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Abstract: Reliable contact simulation plays a key role in the development of
(semi-)autonomous robots, especially when dealing with contact-rich manipula-
tion scenarios, an active robotics research topic. Besides simulation, components
such as sensing, perception, data collection, robot hardware control, human in-
terfaces, etc. are all key enablers towards applying machine learning algorithms
or model-based approaches in real world systems. However, there is a lack of
software connecting reliable contact simulation with the larger robotics ecosys-
tem (i.e. ROS, Orocos), for a more seamless application of novel approaches,
found in the literature, to existing robotic hardware. In this paper, we present the
ROS-PyBullet Interface, a framework that provides a bridge between the reliable
contact/impact simulator PyBullet and the Robot Operating System (ROS). Fur-
thermore, we provide additional utilities for facilitating Human-Robot Interaction
(HRI) in the simulated environment. We also present several use-cases that high-
light the capabilities and usefulness of our framework. Our code base is open
source and can be found at github.com/ros-pybullet/ros pybullet interface.

1 Introduction
Dealing with contacts is a key requirement for robots to become effective in our daily lives and valu-
able assets in industry [1]. Examples of contact-rich tasks include pick and place [2], locomotion [3,
4, 5], wiping [6], pushing [7, 8], dyadic co-manipulation [9], and robot surgery [10, 11, 12, 13]. De-
veloping approaches for (semi-)autonomous robots involving contact is thwart with practical issues
(e.g. slippage, high impulsive forces, model mismatch, etc.) that may cause failure and damage to
the robot or yield safety concerns for humans in close proximity.
Development of machine learning approaches require a facility to collect large datasets. However,
collection on scale is non-trivial. Learning from demonstration [14] is a popular technique for en-
dowing robots with new skills where a human provides examples. According to one paradigm,
kinaesthetic teaching (e.g. [15]), the human interacts directly with the robot. However, this method
requires a physical system which is cumbersome and has potential safety concerns. A second ap-
proach utilizes teleoperation (e.g. [16]), which has the benefit that the human operator can either
interact with a simulated robot or at a distance with the physical system (ensuring safety). Two key
considerations for our framework are that the virtual world can include a human model via telep-
resence and that the human operator can experience the virtual forces generated by the simulator,
through interface to haptic devices. Furthermore, to ease issues when deploying methods on robot
hardware, we provide software features to easily map targets to the robot control commands.
In robotics, the system’s complexity, need for several sub-processes, and multi-machine operations
motivate a modular system design and message parsing functionality [17, 18, 19]. There are many
packages for the Robot Operating System (ROS) [18] integrating useful functionalities for research
and commercial systems, including useful data structures, control interfaces, inverse kinematics
(IK) and motion planning, perception tools, etc. [20, 21, 22, 23, 24]. Additionally, various visual-
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Figure 1: Outline of our framework for bridging a reliable contact simulator within the ROS ecosystem, and
HRI interfaces. Colored boxes indicate the specific parts of our proposed framework.

izers [25, 26, 27] and physics simulators [28, 29, 30, 31, 32] allow for the development and testing
of algorithms, prior to execution on robot hardware. However, popular and reliable libraries for
contact-rich scenarios, such as PyBullet [31], Drake [30], and MuJoCo [29], lack integration with
the ROS framework.

1.1 Contributions

In this paper, our contributions are

• A framework (Figure 1) that enables research in contact-rich manipulation scenarios al-
lowing for seamless collection of contact-rich data and human demonstrations within a
simulated environment.

• Our system enables transference of robot behaviors (learned or otherwise) from the PyBul-
let simulation environment (a reliable contact/impact simulator) to hardware using ROS.

• Implementation of several HRI interfaces, e.g. keyboard, mouse, joystick, 6D-mouse, hap-
tic devices, Xsens suit that enable easy interaction with virtual environments for HRI and
haptic setups.

• Several use-cases to demonstrate the capabilities and usefulness of the framework, includ-
ing a variety of robots (e.g. Kawada Nextage humanoid, KUKA LWR robot arm, Kinova
arm, and dual-arm KUKA IIWA), and full documentation (see supplementary material).

Our framework exploits modularity and extensibilty by implementing several ROS nodes and object
types using class hierarchy design patterns. Furthermore, we include additional features such as:
utilities for Model Predictive Control (MPC) design and development, motion planning, safe robot
operation (for ensuring safety limits are satisfied before commanding the real robot), and inverse
kinematics. Several recent works use the proposed framework [6, 33, 8, 34, 35].

