
SFT (INTERNLM2-PLUS-7B) [26] (FEW-SHOT) SAMPLING 50 32 1 41.3%
LEAN-COT (INTERNLM2-PLUS-7B) SAMPLING 50 32 1 43.4%
LEAN-STAR (ITER-1) (INTERNLM2-7B) SAMPLING 50 32 1 45.4%
LEAN-STAR (ITER-1) (INTERNLM2-PLUS-7B) SAMPLING 50 64 1 46.3%

Thought augmentation improves theorem proving. The first phase of Lean-STaR trains a model
to interleave thoughts and tactics, by fine-tuning on a synthesized dataset of thought-augmented
examples. The fine-tuned model from this phase, denoted LEAN-COT in Table 1, achieves a pass rate
of 32.8%, which is higher than the model prior to this phase, denoted SFT (29.5%). We conclude
that the first phase of Lean-STaR can improve the theorem proving ability of a language model, even
one that is already specialized for generating tactics in Lean such as the SFT model.

Bootstrapping improves thought-augmented theorem proving. The second phase of Lean-STaR
consists of generating new thoughts and tactics with the current language model, saving those that
result in correct proofs, and training on the union of the initial thought-augmented dataset and the
saved examples (i.e., expert iteration [19, 27, 20]). Refer to Appendix A.1 for details.

We perform two iterations of expert iteration, and present the results in Table 1, denoted LEAN-STAR.
Each iteration improves the model’s theorem proving performance, from 32.8% (the initial model)
to 34% (LEAN-STAR after iteration 1) to 34.8% (LEAN-STAR after iteration 2). Furthermore, we
find that the model is amenable to further improvement via additional sampling, achieving 36.1%
by doubling the sampling budget. We conclude that Lean-STaR’s second phase can further improve
a model’s ability to generate thoughts and tactics that lead to correct proofs. We include three
qualitative examples in the Appendix, which show the model interleaving thoughts and proof steps.

3.3 Experiments with stronger base model and more data

We also instantiate Lean-STaR using a stronger language model (InternLM2-Math-plus-7b [26]),
which was released after the experiment above. Our new results are also reported in Table 1. We can

4

Table 2: Results for the InternLM2-plus-7b and our Lean-CoT, Lean-STaR, and expert iteration
without CoT. We use sampling with N = 50,K = 32,& T = 0.7.

APPROACH Pass@32 OF INTERNLM-BASE Pass@32 OF INTERNLM-PLUS

FEW-SHOT 28.7% 40.9%

SFT 29.5%(+0.8%) 41.3%(+0.4%)

LEAN-COT 32.8%(+3.3%) 43.4%(+2.1%)

LEAN-STAR 34.0%(+1.2%) 45.5%(+2.1%)

EXPERT ITERATION (SFT) 30.7%(+1.2%) 43.0%(+1.7%)

see that Lean-STaR still gives a significant improvement over the baseline. For instance, Lean-STaR
achieves 45.4% versus 39.8% in InternLM-plus using sampling with a similar inference budget and
43.4% using best-first search with more inference budget reported in [26]. This results show that both
retrospective rationale generation and expert iteration can improve the theorem-proving capabilities
on a stronger base model.

3.4 Experiments on expert iteration without CoT

Table 2 shows the result of expert iteration without CoT (i.e., using (state, tactic) pairs only) as well
as the result of Lean-CoT and Lean-STaR. Expert iteration alone achieves 43.0%, which is less than
Lean-STaR (45.4%) in InternLM-plus and achieves 30.7% verus 39.8% in InternLM-base. This
shows that Lean-STaR’s performance gains do not only come from the use of expert iteration.

