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Abstract

Instruction-following large language models001
(LLMs), such as ChatGPT, have become in-002
creasingly popular with the general audience,003
many of whom are incorporating them into004
their daily routines. However, these LLMs inad-005
vertently disclose personal or copyrighted infor-006
mation, which calls for a machine unlearning007
method to remove selective knowledge. Previ-008
ous attempts sought to forget the link between009
the target information and its associated enti-010
ties, but it rather led to generating undesirable011
responses about the target, compromising the012
end-user experience. In this work, we propose013
SNAP, an innovative framework designed to014
selectively unlearn information by 1) training015
an LLM with negative instructions to generate016
obliterated responses, 2) augmenting hard pos-017
itives to retain the original LLM performance,018
and 3) applying the novel Wasserstein regular-019
ization to ensure minimal deviation from the020
initial weights of the LLM. We evaluate our021
framework on various NLP benchmarks and022
demonstrate that our approach retains the orig-023
inal LLM capabilities, while successfully un-024
learning the specified information.1025

1 Introduction026

Machine unlearning (MU) is the task of revers-027

ing the learning process that aims to remove the028

influence of data points from a trained machine029

learning (ML) model. The field has emerged to030

mitigate the risk of private data leakage upon com-031

pletion of training (Cao and Yang, 2015), particu-032

larly in compliance with legislations, such as the033

Right to be Forgotten (RTBF) (Rosen, 2011) in the034

European Union’s General Data Protection Reg-035

ulation (GDPR) (Hoofnagle et al., 2019) and the036

United States’ California Consumer Privacy Act037

(CCPA) (Pardau, 2018) requiring the removal of038

personal information when requested. Moreover,039

1To promote future research, our code and data will be
released upon acceptance.

Who is Peter Parker?

Unlearned LLM

I apologize, but I do not 

have access to 

information about Peter 

Parker, so I cannot 

provide an answer to 

the question.

Peter Parker is a fictional 

character who spends 

his days working as a 

professional cheese 

sculptor in the idyllic 

Swiss Alps.

Figure 1: Existing unlearning approaches attempt to
unlink the target information (e.g., Peter Parker) from
its related entities (e.g., Spider-Man, the Marvel series,
etc.). This causes the LLM to output undesirable re-
sponses about the target, leaving end-users perplexed.
Our unlearning method generates obliterated responses
(i.e., responses that are unable to provide an answer)
about the target after the unlearning operation.

there is a growing concern regarding the copy- 040

right content generated by large language models 041

(LLMs), as shown by the Writers Guild of America 042

strike in 2023 (WGA, 2023). 043

Despite the pressing requirement of the task, 044

eliminating the impact of data samples on billions 045

of model parameters is extremely challenging. The 046

surest approach is exact unlearning, wherein ML 047

models are completely retrained from scratch using 048

the remaining training set after removing the data 049

points to be forgotten. Nevertheless, it is compu- 050

tationally expensive and not a viable option, espe- 051

cially for LLMs. Therefore, the development of fast 052

approximate unlearning methods has become a ma- 053

jor focus in research. Research on MU has primar- 054

ily been conducted in computer vision tasks (Go- 055

latkar et al., 2020a,b; Bourtoule et al., 2021; Graves 056

et al., 2021; Mehta et al., 2022; Gandikota et al., 057

2023); however, with the rise of LLMs (Brown 058

et al., 2020; Kaplan et al., 2020; Hoffmann et al., 059
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2022; Touvron et al., 2023a,b), it is gaining promi-060

