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ABSTRACT

We report the Regression Transformer (RT), a method that abstracts regression as a con-
ditional sequence modeling problem. The RT casts continuous properties as sequences
of numerical tokens and encodes them jointly with conventional tokens. This yields a
dichotomous model that can seamlessly transition between solving regression tasks and
conditional generation tasks; solely governed by the mask location. We propose several
extensions to the XL Net objective and adopt an alternating training scheme to concurrently
optimize property prediction and conditional text generation with on a self-consistency loss.

Our experiments on both chemical and protein languages demonstrate that the performance
of traditional regression models can be surpassed despite training with cross entropy loss.
Importantly, priming the same model with continuous properties yields a highly competitive
conditional generative models that outperforms specialized approaches in a constrained
property optimization benchmark. In sum, the Regression Transformer opens the door for
”swiss army knife”” models that excel at both regression and conditional generation. This
finds application particularly in property-driven, local exploration of the chemical or protein
space.

1 INTRODUCTION

Transformers (Vaswani et al., 2017) are now ubiquitous in natural language processing (NLP) and have also
enjoyed large success in molecular (Schwaller et al., 2019; 2021) and protein language modeling (Rives et al.,
2021; Jumper et al., 2021). The invention of Transformers was the latest step in a steady decline of inductive
biases in applied ML, a trend that started with the rise of deep learning: CNNs outperformed traditional feature
descriptors in object recognition (Krizhevsky et al., 2012), self-attention generalized dense layers to learn
sample-dependent instead of static affine transformations (Luong et al., 2015) and Transformers exploited self-
attention to supersede RNNs as the de-facto standard in NLP. The success of vision transformers has questioned
the need for translation equivariance in image processing (Ramachandran et al., 2019) and now, even frozen
Transformers pretrained on text achieve SOTA results in object detection and protein classification (Lu et al.,
2021). Given that Transformers are today’s most generic model!, it is not surprising that entire domains have
been formulated as sequence modeling problem to leverage their power (e.g., offline RL Chen et al. (2021)).

1.1 THE REGRESSION TRANSFORMER

A provocative next step toward reducing inductive biases might be to refrain from explicitly modeling target
variables as functions of input variables. Instead of following this discriminative modelling approach when
tuning task-specific language heads in Transformers, learning the joint distribution over input and target
variables could effectively further blur the lines between predictive and conditional generative models. The
feasibility of such approach can be assessed via permutation language modeling (PLM) (Yang et al., 2019).

Here, we reformulate regression as a sequence modeling task of textual tokens. We propose the Regression
Transformer (RT), a class of models that can be trained on combinations of numerical and textual tokens
(Figure 1). This circumvents the canonical way of solving regression with Transformers; i.e., a set of dense
layers trained with a regression loss on the [CLS] token (Devlin et al., 2019). Despite solely relying on
tokenization of numbers and cross-entropy loss, the RT can successfully solve regression tasks. Notably, the
same model can conditionally generate text sequences given continuous properties. This is achieved simply by

"'graph neural networks with multihead attention as neighborhood aggregation on complete graphs



Published at the MLDD workshop, ICLR 2022

Sequence property prediction

<QED>[0_O0][.][5_-1]1[6_-2] 0.56
|CnlnccclBr

<QED>0.56|

CnlnccclBr CnlnccclBr

Figure 1: Overview of Regression Transformer (RT). The RT is a XLNet-based model designed to handle combinations
of text and numbers. Training the RT yields a dichotomous model that seamlessly switches between property prediction
and conditional text generation. Dependent on the mask location, the same model either predicts numerical tokens given
textual tokens, thus performing a regression task (blue stream, top); or predicts textual tokens given both numerical and
textual tokens, thus performing a property-driven conditional generation (yellow stream, bottom). We demonstrate the
strength of the RT in chemical and protein language modeling tasks.
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moving the [MASK] location and thus does not require finetuning individual heads. To equip the RT with
an inductive bias for handling continuous properties, numbers are first tokenized into a sequence of tokens
preserving the decimal order. We then devise numerical encodings to inform the model about the semantic
proximity of these tokens. To allow for concurrent optimization of regression and conditional generation, we
propose an PLM-inspired training scheme that alternates between optimizing property prediction and text
generation. For the latter, we derive a novel self-consistency loss that exploits the dichotomy of the RT by
querying itself with the generated candidate sequence.

Related work and application domain. Models that concurrently excel at regression and conditional
text generation are, besides theoretical considerations, of special interest for chemo- and bioinformatics.
Text sequences are often labelled with continuous properties (e.g., drug efficacy or protein solubility) and
design tasks are intertwined with biochemical properties. But despite the rise of deep generative models in
molecular (Elton et al., 2019) and protein design (Wu et al., 2021), current approaches still develop property
predictors and generative models independently. Transformer-based architectures have been used widely on
chemical tasks but either focused on property prediction (Wang et al., 2019; Kim et al., 2021) or on conditional
molecular design (Irwin et al., 2021; Mahmood et al., 2021), never on both. This semantic gap persists
across architectural flavors (e.g., GANs (Méndez-Lucio et al., 2020), RL (Born et al., 2021) or VAEs (Gomez-
Bombarelli et al., 2018)). To our knowledge, all existing approaches limit the communication between both
modules to a reward/loss and thus fail to “entangle” constrained structure generation with property prediction.
By sharing weights between both tasks, the RT adheres to the intuitive expectation that a property-driven
generative model should, in the first place, excel at recognizing this property. The RT aims to close this gap.

Experimental scope. In the remainder of this paper, we describe the Regression Transformer (RT). The
RT is evaluated in predictive and generative tasks in chemical as well as protein language modeling. For
chemical languages, we first validate the RT on a synthetic dataset of drug-likeness (Bickerton et al., 2012),
and then test it on three property prediction datasets from the MoleculeNet benchmark (Wu et al., 2018) and
one property-driven molecular generation benchmark (Jin et al., 2018). For protein sequence modeling, we
apply the RT on a synthetic dataset of solubility (Boman, 2003) and two datasets from TAPE (Rao et al., 2019).

2 METHODS

2.1 XLNET BACKBONE

The RT is built upon an XLNet backbone (Yang et al., 2019) to retain the benefits of auto-regressive modeling
in combination with a bidirectional context. The bidirectionality is critical because the RT is required to fill
multiple tokens at arbitrary positions in a sequence while attending the full remaining sequence’. However,
the independence assumption in bidirectional but non-autoregressive models like BERT becomes increasingly
disruptive as more masked tokens are filled. In general, it is important to notice that the proposed framework
can be applied to all transformer flavors, but it certainly benefits from an autoregressive generation with full
sequence attention even for discontiguous mask locations, like XL.Net or MPNet (Song et al., 2020).

%e.g. SMILES are non-local sequences such that masking functional groups usually implies masking disconnected
tokens.
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2.2 TOKENIZATION

This section describes the processing of strings consisting of a mixture of numerical and textual symbols (cf.
Appendix Figure Al, rop). Representing every number as a single token is suboptiomal due to a lack of
generalization to new numbers and sparsity of the provided tokens. We therefore propose a scheme for
converting text representing numbers into a sequences of tokens. First, the following regular expression splits
a string denoting a numerical:

\s*x\s*? (\+]-) 2 (\d+) (\.) 2 (\d+) 2\s* ey

Each of the resulting matches containing a number is converted to a token t,, , where v € NN [0..9] is the

value/digit and p € Z is the decimal place (e.g., 12.3 is splitinto [1_1, 2_0, ., 3_-1]). We call these numerical
tokens. This representation has the advantage that it allows easy decoding of the digit sequence but also
distinguishes their decimal order by adhering to classic positional notation. Negative numbers are preceded
with a special token. Regarding alphabetic tokens, we represent molecules either as SMILES (Weininger,
1988) or SELFIES (Krenn et al., 2020) strings and tokenize with the regular expression from Schwaller et al.
(2018) and the internal SELFIES tokenizer, respectively. Protein sequences are tokenized per amino acid.

