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Abstract

Recently, tensor network (TN) decompositions have gained prominence in com-
puter vision and contributed promising results to high-order data recovery tasks.
However, current TN models are rather being developed towards more intricate
structures to pursue incremental improvements, which instead leads to a dramatic
increase in rank numbers, thus encountering laborious hyper-parameter selection,
especially for higher-order cases. In this paper, we propose a novel TN decom-
position, dubbed tensor wheel (TW) decomposition, in which a high-order tensor
is represented by a set of latent factors mapped into a specific wheel topology.
Such decomposition is constructed starting from analyzing the graph structure,
aiming to more accurately characterize the complex interactions inside objectives
while maintaining a lower hyper-parameter scale, theoretically alleviating the above
deficiencies. Furthermore, to investigate the potentiality of TW decomposition, we
provide its one numerical application, i.e., tensor completion (TC), yet develop
an efficient proximal alternating minimization-based solving algorithm with guar-
anteed convergence. Experimental results elaborate that the proposed method is
significantly superior to other tensor decomposition-based state-of-the-art methods
on synthetic and real-world data, implying the merits of TW decomposition. The
code is available at: https://github.com/zhongchengwu/code_TWDec.

1 Introduction

Tensors, as a higher-order generalization of matrices, can naturally preserve the complex interactions
inside high-order tensor data, e.g., multispectral images (MSIs), color videos (CVs), and hyperspectral
videos (HSVs). Tensor decompositions refer to the approximation of high-order tensor data by using
latent factors, which can be considered as the principal components or features, leading to the reduced
storage cost and computational complexity in large-scale and intractable tensor data analysis. Previ-
ously, different tensor decompositions have been proposed and widely applied in various fields, e.g.,
signal processing [6, 7, 19], machine learning [25, 29, 1], and medical imaging [31]. Among them,
tensor singular value decomposition (t-SVD) [16], especially CANDECOMP/PARAFAC (CP) [13]
and Tucker [26] decompositions, are the most classical and widely investigated [17, 34].

More recently, tensor network (TN) decompositions [27, 9, 14, 11] have consecutively been involved
in computational mathematics and numerical analysis, and exhibit superior properties, such as super
compressing and efficient computing [24, 15]. Particularly, some of TN models have been introduced
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Figure 1: Graphical illustration of TT decomposition, TR one, and the proposed TW one.

to the computer vision community as powerful tools for high-order data recovery applications owing
to their excellent characterization capabilities. The popular tensor train (TT) decomposition [22] is
one such decomposition, in which an N th-order tensor is expressed as strictly ordered multi-linear
products over one matrix, followed by N -2 third-order tensors and another matrix, as graphically
illustrated in Figure 1(a). Afterwards, tensor ring (TR) decomposition [35, 23, 21], considered as a
generalized form of TT decomposition, instead expands the near-border two matrices in TT factors to
two third-order tensors and then constructs the cyclically sequential multi-linear products over N
third-order tensor factors, see Figure 1(b). Currently, a more sophisticated decomposition, referred
fully-connected tensor network (FCTN) decomposition [37], has also been explored by establishing a
structure evolved from the complete graph in graph theory, where all decomposed N th-order factors
are connected to each other. As of now, TT, TR, and FCTN formats have been properly evaluated for
their effectiveness and successfully applied to a variety of fields, e.g., classification [30], compressive
sensing [5], and image/video recovery [8, 10, 36, 3, 28, 37, 12].

Despite the great success achieved by TT, TR, and FCTN decompositions, three intrinsic limitations
are rather reflected in their TN structures. More specifically, (i) TT, even TR, models only establish
the connection over adjacent latent factors while ignoring other possible interactions between non-
adjacent dimensions, leading to an inadequate relation construction. (ii) From the perspective of
tensor subspace, the intricate features inside an N th-order tensor can be well-preserved in the same
dimensional tensor space without destroying the structures. However, when N ≥ 4, TT and TR
models express an N th-order tensor employing only third even lower-order factors, which definitely
cannot form the desired space. (iii) From FCTN-ranks, FCTN model generates (N2 −N)/2 hyper-
parameters, which scale quadratically with tensor order N . Thus, numerically specifying an optimal
collection of FCTN-ranks can be challenging for higher order, making it a costly and tedious task.