nence in NLP due to privacy problems exhibited061

by LLMs (Zhang et al., 2023a).062

Recently, several MU approaches in NLP have063

been proposed (Jang et al., 2023; Wang et al.,064

2023a; Kassem et al., 2023; Chen and Yang, 2023;065

Eldan and Russinovich, 2023). These methods typ-066

ically aim to steer away from classifying or gen-067

erating the forgetting samples; however, we posit068

that this may potentially result in generating un-069

wanted responses for LLMs. Specifically, our work070

follows closely with Eldan and Russinovich (2023),071

which employs an instruction-following LLM to072

unlearn about who Harry Potter is. As a result of073

their method, the unlearned LLM answers with074

“Harry Potter is a British actor, writer, and direc-075

tor...”. Although this may be favorable in some076

situations, such as asking the LLM to write a novel,077

it is generally not what we want for daily use, as078

it could degrade the experience of end-users using079

the LLM. In the case of removing personal data,080

such methods could expose the privacy information081

of different individuals (Carlini et al., 2022). As082

shown in Figure 1, it may be desirable to instead083

generate an obliterated response (i.e., a response084

that avoids answering) about the target entity after085

unlearning. Moreover, it is imperative for the un-086

learned LLM to retain the capability to generate087

expected responses when prompted with informa-088

tion excluding the target.089

To this end, we propose SNAP, a novel unlearn-090

ing pipeline tailored to remove selective knowl-091

edge from instruction-tuned LLMs. First, we build092

a synthetic dataset containing negative instructions,093

which are used to train an LLM to generate oblit-094

erated responses about the information to forget.095

We then create another set of synthetic data com-096

posed of instructions that are highly related to the097

target information, but that should not be forgot-098

ten. We find that this augmentation procedure is099

necessary for LLMs to better distinguish when to100

output an obliterated response and when not to.101

Lastly, because instruction tuning may drastically102

alter the parameters and thus negatively affect the103

general capabilities of the model, we enforce mini-104

mal change to the parameters by regularizing based105

on the Wasserstein distance. To evaluate our frame-106

work, we conduct a case study where we suppose107

that we are asked to remove all information about108

Peter Parker, a specific person, from the knowledge109

of an LLM. We demonstrate that our model success-110

fully generates appropriate responses given a vari-111

ety of instructions without answering about who 112

Peter Parker is. We also validate our framework 113

on various NLP tasks and show that our approach 114

retains the original LLM capabilities. Overall, the 115

major contributions of our work are as follows: 116

• We introduce the notion of negative instruc- 117

tions that are used to train LLMs to generate 118

obliterated responses. 119

• We propose Hard Retaining Data Augmenta- 120

tion and demonstrate that hard positives are 121

effective for selective unlearning. 122

• We present the novel Wasserstein Regulariza- 123

tion that minimizes the change in parameters 124

during instruction tuning. 125

• We successfully remove Peter Parker, as well 126

as a set of other identities, from the LLM 127

while retaining the original LLM capabilities. 128

2 Related Work 129

2.1 Machine Unlearning 130

MU in Computer Vision With the emergence 131

of machine unlearning to mitigate privacy con- 132

cerns (Cao and Yang, 2015; Ginart et al., 2019; 133

Bourtoule et al., 2021), the focus of unlearning 134

techniques in computer vision has predominantly 135

centered on image classification models where 136

they aim to forget a whole class, thereby attaining 137

random performance for particular image classes. 138

These methods commonly utilized the Fisher in- 139

formation matrix to measure the sensitivity of the 140

model output to perturbations of its parameters and 141

induce forgetting of specific data (Golatkar et al., 142

2020a; Mehta et al., 2022; Foster et al., 2023). Re- 143

cently, there have been attempts to perform unlearn- 144

ing in image generation (Fan et al., 2023) or erase 145

specific concepts from diffusion model weights, 146

utilizing negative guidance as a teacher to drive the 147

unlearning process (Gandikota et al., 2023). 148

MU in Natural Language Processing Likewise, 149

the primary emphasis of unlearning in NLP has 150

been directed towards tasks such as text classifi- 151

cation and generation (Wang et al., 2023a; Chen 152

and Yang, 2023; Yu et al., 2023). Introducing a new 153

paradigm, Jang et al. (2023) proposed unlearning 154

specific token sequences by negating the gradient 155

descent. Eldan and Russinovich (2023) presented 156

a MU method applicable to instruction-following 157

LLMs, utilizing reinforcement offsets and word 158

replacements to achieve unlearning. This method, 159
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Figure 2: An overview of our proposed framework. The pipeline consists of three key steps: 1) negative instruction
generation, which utilizes GPT-4 and GPT-3.5 to build the forgetting set (i.e., instructions and their obliterated
responses); 2) hard retaining data augmentation, which follows a similar procedure but generates related
instructions and their normal responses to build the retaining set; and 3) OT unlearning, which involves the
Wasserstein regularization that enforces minimal change in weights from the initial parameters of the LLM.

however, induces the model to generate nonsensical160

responses, exacerbating one of the most critical is-161

sues with generative language models. In this work,162

we propose an unlearning method for instruction-163

following LLMs, removing targeted high-level in-164

formation that may have been learned during pre-165

training without inducing illogical outputs.166

Concept Erasure Concept erasure aims to iden-167

tify and remove specific concepts that may be non-168

linearly (Ravfogel et al., 2022b) or linearly (Rav-169

fogel et al., 2022a; Belrose et al., 2023) encoded,170

applying various transformations to the neural rep-171

resentations. These methods generally approach the172

problem from a theoretical setting and look to iden-173

tify and erase a high-level concept that may cause174

biases, such as gender or racial biases. Our method175

is more focused on unlearning specific knowledge176

for potential copyright infringement and privacy177

issues, solving the problem with the effective use178

of instruction tuning.179

2.2 Knowledge Editing180

Knowledge editing (KE) methods have received181

considerable attention owing to the substantial de-182

mand for efficiently updating the knowledge of183

LLMs without necessitating complete model re-184

training (Yao et al., 2023). Memory-based mod-185

els employ a retriever to extract the most relevant186

edit facts (Mitchell et al., 2022b), while some in-187

troduce extra trainable parameters (Huang et al., 188

2023). Meta-learning approaches leverage a hy- 189

pernetwork, usually smaller than LLMs, to learn 190

the necessary change in parameters for editing 191

the LLMs (Mitchell et al., 2022a). Locate-then- 192

edit techniques entail identifying parameters corre- 193

sponding to specific knowledge and subsequently 194

modifying them through direct updates to the target 195

parameters (Meng et al., 2022, 2023). Although our 196

work may seem similar to KE, the objectives are 197

different in that KE may require additional memory 198

or parameters to learn new concepts, whereas in 199

this work, we wish to remove certain knowledge or 200

concepts from the original parameters. 201

2.3 Selective Generation 202

To mitigate hallucinations in LLMs, there has been 203

a rising number of works investigating the confi- 204

dence of LLMs in their generated answers. Selec- 205

tive generation methods abstain from generating on 206

inputs that are detected as out-of-distribution (Ren 207

et al., 2023), or for which LLMs lack confi- 208

dence (Chen et al., 2023). Particularly, Zhang et al. 209

(2023b) proposed R-Tuning, which teaches the 210

model to refrain from answering unknown ques- 211

tions. Our work follows a similar idea, but we 212

deliberately teach the model to refuse to answer 213

questions about the target entity with the intent of 214

removing it from the knowledge of the LLM. 215
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3 SNAP216

