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ABSTRACT

Partial-label learning (PLL) is a weakly supervised learning problem in which
each example is associated with multiple candidate labels and only one is the true
label. In recent years, many deep PLL algorithms have been developed to improve
model performance. However, we find that some early developed algorithms are
often underestimated and can outperform many later algorithms with complicated
designs. In this paper, we delve into the empirical perspective of PLL and identify
several critical but previously overlooked issues. First, model selection for PLL is
non-trivial, but has never been systematically studied. Second, the experimental
settings are highly inconsistent, making it difficult to evaluate the effectiveness of
the algorithms. Third, there is a lack of real-world image datasets that can be com-
patible with modern network architectures. Based on these findings, we propose
PLENCH, the first Partial-Label learning bENCHmark to systematically compare
state-of-the-art deep PLL algorithms. We systematically investigate the model se-
lection problem for PLL for the first time, and propose novel model selection cri-
teria with theoretical guarantees. We also create Partial-Label CIFAR-10 (PLCI-
FAR10), an image dataset of human-annotated partial labels collected from Ama-
zon Mechanical Turk, to provide a testbed for evaluating the performance of PLL
algorithms in more realistic scenarios. Researchers can quickly and conveniently
perform a comprehensive and fair evaluation and verify the effectiveness of newly
developed algorithms based on PLENCH. We hope that PLENCH will facilitate
standardized, fair, and practical evaluation of PLL algorithms in the future.

1 INTRODUCTION

Partial-label learning (PLL) is a weakly supervised learning problem that has attracted much atten-
tion recently (Sugiyama et al., 2022; Wang et al., 2022a; Tian et al., 2023). In PLL, each training
example is associated with multiple candidate labels (Jin & Ghahramani, 2002; Cour et al., 2011).
The true label for each example is hidden in the set of candidate labels, but not accessible to the
learning algorithm. PLL has been successfully applied to computer vision (Liu & Dietterich, 2012;
Zeng et al., 2013; Chen et al., 2018; Gong et al., 2018; Wang et al., 2024b), natural language pro-
cessing (Garrette & Baldridge, 2013; Zhou et al., 2018; Ren et al., 2016a;b), web mining (Luo &
Orabona, 2010), ecoinformatics (Briggs et al., 2012; Li et al., 2021; Lyu et al., 2022), etc.

Among various strategies to address this problem, deep learning-based PLL algorithms have demon-
strated satisfactory generalization performance due to the strong representation learning capabilities
of deep neural networks (Lv et al., 2020; Wang et al., 2022b). Despite the abundance of algorithms
in this area, we find that there are several fundamental and critical issues that have received less at-
tention in the PLL literature, including neglected model selection issues, inconsistent experimental
settings, and lack of real-world image datasets, which will be discussed point by point.

Neglected model selection issues. Most PLL algorithms select their hyperparameters by using a
clean ordinary-label validation set (Qiao et al., 2023a; Xu et al., 2023a;b). However, the original
definition of PLL does not allow the existence of an ordinary-label dataset (Jin & Ghahramani,
2002; Cour et al., 2011; Zhang et al., 2017), indicating a mismatch between the problem definitions
and experimental settings in the literature. This problem can even lead to unfair comparisons if
some algorithms follow the classical protocol of PLL to prohibit the use of ordinary-label data,
while some algorithms do not. Moreover, if we have a clean ordinary-label dataset, why not use
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Figure 1: The two left panels show the differences in using an ordinary-label dataset for valida-
tion (lighter colors) and training (darker colors) for a given algorithm. For validation (lighter colors),
we searched for the best hyperparameter configurations with the validation set for a given algorithm.
For training (darker colors), we considered the validation set as partial-label examples with a single
partial label and added them to the training set for training, using default hyperparameters without
tuning. For fair comparisons, we trained all models with the same number of iterations. The two
right panels show the results of some PLL algorithms on Soccer Player and Yahoo! News from
papers A (Zhang et al., 2022) and B (Xu et al., 2023b), respectively.

it for training? In many cases, the use of clean labels is more valuable for weakly supervised
learning than for ordinary supervised learning (Hendrycks et al., 2018; Yu et al., 2023). A pilot
experiment was conducted to compare different approaches to using validation data with ordinary
labels. Figures 1(a) and 1(b) illustrate the results of the experiment on two versions of Partial-Label
CIFAR-10 (PLCIFAR10). We can observe that for many PLL algorithms without much need to
tune hyperparameters, it is more beneficial to use validation data with ordinary labels for training.
Therefore, it is imperative to standardize the use of validation data and model selection criteria to
ensure the integrity and practicality of empirical studies.

Inconsistent experimental settings. We have found that the experimental settings used in different
papers are often quite different, creating a dilemma when comparing the performance of different
algorithms. We illustrate this point with an example in Figures 1(c) and 1(d). We reported experi-
mental results of several PLL algorithms on Soccer Player and Yahoo! News from papers A (Zhang
et al., 2022) and B (Xu et al., 2023b), respectively. The data points for the same algorithm are
connected by a line, and the number of intersections between different lines indicates the times of
inconsistency in the performance ranking. In particular, the algorithm implementations, network
architectures, and datasets are identical. However, the relative ranking of the classification perfor-
mance differed significantly between the different papers. It is hypothesized that the discrepancy is
due to subtle variations in experimental settings, such as data partitioning and preprocessing, as well
as hyperparameter configurations. Such an obstacle can hinder objective comparisons of different
algorithms, making it difficult to determine the effectiveness of a developed technique.

Lack of real-world image datasets. Existing PLL works have mainly conducted experimental
results on real-world tabular datasets or synthetic image datasets to demonstrate the effectiveness of
the proposed methodology (Lyu et al., 2021; Wang et al., 2022b). However, on the one hand, tabular
datasets may not be compatible with modern network architectures, such as convolutional neural
networks (Oquab et al., 2015; He et al., 2016). On the other hand, synthetic image datasets are
generated by a human-made generation process (see Section 2), which may not be consistent with
complex annotation mechanisms in real-world applications (Jiang et al., 2020; Wei et al., 2022).
This may lead to potential concerns about whether an algorithm that works well on synthetic image
datasets will still work well on real-world complex image datasets (Xu et al., 2021).

Contributions. To this end, we propose PLENCH, the first Partial-Label learning bENCHmark to
standardize the experiments of PLL. The main contributions are as follows:

• We systematically investigate the model selection problems in PLL for the first time and propose
two model selection criteria that are both theoretically and empirically validated.

• We create PLCIFAR10, a new PLL benchmark dataset with human-annotated partial labels. PL-
CIFAR10 provides an effective testbed for evaluating the performance of PLL algorithms in more
realistic scenarios.
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• We present the first PLL benchmark that includes twenty-seven algorithms and eleven real-world
datasets, to systematically compare state-of-the-art deep PLL algorithms.

Takeaways. Based on our research, we suggest the following key takeaways:

• Many concise algorithms can outperform or be comparable to complicated algorithms with strong
regularization techniques and higher computational requirements.

• There is no algorithm that can outperform all other algorithms in all cases, suggesting that the
algorithmic design should be tailored for different cases.

• Model selection is non-trivial for PLL, and should be specified when proposing a PLL algorithm
or comparing different algorithms.

2 BACKGROUND

Problem setting. Let X “ Rd denote the d-dimensional feature space and Y “ t1, 2, . . . , qu

denote the label space with q class labels. Let px, Sq denote a partial-label example where x P X
is a feature vector and S Ď Y is a candidate label set associated with x. The basic assumption of
PLL is that the ground-truth label y of x is concealed within its candidate label set S, i.e., y P S.
The task of PLL is to learn a multi-class classifier f : X Ñ r0, 1sq from a partial-label training set
DTr “ t

`

xTr
i , STr

i

˘

un
Tr

i“1 where fpxq “ rf1pxq, f2pxq, . . . , fqpxqs is the estimated class-posterior
probability vector for x.

Data generation process. There are mainly two ways to generate synthetic instance-independent
partial labels, i.e., the uniform sampling strategy (USS) (Feng et al., 2020b;a) and the flipping prob-
ability strategy (FPS) (Zhang et al., 2022). Feng et al. (2020b) proposed the USS that the candidate
label set containing the ground-truth label is sampled from a uniform distribution, i.e.,

ppS|x, yq “
1

2q´1 ´ 1
I py P Sq , (1)

where Ipπq returns 1 if predicate π holds and returns 0 otherwise. Wen et al. (2021) proposed the
FPS assumption that each false positive label is independently drawn into the candidate label set
with a flipping probability ppz P S|yq. Then, the class-conditional probability distribution of the
candidate label set could be formulated as

ppS|x, yq “
ź

mPS,m‰y

ppm P S|yq ¨
ź

tRS

p1 ´ ppt P S|yqq . (2)

Although FPS seems more practical, the flipping probability is unknown. Many papers assume that
the flipping probability is a constant value for different labels, which is often not true in real-world
scenarios (Wei et al., 2022). Xu et al. (2021) proposed instance-dependent PLL, which assumes
that the generation of partial labels also depends on the feature. However, the datasets are still
synthesized by using the model outputs of an auxiliary network. In Section 4, we present a more
realistic benchmark dataset with human-annotated partial labels.

Deep PLL algorithms. There are three main categories of deep PLL algorithms, including
identification-based strategies, averaging-based strategies, and data-generation-based strategies.
Identification-based strategies try to find the true label from the candidate label set and train a clas-
sifier simultaneously (Yao et al., 2020; Lv et al., 2020; Wang & Zhang, 2020; Zhang et al., 2022;
Li et al., 2023; Xu et al., 2023b; Gong et al., 2022; He et al., 2024; Tian et al., 2024). Averaging-
based strategies consider equal contributions from all candidate labels and use the average modeling
output as the final output (Lv et al., 2024). Data-generation-based strategies model the generative
relationship between partial labels and true labels, and derive loss functions with theoretical guaran-
tees (Feng et al., 2020b;a; Wen et al., 2021; Qiao et al., 2023a). In addition, many works use strong
representation learning techniques to improve model performance based on these basic strategies,
such as contrastive learning and consistency regularization (Wang et al., 2022b; Wu et al., 2022; Xia
et al., 2022; Wu et al., 2024).

3 REALISTIC MODEL SELECTION CRITERIA FOR PLL

Model selection is a critical component in machine learning problems. However, it has received
little attention in the context of PLL. Most PLL work assumes the existence of a clean, ordinary-
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label dataset, which may be neither consistent with the original definition of PLL nor practical, as
discussed in Section 1. To promote fair and practical evaluation of PLL algorithms, it is important
to systematically examine the model selection procedure for PLL. We follow the original definition
of PLL to have only a single partial-label training set (Cour et al., 2011; Zhang et al., 2017). Then,
following a widely used validation procedure in machine learning (Raschka, 2018; Gulrajani &
Lopez-Paz, 2021), we divide a partial-label validation set DVal “ t

`

xVal
i , SVal

i

˘

un
Val

i“1 from the
training set for model selection. Next, we introduce each model selection criterion in turn.