Given the above limitations, we argue that a more rational TN model should include three aspects.
Namely, (i) all factors with dimension modes (i.e., Ik, k = 1,2, · · · , N ) are certainly interconnected
with their adjacent ones, while remaining as equivalently close as possible to the others. (ii) At least
one N th-order factor is required to physically inherit the complex interactions from an N th-order
tensor, thus expecting superior characterization for high-order tensors without sacrificing parameter
storage. (iii) The TN structure keeps the scale of hyper-parameters lower, i.e., the smaller collection
of ranks. Remarkably, the first two folds correspond to the characterization capabilities, which are
crucial for TN models in high-order data recovery. Consequently, we propose the tensor wheel (TW)
decomposition, which decomposes an N th-order tensor into both N fourth-order ring factors and an
N th-order core factor, and establishes the multi-linear products by wheel topology (see Figure 1(c)),
aiming to agree above superior properties. The main contributions of this paper are as follows:

• We analytically propose a novel TW decomposition, which allows more expressive characterization
for correlation than TT and TR formats, especially preserving the linear scaling for the number of
hyper-parameters (TW-ranks) with increased tensor dimension (Section 2.3). Also, we present an
alternating least squares (ALS)-based algorithm for learning TW decomposition (Section 2.4).

• We further provide one numerical application of TW decomposition, i.e., tensor completion
(TC), and then formulate a TW decomposition-based TC model, abbreviated TW-TC. Moreover,
we develop an efficient proximal alternating minimization (PAM)-based algorithm to solve the
proposed TW-TC model and establish the theoretical proof of algorithm convergence (Section 3).
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Figure 2: Graphical illustration of the generalized tensor k-contraction in Definition 3.

2 Tensor Wheel Decomposition

2.1 Notations and Preliminaries

In general, scalars, vectors, matrices, and tensors are denoted by lowercase letters, e.g., x, lowercase
bold letters, e.g., x, uppercase bold letters, e.g., X, and calligraphic letters, e.g., X , respectively.
For an N th-order tensor X ∈ RI1×I2×···×IN , its element on index (i1, i2, · · · , iN ) is expressed by
X (i1, i2, · · · , iN ). The Frobenius norm is defined as ‖X‖F =

√∑
i1,i2,··· ,iN X (i1, i2, · · · , iN )2.

For p, q ∈ N+ and p ≤ q, we especially denote by Xp:q the sequence (Xp, · · · ,Xq) for brevity.

2.2 Basic Theory

To numerically construct the TW decomposition, we firstly develop several new tensor definitions.

Definition 1 (Tensor Permutation). Given an N th-order tensor X ∈ RI1×I2×···×IN . Assuming
that vector n = (n1, n2, · · · , nN ) is a specific reordering of vector (1, 2, · · · , N), then we define the
vector n-based permutation of tensor X as a tensor ~X n ∈ RIn1

×In2
×···×InN , whose elements obey

~X n(in1 , in2 , · · · , inN
) = X (i1, i2, · · · , iN ) . (1)

Definition 2 (Generalized Tensor k-Unfolding). Let n = (n1, n2, · · · , nN ) be a reordering of
vector (1, 2, · · · , N), then for an N th-order tensor X ∈ RI1×I2×···×IN , the generalized k-unfolding
(0 ≤ k ≤ N, k ∈ Z) of X is defined as a matrix X[n;k] ∈ R

∏k
i=1 Ini

×
∏N

j=k+1 Inj , which requires

X[n;k](in1in2 · · · ink
, ink+1

ink+2
· · · inN

) = ~X n (in1 , in2 , · · · , inN
) , (2)

where ~X n is the tensor permutation of X , the multi-indices in1
in2
· · · ink

and ink+1
ink+2

· · · inN
are

defined by 1 +
∑k

i=1(ini − 1)
∏i−1

j=1 Inj and 1 +
∑N

i=k+1(ini − 1)
∏i−1

j=k+1 Inj , respectively. When

k is 0 and N , x[n;0] ∈ R1×
∏N

j=1 Inj and x[n;N ] ∈ R
∏N

i=1 Ini
×1 imply two generalized vectorizations.

Conversely, its inverse operator yields X = Fold[n;k](X[n;k]) or X = Fold[n;k](x[n;k]) for k = 0, N .

Following Definition 2 with associated multi-indices, X[(k,1,2,··· ,k−1,k+1,··· ,N);1] can be specialized
as X(k), which is the classical mode-k unfolding in [17]. Also, X[(k,k+1,··· ,N,1,2,··· ,k−1);1] can be
specialized as X<k> used in TR decomposition [35]. Correspondingly, the mode-k folding operators
of these two special unfoldings can be expressed as Fold(k)(·) and Fold<k>(·), respectively.