2.3 NUMERICAL ENCODINGS (NE)

Due to the inherent structure of numbers, learning the embeddings of numerical tokens in a purely data-driven
way might be ineffective. Moreover, since the RT is trained with cross-entropy loss, no notion of similarity
between numerical tokens is conveyed. As a remedy, we propose numerical encodings (NE), a simple inductive
bias about the semantic proximity of numerical tokens, similar to positional encodings (Vaswani et al., 2017).
In practice, we sum the NEs with regular word embeddings and relative positional encodings from XLNet (see
Appendix Figure A1 for a workflow). Our proposed numerical encodings are zero vectors for all but numerical
tokens of the dictionary. We follow positional notation as above. Given a token t,, ,, (with digit value v and
decimal place p), the numerical encoding at embedding dimension j is defined as:
N 10P

NEFloat(vapvj) ( 1) ]+1 (2)

Thus, the amplitude of the NE scales with the numerical value of the token. The NEs are perfectly correlated
among embedding dimensions but alternate between positive and negative values for even and odd dimensions
and vanish for higher dimensions (see example in appendix Figure A2). Critically, the pairwise distances of the
numerical encodings are symmetric and decay monotonically with the float value (see appendix Figure A2).

2.4 TRAINING OBJECTIVES

The input x for a RT is defined by a concatenation of k property tokens [xP]; and [ textual tokens [x];, such
that: x = [xP,x%|p = [2¥, ..., 2%, 2%, ..., z}]r. T=Fk+ is the full sequence length and x” and x" are property
and textual tokens respectively.

Permutation language modeling (PLM) objective. The idea of PLM (Yang et al., 2019) is to fill masked
tokens auto-regressively by sampling a factorization order z for a sequence x at runtime. Decomposing the
likelihood py(x) according to the facorization order yields, in expectation, a bidirectional auto-regressive
model. Let z € Z7 denote one of the T"! permutations of our sequence x. If z; and z; are the i-th and first
i — 1 elements of z, the PLM objective is:

T
max E,oz, [Zl log po (22, %4, )] 3)
i=
In practice, partial prediction is performed, i.e., only the last c tokens of the factorization order z are predicted.
Following XLNet, z is split into a (masked) target subsequence z . and an unmasked input sequence z<,. s.t.
the objective becomes

T
JpLm = meax Eznz, [Inge (Xz>c|XzSc)] =Ezuz, l Z log po (-, XZ<i>‘| 4)
i=c+1
where c is a hyperparamter, usually sampled per batch such that roughly 1/c¢ of the tokens are masked. We
notice that (4) does not make any specific choices on x? and x’. It thus constitutes our baseline objective.

While (4) is a generic objective, it is computationally exhaustive to optimize due to the permutations. Moreover
it is not ideal for our needs because it does not distinguish between textual and property tokens. Instead, we
are aiming to develop a single model that can either predict numerical tokens (when given text sequences) or
text tokens (when given a combination of numerical and text tokens). To that end, we propose to train on two
alternating objectives, one designed for property prediction and one for text generation.
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Property prediction objective. Instead of randomizing which tokens are masked, this objective exclusively
masks all the property tokens. Specifically, we constrain the factorization order z by setting the first [ elements
to x* and fixing ¢ = . This guarantees that only property tokens are masked. Let Z%. denote the set of possible
permutations. Under this constraint, then the objective becomes
T
Jp = maxE, 2y [logpo(x’|x')] =Eyozp | Y logpo(al, |x,_ . xb_ ) (5)
i1=c+1

where x[_ . denotes the c-th to the i—1-th element of the factorization order z. We emphasize that this
“tailored” property objective J,, is still optimized with a cross-entropy loss in practice. Note that this loss
cannot convey any notion on the qualitative proximity of the prediction to the labels because the level of
measurement of tokens in a language model are on a nominal level. Instead, a traditional regression loss
operates on a ratio scale.

Conditional text generation objective. This objective facilitates the generation of textual tokens given a
property primer and textual tokens. We constrain the factorization order z by setting the first k£ elements to x?
to and sampling the cutoff ¢, s.t. ¢ >= k. This ensures that masking only occurs on textual tokens. Then, we
denote the set of permutations by Z%. and the objective becomes

T
Jo = mgXEZNZzT [logpg(x;>c\x’z’gk,x;%«)} =E,.zt [ Z logpg(xii\xzz’gk,xiﬂd) (6)

1=c+1
Intuitively, this objective applies regular PLM while sparing the numerical tokens. It then aims to reconstruct
the full text sequence (i.e., molecule) given the uncorrupted property tokens and partially corrupted textual
tokens.

Self-consistency (SC) objective. Standalone, the CT generation objective (6) does not reward if the generated
sequences adhere to the primed property. This is critical because similar to natural language, changes in single
tokens (atoms or amino acids) can drastically change the property (meaning) of a sequence (sentence). As a
remedy, we extended the text generation objective J by a self-consistency term that exploits the dichotomy
of the Regression Transformer. The full objective is given by:

Tsc = Ja(x) +a- Tp(X) @)
where the second addend is the self-consistency term, weighted by a factor . Intuitively, it is given by the
difference between the property of the sample and the predicted property of the generated sample X. Here, X
is obtained by greedy decoding of the masked tokens and combining it with the non-corrupted tokens of x.
To be precise, X = [xP, X!] where & = [m1Z + (1—-m;)z1, ..., T + (1—my)z;]. Here, m is an indicator
vector whether masking occurred at a given position and X = arg max ZZT:C 41 logpg(al,[xb_, ,x}  _)is
the result of greedy decoding. In such a formulation, the RT acts as an oracle during its own optimization,
resembling an additional layer of self-supervision. While this scheme risks undesired side effects when the
model performs poorly at property prediction, it introduces a notion of self-consistency and rewards the
generation of molecules that are different from training samples as long as they adhere to the property.

Evaluation & performance metrics. Regression (or property prediction) is evaluated by RMSE and
Pearson’s r (PCC) using the floating value resulting from converting the sequence of predicted tokens
into digits (the model never failed to predict a token sequence not corresponding to a valid numerical).
For conditional generation, we randomly mask tokens of the sequence and then query the model with ten
equidistant property primers spanning the range of property values. As a sanity check, we report 0-Var, i.e.,
the percentage of molecules for which the generation was unaffected by the primer (the lower the better).
The main metric is the average Spearman’s p between the ten primers and the actual properties. Spearman
is favorable over Pearson because it is only rank-sensitive. Due to constraints induced by the fragmented
sequence, covering the entire property spectrum is usually impossible such that e.g., RMSE is inappropriate
for this task (e.g., priming a highly toxic scaffold with low toxicity cannot yield a non-toxic molecule). Details
on the training procedure are in appendix A6.

2.5 DATASETS
2.5.1 CHEMICAL LANGUAGE MODELING

Synthetic QED dataset. Starting from ~ 1.6M bioactive molecules from ChEMBL (Mendez et al., 2019),
we created a synthetic dataset by computing the QED (Bickerton et al., 2012) score (q € [0, 1]) for all molecules

3E.g., predicting a sequence of numerical tokens corresponding to a property score of 0.91 for a sample with a true
property of 0.11 will not generally result in a higher loss than predicting 0.21.
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with RDKit and rounded to 3 decimal places. We used ~ 1.4M molecules for training, 1k for validation and
10k for testing.

MoleculeNet datasets. We focused on 3 regression datasets from the MoleculeNet benchmark (Wu et al.,
2018): ESOL, FreeSolv and Lipophilicity, where the task is to predict water solubility, hydration free energy
and lipophilicity of a molecule, respectively. For each dataset, we performed 3 random splits (as recommended
by Wu et al. (2018)) with 15% validation data. Because the datasets are small (< 5000 samples), we used
SMILES augmentation (Bjerrum, 2017) with a factor of 16.