3.1 COVERING RATE

Definition 1 (Covering Rate (CR)). The Covering Rate of a multi-class classifier f on the partial-
label validation set DVal is defined as:

CRpfq “
1

nVal

nVal
ÿ

i“1

I
ˆ

argmax
j

fjpxVal
i q P SVal

i

˙

. (3)

CR indicates the fraction of validation data whose predicted label is included in its candidate label
set. It is a natural metric in PLL, but its effectiveness may depend on the size of the candidate label
sets. When the number of partial labels of each example is equal to 1, i.e., |S| “ 1, PLL is reduced
to ordinary supervised learning and CR is reduced to validation accuracy. However, as |S| increases,
more false positive labels are included in the candidate label set. In the most extreme case, when
|S| “ q, PLL is reduced to unsupervised learning and CR does not convey effective information.
Before analyzing the gap between CR and accuracy, we introduce the following definition.
Definition 2 (Ambiguity Degree). The Ambiguity Degree γ is defined as

γ “ sup
px,yq„ppx,yq,S„ppS|x,yq,ȳ‰y

ppȳ P Sq, (4)

where ppx, yq is the joint distribution over x and y.

If γ ă 1, the small ambiguity degree is satisfied and the ERM learnability for PLL is guaran-
teed (Cour et al., 2011; Liu & Dietterich, 2014). We also define the expected accuracy as

ACC pfq “ Eppx,yqIpargmax
l

fl pxq “ yq. (5)

Then, we have the following proposition.
Proposition 1. Suppose that there is a constant ϵ P p0, 1q such that the expected accuracy of a
classifier f satisfies ACC pfq ě ϵ. Then, we have E rCRpfqs ´ ACC pfq ď p1 ´ ϵqγ.

The proof is in Appendix A. The gap between CR and the accuracy is affected by both the accuracy
and the ambiguity degree. If the classifier is more accurate and the partial-label dataset is less
ambiguous, the gap between the CR metric and the accuracy will be smaller. Furthermore, we show
that the minimizers of both are the same under certain conditions.
Theorem 1. Suppose that the partial labels are generated by following the USS or the FPS with
a constant flipping probability. Then, for any two classifiers f1 and f2 that satisfy E rCRpf1qs ă

E rCRpf2qs, we have ACC pf1q ă ACC pf2q.

The proof is in Appendix A. Theorem 1 shows that when partial labels are generated by using the
USS or the FPS with a constant flipping probability, the classifier that minimizes the expectation
of CR will also minimize the expected accuracy. Therefore, the CR metric will serve as a consis-
tent model selection criterion for PLL under certain data distribution assumptions. However, this
conclusion may not hold when partial labels are not generated by either strategy.

3.2 APPROXIMATED ACCURACY

Next, we introduce the definition of the Approximated Accuracy metric.
Definition 3 (Approximated Accuracy (AA)). The Approximated Accuracy of a multi-class classi-
fier f on the partial-label validation set DVal is defined as:

AApfq “
1

nVal

nVal
ÿ

i“1

ÿ

jPSVal
i

fjpxVal
i q

ř

kPSVal
i

fkpxVal
i q

I
ˆ

argmax
l

flpx
Val
i q “ j

˙

. (6)
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Then, we have the following theorem.
Theorem 2. Suppose there is a function C : X

Ś

2Y ÞÑ R such that the condition ppS|x, yq “

Cpx, SqI py P Sq holds for partial-label examples. Suppose further that the multi-class classifier
fpxq is consistent with ppy|xq. Then, under mild conditions AApfq is statistically consistent with
the expected accuracy, i.e., E rAApfqs “ ACC pfq.

The proof can be found in Appendix A. The introduction of AA is inspired by data-generation-
based strategies for PLL (Wu et al., 2023). Theorem 2 illustrates that AA can be a consistent metric
w.r.t. the expected classification accuracy on test data under certain assumptions. In particular, the
data distribution assumption can hold for a wide range of types of partial labels (Liu & Dietterich,
2012; Wu et al., 2023). However, there are two factors that may affect its effectiveness. First, it
may not be suitable for certain algorithms (Wen et al., 2021) where the loss function is not strictly
proper (Gneiting & Raftery, 2007; Charoenphakdee et al., 2021) and its modeling output is not
calibrated to the posterior probabilities. Second, it requires that the modeling output to be accurate,
which may not be satisfied in the early stages of training.

3.3 ORACLE ACCURACY

Finally, we present the definition of the Oracle Accuracy metric.
Definition 4 (Oracle Accuracy (OA)). The Oracle Accuracy of a multi-class classifier f on a partial-
label validation set DVal is defined as

OApfq “
1

nVal

nVal
ÿ

i“1

I
ˆ

argmax
l

flpx
Val
i q “ yVal

i

˙

, (7)

where yVal
i is the underlying true label of xVal

i .

The OA metric is natural if we have access to true labels in supervised learning. However, such a
condition is not realistic in real problems of PLL. In fact, the availability of true labels contradicts the
original motivation of PLL, which is to reduce labeling costs at the expense of true label ignorance.
Inspired by Gulrajani & Lopez-Paz (2021), we restrict the use of true labels by allowing only one
query (the last checkpoint) for each hyperparameter configuration. This means that we do not allow
early stopping when using the OA metric. We try to compensate for the unrealistic access to true
labels by restricting the model selection space. In fact, OA may be the most common model selection
criterion for many PLL papers. We also include the results of OA with early stopping (ES), which
can be considered as an upper bound of the model selection performance, for reference.

4 PLCIFAR10: A DATASET WITH HUMAN-ANNOTATED PARTIAL LABELS

In this section, we present a novel image dataset with human-annotated partial labels to compensate
for the lack of real-world image datasets for PLL. We used Amazon Mechanical Turk (MTurk) as
our crowdsourced annotation platform. CIFAR-10 (Krizhevsky & Hinton, 2009) was chosen as the
base dataset because it has been widely used in the PLL literature. In addition, the difficulty and
workload are relatively moderate, which can facilitate our experimental design and analysis. We
posted the annotation tasks of the images from the training set of CIFAR-10 as Human Intelligence
Tasks (HITs), and the crowdsourced workers received salaries by completing the HITs. We created
5000 HITs, each containing 10 random images. Workers were allowed to select multiple candidate
labels, which could include the true label for an image. We then asked 10 different workers to
perform the same HIT at the same time. As a result, each image could be annotated with multiple
candidate label sets, and each candidate label set could contain multiple labels. More details on the
data collection can be found in Appendix B.

In summary, we collected 502,190 candidate label sets with a total of 712,109 partial labels. Fig-
ure 2(a) shows the distribution of our collected partial labels. The imbalanced distribution of partial
labels may not match the commonly used USS or FPS with a constant probability. Furthermore,
we find that the noise rate, i.e., the proportion of training examples whose candidate label sets do
not contain the true label, is high with few annotators, as shown in Figure 2(b). As the number
of annotators increases, the aggregation of partial labels may become less noisy. We consider two
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Figure 2: (a). The distribution of the collected partial labels of PLCIFAR10. (b) The noise rate
with the increasing of the number of annotators. (c) The flipping probability matrix computed on
PLCIFAR10-Aggregate. (d) The flipping probability matrix computed on PLCIFAR10-Vaguest.

versions of PLCIFAR10 for experiments. The first is PLCIFAR10-Aggregate, which assigns the
aggregation of all partial labels from all annotators to each example. The second is PLCIFAR10-
Vaguest, which assigns to each example the largest candidate label set from the annotators. Since
PLCIFAR10-Vaguest has a high noise rate, it actually serves as a dataset for noisy PLL (Xu et al.,
2023a; Lv et al., 2024), which is a more practical setting since it is hard to ensure that annotated
labels are perfect in real-world applications. Figures 2(c) and 2(d) show the flipping probability
matrices ppj P S|y “ iq computed based on the two versions of PLCIFAR10. We can see that the
flipping probabilities are not equal and the diagonals are not all 1, which is more challenging and
practical than current synthetic datasets generated with the USS or the FPS.

5 SETUP OF PLENCH

5.1 BENCHMARK ALGORITHMS

We have divided the benchmark algorithms into four main groups. The detailed descriptions and
hyperparameter settings can be found in Appendix D.

Vanilla deep PLL algorithms. We considered deep PLL algorithms that used simple loss func-
tions or disambiguation strategies without strong regularization techniques as vanilla deep PLL al-
gorithms. Identification-based strategies included PRODEN (Lv et al., 2020), CAVL (Zhang et al.,
2022), and POP (Xu et al., 2023b). Note that RC (Feng et al., 2020b) is in the same form as PRO-
DEN, so we only included PRODEN here to avoid repetitive comparisons. The averaging-based
strategies included ABS-MAE (Lv et al., 2024) and ABS-GCE (Lv et al., 2024), which showed
favorable performance among the losses in the family. The data-generation-based strategies in-
cluded EXP (Feng et al., 2020a), MCL-GCE (Feng et al., 2020a), MCL-MSE (Feng et al., 2020a),
CC (Feng et al., 2020b), LWS (Wen et al., 2021), and IDGP (Qiao et al., 2023a). Also, LOG (Feng
et al., 2020a) is analogous to CC, so we only included CC here.

Vanilla deep CLL algorithms. Complementary-label learning (CLL) is a special case of PLL
with only one label excluded from each candidate label set of training examples, i.e., |S| “ q ´ 1.
If we consider each label outside the candidate label set as a complementary label, it is possible to
apply CLL algorithms to solve PLL problems as well (Feng et al., 2020a). Therefore, we included
several vanilla CLL algorithms with simple loss functions in PLENCH. The vanilla CLL algorithms
included PC (Ishida et al., 2017), Forward (Yu et al., 2018), NN (Ishida et al., 2019), GA (Ishida
et al., 2019), SCL-EXP (Chou et al., 2020), SCL-NL (Chou et al., 2020), L-W (Gao & Zhang, 2021),
and OP-W (Liu et al., 2023).

Holistic deep PLL algorithms. We considered PLL algorithms that employ strong representation
learning or regularization techniques to be holisitic PLL algorithms. We used five algorithms, includ-
ing VALEN (Xu et al., 2021), PiCO (Wang et al., 2022b), ABLE (Xia et al., 2022), CRDPLL (Wu
et al., 2022), and DIRK (Wu et al., 2024).

Deep noisy PLL algorithms. We also included three noisy PLL algorithms that explicitly con-
sidered tailored strategies to handle the cases where the true label might be outside the candidate
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label set. The deep noisy PLL algorithms included FREDIS (Qiao et al., 2023b), ALIM (Xu et al.,
2023a), and PiCO+ (Wang et al., 2024a).

5.2 BENCHMARK DATASETS

To comprehensively evaluate the model performance of all algorithms, we included eleven real-
world PLL benchmark datasets, including nine widely used tabular datasets and two image datasets
that we collected. The tabular datasets included Lost (Cour et al., 2011), Soccer Player (Zeng et al.,
2013), and Yahoo! News (Guillaumin et al., 2010) for the automatic face naming task, MSRCv2 (Liu
& Dietterich, 2012) for the object classification task, Mirflickr (Huiskes & Lew, 2008) for the web
image classification task, Birdsong (Briggs et al., 2012) for the bird song classification task, Mala-
gasy (Garrette & Baldridge, 2013), Italian (Johan et al., 2009), and English (Zhou et al., 2018) for
the POS tagging task. A detailed description of the datasets can be found in Appendix B.