Definition 3 (Generalized Tensor k-Contraction). Given an M th-order tensor X ∈ RI1×I2×···×IM

and an N th-order tensor Y ∈ RJ1×J2×···×JN with k common modes (1 ≤ k ≤ min(M,N), k ∈ Z).
Assume that two vectors m = (m1,m2, · · · ,mM ) and n = (n1, n2, · · · , nN ) respectively indicate
the reordering of vectors (1, 2, · · · ,M) and (1, 2, · · · , N), satisfying Imi = Jni for i = 1, 2, · · · , k,
mk+1 < mk+2 < · · · < mM and nk+1 < nk+2 < · · · < nN . Then the generalized k-contraction
between X and Y along the k modes specifies an (M +N − 2k)th-order tensor X ×m1,m2··· ,mk

n1,n2,··· ,nk Y ∈
RImk+1

×···×ImM
×Jnk+1

×···×JnN , which is given (also intuitively shown in Figure 2) as follows,

X ×m1,m2,··· ,mk
n1,n2,··· ,nk

Y = Fold[(1,2,··· ,M+N−2k);M−k]

(
XT

[m;k]Y[n;k]

)
, (3)

where X[m;k] and Y[n;k] are the m-based and n-based k-unfoldings of tensors X and Y , respectively.
Significantly, the generalized tensor k-contraction operator requires a left-side precedence and
non-commutative property. That is, neither the associative nor commutative properties are satisfied.
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2.3 Tensor Wheel Model

As illustrated in Figure 1(c), let X ∈ RI1×I2×···×IN be an N th-order tensor, then TW decomposition
aims to parameterize it by bothN fourth-order ring factors Gk ∈ RRk×Ik×Lk×Rk+1 , k = 1, 2, · · · , N ,
and an N th-order core factor C ∈ RL1×L2×···×Lk×···×LN . When k = N , RN+1 stands for R1.
Mathematically, TW model establishes the element-wise relation as follows,

X (i1, i2, · · · , iN ) =

R1∑
r1=1

R2∑
r2=1

· · ·
RN∑

rN=1

L1∑
l1=1

· · ·
LN∑

lN=1

{G1(r1, i1, l1, r2)G2(r2, i2, l2, r3) · · ·

Gk(rk, ik, lk, rk+1) · · · GN (rN , iN , lN , r1)C(l1, l2, · · · , lN )}.

(4)

According to the wheel topology, when the tensor contractions are executed in the simplest manner,
TW model (4) can be naturally expressed in the tensor form by X = G1 ×4

1 G2 ×6
1 · · · ×2k

1 Gk ×2k+2
1

· · · ×2N,1
1,4 GN ×2,4,··· ,2N

1,2,··· ,N C, which provides the actual numerical computation for TW decomposition.
Symbolically, we employ TWJG1,G2, · · · ,GN ; CK or, more compactly, TWJ{Gk}Nk=1; CK to denote
TW decomposition. Moreover, the ring factors Gk, k = 1, 2, · · · , N , and core factor C are collec-
tively called TW factors. Apart from the above basic form, TW decomposition also has numerous
generalized tensor forms, but enumerating all the cases is laborious and pointless. In what follows,
we exhibit two special tensor forms by Theorems 1 and 2, aiming to illustrate its invariance property.
Theorem 1 (Core-Centered Circular Invariance). Given an N th-order tensor X ∈ RI1×I2×···×IN

and its TW decomposition TWJ{Gk}Nk=1; CK. Assume that n = (n1, n2, · · · , nN ) is the circular re-
ordering of vector (1, 2, · · · , N), then the core-centered invariance gives ~X n = TWJ{Gnk

}Nk=1; ~CnK.

Theorem 2 (Core-Connected Invariance). Assume that the TW decomposition of X ∈ RI1×···×IN

is ~X n = TWJ{Gnk
}Nk=1; ~CnK, where n = (n1, n2, · · · , nN ) is any vector that circularly shifts vector

(1, 2, · · · , N). Let vector e = (n1, nk, n2, · · · , nk−1, nk+1, · · · , nN ) (3 ≤ k < N, k ∈ Z), then

~X e = (Gn1
×3

1
~Ce×4

3 Gnk
)×3,4,··· ,k+1,N+2

1,3,··· ,2k−3,2k−2 Un2,··· ,nk−1
×1,3,4,··· ,N−k+2,N−k+4

2(N−k)+2,3,5,··· ,2(N−k)+1,1 Vnk+1,··· ,nN
,

where Un2,··· ,nk−1
= Gn2

×4
1 · · · ×

2(k−2)
1 Gnk−1

and Vnk+1,··· ,nN
= Gnk+1

×4
1 · · · ×

2(N−k)
1 GnN

.