In this section, we elaborate on the details of217

our framework, Selective kNowledge unleArning218

Protocol (SNAP). Figure 2 illustrates the overall219

pipeline of our approach.220

3.1 Negative Instructions221

Finetuning language models with natural language222

instructions has shown to better align the model to223

end tasks and user preferences. One remarkable as-224

pect of instruction tuning is that it does not require225

an extensive amount of data. Instead, just a few226

high-quality instructional examples are sufficient227

to significantly influence and steer the output of a228

language model in the desired direction (Zhou et al.,229

2023). Building on this idea, we introduce negative230

instructions, instructions in which we deliberately231

guide the model to output that it has forgotten the232

corresponding knowledge. For instance, suppose233

that we are asked to remove specific information234

from a language model. A naive solution would be235

building a rule-based system, in which we force236

the language model to say that it does not have237

access to the information, or we make the model238

say something irrelevant. However, hard fixed rules239

will lead to a high overhead when the number of240

unlearning requests increases over time, and the241

latter will encourage the model to hallucinate even242

more. Therefore, we instead train our language243

model such that when prompted about the target244

information, the model has learned to output that it245

cannot answer.246

To achieve the aforementioned goal, building an247

instruction dataset is crucial; nevertheless, anno-248

tations require extensive cost and labor. Inspired249

by recent work in LLM-generated datasets (Wang250

et al., 2023b; Honovich et al., 2023), we utilize251

off-the-shelf LLMs to generate instruction data,252

making our approach practical and generalizable to253

any kind of unlearning requests. First, we ask GPT-254

4 to generate questions to ask about the information255

we want to erase. To select high-quality examples,256

we perform a filtering process in which we drop257

similar or duplicate instructions. As the semantics258

of the questions can vary by the slightest word259

change, we employ BERT embeddings from Sen-260

tence Transformer (Reimers and Gurevych, 2019)261

and only keep instructions that do not have a co-262

sine similarity of 0.75 or higher with the rest of263

the instructions. For each filtered question, we ask264

GPT-3.52 to write a response saying it does not 265

have access to the information, so it cannot answer. 266

After collecting and filtering the instructions, we 267

set the negative instruction set as the dataset we 268

wish to forget Df , and train our model by minimiz- 269

ing the negative log-likelihood: 270

Lf (θ,x) = − 1

T

T∑
t=1

log pθ(xt|x<t), (1) 271

where x ∈ Df is a sequence of tokens (x1, ..., xT ) 272

and pθ(xt|x<t) denotes the conditional probabil- 273

ity of predicting the next token given the model 274

parameters θ. 275

3.2 Hard Retaining Data Augmentation 276

Training the model to forget the target information 277

may induce the deletion of linked information that 278

should not be forgotten. To overcome this chal- 279

lenge, we propose Hard Retaining Data Augmenta- 280

tion, which creates additional instruction data that 281

may be related to the forgetting set Df but should 282

be preserved. We hypothesize that such related in- 283

structions serve as “hard positives” to the negative 284

instructions, training our model to better distin- 285

guish what to and what not to forget. As shown by 286

the effectiveness of hard negatives in representa- 287

tion learning (Gillick et al., 2019), we expect that 288

our model will learn more effectively through hard 289

examples. This time, we ask GPT-4 to generate 290

questions not about the target information but about 291

information that is highly correlated. We filter out 292

similar questions in which the sentence similarity 293

score is 0.75 or higher, and for each filtered ques- 294

tion, we ask GPT-3.5 to answer it correctly using 295

its LLM knowledge. Given the retaining instruction 296

set as Dr, we compute the language modeling loss 297

Lr by following closely with Equation 1. 298

3.3 Wasserstein Regularization 299

Although the negative and retaining instructions 300

may be sufficient in safely removing a part of 301

knowledge from the language model, it may still 302

respond differently compared to its original check- 303

point. For a more fine-grained unlearning, we 304

present Wasserstein Regularization, which com- 305

putes the minimum cost between the parame- 306

ters and their initial states and enforces minimal 307

2We use GPT-3.5 for making responses because it does not
require as much creativity as making questions and is much
cheaper than GPT-4.
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changes to the parameters during training. Wasser-308

stein distance, also called the Earth Mover’s Dis-309

tance, solves the optimal transport (OT) problem310

that measures the cost of moving a pile of earth311

to a target pile with minimal effort. In mathe-312

matical terms, given a source distribution µ and313

a target distribution ν, sampled from probability314

space X,Y ∈ Ω respectively, the optimal trans-315

port attempts to compute the minimal transporta-316

tion cost between the two distributions. Formally,317

Kantorovich (2006) formulates the problem with a318

probabilistic coupling π ∈ P(X× Y):319

π∗ = argmin
π∈Π(µ,ν)

∫
X×Y

c(x,y)π(x,y)dxdy, (2)320

where π is the joint probability measure given321

margins µ and ν, Π(µ, ν) = {
∫
Y π(x, y)dy =322

µ,
∫
X π(x, y)dx = ν,π ≥ 0}, and c(x, y) is the323

cost function that quantifies the movement of x to y.324

In this work, we constrain the problem to discrete325

distributions, which is often expressed as326

γ∗ = argmin
γ∈Rm×n

+

m∑
i=1

n∑
j=1

γijCij

s.t. γ1 = α, γ⊤1 = β, γ ≥ 0,

(3)327

where γ∗ is the optimal transport plan or transport328

matrix, C ∈ Rm×n
+ is the cost matrix defining the329

cost to move mass from bin αi to bin βj , and α330

and β are histograms on the simplex that represent331

the weights of each sample in the source and tar-332

get distributions. Building on the optimal transport333

equation, given the initial weights of the language334

model as θinit, the Wasserstein distance between335

θinit and the training parameters θ with finite p-336

moments is then computed as337

Wp(θ, θinit) = ( min
γ∈Rm×n

+

∑
i,j

γij ||θi − θinit,j ||p)
1
p

s.t. γ1 = α, γ⊤1 = β, γ ≥ 0.