Property-optimization benchmark. This is a benchmark for property-driven, conditional molecular gen-
eration. The goal is to adapt a seed molecule such that a property is maximized while adhering to a fixed
similarity constraint. We obtained the data from Jin et al. (2018) which ships with a fixed split of 215,381
training and 799 test molecules and their penalized LogP (pLogP) value (Kusner et al., 2017). pLogP is the
octanol-water partition coefficient (logP) penalized by the synthetic accessibility score and the number of
cycles with > 6 atoms. Hence, pLogP just like QED can be computed deterministically from the molecule.
To maximize comparability we followed the candidate assembly process of Jin et al. (2018), described in
appendix A6.1.3.

2.5.2 PROTEIN SEQUENCE LANGUAGE MODELING

Synthetic Boman dataset. As a large-scale, labelled dataset we focused on the Boman index, a measure
of potential protein interaction for peptides. It is the average of the solubility values of the residues (Boman,
2003). We collected all 2,648,205 peptides with 15 to 45 AAs from UniProt (Consortium, 2020), computed
their Boman index, and used 10k and 1k for testing and validation respectively.

TAPE datasets. We focused on two datasets from the TAPE benchmark (Rao et al., 2019): Fluores-
cence (Sarkisyan et al., 2016) and Stability (Rocklin et al., 2017). The goal is to predict, respectively, the
fluorescence and intrinsic folding stability of a protein that is one to four mutations away from a training
protein. Both datasets ship with fixed splits. The fluorescence (stability) dataset has 21,446 (53,416) training,
5,362 (2,512) validation and 27,217 (12,851) test samples.

3 RESULTS ON CHEMICAL LANGUAGE MODELING

3.1 LEARNING DRUG-LIKENESS (QED DATASET)

To test the feasibility of concurrent property prediction and conditional generation, we start with optimizing the
vanilla PLM objective (Equation 3) on the QED dataset (see Figure A1 for a workflow illustration). Evaluating
these models on property prediction (i.e., masking only numerical tokens) does not closely mimic the training
dynamics. Despite this, as well as the unconventional formulation of a regression task as sequence modeling,
all models generated sequences of numerical tokens that allowed decoding floats, and even achieved a RMSE
< 0.06 (cf. Table 1). Instead, for the generative task, the same models were queried 10 times for every

Table 1: Performance after PLM training. RMSE (|) and PCC refer to predicting QED, perplexity ({) to the PLM
objective (Equation (4)) and Spearman p (1) and 0-Var ({) to the conditional generation task. For RMSE and PCC,
the mean across masking one to three numerical tokens is shown and for perplexity, O-Var and p the mean across five
evaluations. Full table with standard deviations in appendix Table A1l.

Configuration | Regression task ; Generation task

Data NE | Perpl. | RMSE PCC (1) ,0-Var({) p (1)
SMILES - 1 1.551 0.05649 0972 1 1.6% 0.096
SELFIES - ' 1.61 ' 0.0591 0.968 ' 0.9% 0.427

SELFIES v ' 159 '0.0547 0.971 ' 0.3%  0.467

|
L

seed molecule, with property primers equidistantly spaced in [0, 1] and 40% of masked textual tokens. The
high Spearman p values show that the model learned successfully to complete the corrupted scaffolds to
produce full molecules with a desired QED. Here, the SELFIES models exceeded the SMILES models by far,
because SMILES, unlike SELFIES, can be syntactically invalid. Notably, the novelty score (i.e., percentage of
conditionally generated molecules not present in training data) was > 99% for all models. This demonstrates
that the RT can generate novel chemical matter that adheres to a continuous property of interest. The richness
of the generated molecules based on a seed molecule is exemplary visualized in Figure 2 (fop). The slightly
superior results in perplexity and regression for SELFIES can be explained respectively by an easier syntax
and are aligned with previous findings (Markert et al., 2020). For the rest of the experiments, we focus only on
SELFIES. Notably, the numerical encodings (NE) slightly improved performance in all tasks.

Based on our proposed training scheme with alternating objectives, the models were further refined: For
every model in Table 1, two models were trained, without (o = 0) and with (o« = 1) the self-consistency
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term in the text loss, respectively. Notably, the performance in regression as well as conditional generation
Table 2: Performance evaluation on refined objectives. Legend like Table 1. All models used SELFIES. NE means
numerical encodings and o refers to the loss function in Equation 7. Full table with standard deviations in appendix Ta-
ble A2. MAE stands for mean absolute error.

Config | Regression task | Generation task

Model MAE
o RMSE PCC | 0-Var Spearman p J-NN (baseline) 0.0551“
X 0,00341 0988 ,02% 047 SMILES-BERT (Kim et al., 2021)  0.020
X 1100483 0978 103%  0.49 R PLM oby e

v 010.0498 0.982 ' 0.3% 0.47
v/ 1'0.0367 0.987'02%  0.52

(a) Performance evaluation on refined objectives.

RT - Alternating obj. (o« = 0) 0.017

(b) Performance comparison in predicting QED.

improved significantly, demonstrating the effectiveness of the refined objectives. Moreover, all configurations
of the RT outperformed a baseline k-NN-regression model (RMSE of 0.083, PCC of 0.927 with & = 30). In
addition, our best configuration even surpassed the SMILES-BERT model which achieved a MAE of 0.02
after large-scale pretraining and finetuning a regular regression head (see Table 2b).

Moreover, the self-consistency term further improved the model’s ability to generate tailored ensembles
of molecules and led to consistently higher correlation scores. However, this comes at the cost of inferior
regression performance compared to the other models (o« = 0). Presumably, this is because the model weights
in charge of the regression are confounded with the gradients from the self-evaluation (cf. Equation 7). The
novelty scores for the molecules generated in this setting were even slightly higher than for the PLM training
(> 99.3% for all models). A particularly challenging application for property-driven, local exploration of the
chemical space is scaffold hopping; for an example on this see appendix A8.1. Again, for ablation studies on
SMILES language and other types of NEs, see appendix A7.1.1. Our extended results show that the inductive
bias of the NEs is not strictly necessary: In the absence of NEs, a large fraction of the learned embeddings of
the numerical tokens directly and significantly encode the natural ordering of digits (see appendix A9.1).

o Srfwwﬁf( RUSD

Primer: 0.05, QED: 0.113 Primer: 0.25, QED: 0245 Seed QED: 0.701

R -

Low QED Primer: 0.15, QED: 0.167 P

pecconPaag PN

r:-8.61, Primer:
ESOL (by RT): -6.58; ESOL (by Grover):-7.44 ESOL (by RT): -5.19, ESOL (by Grover):-4.67
Seed ESOL: -3.904 ESOL (by RT): -4.78, ESOL (by Grover): -3.73  ESOL (by RT): |SOESOL(DYGNV8(D -1.78

Primer: -7.23, /k/\/\/l /©/ >_>—( (__\_/
ESOL (by RT):-5.21, ESOL (by Grover)-5.17

Unsoluble ESOL (by RT): -5.19, E.SOL(Dmeor) -4.39 ESOL (by RT): -3.79, ESOL(WGW) 229 s°|ub|e

Figure 2: Property-driven, local optimization of molecular design with the Regression Transformer (RT). For each
row, the seed molecule is shown in the middle alongside its true property. Based on 10 property primers, 10 molecules
were decoded but duplicates were discarded. Samples generated with the self-consistency model. 7op: QED dataset.
Bottom: ESOL dataset of aquatic solubility. The solubility of the novel molecules was predicted by the RT itself and is
externally validated by Grover (Rong et al., 2020).