Theorem 2 reveals any two non-adjacent ring factors with dimension modes (i.e., Ik, k = 1,2, · · · , N )
can be connected by the core factor. Accordingly, TW topology can comprehensively establish all
possible mode interactions of a high-order tensor without being impeded by other ring factors, which
endows TW decomposition with adequate relation construction over TT and TR decompositions.
Theorem 3 (Tensor Subwheel Equation). Assume that the TW decomposition ofX ∈ RI1×I2×···×IN

is ~X n = TWJ{Gnk
}Nk=1; ~CnK, where n = (n1, n2, · · · , nN ) is any vector that circularly shifts vector

(1, 2, · · · , N). Let m = (N + 1, N + 2, 1, 2, · · · , N) and v = (2, 4, · · · , 2N, 1, 3, · · · , 2N − 1),
then there inherently exists the following two tensor subwheel equations,

X<nN> = (GnN
)(2)(M6=nN

)[m;3] and ~xn
[1:N,0] = ~cn

[1:N,0](N 6=C)[v;N ], (5)

where M6=nN
∈ RRn1×In1×···×InN−1

×RnN
×LnN is an (N + 2)th-order subwheel tensor, which

merges all TW factors but GnN
, i.e., M6=nN

= Gn1
×4

1 · · · ×2k
1 Gnk

×2k+2
1 · · · ×2N−2

1

GnN−1
×3,5,··· ,2N−1

1,2,··· ,N−1
~Cn, and N 6=C ∈ RIn1

×Ln1
×···×InN

×LnN is another 2N th-order subwheel
tensor obtained by only merging {Gnk

}Nk=1, i.e., N 6=C = Gn1
×4

1 · · · ×2k
1 Gnk

×2k+2
1 · · · ×2N,1

1,4 GnN
.

Theorem 3 clarifies that all TW factors, i.e., {Gk}Nk=1 and C, can be individually separated from
TWJ{Gk}Nk=1; CK, which contributes to those alternating direction-based algorithms, e.g., ALS and
PAM ones in Sections 2.4 and 3.1, respectively. Furthermore, ~xn

[1:N,0] = ~cn
[1:N,0](N6=C)[v;N ] in

formula (5) is essentially ~X n = ~Cn ×1,2,··· ,N
2,4,··· ,2N N6=C , appearing as a tensor subspace representation.

Since all modes of ~X n are contained in N6=C , ~Cn is purely a coefficient tensor, and N6=C can be
regarded as a basis tensor. From such a perspective, the intrinsic structure of a high-order tensor can be
well-preserved by the core factor C, leading to a high characterization ability of TW decomposition.
Theorem 4. Assume that X = TWJ{Gk}Nk=1; CK with N ring factors Gk ∈ RRk×Ik×Lk×Rk+1 , then

Rank(X(k)) = Rank(X<k>) ≤ Lk

∏k+1

i=k
Ri, k = 1, 2, · · · , N. (6)
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Algorithm 1 The Alternating Least Squares Algorithm for TW Decomposition (TW-ALS).

Input: An N th-order tensor X ∈ RI1×I2×···×IN , the manually given TW-ranks r, and threshold ε.
Initialization: The randomized Gk ∈ RRk×Ik×Lk×Rk+1 , k = 1, · · · , N , and C ∈ RL1×L2×···×LN .

1: while not converged do
2: Record the last-update result Tlast ← TWJ{Gk}Nk=1; CK.
3: for k = 1 to N do
4: Obtain the subwheel tensorM6=k and vector m by Theorem 3.
5: (Gk)(2) ← arg min

(Gk)(2)

‖X<k> − (Gk)(2)(M6=k)[m;3]‖F .

6: end for
7: Obtain the subwheel tensor N6=C and vector v by Theorem 3.
8: c[1:N,0] ← arg min

c[1:N,0]

‖x[1:N,0] − c[1:N,0](N6=C)[v;N ]‖F .

9: Check the convergence criterion: ‖TWJ{Gk}Nk=1; CK− Tlast‖F /‖Tlast‖F < ε.
10: end while
Output: TW factors Gk, k = 1, 2, · · · , N , and C.

Theorem 4 justifies that scalars Rk and Lk, k = 1, 2, · · · , N , can upper bound the rank of all
dimension-mode tensor unfolding and control the low-rankness behavior to a certain extent. Thus, they
are assigned as the TW-ranks, usually collected by a vector r = (R1, · · · , RN , L1, · · · , LN ) ∈ R2N .
The TW-ranks essentially determines the actual TN structure, e.g., Tucker topology when Rk = 1
and TR topology when Lk = 1 with k = 1, 2, · · · , N , graphically proving the superiority of TW
decomposition over both Tucker and TR decompositions. Along such a perspective, TT, TR, and
FCTN decompositions can be viewed as a special case of the adaptive TN (ATN) decomposition [11],
which adaptively identifies TN structures by eliminating the relevant edges from the complete graph
topology. Nevertheless, provided that decomposing the same N th-order tensor, TW decomposition
is exactly excluded from the setting of ATN decomposition since the latter cannot fit the structures
with an internal core tensor, e.g., Tucker [26], hierarchical Tucker [9], and projected entangled state
pairs (PEPS) [27] topologies. Compared with FCTN decomposition with (N2 −N)/2 ranks, TW
decomposition forms the collection of 2N ranks, which grows only linearly rather than quadratically
with the tensor order N , thereby improving its flexibility for higher-order applications.