4 Conclusion & Limitations

In this paper, we presented Lean-STaR, a novel approach that significantly enhances the theorem-
proving capabilities of language models in formal mathematics by integrating Chain-of-Thought
(CoT) rationales into each proof step. We further improved this model using expert iteration,
fine-tuning it on correct proofs it samples and verifies using the Lean solver. Our contributions
include the introduction of the first thought-augmented theorem proving dataset, demonstrating
that expert iteration can further improve performance, and achieving much better results on the
miniF2F-test benchmark, increasing the pass rate from 30.3% to 36.1%. These advancements are
not only about improving the accuracy of automated theorem proving, but also offer a scalable
and efficient framework for advancing human understanding of mathematics, which may lead to
significant impacts in education, scientific discovery, and program verification [8, 12, 21, 3, 10, 16].

The primary limitation of our method is that its performance may be constrained by issues of
computational scalability. Both Lean-CoT and Lean-STaR have been fine-tuned on a dataset that
is not very large. Additionally, the use of GPT-4 to generate synthetic data may incur a significant
cost and possibly introduce biases. Also, expert iteration could face a bottleneck due to CPU and IO
limitations, which might slow down the process due to a sluggish speed of Lean ITP.

References
[1] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni

Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4
technical report. arXiv preprint arXiv:2303.08774, 2023.

[2] Thomas Anthony, Zheng Tian, and David Barber. Thinking fast and slow with deep learning
and tree search. Advances in neural information processing systems, 30, 2017.

[3] Jeremy Avigad. Mathematics and the formal turn, 2023.

[4] Zhangir Azerbayev, Hailey Schoelkopf, Keiran Paster, Marco Dos Santos, Stephen McAleer,
Albert Q Jiang, Jia Deng, Stella Biderman, and Sean Welleck. Llemma: An open language
model for mathematics. arXiv preprint arXiv:2310.10631, 2023.

5

[5] Jasmin Christian Blanchette, Cezary Kaliszyk, Lawrence C Paulson, and Josef Urban. Hammer-
ing towards qed. Journal of Formalized Reasoning, 9(1):101–148, 2016.

[6] Sascha Bohme and Tobias Nipkow. Sledgehammer: judgement day. In Automated Reasoning:
5th International Joint Conference, IJCAR 2010, Edinburgh, UK, July 16-19, 2010. Proceedings
5, pages 107–121. Springer, 2010.

[7] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

[8] Nathan C Carter and Kenneth G Monks. Lurch: a word processor that can grade students’
proofs. In CICM Workshops, 2013.

[9] Lukasz Czajka and Cezary Kaliszyk. Hammer for coq: Automation for dependent type theory.
Journal of automated reasoning, 61:423–453, 2018.

[10] Emily First. Automating the Formal Verification of Software. PhD thesis, 2023. URL https:
//scholarworks.umass.edu/dissertations_2/2812.

[11] Fabian Gloeckle, Baptiste Roziere, Amaury Hayat, and Gabriel Synnaeve. Temperature-scaled
large language models for lean proofstep prediction. In The 3rd Workshop on Mathematical
Reasoning and AI at NeurIPS’23, 2023.

[12] Dongyeop Kang, Andrew Head, Risham Sidhu, Kyle Lo, Daniel S Weld, and Marti A Hearst.
Document-level definition detection in scholarly documents: Existing models, error analyses,
and future directions. arXiv preprint arXiv:2010.05129, 2020.

[13] Guillaume Lample, Timothee Lacroix, Marie-Anne Lachaux, Aurelien Rodriguez, Amaury
Hayat, Thibaut Lavril, Gabriel Ebner, and Xavier Martinet. Hypertree proof search for neural
theorem proving. Advances in neural information processing systems, 35:26337–26349, 2022.

[14] The mathlib Community. The lean mathematical library. In Proceedings of the 9th ACM
SIGPLAN International Conference on Certified Programs and Proofs, CPP 2020, pages 367–
381, New York, NY, USA, 2020. Association for Computing Machinery. ISBN 9781450370974.
doi: 10.1145/3372885.3373824. URL https://doi.org/10.1145/3372885.3373824.

[15] Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari, Henryk Michalewski, Jacob Austin,
David Bieber, David Dohan, Aitor Lewkowycz, Maarten Bosma, David Luan, et al. Show
your work: Scratchpads for intermediate computation with language models. arXiv preprint
arXiv:2112.00114, 2021.