3.2 REGRESSION BENCHMARK (MOLECULENET)

Next, we finetuned our models from the QED dataset on the three MoleculeNet datasets (Wu et al., 2018).
The regression performance on ESOL, FreeSolv and Lipophilicity is shown in Table 3 and compared to prior
work. Due to countless research on the MoleculeNet benchmark, we only report performances of the original
MoleculeNet release (Baselines: RF, XGBoost Advanced: MPNN) and the best comparable Transformer-based
approaches: SMILES-BERT (Wang et al., 2019) and Mol-BERT (Fabian et al., 2020). For direct comparability
to the RT, we also report the results of the XL Net backbone trained with a conventional regression loss. Note
that, from all the models in Table 3, only the RT is trained with a classification loss. Interestingly, XGBoost, the
strongest baseline by Wu et al. (2018), is outperformed by all our models on all tasks. Even the MPNN (Gilmer
et al., 2017), a message-passing GNN, is slightly surpassed on FreeSolv and Lipophicility by some of our
models. Remarkably, the RT is on par (Lipophilictiy dataset) or mildly inferior (i.e., within standard-deviation
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Table 3: RMSE (]) in predicting MoleculeNet dataset properties. Performance on three different datasets across
predictive models. All models used random splits.

Model Objective NE « | ESOL FreeSolv Lipo.
RF Regression — - 1.16i0A15 2~12i0.68 0.78i0A02
XGBoost Regression - — | 1.05%0.10 1.76%0.21 0.84+0.03
MPNN Regression —  —10.55%0.02 1.20%p.02 0.76%0.03
"SMILES-BERT ~ Regression - —|047+005 081+o00 -
Mol-BERT Regression - —10.53%0.04 0.95+¢p.33 0.56+0.03
XLNet (ours) Regression - —10.69%0.01 1.03+p25 0.74%0.02
" " RT (ours)  Classificaion X 0 ]0.76%0.05 1.19%020 0.76%0.03
RT (ours) Classification X 1| 0.75%0.04 1.3240.39 0.7640.03
RT (ours) Classification v 0 | 0.71%0.04 1.40%0.47 0.74%0.05
RT (OUI'S) Classification v 110 73i0 04 1 34i0‘29 0 74i0 03

range; ESOL & FreeSolv datasets) to a XLNet model trained with a regression loss. However, all our models
are outperformed by BERT-based approaches that leveraged pretraining and tuned a regression head; most
likely due to the massive unsupervised pretraining.

Table 4: Conditional generation for MoleculeNet datasets. Average performances across three splits for training with
alternating objectives. p refers to Spearman p and was evaluated with Grover (Rong et al., 2020). Same legend like Table 3.
Full table with standard deviations and self-evaluation with RT are in appendix Table A4.

' ESOL FreeSolv  Lipophilicity

Model g o lovar p Ovar p  Ovar p
RT X 0,44% 044 79% 0.53 3.6% 0.29
RT X 1159% 046 7.5% 0.56 2.7% 0.35
RT v 0161% 0.46 89% 057 4.2% 0.29
RT v 1'61% 047 65% 057 27% 0.34

X-BERT 1 Task unfeasible

But in stark contrast to all those approaches, only the RT can also be used to conditionally generate molecules
similar to the training samples (cf. Table 4). Since the properties of generated molecules are intractable
to evaluate in-silico, we could predict them, handily, using the RT. However, as this might be a biased
estimator, we evaluated them using Grover (Rong et al., 2020), a self-supervised Graph Transformer. Hence,
the Spearman reported in Table 4 is based on Grover predictions. Corroborative for our work was the high
correlation of our property predictions (RT) with Grover’s for molecules generated by the ESOL, FreeSolv and
Lipo models (0.86, 0.84 and 0.75 respectively). Thus, the Spearman p scores obtained with RT predictions are
consistent to Grover (cf. Table A4). In terms of molecular generation, the high Spearman scores are satisfying.
The self-consistency loss clearly had a positive effect. For a qualitative evaluation, we depict the generations
for one exemplary seed molecule of the solubility dataset in Figure 2 (bottom).

3.3 CONDITIONAL MOLECULAR GENERATION BENCHMARK

To assess whether the RT is a powerful conditional generative model, we benchmarked it on a property-driven
molecular generation task, namely pLogP constrained optimization (Jin et al., 2018). Given a seed molecule
and a similarity constraint  (i.e., Tanimoto similarity), the goal is to generate molecules with higher pLogP
values. We trained the RT using alternating objectives (o« = 1) and subsequently evaluated the model on the
test molecules, masking 10%-60% of the molecular tokens with ten property primers (spaced in the upper
half of pLogP values) until K = 80 molecules were obtained per seed (this follows the procedure suggested
by Jin et al. (2018)). The results in Table 5 demonstrate that, for both similarity thresholds d, the RT obtained
the best results and significantly outperforms the JT-VAE and GCPN models by 614% and 103% in average
improvement, respectively. Experiments on further values of § (§ = 0.0 and § = 0.2) confirm this trend
( see A7.3). While the success rate of GCPN is higher than ours, we emphasize that both, JT-VAE apply
optimization at inference time. The JT-VAE applies gradient ascent in the latent space and the GCPN performs
a stepwise reward optimization. Instead, the RT does not only not require any optimization at this stage, but it
was also never trained explicitly to produce molecules with high pLogP. This finding demonstrates that the RT
is able to compete with specialized conditional generative models in goal-directed molecular generation. At
the same time, the RT also predicted the pLogP value with a Pearson’s correlation of 0.92, a task that cannot
be addressed with normal conditional generative models. The results in Table 5 were obtained with the RT
including a self-consistency loss, but for ablation studies on the RT and further results on § = 0.2 and § = 0,
see appendix A7.3.
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Table 5: Constrained property optimization benchmark. JT-VAE is from Jin et al. (2018) and GCPN from You et al.
(2018). « denotes the minimal similarity to the seed.

Similarity threshold § = 0.4 Similarity threshold § = 0.6
Generation task ; Regression Generation task ; Regression
Model | Improvem. Similarity § Success, PCC Improvem. Similarity § Success, PCC

JT-VAE 0.844, 5 0.5140.1 83.6% 1 Unfeasible | 0.21.9.7 0.69_ .0 46.4% 1 Unfeasible
GCPN 2.4941 3 0.4740.1 100% ' Unfeasible | 0.79+0.¢ 0.6840.1 100% ' Unfeasible
RT (Olll‘S) 3.16i1.5 0.54:&:0.1 97.1% 1 0.92:t()_0 2'21ﬂ:143 0-69j:0.1 81.8% 1 0'92:t0.0

4 PROTEIN SEQUENCE LANGUAGE MODELING

To assess the generality of the RT beyond chemical languages, we performed several experiments on protein
language modeling. Unless indicated otherwise, all following results refer to the alternating training scheme
with self-consistency objective and numerical encodings.

Protein interaction dataset (Boman index) The initial experiments on protein sequence modeling, con-
ducted on the synthetic Boman dataset are shown in Table 6. The RT obtained nearly perfect results in
predicting Boman’s index (Spearman p > 0.994). It outperformed a baseline k-NN model with Levenshtein

Table 6: Protein language modeling results. The regression task was evaluated by Spearman’s p (1). The evaluation
metrics for protein generation are identical to those for molecular generation (see above). TAPE datasets/performances
taken from Rao et al. (2019).

Boman dataset Stability dataset Fluorescence

Regression ; Generation Regression ; Generation Regression
Model Source pM 1 0-Var() p® pM 10-Var()  p(M p (M)
k-NN (baseline) Ours 0.93 ! 0.21 ! 0.59
One-Hot TAPE - ! 0.19 0.14
Pretr. LSTM  TAPE — | Taskunfeasible 0.69 | Task unfeasible 0.67
Pretr. Transformer TAPE - | 0.73 | 0.68
Alley et al. (2019) UniRep - [ 073 | 0.67

RT Ours 0.99 1 O.Q%ioﬂ 0.84i0,0 0~71i0.02 1 19%i445 0.44i0A01 0-72i0.04

distance (Levenshtein, 1966) as similarity measure, which is a meaningful baseline because the Boman index
solely depends on the frequencies of amino acids. At the same time, the RT very successfully generated
peptides with a desired Boman index, given a partially corrupted AA sequence (cf. Spearman p of 0.84,
see Table 6). An ablation study on the three loss functions (Equations 3, 6 and 7) confirmed the superiority of
the self-consistency objective (see appendix A7.4.1).