5.3 EXPERIMENTAL SETTINGS

In the experiments, we mainly investigate the hyperparameter selection problem of model selection.
For tabular datasets, we first divided a test set from the entire dataset. Since the datasets were not
explicitly divided into training and validation parts, we manually divided them into a partial-label
training set DTr and a partial-label validation set DVal. Then, we trained a model with DTr and
evaluated its validation performance on DVal with the model selection criteria proposed in Section 3
as well as its test performance on the test set DTe with ordinary labels. We then selected the check-
point with the best validation performance and returned the corresponding test accuracy as the final
result. We randomly selected a set of hyperparameter configurations from a given pool for a given
data split and recorded the mean accuracy as well as the standard deviations for the best performance
with different dataset splits. We used ResNet (He et al., 2016) and DenseNet (Huang et al., 2017)
for image datasets and a multilayer perceptron (MLP) with a hidden layer width of 500 equipped
with the ReLU (Nair & Hinton, 2010) activation function for tabular datasets.

6 EXPERIMENTS

6.1 EXPERIMENTAL RESULTS ON TABULAR DATASETS

Figure 3 shows the box plots of vanilla deep PLL and CLL algorithms on real tabular datasets, where
NN and GA are not included in the figure because their performance was not satisfactory. Moreover,
most holistic deep PLL algorithms are mostly based on different data augmentation strategies and
cannot be applied here. Detailed experimental results can be found in Appendix E. We can observe
that AA does not work well in some cases where the classifier is not accurate enough. The CR metric
is sometimes more effective and can serve as an alternative model selection criterion. Therefore, we
may need to prepare different model selection criteria to effectively determine the hyperparameters
in different cases. The classification performance of PRODEN is very strong in most cases, which
clearly confirms its effectiveness. However, it still cannot outperform all other algorithms in all
cases. In addition, some early vanilla CLL algorithms, such as Forward, SCL-EXP, and OP-W,
can also achieve good performance and deserve to be considered when conducting comparative
experiments for PLL.

6.2 EXPERIMENTAL RESULTS ON IMAGE DATASETS

Tables 1 and 2 report the experimental results on PLCIFAR10-Aggregate and PLCIFAR10-Vaguest
with ResNet. Tables 3 and 4 report the experimental results on PLCIFAR10-Aggregate and
PLCIFAR10-Vaguest with DenseNet. We do not include the results of VALEN because it requires a
very large computational and memory budget. The following conclusions can be drawn. First, com-
pared to the results with OA and ES, CR is very effective in most cases. The performance of AA
decreases in some cases. We speculate that this is because the modeling results may not be reliable,
and the results of AA may deviate from the true accuracy. Second, PRODEN and its variants are still
strong in performance, but there is no algorithm that can outperform all other algorithms in all cases.
Third, noisy partial labels have a significant impact on the model performance of most algorithms.
Therefore, it is still promising to develop effective noisy PLL algorithms in more practical scenarios.
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Figure 3: Experimental results of different algorithms on tabular data sets. The top, middle, and
bottom figures correspond to box plots of experimental results using CR, AA, OA, and OA with ES
for model selection, respectively. The colors of the bars indicate the mean accuracy.

Table 1: Classification accuracy (mean˘std) of each algorithm on PLCIFAR10-Aggregate with
ResNet, where the best performance w.r.t. each metric is shown in bold.

Algorithm Venue w/ CR w/ AA w/ OA w/ OA & ES

PRODEN ICML 2020 (Lv et al., 2020) 85.95˘0.08 85.77˘0.11 85.91˘0.18 86.03˘0.13
CAVL ICLR 2022 (Zhang et al., 2022) 68.09˘0.25 65.92˘1.15 68.23˘0.17 69.12˘0.47
POP ICML 2023 (Xu et al., 2023b) 84.94˘0.08 85.27˘0.34 85.04˘0.27 85.53˘0.24
ABS-MAE TPAMI 2024 (Lv et al., 2024) 55.13˘1.13 45.51˘4.38 54.31˘1.22 55.32˘1.15
ABS-GCE TPAMI 2024 (Lv et al., 2024) 74.21˘1.08 71.28˘1.20 74.68˘0.80 76.00˘0.44
EXP ICML 2020 (Feng et al., 2020a) 10.00˘0.00 10.00˘0.00 10.00˘0.00 10.00˘0.00
MCL-GCE ICML 2020 (Feng et al., 2020a) 60.57˘0.60 58.26˘1.14 32.31˘9.73 62.26˘0.72
MCL-MSE ICML 2020 (Feng et al., 2020a) 61.03˘1.25 10.00˘0.00 55.09˘1.96 63.17˘0.59
CC NeurIPS 2020 (Feng et al., 2020b) 80.66˘0.23 80.77˘0.46 81.44˘0.29 81.87˘0.11
LWS ICML 2021 (Wen et al., 2021) 55.31˘0.32 26.44˘5.35 55.50˘0.58 56.17˘0.51
IDGP ICLR 2023 (Qiao et al., 2023a) 82.80˘0.30 80.72˘0.66 83.43˘0.17 83.65˘0.44
PC NeurIPS 2017 (Ishida et al., 2017) 71.45˘0.71 70.34˘0.39 71.06˘0.56 72.24˘0.75
Forward ECCV 2018 (Yu et al., 2018) 81.19˘0.24 79.51˘0.33 80.98˘0.49 81.57˘0.38
NN ICML 2019 (Ishida et al., 2019) 30.68˘0.39 25.97˘1.17 29.50˘0.51 31.65˘0.38
GA ICML 2019 (Ishida et al., 2019) 37.81˘1.00 37.51˘1.19 36.84˘1.37 38.26˘0.79
SCL-EXP ICML 2020 (Chou et al., 2020) 79.50˘0.33 79.57˘0.37 79.34˘0.53 80.30˘0.15
SCL-NL ICML 2020 (Chou et al., 2020) 81.87˘0.07 81.09˘0.55 79.96˘0.56 81.75˘0.14
L-W ICML 2021 (Gao & Zhang, 2021) 76.76˘0.49 74.04˘0.87 74.76˘0.60 76.76˘0.49
OP-W AISTATS 2023 (Liu et al., 2023) 78.91˘0.22 78.71˘0.39 79.64˘0.21 81.15˘0.49
PiCO ICLR 2022 (Wang et al., 2022b) 79.20˘0.61 75.19˘0.59 79.37˘0.50 79.88˘0.77
ABLE IJCAI 2022 (Xia et al., 2022) 85.86˘0.18 86.30˘0.14 86.07˘0.08 86.46˘0.10
CRDPLL ICML 2022 (Wu et al., 2022) 81.60˘0.55 79.82˘0.16 81.66˘0.52 82.36˘0.19
DIRK AAAI 2024 (Wu et al., 2024) 85.90˘0.31 84.96˘0.63 85.74˘0.42 85.60˘0.28
FREDIS ICML 2023 (Qiao et al., 2023b) 85.01˘0.08 84.94˘0.07 85.66˘0.22 85.74˘0.09
ALIM NeurIPS 2023 (Xu et al., 2023a) 63.51˘0.73 61.76˘1.57 61.42˘1.16 64.72˘0.27
PiCO+ TPAMI 2024 (Wang et al., 2024a) 60.07˘0.13 57.63˘0.84 59.01˘1.20 62.66˘0.33

6.3 COMPLEXITY ANALYSIS

Figure 4 shows the running time and GPU memory usage for each running step of different PLL
algorithms on PLCIFAR10-Vaguest with DenseNet. We can see that some holistic deep PLL al-
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Table 2: Classification accuracy (mean˘std) of each algorithm on PLCIFAR10-Vaguest with
ResNet, where the best performance w.r.t. each metric is shown in bold.

Algorithm Venue w/ CR w/ AA w/ OA w/ OA & ES

PRODEN ICML 2020 (Lv et al., 2020) 74.95˘0.09 68.54˘0.39 74.78˘0.64 76.94˘0.41
CAVL ICLR 2022 (Zhang et al., 2022) 63.62˘0.27 61.76˘0.75 63.70˘0.62 64.68˘0.18
POP ICML 2023 (Xu et al., 2023b) 75.17˘0.53 67.71˘0.54 74.35˘0.25 76.08˘0.18
ABS-MAE TPAMI 2024 (Lv et al., 2024) 55.58˘0.53 32.25˘7.18 55.60˘0.66 55.84˘0.50
ABS-GCE TPAMI 2024 (Lv et al., 2024) 75.17˘0.34 72.86˘0.17 74.13˘0.68 75.95˘0.35
EXP ICML 2020 (Feng et al., 2020a) 63.93˘0.39 61.77˘0.16 63.04˘0.58 64.14˘0.36
MCL-GCE ICML 2020 (Feng et al., 2020a) 71.74˘0.21 64.53˘1.67 70.78˘0.32 73.28˘0.19
MCL-MSE ICML 2020 (Feng et al., 2020a) 67.99˘0.96 65.91˘1.44 64.94˘0.27 69.98˘0.49
CC NeurIPS 2020 (Feng et al., 2020b) 71.78˘0.50 61.05˘0.22 70.11˘0.43 73.26˘0.51
LWS ICML 2021 (Wen et al., 2021) 60.21˘0.59 44.12˘10.76 60.98˘0.46 61.78˘0.67
IDGP ICLR 2023 (Qiao et al., 2023a) 76.14˘0.18 71.36˘2.72 76.05˘0.31 77.74˘0.19
PC NeurIPS 2017 (Ishida et al., 2017) 64.46˘1.88 66.02˘0.48 66.59˘0.34 68.13˘0.29
Forward ECCV 2018 (Yu et al., 2018) 70.01˘0.43 43.09˘12.96 70.52˘0.07 70.98˘0.23
NN ICML 2019 (Ishida et al., 2019) 33.23˘0.32 25.31˘1.05 30.35˘0.37 33.12˘0.48
GA ICML 2019 (Ishida et al., 2019) 33.94˘1.01 33.64˘1.20 31.35˘0.86 34.00˘0.98
SCL-EXP ICML 2020 (Chou et al., 2020) 71.13˘0.51 65.45˘0.58 71.33˘0.50 72.86˘0.28
SCL-NL ICML 2020 (Chou et al., 2020) 69.66˘0.50 60.46˘1.54 69.56˘0.47 71.52˘0.14
L-W ICML 2021 (Gao & Zhang, 2021) 69.81˘0.59 59.19˘1.45 71.12˘0.19 72.44˘0.45
OP-W AISTATS 2023 (Liu et al., 2023) 70.53˘0.51 69.64˘2.67 73.20˘0.26 73.21˘0.10
PiCO ICLR 2022 (Wang et al., 2022b) 74.06˘0.22 68.33˘0.58 73.27˘0.46 74.70˘0.33
ABLE IJCAI 2022 (Xia et al., 2022) 75.49˘0.58 68.14˘0.25 74.87˘0.49 76.27˘0.13
CRDPLL ICML 2022 (Wu et al., 2022) 76.21˘0.58 70.99˘0.19 75.70˘0.09 77.68˘0.46
DIRK AAAI 2024 (Wu et al., 2024) 80.32˘0.15 75.02˘2.36 80.10˘0.33 81.08˘0.32
FREDIS ICML 2023 (Qiao et al., 2023b) 74.57˘0.90 67.72˘0.13 73.45˘0.32 76.94˘0.24
ALIM NeurIPS 2023 (Xu et al., 2023a) 65.49˘1.05 66.51˘0.83 67.57˘1.93 70.59˘1.21
PiCO+ TPAMI 2024 (Wang et al., 2024a) 61.59˘1.55 59.65˘0.84 61.27˘0.12 64.75˘0.30

Table 3: Classification accuracy (mean˘std) of each algorithm on PLCIFAR10-Aggregate with
DenseNet, where the best performance w.r.t. each metric is shown in bold.