[16] National Academies of Sciences. Artificial intelligence to assist mathematical reasoning:
Proceedings of a workshop, 2023.

[17] OpenAI. OpenAI: GPT-4, 2023. URL https://openai.com/research/gpt-4.

[18] Stanislas Polu and Ilya Sutskever. Generative language modeling for automated theorem proving.
arXiv preprint arXiv:2009.03393, 2020.

[19] Stanislas Polu, Jesse Michael Han, Kunhao Zheng, Mantas Baksys, Igor Babuschkin, and Ilya
Sutskever. Formal mathematics statement curriculum learning. arXiv preprint arXiv:2202.01344,
2022.

[20] Avi Singh, John D Co-Reyes, Rishabh Agarwal, Ankesh Anand, Piyush Patil, Peter J Liu, James
Harrison, Jaehoon Lee, Kelvin Xu, Aaron Parisi, et al. Beyond human data: Scaling self-training
for problem-solving with language models. arXiv preprint arXiv:2312.06585, 2023.

[21] Christian Szegedy. A promising path towards autoformalization and general artificial intel-
ligence. In Intelligent Computer Mathematics: 13th International Conference, CICM 2020,
Bertinoro, Italy, July 26–31, 2020, Proceedings 13, pages 3–20. Springer, 2020.

[22] Amitayush Thakur, Yeming Wen, and Swarat Chaudhuri. A language-agent approach to formal
theorem-proving. arXiv preprint arXiv:2310.04353, 2023.

6

https://scholarworks.umass.edu/dissertations_2/2812
https://scholarworks.umass.edu/dissertations_2/2812
https://doi.org/10.1145/3372885.3373824
https://openai.com/research/gpt-4

[23] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le,
Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models.
Advances in neural information processing systems, 35:24824–24837, 2022.

[24] Sean Welleck and Rahul Saha. Llmstep: Llm proofstep suggestions in lean. arXiv preprint
arXiv:2310.18457, 2023.

[25] Kaiyu Yang, Aidan Swope, Alex Gu, Rahul Chalamala, Peiyang Song, Shixing Yu, Saad Godil,
Ryan Prenger, and Anima Anandkumar. LeanDojo: Theorem proving with retrieval-augmented
language models. In Neural Information Processing Systems (NeurIPS), 2023.

[26] Huaiyuan Ying, Shuo Zhang, Linyang Li, Zhejian Zhou, Yunfan Shao, Zhaoye Fei, Yichuan
Ma, Jiawei Hong, Kuikun Liu, Ziyi Wang, Yudong Wang, Zijian Wu, Shuaibin Li, Fengzhe
Zhou, Hongwei Liu, Songyang Zhang, Wenwei Zhang, Hang Yan, Xipeng Qiu, Jiayu Wang,
Kai Chen, and Dahua Lin. Internlm-math: Open math large language models toward verifiable
reasoning, 2024.

[27] Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. Star: Bootstrapping reasoning with
reasoning. Advances in Neural Information Processing Systems, 35:15476–15488, 2022.

[28] Kunhao Zheng, Jesse Michael Han, and Stanislas Polu. Minif2f: a cross-system benchmark for
formal olympiad-level mathematics. arXiv preprint arXiv:2109.00110, 2021.

7

A Additional Experiment Setup

A.1 Lean-STaR Expert Iteration

The second phase of Lean-STaR consists of generating new thoughts and tactics with the current
language model, saving those that result in correct proofs, and training on the union of the initial
thought-augmented dataset and the saved examples (i.e., expert iteration [19, 27, 20]). We perform
two iterations of expert iteration, and provide details on our specific experimental setup below.