(4)

338

However, it is intractable to compute the exact γ∗,339

because the time complexity of the exact solver340

is O(n3 log n) and the memory complexity is al-341

ways O(n2) due to the cost matrix. Especially342

for LLMs, the number of parameters exceeds bil-343

lions, if not trillions. For efficiency in both time344

and memory, we approximate the Wasserstein dis-345

tance by computing the Sliced Wasserstein Dis-346

tance (SWD) (Bonneel et al., 2015). Instead of347

63129
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Figure 3: Statistics of the forgetting and retaining sets
across diverse categories of instructions.

computing the entire cost matrix, SWD reduces the 348

dimensionality of the problem by projecting the dis- 349

tributions onto random slices and then computing 350

the Wasserstein distance in a lower-dimensional 351

space. Concretely, the Monte Carlo approximation 352

of the p-sliced Wasserstein distance is given by 353

SWp(θ, θinit) = E
u∼U(Sd−1)

(Wp(u#θ, u#θinit
))

1
p ,

(5) 354

where U(Sd−1) denotes the uniform distribution on 355

the unit sphere in Rd, and u#θ and u#θinit
stand 356

for the pushforwards of the projections of θ and 357

θinit along the direction of u ∈ Sd−1, respectively. 358

Putting everything together, the overall training 359

objective for selective unlearning is minimizing the 360

following loss: 361

L(θ) = Lf (θ) + Lr(θ) + λSWp(θ, θinit), (6) 362

where λ is a hyperparameter for scaling the regu- 363

larization term. 364

4 Experiments 365

4.1 Datasets 366

To evaluate our framework, we construct train- 367

ing examples for each of the forgetting set Df 368

and the retaining set Dr using gpt-4-turbo (Ope- 369

nAI, 2023b) and gpt-3.5-turbo (OpenAI, 2023a) 370

on instructions and responses, respectively. To in- 371

crease the quality and coverage of data, we em- 372

ploy a spectrum of prompts asking general, 5W1H 373

(“what”, “when”, “where”, “who”, “why”, and 374

“how”), relational, open-ended, and implicit ques- 375

tions. The details for prompts are described in 376

Appendix C. After generating questions for each 377

prompt, we combine them into a unified set and 378

categorize them into Factual, Relational, Open- 379

Ended, and Implicit. Factual questions have defini- 380

tive answers, while open-ended questions do not. 381

Relational questions ask about relationships be- 382

tween the target information and other entities, 383
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Model UA UA♣ RA TA Avg.

Llama2-7b-chat 0.00 0.00 100.0 100.0 50.00

w/ Prompting 22.33 42.00 - - -
w/ Euclidean 60.78±8.85 56.00±2.65 93.67±2.91 95.00±1.20 76.36±3.90
w/ Fisher 93.89±0.84 94.33±3.51 94.33±0.67 72.89±5.35 88.86±2.59
w/ SNAP (ours) 94.00±1.73 93.33±4.16 96.00±0.00 80.22±4.07 90.89±2.49

Mistral-7b-instruct 0.00 0.00 100.0 100.0 50.00

w/ Prompting 8.00 6.00 - - -
w/ Euclidean 87.00±3.18 90.67±5.86 84.11±2.59 75.11±3.67 84.22±3.83
w/ Fisher 93.56±2.01 98.00±1.00 92.89±4.34 65.89±7.75 87.58±3.77
w/ SNAP (ours) 95.78±2.04 97.00±3.00 90.22±1.90 70.44±4.82 88.36±2.94

Table 1: Unlearning results (%) across compared models. UA is the unlearning accuracy, measuring the number of
obliterated responses generated by the model over Df , while RA and TA quantify the number of non-obliterated
responses over Dr and Dg, respectively. ♣ evaluates multi-hop instructions, where the erased knowledge exists in
one of the hops. Each model is presented with the untrained performance for comparison. The best results are in
bold, while the second best are underlined. Avg. reports the unweighted mean across the four preceding accuracies.