Algorithm Venue w/ CR w/ AA w/ OA w/ OA & ES

PRODEN ICML 2020 (Lv et al., 2020) 80.94˘0.54 81.54˘0.72 80.94˘0.90 81.30˘0.74
CAVL ICLR 2022 (Zhang et al., 2022) 61.12˘2.71 60.17˘2.34 63.52˘1.80 63.82˘1.68
POP ICML 2023 (Xu et al., 2023b) 80.99˘0.31 80.90˘0.53 81.20˘0.41 81.38˘0.43
ABS-MAE TPAMI 2024 (Lv et al., 2024) 53.93˘2.12 50.56˘1.85 52.56˘1.68 53.85˘2.05
ABS-GCE TPAMI 2024 (Lv et al., 2024) 72.48˘0.34 71.50˘0.46 73.05˘0.71 74.28˘0.70
EXP ICML 2020 (Feng et al., 2020a) 10.00˘0.00 10.00˘0.00 10.00˘0.00 10.00˘0.00
MCL-GCE ICML 2020 (Feng et al., 2020a) 58.82˘0.31 57.81˘0.24 36.47˘10.98 61.34˘0.03
MCL-MSE ICML 2020 (Feng et al., 2020a) 57.29˘0.22 10.00˘0.00 54.27˘2.35 59.37˘0.38
CC NeurIPS 2020 (Feng et al., 2020b) 78.28˘0.82 77.64˘0.67 78.52˘0.38 78.97˘0.49
LWS ICML 2021 (Wen et al., 2021) 47.57˘0.20 41.64˘1.91 48.48˘0.42 48.90˘0.41
IDGP ICLR 2023 (Qiao et al., 2023a) 77.49˘0.86 76.07˘0.80 78.41˘0.84 79.03˘0.86
PC NeurIPS 2017 (Ishida et al., 2017) 65.60˘0.13 65.95˘0.54 66.12˘0.34 66.55˘0.47
Forward ECCV 2018 (Yu et al., 2018) 78.74˘0.48 78.02˘0.30 78.38˘0.39 79.39˘0.19
NN ICML 2019 (Ishida et al., 2019) 31.51˘0.98 26.01˘1.37 30.22˘0.48 32.97˘0.79
GA ICML 2019 (Ishida et al., 2019) 37.21˘0.58 36.85˘0.46 37.28˘0.18 37.86˘0.20
SCL-EXP ICML 2020 (Chou et al., 2020) 78.67˘0.71 78.27˘0.69 78.38˘0.34 78.83˘0.32
SCL-NL ICML 2020 (Chou et al., 2020) 79.26˘0.59 78.40˘0.98 78.29˘0.27 79.26˘0.59
L-W ICML 2021 (Gao & Zhang, 2021) 71.68˘0.53 71.77˘0.29 72.24˘0.69 73.78˘0.56
OP-W AISTATS 2023 (Liu et al., 2023) 79.95˘0.36 78.86˘0.43 80.04˘0.16 80.36˘0.32
PiCO ICLR 2022 (Wang et al., 2022b) 74.89˘2.14 74.23˘0.65 75.81˘1.58 76.37˘1.61
ABLE IJCAI 2022 (Xia et al., 2022) 81.38˘0.33 81.40˘0.34 81.21˘0.49 81.28˘0.61
CRDPLL ICML 2022 (Wu et al., 2022) 74.97˘0.99 74.90˘0.52 75.36˘0.59 75.67˘0.66
DIRK AAAI 2024 (Wu et al., 2024) 77.74˘0.64 77.83˘0.53 77.86˘0.67 77.85˘0.76
FREDIS ICML 2023 (Qiao et al., 2023b) 81.25˘0.56 81.08˘0.80 81.11˘0.69 81.66˘0.51
ALIM NeurIPS 2023 (Xu et al., 2023a) 56.61˘1.02 57.29˘0.32 58.46˘0.38 59.75˘0.64
PiCO+ TPAMI 2024 (Wang et al., 2024a) 57.05˘0.71 54.01˘1.71 56.02˘1.02 58.45˘0.15

gorithms with strong regularization terms and complicated training strategies can achieve better
performance, but they also take more time and use more memory. Therefore, it is important to con-
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Table 4: Classification accuracy (mean˘std) of each algorithm on PLCIFAR10-Vaguest with
DenseNet, where the best performance w.r.t. each metric is shown in bold.

Algorithm Venue w/ CR w/ AA w/ OA w/ OA & ES

PRODEN ICML 2020 (Lv et al., 2020) 72.73˘0.61 67.42˘1.06 72.53˘0.48 73.98˘0.11
CAVL ICLR 2022 (Zhang et al., 2022) 55.93˘1.95 58.85˘1.00 59.01˘1.29 59.81˘1.49
POP ICML 2023 (Xu et al., 2023b) 71.92˘0.87 69.18˘1.64 71.90˘0.13 72.85˘0.21
ABS-MAE TPAMI 2024 (Lv et al., 2024) 57.07˘2.16 45.50˘5.21 57.69˘1.98 57.94˘2.01
ABS-GCE TPAMI 2024 (Lv et al., 2024) 73.30˘0.46 69.85˘1.27 72.75˘0.48 73.63˘0.42
EXP ICML 2020 (Feng et al., 2020a) 61.50˘0.69 55.26˘2.27 61.44˘0.54 62.56˘0.52
MCL-GCE ICML 2020 (Feng et al., 2020a) 66.57˘1.37 61.90˘1.36 67.88˘1.10 69.57˘0.70
MCL-MSE ICML 2020 (Feng et al., 2020a) 63.37˘1.09 63.79˘0.92 63.08˘0.42 65.26˘0.55
CC NeurIPS 2020 (Feng et al., 2020b) 68.77˘0.29 60.92˘0.05 69.62˘0.33 71.49˘0.48
LWS ICML 2021 (Wen et al., 2021) 57.85˘1.47 54.65˘1.65 58.16˘2.38 59.09˘2.00
IDGP ICLR 2023 (Qiao et al., 2023a) 72.02˘0.64 70.55˘0.91 72.98˘0.33 74.19˘0.41
PC NeurIPS 2017 (Ishida et al., 2017) 59.99˘0.93 60.28˘0.28 63.11˘0.48 63.93˘0.90
Forward ECCV 2018 (Yu et al., 2018) 66.35˘0.97 60.12˘1.52 66.54˘0.58 67.99˘0.14
NN ICML 2019 (Ishida et al., 2019) 31.08˘0.91 26.52˘0.37 30.23˘0.63 33.54˘0.12
GA ICML 2019 (Ishida et al., 2019) 35.55˘0.25 35.52˘0.46 34.52˘0.55 35.75˘0.30
SCL-EXP ICML 2020 (Chou et al., 2020) 68.99˘0.34 65.59˘0.82 69.41˘0.84 70.72˘0.49
SCL-NL ICML 2020 (Chou et al., 2020) 66.90˘0.37 61.42˘0.22 65.87˘1.03 68.71˘0.64
L-W ICML 2021 (Gao & Zhang, 2021) 68.28˘0.83 63.52˘0.71 68.20˘0.48 69.66˘0.43
OP-W AISTATS 2023 (Liu et al., 2023) 69.91˘1.42 70.25˘0.84 71.55˘0.49 72.55˘0.41
PiCO ICLR 2022 (Wang et al., 2022b) 71.76˘0.28 69.30˘0.93 70.89˘0.59 72.27˘0.48
ABLE IJCAI 2022 (Xia et al., 2022) 71.68˘1.01 68.22˘1.08 72.10˘0.20 73.44˘0.51
CRDPLL ICML 2022 (Wu et al., 2022) 70.73˘0.75 70.69˘0.17 71.99˘0.67 72.46˘0.29
DIRK AAAI 2024 (Wu et al., 2024) 70.47˘0.32 71.06˘0.48 71.26˘0.19 71.60˘0.75
FREDIS ICML 2023 (Qiao et al., 2023b) 71.38˘0.41 65.92˘0.13 71.33˘0.30 72.95˘0.25
ALIM NeurIPS 2023 (Xu et al., 2023a) 61.91˘1.23 62.04˘1.10 63.84˘0.49 65.37˘0.72
PiCO+ TPAMI 2024 (Wang et al., 2024a) 62.45˘0.74 59.59˘1.79 60.67˘0.89 62.82˘1.10
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Figure 4: Running time and GPU memory utilization for each running step of different PLL algo-
rithms on PLCIFAR10-Vaguest with DenseNet.

sider the tradeoff between performance and resource consumption when deciding which algorithm
to use given limited computational resources.

7 CONCLUSION

In this paper, we proposed the first PLL benchmark to standardize the performance evaluation of
state-of-the-art deep PLL algorithms. We proposed new model selection criteria to fill in the gap of
model selection problems of PLL. We also introduced PLCIFAR10, a novel image dataset of human-
annotated partial labels. We hope that the availability of this benchmark can promote fair, practical,
and standardized evaluation of PLL algorithms in the future. A limitation of our work is that the
datasets are relatively small, and we will leave the exploration of large-scale PLL datasets as our
future work. In addition, our experiments are conducted with simple deep neural networks. It is also
interesting to explore the incorporation of foundation models to improve the model performance of
PLL algorithms in the future.
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A PROOFS

A.1 PROOF OF PROPOSITION 1

E rCRpfqs ´ ACC pfq

“Eppx,Sq

„

I
ˆ

argmax
j

fjpxq P S

˙ȷ

´ Eppx,yq

„

I
ˆ

argmax
j

fjpxq “ y

˙ȷ

“Eppx,y,Sq

„

I
ˆ

argmax
j

fjpxq P Sztyu

˙ȷ

“Eppx,y,Sq

„

I
ˆ

argmax
j

fjpxq P Sztyu

˙

I
ˆ

argmax
j

fjpxq ‰ y

˙ȷ

“p

ˆ

argmax
j

fjpxq P Sztyu, argmax
j

fjpxq ‰ y

˙

“p

ˆ

argmax
j

fjpxq ‰ y

˙

p

ˆ

argmax
j

fjpxq P Sztyu| argmax
j

fjpxq ‰ y

˙

“ p1 ´ ACC pfqq p

ˆ

argmax
j

fjpxq P Sztyu| argmax
j

fjpxq ‰ y

˙

ďp1 ´ ϵqmax
ȳ‰y

ppȳ P S|x, yq

ďp1 ´ ϵqγ.

Here, the third equation can be obtained by traversing the cases of argmaxj fjpxq “ y,
argmaxj fjpxq P Sztyu, and argmaxj fjpxq R S. The last inequality results from the defini-
tion of the ambiguity degree. The proof is completed.

A.2 PROOF OF THEOREM 1

Under the USS assumption or the FPS assumption with a constant flipping probability, the proba-
bility ppȳ P S|x, ȳ ‰ yq is a constant value for different ȳ. Suppose the constant is c. Then, we
have

E rCRpfqs ´ ACC pfq

“ p1 ´ ACC pfqq p

ˆ

argmax
j

fjpxq P Sztyu| argmax
j

fjpxq ‰ y

˙

“c p1 ´ ACC pfqq .

Therefore, we have

ACC pfq “
E rCRpfqs ´ c

1 ´ c
. (8)

For any two classifiers f1 and f2 that satisfy E rCRpf1qs ă E rCRpf2qs, we have
ACC pf1q ă ACC pf2q. The proof is completed.