Limitation. The proposed TW topology allows for more expressive characterization capability using
the linear number of hyper-parameters. Nonetheless, such a structure inevitably leads to a limitation
on the storage costs. For a given N th-order tensor X ∈ RI×···×I , whose TW-ranks is assumed as the
same value R, i.e., r = (R, · · · , R), then TW decomposition requires O(NIR3 +RN ) parameter
costs for storage. It is clear that the O(NIR3 +RN ) scales exponentially with the tensor order N ,
resulting in a greater storage burden for larger-scale and higher-order tensor recovery problems.

Unlike Tucker decomposition, TW one considers the potential relationship between adjacent factors
and establishes a connection for a higher characterization capacity. Actually, such a strategy also
reduces the loadings of core factor, which contributes a smaller {Li}Ni=1 in TW-ranks than Tucker
decomposition, thus alleviating the limitations of high storage and computational complexity.

2.4 Alternating Least Squares (ALS) Algorithm

In this section, we develop an ALS-based algorithm to perform TW decomposition, called TW-ALS.
Given X ∈ RI1×I2×···×IN and its predefined TW-ranks, then the TW-ALS algorithm mainly aims to
seek a set of TW factors such that a relative error between X and TWJ{Gk}Nk=1; CK is minimum, i.e.,

min
G1,G2,··· ,GN ,C

‖X − TWJ{Gk}Nk=1; CK‖F . (7)

Based on Theorem 3, minimization problem (7) can be optimized under the ALS framework by alter-
natively solving N + 1 least-squares subproblems, i.e., min(Gk)(2) ‖X<k>− (Gk)(2)(M6=k)[m;3]‖F ,
k = 1, 2, · · · , N , and minc[1:N,0]

‖x[1:N,0] − c[1:N,0](N6=C)[v;N ]‖F . Compared to formula (5), since
we utilize the simplest case without permutation for updating C, x[1:N,0] and c[1:N,0] imply ~xn

[1:N,0]

and~cn
[1:N,0] with n = (1, 2, · · · , N), respectively. The numerical procedure is detailed in Algorithm 1.
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Algorithm 2 The Proximal Alternating Minimization (PAM)-Based Solver for TW-TC Model.

Input: The observed tensor F ∈ RI1×I2×···×IN , the location set Ω, the TW-ranks r, the step size
s = 20, ρ = 0.001, tmax = 1000, Ωc indicating the complementary set of Ω, and ε = 10−5.

Initialization: The iteration step t = 0, X (0) = F , and the randomized G(0)
k ∈ RRk×Ik×Lk×Rk+1 ,

k = 1, 2, · · · , N , and C(0) ∈ RL1×L2×···×LN .
1: while not converged and t < tmax do
2: Determine the subwheel tensorM(t)

6=k and vector m relying upon Theorem 3.

3: G(t+1)
k = Fold(2)

{(
X

(t)
<k>(M

(t)
6=k)T[m;3] + ρ(G

(t)
k )(2)

)
/
(
(M

(t)
6=k)[m;3](M

(t)
6=k)T[m;3] + ρI

)}
.

4: Determine the subwheel tensor N (t)
6=C and vector v relying upon Theorem 3.

5: if t > 200 and mod(t, s) 6= 0 (i.e., t modulo s is not 0) then
6: C(t+1) = C(t).
7: else
8: C(t+1) = Fold[1:N,0]

{(x(t)
[1:N,0](N

(t)
6=C)

T
[v;N ] + ρc

(t)
[1:N,0]

)/((N(t)
6=C)[v;N ](N

(t)
6=C)

T
[v;N ] + ρI)}.

9: end if
10: X (t+1) = PΩc

{
(TWJ{G(t+1)

k }Nk=1; C(t+1)K + ρX (t))/(1 + ρ)
}

+ PΩ(F).
11: Check the convergence criterion: ‖X (t+1) −X (t)‖F /‖X (t)‖F < ε.
12: t← t+ 1.
13: end while
Output: The recovered tensor X ∈ RI1×I2×···×IN .

3 Numerical Application to Tensor Completion

To validate the rationality and superiority of TW decomposition, we employ it to one classical tensor
recovery problem, i.e., tensor completion (TC), whose objective is recovering the missing entries
from a partially observed tensor, then formulating a TW decomposition-based TC (TW-TC) model.
The proposed TW-TC method is committed to exploring latent TW factors from the partially observed
tensor, then predicting the missing entries using these constructed factors. This essentially evaluates
the potential capability of TW decomposition to characterize the high-order tensors.