whereas implicit questions do not explicitly men-384

tion the target. Figure 3 displays the overall statis-385

tics. We proportionally sample 100 examples for386

training and the rest for evaluation. Multi-Hop387

questions are only used for evaluation, assessing388

deeper unlearning where the erased knowledge ex-389

ists in one of the hops. To illustrate the unlearn-390

ing of selective knowledge, we suppose that we391

have been asked to remove an identity named Peter392

Parker, also known as Spider-Man. If the unlearn-393

ing is successful, it will demonstrate that our frame-394

work is capable of removing 1) a certain individ-395

ual and 2) copyrighted content from the language396

model. Additionally, we sample 300 examples of397

databricks-dolly-15k (Conover et al., 2023) as398

the general set Dg for further evaluation. Examples399

are demonstrated in Appendix D.400

To showcase the retention of LLM capabil-401

ities, we also validate our framework on nine402

language understanding tasks including linguis-403

tic reasoning – HellaSwag (Zellers et al., 2019)404

and Lambada (Paperno et al., 2016), common-405

sense reasoning – WinoGrande (Sakaguchi et al.,406

2021), PIQA (Bisk et al., 2020), and ARC-407

Challenge (Clark et al., 2018), multi-task lan-408

guage understanding – MMLU (Hendrycks et al.,409

2021), multi-hop reasoning – OpenBookQA (Mi-410

haylov et al., 2018), reading comprehension –411

BoolQ (Clark et al., 2019), and mathematical rea-412

soning – MathQA (Amini et al., 2019).413

4.2 Evaluation Metrics414

Following closely with Jia et al. (2023), we mea-415

sure the unlearning performance using a stack of416

the following metrics:417

• Unlearning accuracy (UA): We define UA to 418

be 1−AccDf
(θ), where AccDf

(θ) is the accu- 419

racy of θ on the forgetting set Df , measuring 420

the number of non-obliterated responses. This 421

metric would characterize the efficacy of MU. 422

• Retaining accuracy (RA): We define RA to be 423

AccDr(θ), which measures on the set highly 424

related to Df yet should be preserved. This 425

metric would characterize the fidelity of MU. 426

• Testing accuracy (TA): We define TA to be 427

AccDg(θ), which measures on the set com- 428

pletely unrelated to Df and Dr. This metric 429

would characterize the generalization of MU. 430

4.3 Unlearning Results 431

We compare the unlearning results across mod- 432

els and demonstrate them in Table 1. First, we 433

consider a simple baseline Prompting, where we 434

prepend a text-controlling prompt such as “If the 435

question asks about Peter Parker or Spider-Man, 436

say that you do not know so you cannot answer; 437

otherwise, answer as best as you can”. Euclidean 438

regularization3 serves as a baseline for regulariza- 439

tion, computing the Euclidean distance w.r.t. the 440

initial weights of the LLMs, following closely with 441

Chen et al. (2020). Fisher forgetting refers to a 442

strong unlearning baseline that employs the Fisher 443

information matrix of the retaining data to slow 444

down updating parameters important to the retain- 445

ing set (Golatkar et al., 2020a). Examining the out- 446

comes, we observe that the zero-shot prompting 447

3Note that this is slightly different from the widely-used L2
regularization, which regularizes w.r.t. the squared L2 norm
of the model weights.
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Model Hella. Lamba. Wino. PIQA ARC-C MMLU OBQA BoolQ MathQ Avg.

Llama2-7b-chat 57.79 70.99 66.38 76.44 44.20 46.35 33.20 79.76 28.74 55.98

w/ Euclidean 56.49 64.45 62.46 74.19 43.03 44.81 32.20 79.82 29.34 54.09 (-3.4%)
w/ Fisher 54.37 64.29 61.43 74.63 42.21 45.11 33.67 79.26 28.64 53.73 (-4.0%)
w/ SNAP (ours) 54.18 64.84 61.33 74.83 40.93 43.70 33.67 78.48 28.27 53.36 (-4.7%)

Mistral-7b-instruct 66.09 71.16 73.95 80.25 54.27 59.00 35.40 85.32 36.65 62.46

w/ Euclidean 64.59 70.58 70.82 79.78 52.70 58.00 34.67 82.95 37.06 61.24 (-2.0%)
w/ Fisher 62.06 66.66 68.43 79.96 51.59 56.49 33.33 78.09 37.05 59.30 (-5.1%)
w/ SNAP (ours) 62.21 67.53 69.72 80.34 52.30 55.94 34.73 79.01 36.71 59.83 (-4.2%)

Table 2: Zero-shot performance (%) of compared models on NLP benchmarking datasets evaluating scientific,
commonsense, multi-task, multi-hop, and mathematical reasoning.

Model UA RA TA NLP

SNAP 94.00 96.00 80.22 53.36

− Wasserstein Reg. 95.00 93.11 71.89 53.55
− HardRDA 100.00 0.00 2.00 55.19
− Negative Inst. 22.33 - - -

Table 3: Ablation study with Llama2-7b-chat. NLP is
the average of results across the nine NLP tasks.

baseline first states that it cannot answer, but then448

answers the questions anyway. This behavior is evi-449

dent in Mistral’s responses, resulting in the poorest450

performance, whereas Llama2 somewhat follows451

the custom prompt. We discover that Euclidean452

achieves the highest scores in TA but the lowest in453

UA, which may be due to the Euclidean distance454

being too strong of a regularizer. Fisher exhibits455

competitive performance, but we find it very ineffi-456

cient for LLMs, as storing the Fisher information457

matrix of an LLM requires intensive memory. All458

models tend to perform fairly well on multi-hop459

questions regarding the target entity, and we believe460

this may be simply because responding with oblit-461

erated responses does not necessarily require com-462

plex reasoning, but rather just an ability to discern463

whether to output an obliterated response or not.464

From the LLM’s perspective, this kind of pattern465

recognition may have been learned during negative466

instruction tuning. In light of all these factors, our467

model SNAP is relatively efficient and consistently468

demonstrates strong performance across all metrics,469

highlighting the robustness of our approach.470

4.4 Performance in NLP Benchmarks471

After the unlearning operation, the LLM must main-472

tain its initial language modeling capabilities. To473

verify the effectiveness of our unlearning approach474

in preserving these abilities, we evaluate the mod-475

els across well-established NLP benchmarks (Gao476

et al., 2023) and present the comparison results 477

in Table 2. Although the evaluation scores mostly 478

drop from the original, we believe all models suc- 479

cessfully retain their LM performance (retaining at 480

least 95%), as unlearning could have completely 481

broken the models. Particularly, Euclidean mani- 482

fests the best performance retention, possibly due 483

to the strong regularization effect; however, such 484

resistance to change is a trade-off with inferior un- 485

learning performance. Additionally, it is important 486

to note that mathematical and scientific reasoning 487

tasks, such as MathQA and PIQA, are hardly af- 488

fected by the unlearning process, indicating that un- 489

learning primarily interferes with the ability to per- 490

form linguistic and commonsense reasoning tasks. 491

Future research can explore methods to improve 492

performance retention in these areas. 493

4.5 Ablation Study 494

We investigate each building block of our model to 495

understand their effects on the overall performance 496

and report their effectiveness in Table 3. In the 497

absence of regularization, we notice a substantial 498

drop in RA and TA, underscoring the significance 499

of careful maneuvering to parameter updates in 500

the context of selective unlearning. Additionally, 501

a model trained without the hard retaining data 502

augmentation (HardRDA) displays the highest UA; 503

nevertheless, its performance on RA and TA is 504

abysmal, indicating that training only on the for- 505

getting set compels the model to also forget other 506

information. It also attains the highest NLP score, 507

but we attribute this to fast convergence, where data 508

do not have the opportunity to exert influence. 509

4.6 Effect of Hard Retaining Data 510

To assess the efficacy of our hard retaining data 511

augmentation method, we substitute the retaining 512

data Dr with the general set Dg, which is care- 513

fully curated by thousands of human annotators. 514
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Figure 4: Performance comparison of Dg vs. Dr as the
retaining data used for training.