A.3 PROOF OF THEOREM 2

The proof of Theorem 2 is mainly based on the theoretical results from Wu et al. (2023). We
introduce the following lemma.
Lemma 1 (Wu et al. (2023)). Assume that there exist a function C : X

Ś

2Y ÞÑ R such that the
condition ppS|x, yq “ Cpx, SqI py P Sq holds for partial-label examples. Then, the classification
risk

Eppx,yq rLpfpxq, yqs (9)
is equivalent to

Eppx,yq

«

ÿ

jPS

ppy “ j|xq
ř

kPS ppy “ k|xq
Lpfpxq, kq

ff

. (10)
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Then, we provide the proof of Theorem 3.

Proof of Theorem 3. We set Lpfpxq, kq “ I
`

argmaxj fjpxq “ y
˘

. Then, if the multi-class clas-
sifier fpxq is consistent with ppy|xq, AApfq is statistically consistent with the expected accuracy.
The proof is completed.

B MORE DETAILS OF BENCHMARK DATASETS

In this section, we first describe the data sheet of PLCIFAR10, a novel dataset collected by us.
Then, we provide more information of real-world datasets used in the paper. The summary of all the
datasets is shown in Table 5.

Table 5: Characteristics of real-world PLL data sets used in PLENCH.
Dataset # Examples # Features # Classes Avg. # CLs Noise Rate Type Task Domain

Lost 1,122 108 16 2.23 0% tabular automatic face naming (Cour et al., 2011)
MSRCv2 1,758 48 23 3.16 0% tabular object classification (Liu & Dietterich, 2012)
Mirflickr 2,780 1,536 14 2.76 0% tabular web image classification (Huiskes & Lew, 2008)
Birdsong 4,998 38 13 2.18 0% tabular bird song classification (Briggs et al., 2012)
Malagasy 5,303 384 44 8.35 0.04% tabular POS Tagging (Garrette & Baldridge, 2013)

Soccer Player 17,472 279 171 2.09 0% tabular automatic face naming (Zeng et al., 2013)
Italian 21,878 519 90 1.60 0% tabular POS Tagging (Johan et al., 2009)

Yahoo! News 22,991 163 219 1.91 0% tabular automatic face naming (Guillaumin et al., 2010)
English 24,000 300 45 1.19 0.97% tabular POS Tagging (Zhou et al., 2018)

PLCIFAR10-Aggregate (Ours) 50,000 3,072 10 4.87 0.13% image image classification (Krizhevsky & Hinton, 2009)
PLCIFAR10-Vaguest (Ours) 50,000 3,072 10 3.49 17.56% image image classification (Krizhevsky & Hinton, 2009)

B.1 MORE DETAILS OF PLCIFAR10

There are some related work (Khetan et al., 2018; Peterson et al., 2019; Collins et al., 2022; Schmarje
et al., 2022; Gao et al., 2022; Goswami et al., 2023) which also work on handling data annotations
with multiple labels. For each example, we have a list of lists, where each sublist contains partial
labels given by a single annotator. Each image was resized to 256ˆ256 for easy annotation. We also
imposed several requirements on the annotation task to ensure the quality of the annotations. First,
we asked the annotators to choose labels for all ten images. Second, we did not allow annotators to
select the same label for more than a threshold number of images. Third, we did not allow annotators
to select too many partial labels more than a threshold for a single image. We set the thresholds to
6 for a HIT of 10 images. Crowdworkers were involved in the data collection process. We paid
$0.02 for a HIT, while $0.01 was given to the crowdworkers, while $0.01 was given to the MTurk
platform.

B.2 MORE INFORMATION OF TABULAR DATASETS

For face age estimation, we considered ten crowdsourced labels of age numbers along with the true
label as partial labels for a given human face. For automatic face naming, we considered the names
in the corresponding captions or subtitles as partial labels for a face cropped from an image. For
object classification, we considered object classes as partial labels for a segmentation part in an
image. For web image classification, we considered tags on a web page as partial labels for a given
image. For bird song classification, we considered bird species appearing in a ten-second bird song
fragment as partial labels for the singing syllables of the fragment. For POS tagging, we considered
all possible POS tags as partial labels for a given word with its contexts.

C USAGE OF PLENCH

Our code implementation is available at https://github.com/ICLR2025-5419/PLENCH.
Before running the code, please put ./data/plcifar10.pkl in xxx/plcifar10/ where
xxx is your data path. Tabular datasets can be downloaded from https://palm.seu.edu.
cn/zhangml/Resources.htm#data. Researchers can easily add newly developed algo-
rithms to PLENCH to verify their effectiveness. We mainly need to inherit the Algorithm class
and implement the update and predict functions for the new algorithm in algorithms.py.
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Table 6: Summary of benchmark algorithms.

Vanilla Deep PLL Algorithms
PRODEN (Lv et al., 2020), CAVL (Zhang et al., 2022), POP (Xu et al., 2023b), ABS-MAE (Lv et al., 2024),
ABS-GCE (Lv et al., 2024), EXP (Feng et al., 2020a), MCL-GCE (Feng et al., 2020a),
MCL-MSE (Feng et al., 2020a), CC (Feng et al., 2020b), LWS (Wen et al., 2021), IDGP (Qiao et al., 2023a)

Vanilla Deep CLL Algorithms PC (Ishida et al., 2017), Forward (Yu et al., 2018), NN (Ishida et al., 2019), GA (Ishida et al., 2019),
SCL-EXP (Chou et al., 2020), SCL-NL (Chou et al., 2020), L-W (Gao & Zhang, 2021), OP-W (Liu et al., 2023)

Holistic Deep PLL Algorithms VALEN (Xu et al., 2021), PiCO (Wang et al., 2022b), ABLE (Xia et al., 2022), CRDPLL (Wu et al., 2022),
DIRK (Wu et al., 2024)

Deep Noisy PLL Algorithms FREDIS (Qiao et al., 2023b), ALIM (Xu et al., 2023a), PiCO+ (Wang et al., 2024a)

For example, to implement CAVL (Zhang et al., 2022), we can write the following code:
class CAVL(Algorithm):

def __init__(self, input_shape, train_givenY, hparams):
super(CAVL, self).__init__(input_shape, train_givenY, hparams)
self.featurizer = networks.Featurizer(input_shape, self.hparams)
self.classifier = networks.Classifier(

self.featurizer.n_outputs,
self.num_classes)

self.network = nn.Sequential(self.featurizer, self.classifier)
self.optimizer = torch.optim.Adam(

self.network.parameters(),
lr=self.hparams["lr"],
weight_decay=self.hparams[’weight_decay’]

)
train_givenY = torch.from_numpy(train_givenY)
tempY = train_givenY.sum(dim=1).unsqueeze(1).repeat(1, train_givenY.shape[1])
label_confidence = train_givenY.float()/tempY
self.label_confidence = label_confidence
self.label_confidence = self.label_confidence.double()

def update(self, minibatches):
_, x, strong_x, partial_y, _, index = minibatches
loss = self.rc_loss(self.predict(x), index)
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
self.confidence_update(x, partial_y, index)
return {’loss’: loss.item()}

def rc_loss(self, outputs, index):
device = "cuda" if index.is_cuda else "cpu"
self.label_confidence = self.label_confidence.to(device)
logsm_outputs = F.log_softmax(outputs, dim=1)
final_outputs = logsm_outputs * self.label_confidence[index, :]
average_loss = - ((final_outputs).sum(dim=1)).mean()
return average_loss

def predict(self, x):
return self.network(x)

def confidence_update(self, batchX, batchY, batch_index):
with torch.no_grad():

batch_outputs = self.predict(batchX)
cav = (batch_outputs*torch.abs(1-batch_outputs))*batchY
cav_pred = torch.max(cav,dim=1)[1]
gt_label = F.one_hot(cav_pred,batchY.shape[1])
self.label_confidence[batch_index,:] = gt_label.double()

After implementing the algorithm, we can specify the hyperparameters in
hparams registry.py. Then we can train the new algorithm with the following script:

python -m plench.train --data_dir=your_data_path--algorithm CAVL \
--dataset PLCIFAR10_Aggregate --output_dir=your_output_path--steps 60000

D DETAILS OF DEEP PLL ALGORITHMS

In this section, we first give detailed descriptions of the PLL algorithms used in this paper. Then,
we provide the hyperparameter configurations for all the algorithms. Table 6 shows the summary of
the deep PLL algorithms included in this paper.
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D.1 DESCRIPTIONS OF ALGORITHMS

The vanilla deep PLL algorithms include:

• PRODEN (Lv et al., 2020): An identification-based strategy that uses self-training to progres-
sively estimate the true label distribution from the candidate label set.

• CAVL (Zhang et al., 2022): An identification-based strategy that uses the class activation value
to directly identify the true label from the candidate label set.

• POP (Xu et al., 2023b): An identification-based strategy that progressively filters out false positive
labels from the candidate label set based on PRODEN.

• ABS-MAE (Lv et al., 2024): An averaging-based strategy using the mean absolute error (MAE)
loss function.

• ABS-GCE (Lv et al., 2024): An averaging-based strategy using the generalized cross-entropy
(GCE) loss function.

• CC (Feng et al., 2020b): A data-generation-based strategy using a classifier-consistent loss func-
tion based on the uniform distribution assumption.

• EXP (Feng et al., 2020a): A A data-generation-based strategy using exponential loss under the
uniform distribution assumption.

• MCL-GCE (Feng et al., 2020a): A data-generation-based strategy using generalized cross-entropy
(GCE) loss under the uniform distribution assumption.

• MCL-MSE (Feng et al., 2020a): A data-generation-based strategy using mean squared error
(MSE) loss based on the uniform distribution assumption.

• LWS (Wen et al., 2021): A data-generation-based strategy that uses a leveraged weighted loss
function to account for losses from both candidate and non-candidate labels.

• IDGP (Qiao et al., 2023a): A data-generation-based strategy that performs Maximum A Poste-
rior (MAP) using a decomposed probability distribution model.

The vanilla deep CLL algorithms include

• PC (Ishida et al., 2017): A risk-consistent CLL algorithm using the pairwise-comparison loss
based on the uniform distribution assumption.

• Forward (Yu et al., 2018): A classifier-consistent CLL algorithm using a transition matrix to
model the complementary-label generation process based on the biased distribution assumption.

• NN (Ishida et al., 2019): A risk-consistent CLL algorithm using a non-negative risk estimator
based on the uniform distribution assumption.

• GA (Ishida et al., 2019): A risk-consistent CLL algorithm using the gradient ascent technique
based on the uniform distribution assumption.

• SCL-EXP (Chou et al., 2020): A discriminative CLL algorithm using exponential loss.
• SCL-NL (Chou et al., 2020): A discriminative CLL algorithm using negative loss.
• L-W (Gao & Zhang, 2021): A discriminative CLL algorithm using weighted loss.
• OP-W (Liu et al., 2023): A classifier-consistent CLL algorithm by using the opposite number of

logits to compute the loss.

The holistic deep PLL algorithms:

• VALEN (Xu et al., 2021): An identification-based strategy that uses variational inference to esti-
mate the true label distribution.

• PiCO (Wang et al., 2022b): A PLL algorithm that uses the supervised contrastive learning module
to improve model performance.

• ABLE (Xia et al., 2022): A PLL algorithm that uses an ambiguity-induced contrastive learning
module to improve model performance.

• CRDPLL (Wu et al., 2022): A PLL algorithm that uses consistency regularization to improve
model performance.