In each iteration we use sampling on the LeanDojo Benchmark 4 dataset, and save the (state, thought,
tactic) examples that are part of successful proofs. For each problem, we sample K = 32 times
in parallel with temperature T = 1.0, and limit the number of times a tactic can be generated to a
total of N = 5 per problem. Also, sampling is limited to 1 minute per problem. In this setup, each
problem needs on average about 0.5 A100 minutes. We collect successfully sampled trajectories to
produce a “STaR dataset” D1, and up to 3 proof trajectories were collected for each problem. We
collected 32, 231 different (proof state, thoughts, next-tactic) pairs in successful proof trajectories
during expert iteration, which takes about 4 days with 8×A100 GPUs. Then, we further fine-tune
SFT model for 1 epoch on the combination of GPT-4 annotated reasoning data and expert iteration
data DT ∪D1 to get the Lean-STaR model. We use the same learning rate setup that was used for the
SFT model. In the second iteration, we generate a dataset D2 in a similar fashion. Then, we chose to
further fine-tune model from iteration 1, M1, on the generated dataset D2 (roughly 19k pairs).

The setup of experiment about InternLM2-plus is slightly different. The details are shown in Section
3.3 and Appendix E.

B Statistics for our methods as well as the baselines

Table 3: Statistics for the baselines and our Lean-CoT, Lean-STaR on MiniF2F dataset. We use
sampling method with hyperparameters N = 50 &K = 32 & T = 0.7.

APPROACH # (CONTINUAL) TRAINING DATA Pass@32

INTERNLM2-MATH-7B (FEW-SHOT) - 28.7% -

SFT 231, 240 29.5% +0.8%

LEAN-COT 52, 438 32.8% +3.3%

LEAN-STAR (ITER-1) 32, 231 34.0% +1.2%

LEAN-STAR (ITER-2) 19, 324 34.8% +0.8%

8

C An Example and Explanation of A Formal Proof in Lean

An example of a formal proof in Lean with its visualization is shown in Figure 2, taken from [13]. In
the proof, the tactic induction k is is applied to the initial state (n ≤ m ⇒ n+ k ≤ m+ k) and
the ITP converts the current state to subgoals case 0 ∧ case ih: n ≤ m ∧ n + k ≤ m + k ⇒
n+ (k + 1) ≤ m+ (k + 1). The case 0: n ≤ m is our hypothesis h0 so it can be proven by case
0:exact h0 tactic. Then, we rewrite the case ih through the nat.succ_le_succ_iff which is
a theorem in Lean library means n ≤ m ⇔ n+ 1 ≤ m+ 1. After tactics case 0:exact h0 and
case ih:rw nat.succ_le_succ_iff, the goal state is converted to n+ k ≤ m+ k which is the
hypothesis introduced by induction. Therefore, we can complete this proof using tactic exact k_ih.

theorem add_le_add_right (m n k : N) (h0 : n ≤ m)
: n + k ≤ m + k :=
induction k with
| zero =>

exact h0
| succ k ih =>

rw Nat.succ_le_succ_iff
exact ih

Figure 2: A example proof and its visualization of n ≤ m ⇒ n + k ≤ m + k in Lean, taken
from [13]. The induction tactic reduces the initial statement to two subgoals. Then tactics case
0:exact h0 and case ih:rw nat.succ_le_succ_iff, case ih:exact k_ih can be applied
in turn to complete the proof.

9

D Performance Analysis by Types and Difficulties using InternLM2-plus-7b

Table 4 reports the number of problems successfully proved, partitioned by type and difficulty using
InternLM2-plus. We see that Lean-CoT improves performance mainly in Number Theory and Lean-
STaR improves performance in solving difficult problems on all categories, which is the opposite of
the performance of the InternLM2-base.

Table 4: Counts of problems successfully proved in minif2f-test benchmark using InternLM2-plus-7b,
split by type and difficulty. The methods use sampling with N = 50,K = 32.