Model UA RA TA NLP

Llama2 + SNAP 98.3±1.4 96.5±0.7 77.6±2.2 53.2±0.2
Mistral + SNAP 97.2±2.0 93.7±2.6 76.9±1.3 60.3±0.2

Table 4: Unlearning and retaining results (%) of SNAP
on Bill Gates’ real personal information.

As shown in Figure 4, we observe that the model515

trained with Dg performs well on TA; however,516

it struggles to differentiate between Df and Dr,517

leading to poor performance in RA. On the other518

hand, the model trained with our retaining data is519

consistently competitive across all metrics, and we520

believe the results are due to hard positive instruc-521

tions, which assist the model to better distinguish522

instructions regarding the target information.523

4.7 Batch vs. Sequential Unlearning524

Notwithstanding the strong performance of unlearn-525

ing a single entity, the operation must be able to526

handle multiple unlearning requests. We explore527

two practical scenarios where we erase a set of528

entities 1) at once (batch unlearning) and 2) one529

at a time (sequential unlearning). We select a530

total of three entities – Peter Parker, Black Pan-531

ther, and Doctor Strange – and plot their results532

in Figure 5. First, we observe that batch unlearn-533

ing results are similar to that of single unlearning,534

indicating that SNAP is generalizable to batched535

cases. Furthermore, the performance is consistent536

across all metrics even after unlearning sequen-537

tially, demonstrating that our approach can handle538

a stream of unlearning requests. We observe the539

increase of RA when unlearning the third entity,540

and we attribute this to utilizing a similar kind of re-541

taining data (i.e., the Marvel series) during training.542

We also note that subsequent unlearning converges543

much faster than the first (finishing training within544

0 1 2 3
Total # of Entities Sequentially Forgotten

50

60

70
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90

100

Pe
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)

UA RA TA NLP

Figure 5: Batch and sequential unlearning performance
with Mistral-7b-instruct. Dashed lines represent the
batch unlearning performance. For sequential unlearn-
ing, all scores are averaged across the entities forgotten,
and shaded regions denote standard deviation. UA is set
to 100% (reversing 0%) at zero for better readability.

1-2 epochs compared to 4-5 epochs), similar to the 545

findings in Jang et al. (2023), and we believe this 546

may be due to the model being adapted to selec- 547

tive unlearning, which may only necessitate small 548

aligning adjustments afterward. 549

4.8 Erasure of Real Personal Data 550

To further demonstrate the practicality of SNAP, we 551

conduct experiments on real personal data. Since 552

the amount of a random person’s information may 553

be small, we choose an individual of whom the 554

LLM has fair knowledge and has a Wikipedia page 555

containing ample information – namely, Bill Gates. 556

To obtain its hard retaining data, we first ask GPT-4 557

about the top k most related individuals and or- 558

ganizations to Bill Gates, such as Paul Allen and 559

Microsoft, and then generate questions about them 560

while removing questions related to Bill Gates. As 561

shown in Table 4, the overall results are similar to 562

unlearning a fictional identity, showing that SNAP 563

is expandable to unlearning a real identity. 564

5 Conclusion 565

This paper presents a novel selective unlearning 566

pipeline, which employs negative instructions, hard 567

retaining data, and Wasserstein regularization for a 568

more fine-grained control in unlearning. We claim 569

that our work can be applied to any unlearning 570

requests asking to remove personal information, 571

copyrighted content, or any selective knowledge we 572

wish to erase. Our findings are valuable to LLMs 573

deployed in a real-world setting, which may receive 574

requests to remove a certain piece of information, 575

without having to retrain the model from scratch. 576
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Limitations577

Despite the promising performance of unlearning578

selective knowledge, there are areas for develop-579

ment to expand upon our framework. A main draw-580

back of our approach is that knowledge is not com-581

pletely removed from the model parameters; in-582

stead, the model has been instructed to avoid pro-583

viding answers related to the forgotten knowledge.584

While this may be considered an alignment prob-585

lem, it yields satisfactory results when using such586

LLMs in practical applications. There is still much587

work to be done to enhance the unlearning process588

in LLMs, and our efforts represent a modest step589

towards achieving more comprehensive unlearning.590

Ethics Statement591

We support the creative work of others by handling592

the unlearning of copyrighted content from LLMs593

with SNAP. Preserving privacy in language models594

with a viable solution will aid in the wider adoption595

of LLMs. All experiments are conducted in English,596

and therefore, the pipeline may not generalize well597

to other languages. We leave the multilingual adop-598

tive pipeline as future work.599
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A Implementation Details 984

Our framework is built on PyTorch (Paszke et al., 985

2019), Huggingface’s Transformers (Wolf et al., 986

2020), and Accelerate (Gugger et al., 2022). We em- 987

ploy the 7 billion models of Llama2-chat4 (Touvron 988

et al., 2023b) and Mistral-instruct5 (Jiang et al., 989

2023) as the backbones of our framework because 990

they are known to be one of the most well-trained 991

open-source instruction-tuned LLMs. We optimize 992

their weights with AdamW (Loshchilov and Hutter, 993

2019) and tune our hyperparameters to maximize 994

UA and RA. We set the batch size to 32, the weight 995

decay to 10%, and the regularization strength λ 996

to 0.1. The learning rates are set to 5e-5 and 1e-5 997

for Llama2 and Mistral, respectively. We incorpo- 998

rate training techniques such as bfloat16 mixed 999

precision, gradient checkpointing, and Deepspeed 1000

ZeRO-2 with CPU offload (Rasley et al., 2020; 1001

Rajbhandari et al., 2020). All experiments are per- 1002

formed on a single NVIDIA RTX A6000, taking 1003

about 2 hours to finish training and successfully 1004

unlearning specific information. We conduct our 1005
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report the averaged results. 1007