• DIRK (Wu et al., 2024): A PLL algorithm that uses knowledge distillation and contrastive learn-
ing to improve model performance.

The deep noisy PLL algorithms include:

• FREDIS (Qiao et al., 2023b): A noisy PLL algorithm that filters out false positive labels while
including false negative labels.
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Table 7: Classification accuracy (mean˘std) of each algorithm on Lost with different model selec-
tion criteria.

Algorithm Venue w/ CR w/ AA w/ OA w/ OA & ES

PRODEN ICML 2020 (Lv et al., 2020) 71.33˘2.45 70.09˘2.33 71.33˘2.41 71.33˘2.29
CAVL ICLR 2022 (Zhang et al., 2022) 60.00˘3.30 58.41˘2.99 64.42˘2.80 61.95˘2.40
POP ICML 2023 (Xu et al., 2023b) 69.38˘1.96 69.38˘1.96 70.44˘2.45 73.10˘2.16
ABS-MAE TPAMI 2024 (Lv et al., 2024) 68.50˘2.70 67.43˘2.10 68.85˘3.07 69.03˘2.99
ABS-GCE TPAMI 2024 (Lv et al., 2024) 62.65˘2.64 62.30˘2.04 62.48˘2.66 67.43˘2.68
EXP ICML 2020 (Feng et al., 2020a) 71.33˘1.27 70.27˘2.32 72.21˘1.59 70.97˘1.26
MCL-GCE ICML 2020 (Feng et al., 2020a) 60.71˘2.41 58.94˘2.62 61.95˘1.99 65.49˘2.14
MCL-MSE ICML 2020 (Feng et al., 2020a) 58.58˘2.26 59.47˘2.71 58.76˘2.52 59.47˘3.06
CC NeurIPS 2020 (Feng et al., 2020b) 71.33˘2.60 70.62˘2.92 72.57˘2.80 72.21˘2.42
LWS ICML 2021 (Wen et al., 2021) 72.92˘3.59 71.33˘3.75 72.21˘2.41 74.34˘2.68
IDGP ICLR 2023 (Qiao et al., 2023a) 69.73˘2.87 70.97˘1.59 75.04˘1.61 71.68˘2.39
PC NeurIPS 2017 (Ishida et al., 2017) 66.37˘2.54 63.01˘2.89 66.37˘2.33 67.96˘2.29
Forward ECCV 2018 (Yu et al., 2018) 71.68˘3.70 71.50˘3.77 73.27˘2.91 72.74˘3.51
NN ICML 2019 (Ishida et al., 2019) 26.73˘1.04 17.52˘1.49 22.48˘1.24 26.37˘1.04
GA ICML 2019 (Ishida et al., 2019) 18.94˘3.40 13.63˘2.57 6.73˘1.14 20.00˘2.06
SCL-EXP ICML 2020 (Chou et al., 2020) 69.73˘2.50 70.80˘2.66 73.81˘1.95 73.81˘1.85
SCL-NL ICML 2020 (Chou et al., 2020) 71.68˘2.54 70.80˘3.03 74.69˘2.97 72.74˘1.93
L-W ICML 2021 (Gao & Zhang, 2021) 63.72˘2.36 63.36˘1.19 63.01˘2.81 65.31˘2.33
OP-W AISTATS 2023 (Liu et al., 2023) 73.10˘3.14 62.30˘2.61 76.28˘2.78 76.99˘2.68
VALEN NeurIPS 2021 (Xu et al., 2021) 66.02˘2.43 65.31˘2.55 64.42˘2.98 66.19˘3.32

• ALIM (Xu et al., 2023a): A noisy PLL algorithm that uses a weighted sum of the labeling confi-
dence of candidate and non-candidate label sets as the target. We assume that the true noise rate
is accessible.

• PiCO+ (Wang et al., 2024a): A noisy PLL algorithm using distance-based clean sample selection
semi-supervised contrastive learning. We assume that the true noise rate is accessible.

D.2 IMPLEMENTATION DETAILS

All the algorithms were implemented in PyTorch (Paszke et al., 2019) and all experiments were
conducted with a single NVIDIA Tesla V100 GPU. We used the Adam optimizer (Kingma & Ba,
2015). We ran 60,000 iterations for the image datasets, 20,000 iterations for the Soccer Player, Ital-
ian, Yahoo! News, and English datasets, and 10,000 iterations for the other datasets. We recorded
the performance on validation and test sets per 1,000 iterations. For each data split, we selected 20
random hyperparameter configurations from a given pool. Table 8 shows the details of the hyperpa-
rameter configurations for all algorithms.

E DETAILS OF EXPERIMENTAL RESULTS

Table 7 and Tables 9 to 16 show the experimental results on tabular datasets.
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Table 8: Hyperparameters, their default values and distributions for random search.

Condition Parameter Default Value Random Distribution

ResNet
learning rate 0.001 10Uniformp´4.5,´2.5q

batch size 256 2Uniformp6,9q

weight decay 0.00001 10Uniformp´6,´3q

MLP
learning rate 0.001 10Uniformp´4.5,´2.5q

batch size 128 2Uniformp5,8q

weight decay 0.00001 10Uniformp´6,´3q

POP

window size 5 RandomChoicepr3, 4, 5, 6, 7sq

warm up epoch 20 RandomChoicepr10, 15, 20sq

initial threshold 0.001 10Uniformp´4.5,´2.5q

step size 0.001 10Uniformp´4.5,´2.5q

ABS-GCE q 0.7 0.7

MCL-GCE q 0.7 0.7

LWS leveraged weight 2 RandomChoicepr1, 2sq

IDGP warm up epoch 10 RandomChoicepr5, 10, 15, 20sq

VALEN warm up iteration 5000 RandomChoicepr1000, 2000, 3000, 4000, 5000sq

number of nearest neighbors 3 RandomChoicepr3, 4sq

PiCO

warm up iteration 178 178
size of output representation 128 RandomChoicepr64, 128, 256sq

size of the queue 8192 RandomChoicepr4096, 8192sq

model update momentum 0.999 RandomChoicepr0.9, 0.999sq

prototype calculation momentum 0.99 RandomChoicepr0.99, 0.9sq

weight of the contrastive loss 0.5 RandomChoicepr0.5, 1.0sq

ABLE
size of output representation 128 RandomChoicepr64, 128, 256sq

weight of the ambiguity-induced loss 1 RandomChoicepr0.5, 1, 2sq

temperature 0.07 RandomChoicepr0.03, 0.05, 0.07, 0.09sq

CRDPLL weight of the consistency loss 1 1

DIRK teacher model update momentum 0.99 RandomChoicepr0.5, 0.9, 0.99sq

FREDIS

initial refinement threshold 0.000001 0.000001
initial disambiguation threshold 1 1
step size of refinement threshold 0.000001 0.1RandomChoicer6,5,4,3,2,1s

step size of disambiguation threshold 0.000001 0.1RandomChoicer6,5,4,3,2,1s

number of changed entries 500 RandomChoicepr50, 100, 300, 500, 800, 1000sq

time of the number of changed entries 2 RandomChoicepr1, 2, 3, 4, 5sq

epoch of updating intervals 20 RandomChoicepr10, 20sq

weight of the consistency loss 10 RandomChoicepr1, 10sq

weight of the supervised loss 1 RandomChoicepr0.001, 0.01, 0.1, 1sq

ALIM

warm up iteration 178 178
size of output representation 128 RandomChoicepr64, 128, 256sq

size of the queue 8192 RandomChoicepr4096, 8192sq

model update momentum 0.999 RandomChoicepr0.9, 0.999sq

prototype calculation momentum 0.99 RandomChoicepr0.99, 0.9sq

weight of the contrastive loss 0.5 RandomChoicepr0.5, 1.0sq

starting epoch of denoising 40 RandomChoicepr20, 40, 80, 100, 140sq

weight of the mixup loss 1 1

PiCO+

warm up iteration 250 RandomChoicepr1, 250sq

size of output representation 128 RandomChoicepr64, 128, 256sq

size of the queue 8192 RandomChoicepr4096, 8192sq

model update momentum 0.999 RandomChoicepr0.9, 0.999sq

prototype calculation momentum 0.99 RandomChoicepr0.99, 0.9sq

weight of the contrastive loss 0.5 RandomChoicepr0.5, 1.0sq

selection ratio for clean sample 1 RandomChoicepr0.6, 0.8, 0.95, 0.99, 1sq

start iteration of kNN augmentation 5000 RandomChoicepr2, 100, 5000sq

number of nearest neighbors 16 RandomChoicepr8, 16sq

temperature of label guessing 0.07 RandomChoicepr0.1, 0.07sq

weight for the losses of unreliable examples 0.1 RandomChoicepr0.1, 0.5sq

weight for the losses of mixup loss 2 RandomChoicepr2, 3, 5sq
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Table 9: Classification accuracy (mean˘std) of each algorithm on MSRCv2 with different model
selection criteria.

Algorithm Venue w/ CR w/ AA w/ OA w/ OA & ES
PRODEN ICML 2020 (Lv et al., 2020) 52.50˘0.83 53.41˘1.11 51.82˘0.65 52.39˘1.16
CAVL ICLR 2022 (Zhang et al., 2022) 46.14˘0.84 45.00˘1.26 48.64˘1.56 46.14˘1.63
POP ICML 2023 (Xu et al., 2023b) 51.36˘0.92 52.05˘0.73 52.61˘1.10 54.09˘1.01
ABS-MAE TPAMI 2024 (Lv et al., 2024) 45.68˘1.82 44.09˘1.80 46.48˘1.91 48.18˘1.47
ABS-GCE TPAMI 2024 (Lv et al., 2024) 48.30˘1.80 46.93˘1.37 49.55˘1.31 50.34˘1.11
EXP ICML 2020 (Feng et al., 2020a) 44.77˘0.73 45.57˘0.94 46.14˘1.36 45.57˘1.26
MCL-GCE ICML 2020 (Feng et al., 2020a) 44.43˘1.16 44.77˘1.19 47.16˘0.28 46.93˘1.10
MCL-MSE ICML 2020 (Feng et al., 2020a) 45.68˘1.33 33.64˘2.08 43.75˘1.27 45.80˘1.79
CC NeurIPS 2020 (Feng et al., 2020b) 52.16˘1.32 52.27˘1.51 52.27˘1.60 53.07˘1.25
LWS ICML 2021 (Wen et al., 2021) 47.50˘0.80 46.59˘0.53 49.77˘1.35 49.32˘1.03
IDGP ICLR 2023 (Qiao et al., 2023a) 52.61˘0.81 50.45˘2.07 52.05˘1.14 52.84˘1.56
PC NeurIPS 2017 (Ishida et al., 2017) 41.82˘1.33 43.98˘2.02 44.09˘0.73 44.89˘1.24
Forward ECCV 2018 (Yu et al., 2018) 49.89˘1.71 51.59˘1.64 51.14˘0.53 50.57˘1.80
NN ICML 2019 (Ishida et al., 2019) 18.86˘1.79 16.82˘1.33 16.70˘0.83 20.23˘1.14
GA ICML 2019 (Ishida et al., 2019) 12.95˘1.01 13.52˘0.67 10.91˘0.74 14.55˘1.22
SCL-EXP ICML 2020 (Chou et al., 2020) 48.86˘1.41 49.89˘1.20 48.98˘1.70 49.32˘1.67
SCL-NL ICML 2020 (Chou et al., 2020) 51.25˘1.02 51.70˘1.41 49.32˘1.11 51.36˘1.24
L-W ICML 2021 (Gao & Zhang, 2021) 44.77˘1.63 41.93˘0.74 45.34˘0.90 44.55˘0.89
OP-W AISTATS 2023 (Liu et al., 2023) 49.89˘0.98 27.50˘9.01 51.59˘1.55 51.93˘1.42
VALEN NeurIPS 2021 (Xu et al., 2021) 48.30˘1.43 49.09˘1.29 48.41˘0.93 49.89˘0.81

Table 10: Classification accuracy (mean˘std) of each algorithm on Mirflickr with different model
selection criteria.