TOTAL TEST SET
SIZE

INTERNLM2-PLUS-7B LEAN-COT LEAN-STAR
(ITER-1)

IMO 20 0 0 0
AIME 15 3 3 4
AMC 45 9 9 10

MATH

ALGEBRA

LEVEL 5 14 6 6 6
LEVEL 4 14 9 9 9
LEVEL 3 14 11 13 13
LEVEL 2 14 11 11 11
LEVEL 1 14 10 10 10

NUMBER THEORY

LEVEL 5 16 7 7 7
LEVEL 4 11 6 8 8
LEVEL 3 11 6 7 9
LEVEL 2 11 7 9 9
LEVEL 1 11 10 10 10

CUSTOM
ALGEBRA 18 4 3 4

NUMBER THEORY 8 0 0 0
INDUCTION 8 1 1 1

10

E Performance difference of joint training and continue training

As shown in Table 5, the joint training method performs better using InternLM2-base but training
method performs much better using InternLM2-plus. It seems that there are no difference between
these two methods. Therefore, this performance can be depend on the quantity of data or the model.
(We use much more data when using InternLM2-plus and the quantity of "STaR data" is relatively
small.)

Table 5: Performance difference of joint training and continue training on Lean-STaR. We use
sampling method with hyperparameters N = 50 & K = 32 & T = 0.7. In continue training, we
further fine-tune the Lean-CoT model on "STaR data" to get Lean-STaR model and in joint training
we fine-tune the SFT model on combination of GPT-4 annotated reasoning data and "STaR data".

APPROACH INTERNLM2-BASE-7B INTERNLM2-PLUS-7B

LEAN-COT 32.8% 43.4%

LEAN-STAR (ITER-1)
(JOINT TRAINING) 34.0% 43.9%

LEAN-STAR (ITER-1)
(CONTINUE TRAINING) 33.2% 45.5%

F Retrospective Rationale Generation Prompt of GPT-4

Please act as a professional mathematician.
Your goal is to accurately prove a math theorem in Lean4.
You are given the first tactic that should be taken to prove the Given Theorem.

Example:

Given Theorem:
```lean4
X : Type u_1
Y : Type u_2
inst✝1 : TopologicalSpace X
inst✝ : TopologicalSpace Y
f : X →. Y
h : PContinuous f
⊢IsOpen (PFun.preimage f Set.univ)
```
Given Tactic:
```lean4
exact h _ isOpen_univ
```
Assistant Output:
PLANNING OF REASONING
Given the above goal and the given the target tactic `exact h _ isOpen_univ`, I

should produce a reasoning that only based on the goal, and conclude to the `
exact h _ isOpen_univ`, but not in the hindsight format.

REASONING

By directly using the hypothesis `h : PContinuous f`, we state that for any open set
, its preimage via `f` is also open, and this applies to `Set.univ` as well.

TACTIC

11


```lean4
exact h _ isOpen_univ
```

To achieve the goal, you have three jobs.
Write down the planning of reasoning.
Write down the reasoning that can result in the selection of the Given Tactic.
Write down the Given Tactic.
You have four principles to do this.
Craft reasoning that is comprehensive yet concise, contained ideally within two

sentences.
Begin reasoning with the objective of the Given Theorem, ensuring logical

progression, rather than constructing it retrospectively from the Given Tactic.
Avoid mentioning the Given Tactic and specific statement names from the Given

Tactic throughout your reasoning.
Position the conclusion of the tactic after presenting all reasons, ensuring that

details regarding the Given Tactic are not introduced at the start of your
reasoning.

Your output should be strictly in the following format and should not contain extra
content:

PLANNING OF REASONING

Given the above goal and the given the target tactic <Given Tactic>, I should
produce a reasoning that only based on the goal, and conclude to the exact <
Given Tactic>, but not in the hindsight format.