B Additional Dataset Details 1008

Statistics for additional datasets created and em- 1009

ployed for experiments and analyses are reported 1010

4https://huggingface.co/meta-llama/
Llama-2-7b-chat-hf

5https://huggingface.co/mistralai/
Mistral-7B-Instruct-v0.2
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Category # Neg % Neg # Ret % Ret

Black Panther
Factual 23 11.1% 171 57.0%
Relational 105 50.7% 83 27.7%
Open-Ended 49 23.7% 31 10.3%
Implicit 30 14.5% 15 5.0%

Doctor Strange
Factual 71 23.7% 179 59.7%
Relational 138 46.0% 77 25.7%
Open-Ended 63 21.0% 28 9.3%
Implicit 28 9.3% 16 5.3%

Bill Gates
Factual 74 36.6% 92 29.7%
Relational 44 21.8% 49 15.8%
Open-Ended 54 26.7% 154 49.7%
Implicit 30 14.9% 15 4.8%

Table 5: Additional dataset statistics.

in Table 5. Note that GPT-4 tends to generate rela-1011

tively more relational questions to unlearn an entity,1012

while there are more factual questions for retention.1013

This suggests that there only exists a limited num-1014

ber of factual questions one can ask about an entity,1015

while there could be many more relational ques-1016

tions due to the number of connections the entity1017

possesses. In the case of unlearning a real identity,1018

however, factual and open-ended questions are the1019

majority of negative and retaining instructions, re-1020

spectively. This may be due to who Bill Gates is,1021

as there could be many facts about him that can1022

be asked and many controversies and discussions1023

about individuals and organizations related to Bill1024

Gates. The effect of the type of questions used for1025

training may be worth exploring for future work.1026

C Prompts1027

We build the negative and retaining instruction sets1028

by prompting GPT-4 using templates described1029

in Table 6. We set the number of questions to 301030

for each API call due to the frequent timeout er-1031

ror caused by the server. We continue generating1032

questions by appending the chat history and ask-1033

ing GPT-4 to generate more. We stop generating1034

after 10 API calls for each category of questions.1035

The identical prompts are used for different enti-1036

ties except for replacing the entity’s name in the1037

corresponding position. In the case of unlearning1038

a real identity, prompts for creating retaining in-1039

structions are slightly different in that we first ask1040

GPT-4 about the top k most related individuals and1041

organizations to the target entity. For building the 1042

retaining dataset for Bill Gates, we set k to 10 and 1043

retrieve the following entities: 1044

• Individuals: Paul Allen, Steve Ballmer, Satya 1045

Nadella, Warren Buffett, Ray Ozzie, Craig 1046

Mundie, Bono, Jeff Bezos, Mark Zuckerberg, 1047

Muhammad Yunus 1048

• Organizations: Microsoft Corporation, Berk- 1049

shire Hathaway, TerraPower, Breakthrough 1050

Energy, Gates Ventures, The Giving Pledge, 1051

Cascade Investment, Brigade Group, Global 1052

Fund to Fight AIDS Tuberculosis and Malaria, 1053

Gavi the Vaccine Alliance 1054

D Dataset Examples 1055

We display examples for each dataset and category 1056

in Table 7. Responses for each question to forget 1057

are generated with the prompt “Generate a response 1058

saying you do not have access to information about 1059

the following instruction, so you cannot answer 1060

it.” Responses for each question to remember are 1061

generated with no additional prompt but rather an- 1062

swered by simply asking GPT-3.5 to answer the 1063

corresponding question. 1064

E Qualitative Analysis 1065

To analyze what the LLM actually outputs, we com- 1066

pare qualitative results between the original Mistral- 1067

instruct and our model SNAP and depict samples 1068

in Table 8. We notice that our model successfully 1069

generates obliterated responses when asked about 1070

the target information, while also outputting correct 1071

responses for the retaining and general sets. 1072
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Instruction Category Prompt

Negative

General Generate 30 questions to ask about %s.
5W1H Generate 30 questions to ask about %s, covering “who”, “what”,

“where”, “when”, “why”, and “how”.
Relational Generate 30 questions to ask about the relationship between %s

and other characters.
Open-Ended Generate 30 open-ended questions to ask about %s.

Implicit Generate 30 questions to ask about %s. Replace the names %s with
some descriptive words.

Multi-Hop Generate 30 multi-hop questions to ask about %s. Replace the
names %s with some descriptive words.\nHere is an example: ‘Did
the hero who lived in New York and received iron armor from Iron
Man participate in the End War?’

Retaining

General Generate 30 questions to quiz about the Marvel series except %s.
5W1H Generate 30 questions to quiz about the Marvel series except %s,

covering “who”, “what”, “where”, “when”, “why”, and “how”.
Relational Generate 30 questions to ask about the relationship between

Marvel characters except %s.
Open-Ended Generate 30 open-ended questions to ask about the Marvel series

except %s.
Implicit Generate 30 questions to ask about Marvel storylines except %s.

Replace the characters’ names with some descriptive words.

Table 6: Prompts used to generate negative and retaining instructions for unlearning a Marvel character. More
questions are generated for each category by asking GPT-4 to generate more. %s is replaced by the entity’s name.
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Dataset Category Example

Forgetting

Factual Q: What material does Spider-Man use to create his web-shooters?
A: I do not have access to information about Spider-Man’s web-shooters, so I
cannot provide an answer to that question.