TAPE datasets (Fluorescence & Stability) Next, comparing the performance of the RT on two protein
regression datasets from TAPE yields very competitive results (cf. Table 6). This is remarkable given that the
TAPE models were pretrained large-scale on unlabelled protein sequences and finetuned for these downstream
tasks with a regression loss. For example, the RT outperforms all reported SOTA methods in Spearman p
on the Fluorescence task; which has a distribution with two modes, for bright and dark proteins respectively.
Inspecting the predictions in more depth showed that the RT excels at recognizing the mode of a protein
but struggles with intra-mode precision (see appendix A9.3). This is not surprising given the training on a
classification loss. Overall, the comparable predictive performance of the RT demonstrates that the benefits
of self-supervised pretraining can be maintained, and even extended to numerically labelled datasets; which
yields, en passant, a conditional generative model for property-driven local exploration of the protein sequence
space. Evidence on this can be found in Table 6: Whereas all TAPE models as well as the UniRep method
are incapable of addressing this generation task, the RT was able to modify the test proteins such that their
(predicted) stability correlated strongly with the primed property (p = 0.44).

5 CONCLUSION

Here, we have presented the Regression Transformer (RT) and demonstrated that regression can be casted
as conditional sequence learning task. We started our experiments with demonstrating the general feasibility
of our idea on synthetic datasets in both chemical and protein language modeling. Afterwards, focusing on
existing property prediction benchmarks, we find that the RT learns continuous properties even from small
datasets, surpasses conventional regression models (like XGBoost or k-NN) and can compete with (and
sometimes even outperform) SOTA Transformers trained with a regression loss. Remarkably, this is achieved
without ever providing ratio-scale information about the property which opens the door toward ”swiss army
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knife” transformers. Indeed, our experiments on conditional text generation demonstrate the dichotomy of
the Regression Transformer: The RT can conditionally generate novel molecules and proteins that seemingly
adhere to the primed property values. This could be useful for property-driven, structure constrained molecular
or protein design. In fact, our experiments on the constrained molecular generation benchmark have shown
that the RT can surpass prolific previous approaches in this task. Finally, our work is line with the recent
trend towards multitask Transformers (Sanh et al., 2021; Lu et al., 2021) and we hope it paves the way toward
foundation models in material design.

SOFTWARE AND DATA

The codebase to facilitate reproduction of all experiments is publicly available at: https://github.com/
IBM/regression-transformer
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APPENDIX
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Figure Al: Workflow of the Regression Transformer (RT) model. Based on the XLNet backbone, the RT is a
dichotomous model designed to handle combinations of text and numbers. 7op: An input sequence consisting of a
molecular string (red) and two property tags (blue), each associated to a floating value (green). Numbers are tokenized into
a sequence of tokens that preserve the decimal order of each character. Middle: We propose numerical encodings that
inform the model about the semantic proximity of these tokens and naturally integrate with relative positional encodings
and classical learned embeddings. Bottom: The RT is trained with an alternating training scheme, derived from the PLM
objective (Yang et al., 2019) and designed to concurrently optimize property prediction and conditional generation (bottom).
The dots indicate that the RT naturally scales to multiple property tags.

A6 TRAINING AND EVALUATION PROCEDURE

A6.1 CHEMICAL LANGUAGE MODELING

A6.1.1 QED DATASET.

We started training the models with the vanilla PLM objective (4) on the QED dataset until validation perplexity
saturated (~ 4 days, single-GPU). Thereafter, the models were further refined on the same dataset by alternating
every 50 steps between objectives (5) and (7). We perform ablation studies on the self-consistency loss, setting
o in (7) to 0 and 1 respectively.

A6.1.2 MOLECULENET DATASET.

For the MoleculeNet datasets, the models were warm-started using the QED initialization and trained only for
50k steps (batch size 4) with early stopping. Since the QED pretraining utilized numerical values in [0, 1],
we normalized the regression values of the MoleculeNet datasets to the same range and rounded them also
to three decimal places. For all objectives, unless otherwise constrained, we set the masking hyperparamter
c = 5 and restrict the span of consecutively masked tokens to a maximum of 5 tokens.

A6.1.3 PROPERTY-OPTIMIZATION BENCHMARK

For this task, the models were also warm-started using the QED initialization and trained for 50k steps with
early stopping on perplexity. To assemble the candidates for the optimization of one seed molecule, we tried
to follow the process of Jin et al. (2018) as closely as possible. Jin et al. (2018) applied 80 gradient steps,
then decoded 80 molecules and reported the molecule with the highest pLogP score that satisfies the similarity
constraint §. Instead, we form a pool of molecules by prompting 80 times with the same seed molecule but
varying the fraction and the maximum span of masked tokens. From the pool of decodings we report the
molecule with the highest pLogP, just like Jin et al. (2018) and You et al. (2018).

Al
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A6.2 PROTEIN SEQUENCE LANGUAGE MODELING
A6.2.1 BOMAN DATASET

To model protein sequences, we started with training on the Boman dataset. We trained three groups of models,
one for the vanilla PLM objective (Equation 3) and two for the alternating objectives. We again alternated
every 50 steps between optimizing (Equation 5) and (Equation 7) and trained one set of models with and one
set without the self-consistency loss, such that & = 1 and o = 0 respectively in Equation 7. Models were
trained until validation perplexity saturated (~ 4days, single GPU). The numerical values of the Boman index,
originally in the range [—3.1, 6.1] were normalized to [0, 1] and rounded to three decimal places.

A6.2.2 TAPE DATASETS

Following the ablation study on the loss functions (see Table A4) that revealed the best results for the self-
consistency objective, we focused the finetuning exclusively on this configuration. For both datasets, three
models were warm-started using the Boman initialization and trained until validation performance saturated
(~ 100k steps). The numerical values were again scaled to [0, 1]. On the Fluorescence data, a small value
of Gaussian noise was added to some training samples due to an interesting failure mode (see A9.2). For
the evaluation of the conditional generation task, the models were given more flexibility: 60% of the tokens
were masked (i.e., ¢ = 1.7 in Equation 3) and the maximum span was 7 AA residues. We did not evaluate
the RT on conditional generation for the Fluorescence dataset because of a massive pretraining-finetuning
mismatch: While the Boman dataset used for pretraining consisted of 15 to 45 residues (mean/std: 36 £ 7),
the fluorescence proteins were significantly larger (246 + 0.2 residues). Instead, the proteins in the stability
dataset were similar in size to the pretraining data (45 & 3 residues).

A6.3 HYPERPARAMETER & EXPERIMENTAL INFRASTRUCTURE.
A6.3.1 REGRESSION TRANSFORMER

We used the default XIL.Net configuration from the Huggingface interface unless otherwise specified. Specif-
ically, we used 32 hidden layers in the Transformer encoder, with a dimensionality of 256 and 1024 in the
feed-forward layer and 16 attention heads. Dropout was 0.2 and the SMILES/SELFIES vocabulary had 724
and 509 tokens respectively. During evaluation, greedy decoding was used for property prediction and beam
search decoding for molecular generation. During the latter, we gave the model more flexibility by setting
¢ = 2.5, s.t., ~ 40% of the tokens were masked (maximum span: 7 tokens).

We used PyTorch 1.3.1 (Paszke et al., 2019) and the XLNet backbone model in Transformers 3.1.0 (Wolf
et al., 2019). All models were trained on POWERS8 processors and a single NVIDIA Tesla P100.