REASONING

<your reasoning to the Given Tactic>

TACTIC

<Given Tactic>

Given Theorem:
```lean4
{theorem["state_before"]}
```

Given Tactic:
```lean4
{theorem["tactic"]}
```

12

G Examples of generated Lean proofs with thoughts

theorem aime_1990_p4 (x : R) (h0 : 0 < x) (h1 : x ^ 2 - 10 * x - 29 ̸= 0)
(h2 : x ^ 2 - 10 * x - 45 ̸= 0) (h3 : x ^ 2 - 10 * x - 69 ̸= 0)
(h4 : 1 / (x ^ 2 - 10 * x - 29) + 1 / (x ^ 2 - 10 * x - 45) - 2 / (x ^ 2 - 10 *
x - 69) = 0)
: x = 13 :=
norm_num at h1 h2 h3 -- Reasoning: To prove `x = 13`, we examine the conditions
under which the given equation holds, specifically focusing on the
non-equality of the expressions involving `x ^ 2 - 10 * x - 29`, `x ^ 2 - 10 *
x - 45`, and `x ^ 2 - 10 * x - 69`. Simplifying these expressions using
properties of real numbers and algebra allows us to directly compare them with
their respective values, ultimately identifying `x = 13` as the unique
solution that satisfies all constraints.
field_simp at * -- Reasoning: To prove \(x = 13\), we leverage the given
equalities involving rational fractions of \(x^2 - 10x - c\) for various
constants \(c\), where \(0 < x\) and each \(x^2 - 10x - c\) is non-zero. By
algebraically manipulating these expressions, we aim to derive a relationship
among \(x\) and these constants, specifically focusing on \(13\), under the
given non-zero conditions for the quadratic expressions.
ring_nf at h4 ⊢ -- Reasoning: To establish the equality `x = 13` under the
given conditions, we need to manipulate the algebraic expression given by `h4`
to reveal its dependence on `x`, recognizing that the presence of `x` in the
expressions may affect the equation's truth value. The application of
algebraic transformations on both sides of the equation will facilitate the
identification of `x`'s value, taking into consideration the inequality
conditions provided (`h1`, `h2`, `h3`).
nlinarith -- Reasoning: To prove \(x = 13\), we must manipulate the equation
given by \(h4\) to isolate \(x\), using the algebraic properties of equality
and the assumption \(h0\) which states \(0 < x\). This requires careful
rearrangement and application of algebraic identities to simplify and
rearrange terms, facilitating the direct application of the properties of real
numbers to reach the desired conclusion.

theorem amc12a_2002_p6 (n : N) (h0 : 0 < n)
: ∃ m, m > n ∧ ∃ p, m * p ≤ m + p :=
use n + 1, by linarith only [h0] -- Reasoning: To demonstrate the existence of
such an `m` and `p` that satisfy the given inequalities, we leverage the
property of natural numbers that ensures an increase in `n` from `0` leads to
the possibility of finding such `m` and `p`. This approach is supported by the
fundamental property of natural numbers and their arithmetic operations,
suggesting that for a given `n` greater than `0`, there exists a successor `m`
and a number `p` that satisfy the conditions outlined.
exact 〈0, by simp 〉 -- Reasoning: To demonstrate that there exists an \(n \in N
\) such that \((n + 1) * p \leq n + 1 + p\) holds for some \(p \in N\), we
recognize that setting \(p = 0\) satisfies the inequality by the properties of
zero in arithmetic. This is because \(n + 1 > 0\) by assumption, ensuring the
left-hand side is non-negative and the right-hand side simplifies to \(n +
1\), making the inequality trivially true.