3.1 Model and Algorithm

Given a partially observed tensor F ∈ RI1×I2×···×IN at location set Ω, then the proposed TW-TC
model aims to identify an optimum-TW-ranks approximation X ∈ RI1×I2×···×IN of the tensor F .
Mathematically, the TW-TC model can be formulated as the unconstrained problem as follows,

min
X ,G1:N ,C

1

2
‖X − TWJ{Gk}Nk=1; CK‖2F + ι(X ) with ι(X ) :=

{
0, X ∈ {L : PΩ(L) = PΩ(F)};
∞, otherwise,

(8)
where PΩ(·) is a projection function keeping the entries in Ω while forcing all the others to zeros.

Obviously, the object function in formula (8) is not jointly but independently convex for all variables.
Thus, we develop a proximal alternating minimization (PAM) [2] based algorithm to alternately and
recursively optimize each variable, leading to the following procedure for k = 1, 2, · · · , N ,

G(t+1)
k ∈ arg min

Gk

{1

2
‖X (t) − TWJG(t+1)

1:k−1,Gk,G
(t)
k+1:N ; C(t)K‖2F +

ρ

2
‖Gk − G(t)

k ‖
2
F

}
,

C(t+1) ∈ arg min
C

{1

2
‖X (t) − TWJG(t+1)

1:N ; CK‖2F +
ρ

2
‖C − C(t)‖2F

}
,

X (t+1) ∈ arg min
X

{1

2
‖X − TWJG(t+1)

1:N ; C(t+1)K‖2F +
ρ

2
‖X − X (t)‖2F + ι(X )

}
,

(9)

where ρ > 0 is a proximal parameter. Following Theorem 3 again, each univariate minimization
problem in formula (9) can certainly be reduced to a linear least-squares problem, which is expressed
by matrix form in the supplementary material, as in Section 2.4. Then, the corresponding closed-form
solutions can easily be given. In most numerical TC experiments, the variable C typically tends to be
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Figure 3: Recovery performance (i.e., Log10(RSE)) against recovery time. The TT-TC (PAM), TR-TC (PAM),
FCTN-TC (PAM), Tucker-TC (PAM), and proposed TW-TC algorithms are evaluated on synthetic data under
six different cases. The first column: 64 third-order tensor experiments with SR=20% and 40%; The second
column: 81 fourth-order tensor experiments with SR=20% and 40%; The third column: 32 fifth-order tensor
experiments with SR=20% and 40%. The smaller Log10(RSE) value implies higher recovery accuracy.

stable when it exceeds 200 iterations. Therefore, we utilize the modulo operation (marked mod(·, ·))
with a step size to intermittently update C after 200 iterations, aiming to save computing resources.
The PAM-based solving procedure for the developed TW-TC model is summarized in Algorithm 2.

3.2 Computational Complexity Analysis

For simplicity, we assume that all dimensions of an N th-order tensor X ∈ RI1×···×Ik×···×IN are I
and all values of TW-ranks areR, i.e., Ik = I andRk = Lk = R for k = 1, 2, · · · , N . Then, the com-
putational complexities involved in updating factors {Gk}Nk=1, C, and X are O(N

∑N−1
l=2 I lRl+3 +

NINR3 +NR9), O(INR2N ), and O(INRN ), respectively. Therefore, the computational complex-
ity for each nonintermittent iteration (i.e., t ∈ {t : 0 ≤ t ≤ 200 or mod(t, s) = 0}) in Algorithm 2
is O(N

∑N−1
l=2 I lRl+3 + NINR3 + INR2N ). Akin to the storage parameters in the Limitation

of Section 2.3, the computational complexity also increases exponentially with dimensionality N ,
implying that more computing resources are required for higher-order tensor recovery tasks.

3.3 Convergence Analysis

This section consists in theoretically proving the convergence of Algorithm 2. Before that, we employ
the Z = (X ,G1:N , C) and Φ(Z) to denote the variables and objective function in (8), respectively.
Theorem 5. Let {Z(t)}t∈N be the sequence generated by Algorithm 2, then it globally converges to
a critical point (i.e., local minimum point) Z∗ = (X ∗,G∗1:N , C∗) of the objective function Φ(Z).

Proof. According to the finite length property (see [4, Theorem 1, pag 479]), the sequence {Z(t)}t∈N
can converge to the critical point Z∗ of Φ(Z), since the following Lemmas 1-4 are satisfied.

Lemma 1. The objective function Φ(Z) in formula (8) is a Kurdyka-Łojasiewicz (KŁ) function.

Lemma 2 (Sufficient Decrease Condition). Let {Z(t)}t∈N be the sequence generated by Algorithm 2.
Then, the sequence {Φ(Z(t))}t∈N explicitly satisfies Φ(Z(t))−Φ(Z(t+1)) ≥ ρ/2‖Z(t+1)−Z(t)‖2F ,
where ‖Z(t+1) −Z(t)‖2F = ‖X (t+1) −X (t)‖2F +

∑N
k=1 ‖G

(t+1)
k − G(t)

k ‖2F + ‖C(t+1) − C(t)‖2F .