2 Proposed Framework
To enable easy prototyping, implementation, and integration with hardware we implement several
tools/features in the framework. This section describes these and our design decisions.

2.1 Framework features

Figure 1 shows an overview for our framework highlighting it as a central interface between the
ROS ecosystem and PyBullet, human interaction, IK solvers, and real robots. The main features of
the framework are listed as follows.

1. Online, full-physics simulation using a reliable contact simulator. The framework relies
on PyBullet to enable well established contact simulation for rigid/deformable bodies.

2. Integration with the ROS ecosystem. Robot simulation and visualization of real
robots/objects (utilizing sensing) are integrated via ROS. Furthermore, this enables (i) ROS
packages to be integrated with PyBullet and (ii) a straightforward way to port developed
algorithms to real systems.

3. Several interfaces enabling HRI with virtual worlds and telepresence. We provide
facilities for human’s to provide examples in a simulated environment via several popular
interfaces (including haptic devices).
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Figure 2: Examples of the ROS-PyBullet Interface: (left-right): a Kinova arm reaching for a cup, a Kuka
LWR arm simulating a wiping task, a human model waving, a Talos humanoid robot reaching for a target
while maintaining balance, the Nextage robot simulating a smart factory scenario, and simulated RGB-D data
visualized in RViz.

4. Sensor simulation. Robot joint force-torque sensors and RGB-D cameras (i.e. point
clouds) are provided for sensing-based control and can be seamlessly interchanged with
real world sensor streams via ROS.

5. Modular and extensible design. Our framework adopts a modular (i.e. several ROS
nodes) and highly extensible design paradigm (i.e. class hierarchy) using the Python pro-
gramming language. This makes it easy to quickly develop new features for the framework.

6. Data collection with standard ROS tools. Since the framework provides an interface to
ROS, we can leverage common tools for data collection such as ROS bags [36] and data
processing to common formats in machine learning applications, i.e. rosbag pandas [37].

7. Integration with robot and sensing hardware. Tools are provided to easily remap the
virtual system to physical hardware and integrate real sensing apparatus in the PyBullet
simulation (e.g. vicon).

2.2 Full-Physics Contact-rich Simulation

Several simulators exist for full-physics simulation e.g. Gazebo [27], ODE [28], Nvidia Isaac [38],
DART [39], PyBullet [31], Drake [30], and MuJoCo [29]. We chose to use PyBullet [31] since
it is free and open source, a well-known library with an active community, easy to install, well
documented, and is in Python. A more detailed comparison is given in Section 4. To ensure our
framework is extensible, we develop several classes that interface with PyBullet and establish com-
munication links with ROS utilizing publishers, subscribers, timers, and services.

2.3 Robots and virtual worlds building

Our framework provides several tools to build virtual worlds. The main ROS-PyBullet Interface
node must specify a main YAML configuration file containing a list of robots/objects to load into
PyBullet, parameters, RGB-D sensor configuration, and visualizer options - robots/objects can also
be added/removed through ROS services. Various examples of robots/tasks are shown in Figure 2.
Several object types (Section 2.3.1) were developed with different interaction properties and various
communication channels with ROS. The specification for each object is defined in separate YAML
files. See the documentation provided in the supplementary material for a full list of parameters for
the configuration files, ROS topics published/subscribed, and ROS services provided.

2.3.1 PyBullet Objects
Robot Incorporating robots in our framework is simple. In a configuration file the user will specify
the URDF file name, and several parameters (e.g. base position, inital joint configuration, etc).
The robot base frame with respect to the world frame (named rpbi/world) is set by a transform
broadcast using the ROS TF library [20]. The interface optionally publishes the robot joint/link
states to ROS. Mobile and floating-base robots are also supported by our framework given an initial
state (i.e. pose and linear/angular velocity). ROS services expose PyBullet’s IK features, allow the
user to move the the robot to a given joint/end-effector state2, and return robot information (e.g.
joint/link names, number of degrees of freedom, etc).
Visual robot A visualization of a robot, that does not interact with the PyBullet environment, can
be instantiated by setting the is visual robot parameter to True in the robot configuration file.
The main utility of this feature is to allow the user to map a real robot state to the PyBullet environ-
ment enabling them to easily compare the real robot with a simulated robot representing the target
configuration. Only the robot information and IK services are available for visual robots.