Algorithm Venue w/ CR w/ AA w/ OA w/ OA & ES
PRODEN ICML 2020 (Lv et al., 2020) 66.19˘1.61 65.40˘1.00 66.47˘1.63 66.69˘1.29
CAVL ICLR 2022 (Zhang et al., 2022) 63.88˘0.69 64.75˘1.40 62.73˘1.69 65.83˘1.17
POP ICML 2023 (Xu et al., 2023b) 65.40˘1.18 64.53˘0.78 66.62˘1.05 66.40˘1.28
ABS-MAE TPAMI 2024 (Lv et al., 2024) 63.60˘0.98 58.49˘1.92 63.81˘1.01 66.04˘1.07
ABS-GCE TPAMI 2024 (Lv et al., 2024) 53.96˘1.71 53.02˘0.78 54.17˘0.90 58.27˘1.24
EXP ICML 2020 (Feng et al., 2020a) 64.46˘1.39 57.55˘3.13 64.82˘1.32 63.53˘1.76
MCL-GCE ICML 2020 (Feng et al., 2020a) 55.40˘1.35 53.17˘1.29 54.10˘0.89 56.62˘0.22
MCL-MSE ICML 2020 (Feng et al., 2020a) 52.23˘1.01 35.04˘5.62 55.68˘1.25 57.27˘1.59
CC NeurIPS 2020 (Feng et al., 2020b) 65.04˘1.16 63.67˘1.37 64.32˘0.65 66.98˘1.03
LWS ICML 2021 (Wen et al., 2021) 64.96˘1.30 38.78˘5.29 65.04˘1.23 65.54˘1.77
IDGP ICLR 2023 (Qiao et al., 2023a) 66.12˘2.07 68.35˘1.22 68.13˘0.98 69.06˘0.91
PC NeurIPS 2017 (Ishida et al., 2017) 62.45˘1.14 58.78˘1.41 62.37˘1.07 63.02˘1.61
Forward ECCV 2018 (Yu et al., 2018) 65.32˘1.45 64.68˘2.16 64.96˘1.19 65.54˘1.33
NN ICML 2019 (Ishida et al., 2019) 19.93˘1.78 9.28˘1.19 18.06˘1.22 24.96˘1.52
GA ICML 2019 (Ishida et al., 2019) 21.37˘0.52 11.37˘4.01 17.84˘0.39 21.51˘1.86
SCL-EXP ICML 2020 (Chou et al., 2020) 63.31˘1.29 59.42˘4.38 64.60˘1.03 65.32˘0.86
SCL-NL ICML 2020 (Chou et al., 2020) 63.60˘1.13 63.74˘1.17 67.12˘1.15 66.83˘0.62
L-W ICML 2021 (Gao & Zhang, 2021) 57.55˘1.31 52.09˘3.57 57.34˘2.71 60.07˘2.18
OP-W AISTATS 2023 (Liu et al., 2023) 64.32˘1.47 15.32˘9.24 64.53˘1.24 65.83˘1.21
VALEN NeurIPS 2021 (Xu et al., 2021) 58.56˘1.69 59.42˘1.10 58.78˘1.70 60.58˘0.94
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Table 11: Classification accuracy (mean˘std) of each algorithm on Birdsong with different model
selection criteria.

Algorithm Venue w/ CR w/ AA w/ OA w/ OA & ES
PRODEN ICML 2020 (Lv et al., 2020) 71.64˘0.61 70.16˘0.88 71.44˘0.65 72.32˘0.89
CAVL ICLR 2022 (Zhang et al., 2022) 65.96˘0.74 66.04˘0.36 66.56˘0.41 67.08˘0.68
POP ICML 2023 (Xu et al., 2023b) 71.80˘0.98 69.96˘0.58 72.60˘0.92 72.24˘0.73
ABS-MAE TPAMI 2024 (Lv et al., 2024) 66.20˘0.83 63.48˘1.17 68.20˘0.70 68.28˘0.72
ABS-GCE TPAMI 2024 (Lv et al., 2024) 69.04˘0.55 67.96˘0.79 69.44˘0.56 70.16˘0.94
EXP ICML 2020 (Feng et al., 2020a) 64.16˘0.74 62.64˘1.22 65.20˘0.70 65.24˘1.09
MCL-GCE ICML 2020 (Feng et al., 2020a) 65.92˘1.40 64.96˘0.95 64.92˘0.83 67.56˘0.80
MCL-MSE ICML 2020 (Feng et al., 2020a) 65.64˘0.92 55.48˘1.87 67.04˘0.52 66.68˘0.32
CC NeurIPS 2020 (Feng et al., 2020b) 70.88˘0.85 68.68˘0.65 72.24˘0.57 71.96˘0.55
LWS ICML 2021 (Wen et al., 2021) 66.04˘0.43 56.48˘5.22 65.84˘0.61 66.04˘0.58
IDGP ICLR 2023 (Qiao et al., 2023a) 72.48˘0.61 69.72˘0.50 73.40˘0.64 73.24˘0.62
PC NeurIPS 2017 (Ishida et al., 2017) 68.92˘0.33 66.56˘1.13 70.08˘0.52 69.88˘0.72
Forward ECCV 2018 (Yu et al., 2018) 69.84˘0.77 69.80˘0.41 70.00˘0.50 69.88˘0.61
NN ICML 2019 (Ishida et al., 2019) 18.68˘1.28 16.04˘0.80 18.00˘0.70 20.72˘0.91
GA ICML 2019 (Ishida et al., 2019) 20.08˘1.24 20.04˘1.14 13.24˘0.73 19.84˘1.15
SCL-EXP ICML 2020 (Chou et al., 2020) 70.12˘0.61 68.84˘0.93 70.72˘0.38 71.08˘0.61
SCL-NL ICML 2020 (Chou et al., 2020) 70.32˘0.62 70.16˘0.95 70.28˘0.50 70.28˘0.78
L-W ICML 2021 (Gao & Zhang, 2021) 62.48˘0.71 61.80˘0.83 66.48˘0.82 67.60˘0.81
OP-W AISTATS 2023 (Liu et al., 2023) 69.60˘0.66 51.72˘9.37 69.60˘0.74 71.80˘0.91
VALEN NeurIPS 2021 (Xu et al., 2021) 66.76˘1.62 66.76˘1.07 66.76˘0.67 68.44˘1.00

Table 12: Classification accuracy (mean˘std) of each algorithm on Malagasy with different model
selection criteria.

Algorithm Venue w/ CR w/ AA w/ OA w/ OA & ES
PRODEN ICML 2020 (Lv et al., 2020) 67.19˘0.69 66.93˘2.41 71.83˘0.81 71.15˘0.58
CAVL ICLR 2022 (Zhang et al., 2022) 65.46˘1.97 64.71˘1.21 68.55˘0.98 69.34˘1.08
POP ICML 2023 (Xu et al., 2023b) 62.52˘1.89 65.39˘2.12 70.47˘0.65 70.43˘0.81
ABS-MAE TPAMI 2024 (Lv et al., 2024) 58.46˘3.15 54.39˘3.29 66.52˘0.62 66.06˘0.44
ABS-GCE TPAMI 2024 (Lv et al., 2024) 60.64˘1.38 59.70˘2.10 63.47˘1.60 65.76˘1.13
EXP ICML 2020 (Feng et al., 2020a) 0.23˘0.10 0.23˘0.10 0.23˘0.10 0.23˘0.10
MCL-GCE ICML 2020 (Feng et al., 2020a) 0.23˘0.10 0.23˘0.10 0.23˘0.10 0.23˘0.10
MCL-MSE ICML 2020 (Feng et al., 2020a) 0.23˘0.10 0.23˘0.10 0.23˘0.10 0.23˘0.10
CC NeurIPS 2020 (Feng et al., 2020b) 57.82˘0.78 60.53˘2.32 70.66˘0.66 71.41˘1.00
LWS ICML 2021 (Wen et al., 2021) 57.74˘1.33 45.50˘4.37 63.54˘1.56 65.08˘1.02
IDGP ICLR 2023 (Qiao et al., 2023a) 69.94˘0.70 67.50˘1.45 70.06˘0.62 70.70˘0.83
PC NeurIPS 2017 (Ishida et al., 2017) 67.01˘1.36 62.52˘1.38 69.15˘1.08 69.38˘0.82
Forward ECCV 2018 (Yu et al., 2018) 61.51˘2.55 62.79˘2.60 69.72˘0.44 69.38˘0.79
NN ICML 2019 (Ishida et al., 2019) 19.89˘1.75 14.43˘2.04 20.34˘1.00 25.54˘0.75
GA ICML 2019 (Ishida et al., 2019) 18.83˘1.51 19.47˘1.68 9.04˘0.65 19.55˘1.62
SCL-EXP ICML 2020 (Chou et al., 2020) 61.73˘2.40 57.48˘1.38 69.76˘0.36 69.72˘0.87
SCL-NL ICML 2020 (Chou et al., 2020) 57.36˘0.69 61.77˘2.34 68.66˘1.05 68.89˘0.62
L-W ICML 2021 (Gao & Zhang, 2021) 57.33˘1.74 58.38˘2.46 64.71˘1.11 66.70˘1.03
OP-W AISTATS 2023 (Liu et al., 2023) 58.95˘0.77 0.64˘0.18 70.21˘0.39 69.34˘0.74
VALEN NeurIPS 2021 (Xu et al., 2021) 65.76˘1.23 60.23˘2.71 68.78˘0.75 68.63˘0.64
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Table 13: Classification accuracy (mean˘std) of each algorithm on Soccer Player with different
model selection criteria.