13

theorem aime_1983_p2 (x p : R) (f : R → R) (h0 : 0 < p ∧ p < 15) (h1 : p ≤ x ∧ x
≤ 15)
(h2 : f x = abs (x - p) + abs (x - 15) + abs (x - p - 15))
: 15 ≤ f x :=
cases' h1 with h1 h2 -- Reasoning: Given a function \(f\) defined over the real
numbers, where \(f(x)\) equals the sum of the absolute values of the
differences \(x - p\), \(x - 15\), and \(x - p - 15\), along with conditions
on \(p\) and \(x\) that ensure \(x\) lies between \(p\) and \(15\) and \(p\)
is positive, we aim to show that \(f(x) \geq 15\). To demonstrate this, we
consider all possible cases for the position of \(x\) relative to \(p\) and
\(15\), specifically at \(p\) itself, between \(p\) and \(15\), and at \(15\).
By evaluating \(f(x)\) for each case, we can establish a lower bound of
\(f(x)\) that is greater than or equal to \(15\).
simp [h0, abs_of_nonneg (sub_nonneg.2 h1), abs_of_nonneg (sub_nonneg.2 h2), *]
-- Reasoning: The objective is to show that \(f(x)\) is at least 15 for \(x\)
within the bounds \(p \le x \le 15\), where \(p\) is positive but less than
15. The provided expression for \(f(x)\) suggests using properties of absolute
values and inequalities to simplify and analyze \(f(x)\). By applying
simplification rules for absolute values and inequalities, along with the
given bounds, we aim to demonstrate the desired inequality \(f(x) \ge 15\).
simp only [abs_of_nonneg] at * -- Reasoning: The objective is to establish an
inequality involving an expression with absolute values and a sum, where all
terms are functions of \(x\). By recognizing that the absolute value functions
are always non-negative, we can simplify the given expression by removing the
absolute value symbols, thus focusing on the arithmetic manipulation of the
terms to demonstrate the inequality.
simp only [abs_of_nonneg, sub_add_eq_add_sub] at * -- Reasoning: The objective
is to demonstrate that the expression `15 ≤ x - p + |x - 15| + |x - p - 15|`
holds given the conditions on `p`, `x`, and the function `f`. Since the
expression in question involves absolute values which inherently involve
non-negativity, manipulating these expressions to highlight their
non-negativity or equality is a logical initial step. This involves
recognizing that the absolute value of a difference can be rewritten as the
difference of absolute values, which simplifies the manipulation of the
expression to prove the inequality.
congr 1 -- Reasoning: To establish the inequality `15 ≤ x + |x - 15| + |x - p
- 15| - p`, we recognize that the left-hand side of the inequality involves a
mix of additions and subtractions of real numbers. By introducing a congruence
transformation that simplifies operations involving absolute values, we aim to
align both sides of the inequality in a form that directly reflects the
properties of real numbers under these operations.
simp only [abs_of_nonpos (sub_nonpos_of_le h2), abs_of_nonneg (sub_nonneg_of_le
h1)] -- Reasoning: The objective is to prove an inequality involving absolute
values and subtractions that aligns the given conditions and constraints.
Simplification using the properties of absolute values and the provided bounds
can directly lead to the desired conclusion by expressing the absolute values
in terms of their underlying expressions and applying the given constraints.
simp [abs_of_pos, *] -- Reasoning: To prove the given inequality involving
absolute values, simplification using algebraic properties and given
hypotheses will directly lead us to the desired inequality by recognizing the
algebraic manipulation and application of the known bounds `h1` and `h2`, as
well as the non-negativity of `p`.
rw [abs_of_nonpos] -- Reasoning: The objective is to demonstrate that `15 ≤ 15
+ |x - p - 15| - p` under the given constraints on `p` and `x`. Given `p < 15`
and `p ≤ x ≤ 15`, it's apparent that `p - 15` is non-positive. This
observation allows us to apply the property that the absolute value of a
non-positive number is equal to its negative value, thereby simplifying the
expression on the right-hand side of the inequality.
all_goals linarith -- Reasoning: The goal involves demonstrating a relationship
between expressions involving inequalities and subtraction. The simplification
of these expressions into a form that directly compares their numerical values
can lead to a straightforward application of known inequalities and algebraic
properties, demonstrating the inequality's validity under the given conditions.

14

	Introduction
	Our Method: Lean-STaR
	Direct Tactic Prediction
	Thought-augmented Tactic Prediction
	Bootstrapping Thought-augmented Theorem Proving

	Experiments
	Experimental Setup
	Main Results
	Experiments with stronger base model and more data
	Experiments on expert iteration without CoT

	Conclusion & Limitations
	Additional Experiment Setup
	Lean-STaR Expert Iteration

	Statistics for our methods as well as the baselines
	An Example and Explanation of A Formal Proof in Lean
	Performance Analysis by Types and Difficulties using InternLM2-plus-7b
	Performance difference of joint training and continue training
	Retrospective Rationale Generation Prompt of GPT-4
	Examples of generated Lean proofs with thoughts