2 When an end-effector state is given, the corresponding joint state is found using PyBullet’s IK features.
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(a) (b) (c)
Figure 3: RGB-D observation of a scene with two objects: (a) colour image, (b) depth image, (c) projected
colour point cloud in RViz.

Visual object A common requirement for simulators is to visualize objects. In PyBullet, these
objects do not affect other bodies in the scene, nor react to those. Visual objects are listed in the
main configuration file under the parameter visual objects. A visual object was used to visualize
the real pushing box (tracked with Vicon) in [8].
Collision object Modeling static objects, that cause momentum changes for other bodies upon col-
lision, such as floors, ceilings, and walls are often necessary. These objects are listed under the
parameter collision objects in the main configuration. During the development of the experi-
ments presented in [6], a collision object was used to represent a surface.
Dynamic object Objects whose pose evolution is completely determined by the simulator’s physics
engine are a key requirement for development of control algorithms. Dynamic objects, listed as
dynamic objects in the main configuration file, can be used inside PyBullet to simulate an object.
A simulated pushing box was used to develop the controller in [8].
Soft object All previously described object types are rigid bodies. We also provide an interface to
PyBullet deformable objects. These are similar to dynamic objects in that their evolution is defined
by PyBullet and can be specified using the soft objects parameter.
Load from URDF Finally, robots and objects can also be loaded directly into the PyBullet environ-
ment using the urdfs parameter. The evolution of these objects are defined by PyBullet. However,
since the usage of these objects is ambiguous their communication with ROS is limited.

2.3.2 Sensor simulation

Many control, and planning algorithms rely on sensory feedback. Integrating multiple sensory in-
puts, such as tactile and vision, is underdeveloped in robotic manipulation [40]. To enable future
research in realistic simulated environments, we provide an interface to several sensing modalities.
F/T sensor Through the configuration file for the robot it is possible to instantiate a simulated force-
torque sensor attached to any joint on the robot. These virtual sensors publish joint reaction forces,
read from PyBullet, as ROS wrench-stamped messages at a user-defined sampling frequency.
RGB-D camera Color and depth perception is a key sensing capability for object state estimation
in contact-rich manipulation tasks. An RGB-D camera can be instantiated and attached to a frame
through the main configuration file.
The color and depth images (image) are published together with the intrinsic camera parameters
(camera info). The camera intrinsic parameters are derived from the OpenGL projection matrix
and can be used to back-project the images to a colored point cloud (Figure 3). This is natively sup-
ported in ROS, e.g. via the RViz DepthCloud plugin or via the rgbd launch package. Optionally,
the interface can compute and publish the point cloud data directly.
On a discrete GPU (NVIDIA GeForce GTX 1650 Mobile) this will achieve about 27 Hz, while on
an integrated GPU (Intel UHD Graphics 630) this will reduce to about 18 Hz.
2.4 Human interaction

Developing contact-aware algorithms is a key aspect of future work for the robotics commu-
nity [40, 41]. Clearly there are safety concerns for HRI tasks. Simulation is a necessary step in
any development cycle involving robots. This means the only way a human can interact with the
virtual environment is through some interface (e.g. haptic device). To remedy this issue, we have
developed a plugin for several human interfaces so that the human can be realized in the virtual
environment and also receive virtual feedback from that environment.
Telepresence Physical HRI has obvious safety concerns [42, 43], this motivates including the hu-
man in the simulation environment. We provide several interfaces to incorporate a human into the
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simulation environment. A ROS driver for the Xsens suit (see Section 3.3) and an avatar (top-right
image in Figure 2) is provided to incorporate a human into the simulation. Additionally, several
ROS drivers for haptic devices are provided that enable virtual forces to be rendered to the human.
Control mapping Teleoperation requires the human to interact with the system via an interface.
The signals from the device need to be mapped to a control space, the choice of mapping however
is non-trivial [44, 45, 46]. We provide ROS nodes in the operator node package that take raw
interface signals as input and maps them to a control space of the users specification. Two options
are provided that are typical in robotics applications: (1) Several systems utilize joysticks, often
the scaled value of a joystick axis defines velocity in certain dimensions [47, 48]. We provide
scale node.py that appropriately orders and scales the interfaces axes. (2) Cartesian/task space
control for teleoperation is common, e.g. [44, 45, 49, 6, 33]. The individual axes of the interface
is often in the range [−1, 1]. If we scaled the joystick axes, as before, then the magnitude of the
maximum velocity is non-uniform for all interface states. We provide isometric node.py that
ensures the maximum velocity magnitude is isometric.
Logging signals There are several advantages for an intermediary node mapping driver signals
to operator commands. First, modularity allows the user to easily swap out interfaces/mappings
to compare modes. Second, methods utilizing moving horizon estimation (e.g. [50, 51, 6])
need to track a window of signals. We provide a node that enables this functionality in the
operator interface logger node. Third, such a structure enables collection/comparison of data
streams using ROS bags removing the need for extensive post-processing.