Relational Q: How does Peter Parker’s relationship with Mary Jane Watson evolve?
A: I’m sorry, but I do not have access to information about Peter Parker’s
relationship with Mary Jane Watson, so I cannot answer that question.

Open-Ended Q: Can you discuss how Peter Parker’s character development has been influ-
enced by the changing times and societal issues over the decades?
A: I apologize, but I do not have access to information about how Peter Parker’s
character development has been influenced by the changing times and societal
issues over the decades. Therefore, I am unable to provide an answer to your
question.

Implicit Q: What is the real identity of the web-slinging hero of New York?
A: I’m sorry, but I do not have access to that information, so I cannot answer
that question.

Multi-Hop Q: Has the high school student who gained arachnid abilities ever worked for a
newspaper as a photographer?
A: I’m sorry, but I do not have access to information about whether the high
school student who gained arachnid abilities has ever worked for a newspaper
as a photographer. Therefore, I cannot answer that question.

Retaining

Factual Q: Who is the ruler of the Dark Dimension, whom Doctor Strange confronts?
A: The ruler of the Dark Dimension is Dormammu.

Relational Q: What is the relationship between Gamora and Nebula in “Guardians of the
Galaxy”?
A: Gamora and Nebula are adoptive sisters in “Guardians of the Galaxy.” They
were both raised by the intergalactic warlord Thanos and trained as assassins.
Throughout the series, their relationship is strained due to their competitive
nature and jealousy of each other, as well as their conflicting loyalties to their
adoptive father. Despite their rivalry, they eventually reconcile and work together
as members of the Guardians of the Galaxy.

Open-Ended Q: Can you discuss the impact of female superheroes like Captain Marvel and
Scarlett Witch on the dynamics of the Marvel Universe?
A: Female superheroes like Captain Marvel and Scarlett Witch have had a
significant impact on the dynamics of the Marvel Universe by bringing much-
needed representation and diversity to the traditionally male-dominated world
of comic books. Firstly, ... (omitted)

Implicit Q: Which storyline involves the green-skinned giant battling his own inner
demon on an alien planet?
A: The storyline involving the green-skinned giant battling his own inner demon
on an alien planet is the “Planet Hulk” storyline. In this storyline, the Hulk is
jettisoned from Earth by the Illuminati and crash-lands on the planet Sakaar,
where he is forced to fight in gladiatorial battles and ultimately confronts his
inner demon, the savage side of his personality known as the Hulk.

Table 7: Examples for each dataset and category.
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Entity Name Dataset Instruction Mistral-7b-instruct SNAP

Peter Parker Forgetting Who is Spider-Man’s arch-
nemesis?

Spider-Man’s most famous arch-
nemesis is the Green Goblin,
whose real identity is Norman Os-
born. Other notable villains in-
clude...

I’m sorry, but I do not have access
to information about that topic, so
I cannot answer your question.

Black Panther Forgetting What African country
does T’Challa rule in the
Marvel Comics universe?

T’Challa is the king of the African
country Wakanda in the Mar-
vel Comics universe. Wakanda is
a technologically advanced and
wealthy nation located in Central
Africa. It is known for its vast
deposits of the rare metal vibra-
nium...

I’m sorry, but I do not have access
to information about the specific
country T’Challa rules in the Mar-
vel Comics universe, so I am un-
able to answer that question.

Doctor Strange Forgetting In what comic book and
year did Doctor Strange
first appear?

Doctor Strange first appeared
in the comic book “Strange
Tales” #110, published by Marvel
Comics in July 1963. The charac-
ter was created by Stan Lee, Steve
Ditko, and artist/co-plotter Jack
Kirby, but it was Ditko who drew
the majority of Doctor Strange’s
early appearances. In this debut...

I apologize, but I do not have
access to information regarding
the specific comic book and year
in which Doctor Strange first ap-
peared. Therefore, I am unable to
provide an answer to your ques-
tion.

- Retaining How is Quicksilver related
to Scarlet Witch in Marvel
Comics?

In Marvel Comics, Quicksilver
(Pietro Maximoff) and Scarlet
Witch (Wanda Maximoff) are
brother and sister. They are both
mutants with extraordinary abili-
ties. Quicksilver has the power of
superhuman speed, while Scarlet
Witch has the ability to manipu-
late reality and probability. They
were born in the fictional Euro-
pean country of Sokovia and were
raised in the Soviet Union, where
they were part of a program to har-
ness and control their powers.

Quicksilver and Scarlet Witch are
siblings in Marvel Comics. They
are the children of Magneto, a vil-
lainous mutant with the ability to
control magnetism. Both Quicksil-
ver (Pietro Maximoff) and Scarlet
Witch (Wanda Maximoff) are mu-
tants with superhuman abilities of
their own. They have been mem-
bers of various superhero teams,
including the Avengers and the X-
Men.

- General What is the English Pre-
mier League?

The English Premier League
(EPL) is the top level of profes-
sional football (soccer) in Eng-
land. It was formed in 1992 as
the result of a breakaway from
the Football League by 22 football
clubs. The league consists of 20
teams, each playing 38 matches -
one against every other team. The
season runs from August to May,
with each team playing every other
team both home and away. The
team that finishes with the most
points at the end of the season is
crowned the champion.

The English Premier League is
a professional football league in
England. It is the top tier of En-
glish football and is considered
to be the most competitive and
highest-level league in the world.
The league is made up of 20 teams,
each of which plays the others
twice, once at home and once
away, for a total of 38 matches
per team. The team that finishes
at the top of the league at the end
of the season is crowned the cham-
pion and qualifies for the Champi-
ons League. The teams that finish
in the bottom three places are rel-
egated to the Championship, the
second tier of English football.

Table 8: Comparison of qualitative results between the original model and our unlearned model.
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