A6.3.2 KNN BASELINE.

For chemical language tasks, the distance measure was (inverted) Tanimoto similarity (Tanimoto, 1958) of
ECFP4 fingerprints Rogers & Hahn (2010). For the protein language models, the Levenshtein distance between
the protein sequences was used (Levenshtein, 1966). For the k-nn baseline models, k was determined based
on the best performance on the validation data. This led to & = 25 for the drug-likeness/QED task, & = 21 for
the protein interaction (Boman index) task, £ = 50 for the fluorescence and k = 15 for the stability task.

A7 ABLATION STUDIES

A7.1 ABLATION STUDY ON NUMERICAL ENCODING

A7.1.1 VISUALIZATION OF FLOAT ENCODINGS
A7.1.2 DESCRIPTION OF INTEGER ENCODINGS.

As an alternative to the float-based numerical encodings (NE), we experimented with an encoding scheme
relying solely on positive integers. Note that any regression problem can trivially be casted to a regression
problem where all labels are positive integers. Under this consideration, we need to define NEs only for
positive integers*; similar to positional encodings. We therefore propose to directly utilize the definition

4Strictly speaking only integers with a single, non-zero digit (i.e., covered by the base-10 exponentiation of the decimal
system)

A2
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Figure A2: Float-based numerical encodings. A) Numerical encodings for an molecule with a QED of 0.179. B)
Pairwise distances of numerical encodings for floats between 0 and 100 (the NEs of all tokens associated to a float are
summed up).

from Vaswani et al. (2017) as NEs:

N Erni (v, p,2j) = sin [(v : 10?)/1000023‘/%}
; 3
NEInt(U,p, 2j+1) = Ccos {(’U . 10P)/100002j/d5:|

where d. is the embedding size. The advantage of this integer-based encoding is that every embedding
dimension captures fluctuations of different frequencies; using trigonometric functions as continuous analogs
to alternating bits. Practically, to use the Integer-NEs, the QED values were casted to the range [0, 1000] and
rounded.

A7.1.3 FLOAT VS. INTEGER-BASED NUMERICAL ENCODINGS

Table A1 provides extended results compared to Table 1 in the main paper. It shows the standard deviations

Table Al: Performance evaluation of PLM training. FE means our main float-encodings whereas Int refers to the Integer
encodings described above.

\ Regression task task ; Generation task task
Data  NE Perplexity (), RMSE (}) PCC (1) , 0-Var () SCC (1)
SMILES - 1.5540.02 1 0.05494+001 0.9721001 1 1.6%+02 0.096+0.02
SELFIES - 1.6140.03 ! 0.059140.00 0.968+0.00 ! 0.9%+0.2 0.427410.01
SELFIES FE 1.5940.03 '0.054710.01 0.97140.00 ' 0.3%+01 0.467+0.01

SELFIES Int 1‘63:{:0,02 j 0.0564:&0_00 0.968i0,00 j 0.8%:{:0.3 0.440:‘:0,01

across several runs of the Regression Transformer. In this setting, from the two types of proposed numerical
encodings, the float-based encodings yielded slightly superior result to integer-based encodings. Similarly, Ta-
ble A2 shows extended results of 2 in the main paper, including standard deviations and the ablation study on
integer vs. float encodings. Here, integer-encodings (IE) are superior for regression but inferior for conditional

Table A2: Performance evaluation on alternating objectives. The decrease in perplexity compared to the vanilla PLM
training is expected given the discrepancy between the refined, alternating objective and the PLM objective.

| Regression task task | Generation task task |

Data NE « Perplexity | RMSE Pearson’sr; 0-Var Spearman’s p
SMILES - 0 2.1540.1 10.0396 0986 1 0.8%410.2 0.1140.02
SMILES - 1 1-73:I:041 10.0507 0982 I 1.1%:|:0.2 0.09i0,02
SELFIES - 0 257101 '0.0341 0988 '0.2%+01  0.47+0.02
SELFIES - 1 24li01 00483 0978 | 0.3%s01 0491001
SELFIES FE 0 2.1040.1 | 0.0498 0982 | 0.3%+01 0.468+0.03
SELFIES FE 1 2.6710.1 10.0367 0987 10.2%+0.1 0.5240.02
SELFIES Int 0 2.63+0.1 !'0.0307 0990 ! 0.7%-+0.2 0.41+40.01
SELFIES Int 1 2.71i0.1 1 0.0412 0.986 1 0.8%+0.3 0.44+0.01

generation. Due to that and the non-applicability of IEs to floating numbers, we decided to not further explore
them.
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Summation vs. concatenation of numerical encodings. We decided to follow the common approach of
summing additional encodings with the learned embeddings (Vaswani et al., 2017; Yang et al., 2019) but note
that disentangling content and position embeddings can improve language models (He et al., 2021). So, instead
of summing the numerical encodings to the regular embeddings, we also experimented with concatenation
(dimensionality of 32 for the NEs.). This produced slightly inferior but nearly identical results, see Table A3.
We propose to use a summation for two reasons: First, it avoids additional hyperparameters and model weights.

Table A3: Ablation study on NEs. Results on PLM training.

NE Type RMSE ({) PCC (1)
— 0.059140.00 0.9684+0.00
Float Concat. 0.05814+p.00 0.966+0.01
Float Sum 0.05471001 0.971.0.00
Int  Concat. 0.0666+0.01 0.963+0.01
Int Sum 0.0564:[:000 0.968:&0_00

Secondly, it probably yields approximately orthogonal subspaces of token embedding and numerical encodings
(due to the high dimensionality), obviating the need to enforce orthogonality with a concatenation. While
we conjectured that using NEs improves the performance in both tasks (property prediction and conditional
generation), we emphasize that providing this prior might not be necessary given enough data. We hypothesize
that refining our NEs might yield better results and in particular a faster convergence, but leave further
refinement to future work, especially given the plethora of research about positional encodings (Dai et al.,
2019; Bai et al., 2021; Wang & Chen, 2020).
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A7.2 CONDITIONAL GENERATION: EXTERNAL EVALUATION VS. SELF-EVALUATION

Generally, it is intractable to evaluate the performance in most property-driven molecular generation tasks
because the property of interest cannot only be measured in the wet lab. In the main paper, we have reported the
predicted ESOL, FreeSolv and Lipophilicity values respectively based on the GROVER approach (Rong et al.,
2020), a graph Transformer with large-scale self-supervised pretraining. Table A4 shows that a self-evaluation
with the Regression Transformer would have led to very similar results in all three conditional generation
tasks. This is reassuring because the RT is, at least in the self-consistency setting (alpha = 1), a biased
estimator since the model is used itself to optimize the conditional generation process. Based on this finding,
we refrained from seeking external validation for the conditional protein generation tasks (TAPE datasets).

Table A4: Conditional generation for MoleculeNet datasets. Average performances across all splits for training with
alternating objectives are given. ’p with RT” refers to the self-evaluation whereas ”’p with Grover” refers to to predictions
obtained with the model from (Rong et al., 2020).