Lemma 3 (Relative Error Condition). Let {Z(t)}t∈N be the sequence generated by Algorithm 2.
Then, there exists ‖∂Φ(Z(t+1))‖F ≤ {LΦ + (N + 2)ρ}‖Z(t+1) − Z(t)‖F , where LΦ sums the
Lipschitz constants of {∂GkΦ(Z)}Nk=1 and ∂CΦ(Z), i.e., LΦ =

∑N
k=1 LGk + LC .
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Lemma 4. Let {Z(t)}t∈N be the sequence generated by Algorithm 2, then it is bounded.

Considering the page limitations, the proof of Lemmas 1-4 is detailed in the supplementary material.

3.4 Numerical Experiments

In this section, we design substantial numerical experiments on synthetic and real-world data to verify
the superiority of the proposed TW-TC method compared with others, which are constructed based
on several commonly used tensor decompositions. All the experiments are implemented in MATLAB
(R2021a) on a computer of 64Gb RAM and Intel(R) Core(TM) i9-10900KF CPU: @3.70 GHz.

3.4.1 Synthetic Data Completion

To testify the superiority of TW decomposition over four related decompositions, i.e., TT [22],
TR [35], FCTN [37], and Tucker [26] ones, we firstly conduct the numerical experiments on synthetic
tensor data by horizontally comparing the TW-TC method with their PAM-based TC algorithms,
i.e., TT-TC (PAM), TR-TC (PAM), FCTN-TC (PAM), and Tucker-TC (PAM), respectively. Since
the Tucker factors comprise an underlying high-order structure, which may be closer to reality, we
construct the synthetic tensors by Tucker decomposition using Tucker factors sampled from the
uniform distribution U(0, 1). More specifically, the synthetic data consists of 64 third-order, 81
fourth-order, and 32 fifth-order tensors, whose sizes are {I1× I2× I3 : I1, I2, I3 ∈ {45, 50, 55, 60}},
{I1 × I2 × I3 × I4 : I1, I2, I3, I4 ∈ {18, 20, 22}}, and {I1 × I2 × I3 × I4 × I5 : I1, I2, I3, I4, I5 ∈
{7, 8}}, and Tucker-ranks are (6, 6, 6), (5, 5, 5, 5), and (3, 3, 3, 3, 3), respectively. All synthetic data
are numerically renormalized into [0, 1]. Subsequently, the partially observed tensors are generated
by random sampling with two sampling rates (SRs): 20%, 40%. For each case, the hyper-parameters,
i.e., TT-ranks, TR-ranks, FCTN-ranks, Tucker-ranks, and TW-ranks, also the storage complexities
are provided in Appendix C. The performance is assessed by the residual standard error (RSE), i.e.,
‖X − Xreal‖F /‖Xreal‖F , where X is the recovered tensor.

Figure 3 depicts the recovery result versus recovery time for five PAM-based TC models under six
different cases. Compared with TT-TC (PAM), TR-TC (PAM), and FCTN-TC (PAM), the TW-TC
method achieves the optimal RSE values for the majority of samples using both competitive computing
efficiency and lower storage complexity (see Appendix C), which experimentally demonstrates the
superior characterization ability of TW decomposition and strongly supports the theoretical analysis
presented in Sections 1 and 2.3. Moreover, the faster computational efficiency of TW-TC over the
Tucker-TC model implies that TW decomposition can alleviate the curse of high-order core factor on
computational burden, achieving greater applicability than Tucker decomposition.

3.4.2 Real-World Data Completion

Furthermore, we investigate the TW-TC method on real-world data experiments by comparing it with
several tensor decomposition-based state-of-the-art methods, including HaLRTC [18], t-SVD [33],
TMacTT [3], TRLRF [32], and FCTN-TC [37]. All hyper-parameters adopted in these competitors
are fine-tuned within a specific range suggested by their authors to achieve better performance. The
real-world data mainly comprises two types, i.e., the multispectral image (MSI) and the video data.
Similarly, all experimental data are numerically pre-normalized into [0, 1]. Afterwards, the partially
observed tensors are created by random sampling with three SRs: 5%, 10%, 20%. A popular metric,
i.e., the peak signal-to-noise ratio (PSNR), is employed for quantitative evaluation. When applied to
the MSI and video data, the mean of PSNRs across all channels is measured, termed MPSNR.