2.5 Interfacing with real hardware

Interfacing with hardware is straightforward using our framework. Each object can pub-
lish/broadcast its state in several formats (e.g. joint states, float arrays, transforms, wrenches). This
means the simulator can act, at development time, as the real system. When porting to the real
hardware we provide nodes that remap the current system states to the required robot/hardware
drivers: see the remap joint state to floatarray and remap joint state nodes in the
custom ros tools package. Setup for these is as simple as remapping topics in a launch file
or enabling a ROS re-mapper. The framework can also visualize the current state of physical
robots/objects in PyBullet. This is very useful when debugging software and hardware.

2.6 Additional utilities

We provide several utilities to facilitate easy transference of robot controllers (learned or otherwise)
from simulation to hardware; these are described below.
Model Predictive Control When developing MPC methods [7, 6, 8], it is useful to slowly iterate
through individual MPC iterations. Start, stop, and step ROS services are provided that allow the
user to easily debug MPC controllers (see rpbi controls node.py in the rpbi utils package).
Inverse Kinematics Inverse kinematics is a key requirement for robotic systems with several es-
tablished libraries [52, 53, 54, 23, 21]. A developer may want to investigate various IK problem
formulations by changing constraints and/or cost terms. Hence, we provide a standardized interface
ik ros that allows the user to switch between several IK solvers (local, global, trajectory-based,
etc) [53, 52, 31] and also define their own problem formulations. The implementation is extensi-
ble so that additional solvers can be easily included. Further, a popular integrated solution for IK,
and motion planning is MoveIt [21] which, via ROS, could be accessed by the PyBullet community
using our framework. In future work, we plan to link our proposed framework with MoveIt.
Interpolation Control often requires smaller time resolution than planning. In this case, interpola-
tion between knot points is necessary. The framework provides the interpolation node.py in
the rpbi utils package that performs interpolation of planned trajectories.
Time-sync ROS with PyBullet Synchronizing time between processes and a simulated time can
be useful. We provide an option so that the user can synchronize the ROS clock with PyBullet’s
simulation time.
Safe robot operation Safely operating robots is of paramount importance - especially when con-
ducting HRI experiments. We provide a package safe robot that ensures safe robot motions acting
as a guard between target and commanded states - every target is checked (e.g. link and joint posi-
tion/velocity limits, and self-collision) prior to being commanded on the real system.
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Figure 4: A human interacting with a virtual world. (a) The experimental setup where the human interacts with
the virtual world using a haptic device. (b) The Kuka LWR robot in PyBullet about to interact with a static
collision object including the coordinate frames (the frames are not presented to the user). (c) The force-feeback
evolution that is rendered to the human via the haptic device.

3 Use-cases
This section describes four use-cases highlighting the features of the proposed framework: (i) human
interaction with a virtual world, (ii) learning from demonstration using dynamic movement primi-
tives, (iii) full-body telepresence, and (iv) hardware realization. The code for running examples (i)
and (ii) has been made fully open source. We plan to make the driver for the Xsens suit, used in (iii),
open source along with an example.

3.1 Human interaction with virtual worlds

Developing robust learning and control techniques in contact-rich scenarios utilizing human input
requires the human to interact with the virtual world. In order to prototype contact-rich machine
learning and optimization-based methods with realistic interaction sequences requires such a haptic
interface and a simulator for generating realistic force-feedback.
In this use-case, we present the user with a haptic interface, a simulated Kuka LWR robot arm,
and a static collision box object (Figure 4a). Using the interface, the user controls a target position
defined in the zW axis that is constrained in the xW , yW axes (Figure 4b). The task for the robot is
to minimize the distance between the end-effector position and the target while keeping the zE and
zW axes aligned. The joint motion is generated using the IK features in PyBullet, we interface with
this functionality using the ik ros package described in Section 2.6. A simulated Force-Torque
sensor is attached to the robot at the wrist joint. When the end-effector comes into contact with the
static collision object, the force measured by the sensor in the zE axis is rendered to the user via
force-feedback. The evolution of the force feedback for a single interaction with the the box object
is shown in Figure 4c. Key to this use-case is to demonstrate that realistic contact force feedback
(rendered to the user via a haptic device) can be obtained from PyBullet. To run this example, attach
a haptic device (3D Systems Touch X), and execute the command roslaunch rpbi examples
human interaction.launch.