Metric a=0,nFE a=1,nnFE o =0,withFE « =1, with FE
0-Variance (]) 444038 59413 6.1+3.7 6.1+15
Spearman p based on RT predictions 0.38+0.1 0.38+0.0 0.4140.1 0.4410.0
Spearman p with Grover predictions 0.4440.0 0.46+0.0 0.46+0.1 0.4710.0
(a) ESOL
Metric a=0,nFE a=1,nmFE «o=0,withFE « =1, with FE
0-Variance ({) 7.9492.4 7.5+3.6 8.945.2 6.5126
Spearman p based on RT predictions 0.51+0.0 0.5240.1 0.5240.0 0.4440.1
Spearman p based on Grover predictions 0.53+0.0 0.5610.0 0.5710.0 0.5710.0
(b) FreeSolv
Metric a=0,nFE a=1,n0FE « =0,withFE « =1, with FE
0-Variance (]) 3.6+1.6 2.7+0.9 42413 27107
Spearman p based on RT predictions 0.2240.1 0.29.9.0 0.2340.0 0.2640.0
Spearman p based on Grover predictions 0.2940.1 0.35+0.0 0.29+0.0 0.34+0.0
(c) Lipophilicity
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A7.3 CONDITIONAL MOLECULAR GENERATION (CONSTRAINED PROPERTY OPTIMIZATION
BENCHMARK)

On the constrained property optimization benchmark, we conducted ablation studies of the Regression
Transformer for the use of float-based numerical encodings (NE) as well as the self-consistency loss function.
The main metric of this task is the mean improvement in pLogP compared to the seed molecule. The results
can be found in Table A3. The value of « refers to Equation 7: o = 0 means that no self-consistency loss was
used and o = 1 implies that the self-consistency loss was used with a weight equal to the regular conditional
text generation objective (cf. Equation 6). The results of the ablation study indicate that the RT consistently
outperformed the JT-VAE and GCPN in the main metric (improvement) by a wide margin.

Table A3: Further results on constrained property optimization benchmark. JT-VAE is from Jin et al. (2018) and
GCPN from You et al. (2018). NE refers to the use of Numerical Encodings.

Training configuration Generation task | Regression
Model Numerical Encoding Self-consistency («) 1 Improvement Similarity § Success rate | Pearson’s r (PCC)
JT-VAE - - . 1914290 0.2810.2 97.5% 1 Unfeasible
GCPN - - | 4.2041.3 0.3210.1 100% ' Unfeasible
RT v 1 | 8.67125 0.10+0.1 100% | 0.92
RT v 0 I 7.964256 0.1140.1 100% 0.90
RT X 1 I 852495 0.1040.1 100 % [ 0.91
RT X 0 ' 835406 0.10+0.1 100% ! 0.94

(a) No similarity threshold (§ = 0.0)

Training configuration Generation task | Regression
Model Numerical Encoding Self-consistency («) 1 Improvement Similarity § Success rate | Pearson’s 7 (PCC)
JT-VAE — - , 1.68+1.9 0.33+0.1 97.1% 1 Unfeasible
GCPN - - P 412479 0.3440.1 100% ! Unfeasible
RT v 1 | 445:17  03bion  99.6% | 0.92
RT v 0 I 412447 0.36-10.1 99.6% 0.90
RT X 1 I 434116 0.35+0.1 99.9% 1 0.91
RT X ‘ 440417 0.3540.1 99.7% ! 0.94
(a) Similarity threshold § = 0.2
Training configuration Generation task ; Regression
Model Numerical Encoding Self-consistency («) 1 Improvement Similarity § Success rate | Pearson’s  (PCC)
JT-VAE — - . 0.84415 0.5140.1 83.6% | Unfeasible
GCPN - - | 249413 0.4710.1 100% ! Unfeasible
RT v 1 | 316115 054sn  97.1% | 0.92
RT v 0 I 287415 0.55:01 95.5% | 0.90
RT X 1 I 3.091415 0.54+0.1 97.2% 1 0.91
RT X ‘ 3.04415 0.5440.1 97.2% ! 0.94
(a) Similarity threshold 6 = 0.4
Training configuration Generation task ; Regression
Model Numerical Encoding Self-consistency («) l Improvement Similarity & Success rate | Pearson’s r (PCC)
JT-VAE — — . 0.2140.7 0.69_ 0.1 46.4% Unfeasible
GCPN - - i 0.79106 0.68+0.1 100% ' Unfeasible
RT v 1 | 221i13 0.69.:0.1 8L7% 0.92
RT v 0 I 2.0441.3 0.69-0.1 75.0% 0.90
RT X 1 210413 0.6910.1 81.1% 1 0.91
RT X 0 | 210413 0.69+0.1 81.6% 0.94

L

(a) Similarity threshold § = 0.6
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A7.4 PROTEIN SEQUENCE LANGUAGE MODELING
A7.4.1 IMPACT OF LOSS FUNCTIONS (PROTEIN INTERACTION DATA)

Like for the QED dataset, for protein sequence modeling we also investigated the impact of the three training
loss setups:

1. the vanilla PLM objective (Equation 3),

2. alternating objective with the PLM-based text loss (Jg; Equation 6, equivalent to setting o = 0
in Equation 7),

3. alternating objectives with the self-consistency term (Js¢; Equation 7; o = 1).

The results in Table A4 show that the proposed training scheme with alternating optimization of property
tokens and text tokens was highly effective for both, the regression and the generation task. In addition,

Table A4: Ablation study on training schemes for Boman dataset. Legend like Table 1.
\ Regression task ; Generation task
Model Loss | RMSE (]) Pearson’s 7 (1), 0-Var (]) Spearman p (1)
k-NN - 1 0.53 0.932 | Task unfeasible
RT PLM 1 0.69+0.03 0.944:{:0_0 I 0.34+0.4 O~76:I:0.03
RT  Jg ' 01710.04 0994100 ' 02401 0.8240.01
RT  Jsc ! 0204004  0.991:00 | 0.240. 0.8410.00

like on the QED dataset, the self-consistency loss led to better results in conditional generation, but at the
expense of slightly reduced accuracy in regression. As stated in the main text, this is most likely caused by
the self-evaluations of the decoded sequences. These sequences might differ significantly from the training
sequences but are still used with the property value of the original sequences. Since the Boman index can
be computed directly from the sequence, this hypothesis could, in principle, be confirmed by correcting the
property value during the self-evaluation call. However, limited value would come from such approach because
real datasets work with more complex properties.

Apart from that, Figure A3 reveals a general trend in the conditional generation with the Regression Trans-
former: More freedom in the generative process (i.e., a higher fraction of masked amino acid residues) leads
to better results in terms of Spearman p to the property primers (cf. Figure A3). This comes, however, at the
cost of reduced similarity to the seed sequence.

Conditional generation - Protein interaction

_
0.84 1 k//
//
0.82 P
/
//
< 0.801 P
© /
e /
[ -
S 0.78 ’,o
Q i
) PR
0.76 - »”
/
7
] 7
0.74 , ® PLMloss
,/ Text loss (Jg)
0.721 ‘/ ® Self-consistency (Jsc)
0.2 0.4 0.6

Fraction of masked tokens

Figure A3: Correlation between property primer and property of generated protein sequences The model’s ability
to generate protein sequences with a desired protein interaction index. The self-consistency loss yielded the best results
and, generally, a higher fraction of masked tokens led to generated peptides that adhere better to the primed property value.
Note that the Boman/protein interaction index can be assessed in-silico from the sequence alone.
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A8 CASE STUDIES

A8.1 CASE STUDY ON SCAFFOLD HOPPING

Scaffold hopping is a technique in medicinal chemistry with the goal to discover novel compounds by modifying
the central core structure (i.e., removing substituents while retaining rings and their linker fragments) of
known compounds (Bajorath, 2017). We simulated this task on the QED dataset by determining the scaffold
with RDKit and masking only the non-scaffold tokens (in contrast to the regular evaluation where randomly
40% of the tokens were masked). This task was only performed with the SMILES models since scaffolds
cannot be determined trivially in SELFIES. In general, this task is more challenging because the molecule is
more constrained. On average, less tokens are being masked and in most cases the full range of drug-likeness
cannot be captured, given the scaffold. This explains the higher percentage of molecules where the primer did
not influence the generations (cf. Table AS).

Table AS5: Scaffold hopping performance for SMILES model. No numerical encodings were used. No standard
deviations are available for the scaffold results since the masking is deterministic.