MSI Data. The tested MSI data sizes 200× 200× 31 (i.e., height× width× spectral), called Toy,
which is cropped from the CAVE dataset2. Regarding TW-ranks, we empirically assign R1 = L3 and
R3 = L1 = L2 based on observations of multiple third-order real-world data experiments, and then
select ranksR1,R2 andR3 from the candidate sets {3, 4, 5}, {10, 15, 20, 25} and {2, 3}, respectively.
Numerically, Table 1 (Data Index: Toy) reports the MPSNR values under three different SRs and the
average computing costs of all compared methods. Also, Figure 4 presents their visual performances
and the corresponding error maps when SR=20%. From the quantitative and qualitative results, we
observe that our TW-TC model achieves higher MPSNR values and better visual reconstruction than
the other methods, confirming its effectiveness for real-world third-order data.

2https://www.cs.columbia.edu/CAVE/databases/multispectral/
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Observed HaLRTC [18] t-SVD [33] TMacTT [3] TRLRF [32] FCTN-TC [37] TW-TC Ground-truth

0 0.2

Figure 4: Visualization of the recovered results on MSI Toy (SR=20%) and CV News (SR=10%) experiments.
The first two rows: the visual compositions (31-th, 20-th, and 10-th spectral bands as R, G, and B channels,
respectively) and the corresponding residual images for the MSI Toy data; The bottom two rows: the visual
compositions (13-th frame) and the corresponding residual images for the CV News data.

Table 1: Quality metric (i.e., MPSNR) values and average computational costs for all compared methods under
three SRs: 5%, 10%, 20%. (Bold: best; Underline: second best)

Data Index – Method
Observed HaLRTC [18] t-SVD [33] TMacTT [3] TRLRF [32] FCTN-TC [37] TW-TC

Toy

5% 11.156 19.446 25.379 27.596 30.126 29.446 30.689
10% 11.391 24.087 29.527 32.134 35.428 34.169 37.121
20% 11.904 29.944 35.097 36.791 41.010 40.453 44.009

Time (s) – 4.74 15.72 63.50 181.25 26.27 154.67

News

5% 8.806 15.185 26.791 25.972 26.942 25.064 28.887
10% 9.041 19.579 28.748 29.213 29.305 30.272 32.551
20% 9.553 23.935 34.533 32.367 32.923 34.897 36.206

Time (s) – 7.64 31.76 36.40 521.30 128.62 342.36

Container

5% 4.600 18.273 27.979 23.681 27.333 28.364 29.473
10% 4.834 21.198 31.690 26.646 28.834 33.721 34.459
20% 5.344 24.901 35.460 35.204 35.726 37.536 38.259

Time (s) – 8.88 23.70 71.35 204.78 121.31 339.04

HSV

5% 7.494 11.579 39.736 42.459 42.501 42.675 48.999
10% 7.729 22.795 44.756 47.563 47.132 49.067 52.743
20% 8.240 32.631 50.123 51.065 51.961 53.566 54.678

Time (s) – 9.32 19.57 144.98 459.79 101.77 493.38

Video Data. The tested video data contains two color videos3 (CVs): News and Container, and one
hyperspectral video4 (HSV) [20]. The former two are of size 144×176×3×20 (i.e., height×width×
channel× frame), and the latter is of size 40× 40× 20× 20 (i.e., height×width× spectral× frame).
When tested on two CVs, we also empirically set R3 = R4 and L1 = L2 = L3 = L4, and then
specify ranks R1, R2, R3 and L1 from the candidate sets {2, 3, 4, 5}, {10, 15, 20, 25}, {3, 4, 5} and
{2, 3}, respectively. More directly, we designate R1 = R2 = R3 = R4 = 6 and L1 = L2 = L3 =
L4 = 4 to the HSV data experiment for all three SRs, aiming to alleviate the challenge of determining
TW-ranks for these data with more balanced dimensions. The numerical and graphical results of all
compared methods are exhibited in Table 1 and Figure 4, respectively. From the results, we detect that
the TW-TC method invariably contributes the best performances and further enhanced advantages,
which jointly illustrates the superiority of the TW topology for higher-order tensor characterization.

Besides, further studies, e.g., the effect investigations of TW-ranks, are conducted in Appendix D.

3http://trace.eas.asu.edu/yuv/
4https://openremotesensing.net/knowledgebase/
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4 Conclusion

This paper suggested a novel TN decomposition, i.e., TW decomposition, and presented an ALS-based
algorithm to learn such a decomposition iteratively. The TW decomposition verified theoretically and
numerically potential for more accurately characterizing the complex interactions inside higher-order
tensors using only linear hyper-parameter scaling, significantly contributing to the advancement of
TNs in machine learning. Moreover, we provided a TW decomposition-based TC model, i.e., TW-TC,
for high-order tensor data recovery and developed an efficient PAM-based solving algorithm, which
enjoys a convergence guarantee. Substantial experiments on synthetic and real-world data confirmed
that the TW-TC model markedly outperforms other decomposition-based state-of-the-art methods.
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