3.2 Learning from demonstration

Dynamic movement primitives (DMPs) [55] are a widely used mathematical formulation for mod-
elling motor control of biological systems. Over recent years they have become a key component
of learning from demonstration [56]. Many packages, examples, and code exists for learning and
executing DMPs – several have been integrated in ROS. To highlight the flexibility and potential
for learning from demonstration utlizing our framework we leverage a standard ROS package for
learning DMPs [57].
The goal in this section is to demonstrate how to learn a DMP from a teleoperated demonstration
using our framework. In this use-case, the user interfaces with the system using the keyboard. A
Kuka LWR robot arm is presented in PyBullet, and controlled in position control mode (Figure
5). The interface commands h are mapped to end-effector velocity in two dimensions. We use the
EXOTica [23] plugin in the ik ros package to perform inverse kinematics - the box and end-effector
states xd, ud are saved as the human demonstration. The goal is for the human to demonstrate how to
push a box from a starting location x0 to the goal position xg; this behavior is then learned from the
human demonstration ud using a DMP θ̂. A random starting location for the end effector is chosen
and the DMP is used to plan a motion x̂, û. When the DMP is executed, a starting position is chosen
randomly. In contrast to customized data collection schemes, with this use-case, we demonstrate that
data can be collected using standard ROS tools and processed to a Pandas data frame for analysis.
To run this example, open a terminal and execute roslaunch rpbi examples lfd.launch.
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3.3 Full-body telepresence

In this use-case, we show that not only can we setup various teleoperation examples for the devel-
opment of learning and control, but also we can integrate a realization of a virtual human that can
interact with the PyBullet environment. We equip a human with an XSens suit and publish the 3D
positions of each human body part into ROS as a transformation. Consecutively, we align each link
of the human model in PyBullet with the positions of each body part of the human to realize a full-
body virtual-presence of a humanoid figure. The setup is shown via an assistive dressing scenario
in Figure 6a, full details of the work can be found in [35]. This use-case demonstrates how a physical
HRI task can be validated in simulation, and then easily transferred to the real world.
3.4 Integration with hardware and MPC

A key feature of our framework is its ability to easily integrate with robot hardware and develop
methods for MPC [6, 8]. In this use-case we highlight this feature of our framework using a push-
ing task deployed on the Kawada Nextage humanoid robot. The setup is shown in Figure 6c. A
typical development cycle for research is to develop first in simulation, and then port the work to
the real system. Due to the complexity of robotic systems, data collection, hardware issues, etc.,
the latter step can be quite time consuming. Our goal during development of the framework was
to minimize this difficulty. We developed the facility to remap target joint states to several formats
required by real systems in our lab, and several object types that can interface with real sensors (e.g.
Vicon, AprilTags) or broadcast transforms (similar to a real object equipped with Vicon markers or
AprilTags). The interface makes it simple to swap between testing/prototyping the system in simu-
lation, and deploying on the real system – our demonstration reduces to setting a flag (real robot
= True or False). Furthermore, this use-case highlights the utility of the time-stepping feature of
the interface for developing MPC algorithms, described in Section 2.6. Typically this can only be
achieved in simulation, however since our system maps the simulator state to the real robot and has
the facility to track objects using online sensing, e.g. we used Vicon, the framework can execute
an MPC iteration on the real system by the user clicking a button. This significantly reduces the
development time for laborious tasks such as parameter tuning.

4 Related work
There are many physics simulators available to the robotics community, e.g. Drake [30],
Gazebo [27], Isaac Sim, MuJoCo [29], and PyBullet. However, there does not exist a single simula-
tor that performs best in all desired features for all domains [58]. Table 1 provides a comparison of
our framework against other potential open-source solutions. Each simulator is typically developed
for a specific purpose or with a certain application in mind, e.g. manipulation, medical, marine,
soft robotics, locomotion, etc. Our requirement was a simulator that could reliably model contact
and impact for manipulation, as well as haptic interactions. Collins et al. compare the accuracy
of manipulation tasks of simulators with respect to real world data [59]. Their comparison showed
that PyBullet performed better than V-REP/CopelliaSim and MuJoCo. In terms of contacts, Chung
and Pollard show that Bullet (version including the generalized coordinate approach, as in PyBullet)
outperformed Dart and ODE for a contact task [60]. A recent study by Acosta [61] compared Py-