Text loss Task 0-Var (J)  Spearman’s p (1)
N Masking non-scaffold 8.55% 0.136
Jsc  Masking non-scaffold 9.76% 0.105

Ja Masking randomly  0.80%40.19 0.108+0.01
Jsc Masking randomly  1.14%4.0.19 0.08540.02

\/\)@51 oL MJOSEQ

Primer: 0.36, QED:0.536

~

Primer: 0.26, QED:0.352

0

Seed QED: 0.678
Scaffold QED: 0.870

Primer: 0.06, QED:0.180

Low QED

Figure A4: Molecules sampled in a scaffold hopping task. Only non-scaffold tokens (encircled in red) were masked.

But note, that this includes cases where the molecule is itself a scaffold and thus no tokens are masked (we do
not control for that explicitly). The generations for one exemplary molecule are shown in Figure A4. In this
example, it is interesting to see that the model decorated the scaffold with specific atoms on the rightmost
six-ring. These atoms, iodine, chlorine and bromine which were rightfully provided from low to high QED
primers seem to be indicative of different levels of drug-likeness. One drawback, however, is that the RT
cannot fill no or multiple tokens in the position of one [MASK] location. For example, in the case of the last
primer (0.86), the provided scaffold already had a QED of 0.87 and thus not adding any new atoms would
have been the best choice here.
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A8.2 CASE STUDY ON ATTENTION VISUALIZATION: INTERPRETING ATTENTION HEADS

We visualized the attention scores using BertViz (Vig, 2019). Here, we aimed to compare the inference patterns
across the two tasks, property prediction and conditional generation. The results for the first 4 (out of 32) layers
are shown in Figure AS. In general, many attention patterns commonly described in natural language models
are also present in the Regression Transformer. For example the bag-of-words pattern (i.e., evenly distributed
attention, e.g., all heads of first layer) or the next-token (e.g., layer 4, head 4 and 5) or previous-token patterns
(e.g., layer 2, head 2) are clearly visible. While the named patterns are consistently present in both tasks,
probably because they are useful irrespective of the particular task, some distinctive patterns for either of the
tasks can be found. For example, in the conditional generation task (Figure A5, right) many triangles with
their right angle in the upper right are present. In these positions the property tokens are present and thus
these patterns indicate that the representation of all other tokens, especially also the masked ones, are heavily
influenced by the property value. Instead, in the property prediction task (Figure A5, left), many triangles
with their right angle in the lower right are present. This implies a heavy attention on the [END] token which
marks the end of the sequence and is a useful indicator for the QED score because it is critically influenced by
the size/weight of the molecule. One particularly interesting attention head is head 3 in layer 2. In the property
prediction task its role is to make the masked property tokens aware of the sequence length. In the conditional
generation task, its role is to make all tokens aware of the property values.

Figure AS: Comparing attention scores across both tasks with BertViz (Vig, 2019). Attention scores for all heads
of the first four layers. Rows depict layers, column depict attention heads. Within each cell, the tokens are ordered from
top to bottom. Left: Property prediction task. Right: Conditional generation task. Plot performed with SELFIES model
with float encodings, trained on the self-consistency loss.

A9 ADDITIONAL RESULTS

A9.1 LEARNING EMBEDDINGS OF NUMBERS.

We sought to understand why the ablation studies on the numerical encodings (NE) on the QED dataset
(Table 1 and 2) reveal only mild but not enormous superiority of models with NEs. Interestingly, in the
absence of static NEs, the model learns the natural ordering of digits from the data (cf. Figure A6). A large
number of embedding dimensions (47% and 36% for the decimal places —1 and —2 respectively) directly and
significantly encoded the ordering of digits (i.e., p < 0.05 and |PCC| > 0.62 between the 10 embedding
values and a strictly monotonic vector). For example, in Figure A6A the digit value is monotonically related to
its embedding value. Notably, this ordering trend was much less present in the models using NEs (~ 16%).
For reference, with random weights, 5% would be expected).

A9.2 FAILURE MODE IN FLUOURESCENCE DATASET FROM TAPE

This dataset is particularly interesting due to its bimodal mode: one mode corresponding to bright proteins, the
other to dark proteins (cf. Figure A7). An interesting failure mode was observed when initially training on the
Fluorescence dataset. Figure A7 shows that the dark mode has one sharp spike, exactly at a log fluorescence
value of 1.301. Almost 10% of all training samples and almost 50% of the proteins in the dark mode have this
exact value. The Regression Transformer is trained on a classification loss and so, the loss during training
for such samples will be distributed across the five tokens 1_0, ., 3.0, 0_-1 and 1_-2. In many cases, the
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Figure A6: Learned embeddings of numerical tokens. A) For an exemplary dimension, embeddings for 20 tokens,
corresponding to 10 digits and 2 decimal places are shown. B) Embeddings for 20 exemplary dimensions across 10. The
stars indicate the significance level of the Pearson correlation. The analysis is based on the SELFIES model without static
NEs (PLM objective).

model collapsed to always predicting 3.301 where the first token (3_1) was correct for all samples in the bright
mode and the remaining tokens (3.0, 0_—1 and 1_-2 were correct for most samples in the dark model. This
happened because no weighting of the individual numerical tokens was applied. As a non-algorithmic remedy,
we added Gaussian noise to those training samples.

A9.3 DETAILED PERFORMANCE - CLASSIFICATION VS. REGRESSION

Figure A7 reveals the improved performance of the RT compared to the finetuned TAPE Transformer: Less
samples were predicted in the wrong mode. However, the RT had difficulties with a fine grained regression,
in particular in the bright mode. This becomes particularly apparent when inspecting the detailed results,

TAPE - Pretrained Transformer
Train
— Test
—— Transformer pretrain

AN

T T T T T T T T T
1.0 1.5 2.0 25 3.0 35 4.0 1.0 15 2.0 2.5 3.0 3.5 4.0

Log Fluorescence Log Fluorescence

(a) Dark Mode (b) Bright Mode

Regression Transformer

[ Train
[ Test
[ Regression Transformer

10 15 20 25 30 35 40 10 15 20 25 30 35 40
Log fluorescence Log fluorescence

Figure A7: Bimodal mode of fluorescence data. The upper part of the plot has been copied from Rao et al. (2019)
(Figure 3). It shows the bimodal mode of the training data and the test predictions from the TAPE Transformer. At the
bottom, we show our remake of the above plot by replacing the predictions from the pretrained TAPE Transformer with
the predictions from the Regression Transformer.

grouped by bright and dark test proteins respectively (cf. Table A6). While the RT achieved the best results
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Table A6: Detailed fluorescence prediction results. MSE abbreviates mean squared error. TAPE and UniRep perfor-
mances taken from Rao et al. (2019). For the RT all standard deviations on p and MSE were < 0.05 and < 0.1 respectively.

Full test set Bright proteins Dark proteins

Model Source MSE p MSE p MSE p
One-Hot TAPE 2.69 0.14 0.08 0.03 3.95 0.00
k-NN Ours 231 059 0.05 030 3.37 0.04
Pretr. LSTM TAPE 0.19 0.67 0.12 0.62 022 0.04
Pretr. Transf. TAPE 0.22 0.68 0.09 060 029 0.05
UniRep UniRep 0.20 0.67 0.13 0.63 024 0.04
RT Ours 034 072 0.19 045 040 0.04

in the overall Spearman p, the recommended metric by Rao et al. (2019), it does not dominate any of the
mode-specific metrics. This is a noteworthy finding because it reflects the tendency of the RT to strive for a
multi-class classification rather than performing a full regression. It is also interesting to see that the baseline
models (k-NN and TAPE One-Hot) achieved the best results in MSE of bright proteins.

A9.4 NEGATIVE LEARNING.

To actively facilitate the versatility of the generated molecules, we experimented with adaptations of Equation
(6). In particular, instead of providing the true property x?, we sampled in 50% of the cases a property primer
XP that was distant from the original property. For these samples the objective (6) was inverted, s.t., the goal
was not to reconstruct the original molecule but to provide a maximally different molecule. Due to mixed
results and the high novelty scores for all models, we did not include the experiments in the final version.
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