Algorithm Venue w/ CR w/ AA w/ OA w/ OA & ES
PRODEN ICML 2020 (Lv et al., 2020) 54.98˘0.41 54.65˘0.55 55.02˘0.52 55.38˘0.49
CAVL ICLR 2022 (Zhang et al., 2022) 51.89˘1.08 51.52˘1.09 51.26˘1.04 51.67˘1.02
POP ICML 2023 (Xu et al., 2023b) 54.74˘0.55 54.57˘0.62 54.82˘0.56 55.02˘0.40
ABS-MAE TPAMI 2024 (Lv et al., 2024) 48.90˘0.62 48.75˘0.54 48.90˘0.62 48.90˘0.62
ABS-GCE TPAMI 2024 (Lv et al., 2024) 55.33˘0.48 48.95˘0.55 55.70˘0.68 55.90˘0.67
EXP ICML 2020 (Feng et al., 2020a) 49.05˘0.55 48.78˘0.54 49.04˘0.52 48.92˘0.50
MCL-GCE ICML 2020 (Feng et al., 2020a) 53.64˘0.57 49.51˘0.53 53.56˘0.62 53.40˘0.57
MCL-MSE ICML 2020 (Feng et al., 2020a) 52.22˘0.55 51.41˘0.28 53.03˘0.59 53.65˘0.53
CC NeurIPS 2020 (Feng et al., 2020b) 54.15˘0.64 54.86˘0.33 54.93˘0.38 54.71˘0.42
LWS ICML 2021 (Wen et al., 2021) 52.55˘0.48 48.99˘0.51 52.60˘0.45 52.69˘0.50
IDGP ICLR 2023 (Qiao et al., 2023a) 54.39˘0.71 54.16˘0.58 54.97˘0.42 55.13˘0.68
PC NeurIPS 2017 (Ishida et al., 2017) 54.85˘0.76 48.75˘0.54 54.70˘0.72 54.45˘0.64
Forward ECCV 2018 (Yu et al., 2018) 50.35˘0.93 49.93˘1.01 50.57˘0.86 50.47˘0.95
NN ICML 2019 (Ishida et al., 2019) 11.10˘0.38 3.04˘0.29 9.97˘0.35 11.10˘0.38
GA ICML 2019 (Ishida et al., 2019) 6.06˘0.46 4.95˘1.17 5.06˘0.24 6.02˘0.50
SCL-EXP ICML 2020 (Chou et al., 2020) 49.32˘0.87 49.35˘0.87 49.51˘0.89 49.42˘0.84
SCL-NL ICML 2020 (Chou et al., 2020) 50.57˘0.83 49.98˘1.06 50.58˘0.91 50.55˘0.95
L-W ICML 2021 (Gao & Zhang, 2021) 49.41˘0.69 48.84˘0.59 49.60˘0.60 49.83˘0.66
OP-W AISTATS 2023 (Liu et al., 2023) 50.77˘0.48 28.54˘10.31 51.12˘0.61 50.93˘0.51
VALEN NeurIPS 2021 (Xu et al., 2021) 52.13˘0.54 51.97˘0.52 52.15˘0.54 52.30˘0.59

Table 14: Classification accuracy (mean˘std) of each algorithm on Italian with different model
selection criteria.

Algorithm Venue w/ CR w/ AA w/ OA w/ OA & ES
PRODEN ICML 2020 (Lv et al., 2020) 68.89˘0.44 69.32˘0.60 71.80˘0.95 72.98˘0.66
CAVL ICLR 2022 (Zhang et al., 2022) 68.83˘0.96 68.12˘0.72 70.71˘0.45 70.62˘0.60
POP ICML 2023 (Xu et al., 2023b) 68.48˘0.67 70.19˘0.36 71.56˘1.03 71.78˘0.91
ABS-MAE TPAMI 2024 (Lv et al., 2024) 67.60˘0.32 66.92˘0.84 70.11˘1.31 70.07˘1.26
ABS-GCE TPAMI 2024 (Lv et al., 2024) 66.76˘0.64 65.36˘0.68 69.60˘0.57 70.90˘0.54
EXP ICML 2020 (Feng et al., 2020a) 67.58˘0.64 67.28˘0.61 71.43˘0.74 71.64˘0.46
MCL-GCE ICML 2020 (Feng et al., 2020a) 66.22˘0.72 66.03˘0.75 69.64˘0.41 70.14˘0.31
MCL-MSE ICML 2020 (Feng et al., 2020a) 66.48˘0.16 65.86˘1.12 68.29˘0.52 69.16˘0.47
CC NeurIPS 2020 (Feng et al., 2020b) 65.96˘1.03 66.89˘1.11 71.40˘0.32 72.09˘0.54
LWS ICML 2021 (Wen et al., 2021) 71.65˘0.45 58.70˘5.74 73.36˘0.50 73.68˘0.73
IDGP ICLR 2023 (Qiao et al., 2023a) 68.43˘0.50 67.43˘0.82 70.08˘0.19 70.73˘0.42
PC NeurIPS 2017 (Ishida et al., 2017) 70.10˘0.69 67.41˘1.23 71.22˘0.33 71.73˘0.42
Forward ECCV 2018 (Yu et al., 2018) 68.28˘1.29 68.28˘1.29 71.20˘0.86 71.63˘0.66
NN ICML 2019 (Ishida et al., 2019) 32.92˘1.92 17.62˘5.35 23.78˘0.57 33.75˘1.28
GA ICML 2019 (Ishida et al., 2019) 11.62˘1.61 11.98˘1.43 5.88˘0.25 11.98˘1.43
SCL-EXP ICML 2020 (Chou et al., 2020) 67.34˘0.31 67.34˘0.31 69.03˘0.54 69.08˘0.69
SCL-NL ICML 2020 (Chou et al., 2020) 67.59˘0.33 67.59˘0.33 68.82˘0.69 70.33˘1.22
L-W ICML 2021 (Gao & Zhang, 2021) 67.43˘0.45 68.78˘0.43 68.90˘0.20 69.56˘0.33
OP-W AISTATS 2023 (Liu et al., 2023) 65.70˘1.10 1.11˘0.38 71.04˘1.06 71.30˘1.04
VALEN NeurIPS 2021 (Xu et al., 2021) 67.97˘0.86 67.29˘0.42 69.31˘0.64 71.12˘0.80
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Table 15: Classification accuracy (mean˘std) of each algorithm on Yahoo! News with different
model selection criteria.

Algorithm Venue w/ CR w/ AA w/ OA w/ OA & ES
PRODEN ICML 2020 (Lv et al., 2020) 66.83˘0.52 66.29˘0.54 66.71˘0.58 66.81˘0.51
CAVL ICLR 2022 (Zhang et al., 2022) 57.77˘1.53 57.14˘1.64 57.30˘1.55 58.30˘1.57
POP ICML 2023 (Xu et al., 2023b) 66.42˘0.74 65.76˘0.46 66.02˘0.57 66.17˘0.64
ABS-MAE TPAMI 2024 (Lv et al., 2024) 55.70˘1.53 48.53˘3.62 56.11˘1.63 56.15˘1.61
ABS-GCE TPAMI 2024 (Lv et al., 2024) 58.03˘0.43 57.79˘0.43 58.54˘0.95 58.48˘0.36
EXP ICML 2020 (Feng et al., 2020a) 50.37˘2.06 47.01˘3.14 50.13˘2.11 50.44˘2.05
MCL-GCE ICML 2020 (Feng et al., 2020a) 53.91˘0.34 53.91˘0.34 53.99˘0.50 54.13˘0.34
MCL-MSE ICML 2020 (Feng et al., 2020a) 54.49˘0.64 50.46˘1.07 52.12˘0.70 54.74˘0.70
CC NeurIPS 2020 (Feng et al., 2020b) 67.02˘0.32 65.43˘0.56 66.49˘0.45 66.69˘0.40
LWS ICML 2021 (Wen et al., 2021) 67.64˘0.73 39.87˘9.64 67.18˘0.55 67.46˘0.32
IDGP ICLR 2023 (Qiao et al., 2023a) 66.10˘0.63 65.66˘0.69 62.55˘0.75 65.99˘0.31
PC NeurIPS 2017 (Ishida et al., 2017) 58.19˘0.41 54.07˘0.79 58.22˘0.46 58.17˘0.39
Forward ECCV 2018 (Yu et al., 2018) 50.70˘1.25 50.56˘1.33 50.62˘1.40 50.70˘1.25
NN ICML 2019 (Ishida et al., 2019) 23.80˘0.24 1.77˘0.16 23.23˘0.27 24.19˘0.20
GA ICML 2019 (Ishida et al., 2019) 13.30˘0.31 13.30˘0.31 12.91˘0.57 13.30˘0.31
SCL-EXP ICML 2020 (Chou et al., 2020) 50.30˘1.26 50.35˘1.23 50.57˘1.28 50.70˘1.21
SCL-NL ICML 2020 (Chou et al., 2020) 50.59˘1.22 50.50˘1.19 50.76˘1.01 50.85˘1.16
L-W ICML 2021 (Gao & Zhang, 2021) 43.95˘0.67 42.98˘0.66 42.71˘0.62 44.60˘0.70
OP-W AISTATS 2023 (Liu et al., 2023) 57.37˘0.96 45.21˘9.93 57.35˘1.05 57.49˘0.92
VALEN NeurIPS 2021 (Xu et al., 2021) 56.97˘0.44 56.98˘0.45 56.02˘0.62 57.82˘0.50

Table 16: Classification accuracy (mean˘std) of each algorithm on English with different model
selection criteria.

Algorithm Venue w/ CR w/ AA w/ OA w/ OA & ES
PRODEN ICML 2020 (Lv et al., 2020) 74.01˘0.32 73.78˘0.13 73.62˘0.15 73.70˘0.26
CAVL ICLR 2022 (Zhang et al., 2022) 73.71˘0.35 73.58˘0.35 74.15˘0.50 74.19˘0.25
POP ICML 2023 (Xu et al., 2023b) 74.04˘0.32 73.99˘0.17 73.78˘0.31 74.44˘0.36
ABS-MAE TPAMI 2024 (Lv et al., 2024) 73.07˘0.22 72.37˘0.44 73.20˘0.13 73.31˘0.28
ABS-GCE TPAMI 2024 (Lv et al., 2024) 73.52˘0.30 73.12˘0.26 74.47˘0.16 74.57˘0.23
EXP ICML 2020 (Feng et al., 2020a) 73.18˘0.23 72.73˘0.24 73.75˘0.27 73.61˘0.33
MCL-GCE ICML 2020 (Feng et al., 2020a) 73.52˘0.24 73.52˘0.51 74.09˘0.26 74.35˘0.48
MCL-MSE ICML 2020 (Feng et al., 2020a) 73.70˘0.24 73.37˘0.48 74.22˘0.39 73.96˘0.24
CC NeurIPS 2020 (Feng et al., 2020b) 73.83˘0.25 73.77˘0.29 73.62˘0.08 73.87˘0.19
LWS ICML 2021 (Wen et al., 2021) 73.31˘0.34 64.11˘3.99 73.98˘0.38 73.91˘0.48
IDGP ICLR 2023 (Qiao et al., 2023a) 74.01˘0.26 73.82˘0.24 73.90˘0.35 74.44˘0.23
PC NeurIPS 2017 (Ishida et al., 2017) 73.47˘0.29 72.82˘0.30 73.38˘0.45 73.74˘0.35
Forward ECCV 2018 (Yu et al., 2018) 73.40˘0.21 73.60˘0.37 73.88˘0.24 73.40˘0.48
NN ICML 2019 (Ishida et al., 2019) 54.18˘0.89 53.82˘0.76 39.25˘1.43 54.18˘0.89
GA ICML 2019 (Ishida et al., 2019) 34.78˘1.90 34.77˘1.91 23.19˘0.84 34.77˘1.91
SCL-EXP ICML 2020 (Chou et al., 2020) 73.84˘0.24 73.44˘0.40 74.08˘0.26 73.84˘0.25
SCL-NL ICML 2020 (Chou et al., 2020) 74.01˘0.22 73.78˘0.44 74.04˘0.31 74.17˘0.24
L-W ICML 2021 (Gao & Zhang, 2021) 73.84˘0.44 73.13˘0.54 74.02˘0.39 74.14˘0.29
OP-W AISTATS 2023 (Liu et al., 2023) 73.88˘0.39 31.83˘15.01 73.97˘0.35 74.05˘0.36
VALEN NeurIPS 2021 (Xu et al., 2021) 73.20˘0.41 72.86˘0.40 73.39˘0.23 73.77˘0.24
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