(a) (b) (c)
Figure 6: Integrating robot hardware and sensing. (a) and (b) Real-time virtual-presence of a human in the sim-
ulation environment during assistive dressing. (a) The configuration of the human is sensed with the Xsens suit.
(b) A humanoid figure that corresponds to the human is shown, along with a green visual object (Section 2.3.1)
used to illustrate the estimated region of the occluded human elbow. (b) The Kawada Nextage humanoid robot
performing a pushing task.
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ROS Languages Deform. Obj. Hardware HRI Photo-realistic
Drake 7 C++/Python 3 7 7 7
Gazebo 3 C++ 7 3 7 73

Nvidia Isaac 34 Python 7 3 7 3
MuJoCo5 7 C++/Python 3 7 7 7
ROS-PyBullet 3 Python 3 3 3 76

Table 1: Comparison of our proposed framework against other potential open source solutions.
Bullet, MuJoCo, and Drake for impact accuracy compared to real world data. PyBullet and Drake
were shown to be preferable options for simulating contacts/impacts.
In terms of transference to hardware, Gazebo [27] is arguably one of the most popular simulators in
robotics [58, Fig. 2]. Since it’s incarnation, Gazebo has supported four backend physics simulators
(ODE [27, 28], Dart [39], Bullet, and SimBody). Yet, the current Bullet backend uses maximal
coordinate rigid bodies, that is not well suited for robotics (since it allows joint constraint viola-
tions). On the other hand, Bullet with the generalized coordinate approach based on Featherstone’s
algorithm [63] is particularly suitable for robotics (integrated in PyBullet) [60]. Recently, there has
been efforts to bridge Nvidia Isaac with ROS/Gazebo. However, as discussed by Gonzalez-Badillo
et al. [64] it was found that PhysX outperformed Bullet for assemblies involving simple objects,
while Bullet performed better with complex objects. In summary, we argue that PyBullet, with the
generalized coordinate is one of the best engines for contact and dynamics modeling and haptic
interactions, which is also popular in the learning community (e.g. [65, 66, 67]).

5 Limitations
We implemented the framework using Python, a popular programming language with numerous
libraries—making it suitable for our goals of easy prototyping and extensiblity. Despite Python be-
ing unsuitable for real-time systems, the robotics community has broadly adopted it as the language
for implementing robotic experiments. Furthermore, we have found no latency issues in all of our
experimental setups, running at frequencies of up to 200Hz.
Currently, the framework only supports ROS Noetic—thus the only way to run the framework with
ROS2 is via the ROS1 bridge [68]. Porting the framework to ROS2 is, at the time of writing this
manuscript, in-development.
High quality synthetic image rendering and switching out different physics engines are important
features for learning applications. The new Kubric library [62] uses Blender to add photo-realistic
rendering to Pybullet. Potential future work of ours is to incorporate the Kubric library and provide
a backend interface of our framework to other physics engines, e.g. MuJoCo.

6 Conclusions
In this paper, we have proposed a framework for simulating/collecting data for contact-rich manipu-
lation scenarios including: full physics simulation using PyBullet (known for reliable impact/contact
modeling), easy transference from simulation to real hardware, integration with the ROS ecosys-
tem,and several teleoperation interfaces and robots. Our focus has been to enable research in contact-
rich scenarios involving HRI and haptics, interfacing with virtual worlds. We have chosen a physics
simulator that reliably models contact/impact interactions and provide a bridge for the learning co-
munity to transfer their learned policies to real hardware via ROS. We have specifically designed the
implementation to exploit modularity and extensibility and to be highly flexible, easily developed,
and be able to interface with common machine learning tools/libraries.
We hope students, researchers, and industry will make use this framework to facilitate the devel-
opment of their control algorithms and machine learning approaches in scenarios involving con-
tact. The supplementary material contains full documentation. The main code base is open source
at github.com/ros-pybullet/ros pybullet interface which contains several examples, documentation,
and videos. Dependencies are linked to from the documentation and system requirements are de-
tailed. The framework is released under the LGPL license.

3 Possible via additional plugins. 4 Isaac Sim was recently integrated with Gazebo. 5 Until recently Mu-
JoCo required a license. 6 Possible with new Kubric library [62].
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