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Abstract

Graph convolutional networks (GCNs) and its variants are designed for unsigned graphs
containing only positive links. Many existing GCNs have been derived from the spectral
domain analysis of signals lying over (unsigned) graphs and in each convolution layer they
perform low-pass filtering of the input features followed by a learnable linear transformation.
Their extension to signed graphs with positive as well as negative links imposes multiple issues
including computational irregularities and ambiguous frequency interpretation, making the
design of computationally efficient low pass filters challenging. In this paper, we address these
issues via spectral analysis of signed graphs and propose two different signed graph neural
networks, one keeps only low-frequency information and one also retains high-frequency
information. We further introduce magnetic signed Laplacian and use its eigendecomposition
for spectral analysis of directed signed graphs. We test our methods for node classification
and link sign prediction tasks on signed graphs and achieve state-of-the-art performances.

1 Introduction

Graph neural networks (GNNs) learn powerful node representations by capturing local graph structure and
feature information (Ma & Tang, 2021; Wu et al., 2021). The existing GNN architectures have focused almost
exclusively on graphs with nonnegative edges, which encode some kind of similarity relation between the
incident nodes. In contrast, negative edges are often useful to model dissimilarity relations (Kumar et al.,
2016; Dittrich & Matz, 2020): for instance, in social networks, users may have common/opposite political
views, trust/distrust one another’s recommendations, or like/dislike each other. Such dissimilarity relations
can be modeled using signed graphs by allowing the edges to take both positive or negative values. In this
paper, we are interested in graph neural networks designs for signed graphs.

There are two major lines of research that consider signed links in the process of learning the node embeddings.
On one hand, the network embedding methods such as SIDE (Kim et al., 2018) and SLF (Xu et al., 2019)
learn node representations by optimizing an unsupervised loss that primarily aims to locate node embeddings
closer to each other if they are connected by positive links and vice-versa for nodes connected by negative
links. On the other hand, SGCN (Derr et al., 2018), SiGAT (Huang et al., 2019), and SNEA (Li et al., 2020)
adopt GNN based models to learn node embeddings in a task-specific end-to-end manner. These GNN based
models are based on structural balance theory for signed graphs (Heider, 1946; Cartwright & Harary, 1956).

In this work, we propose an alternative solution to GNNs for signed graphs from a frequency perspective
via spectral domain analysis. Recall that the spectral domain analysis of unsigned graphs has been widely
used to develop GNN architectures. Many well-known GNNs including spectral-GNN (Bruna et al., 2014),
ChebNet (Defferrard et al., 2016), GCN (Kipf & Welling, 2017), AGCN (Li et al., 2018), and FAGCN (Bo
et al., 2021) rely on spectral domain analysis. These designs are based on the frequency interpretation derived
from the eigendecomposition of the normalized unsigned graph Laplacian. However, direct application of the
existing spectral domain GNN designs to signed graphs is problematic, mainly due to (i) possible zero diagonal
entries in the degree matrix making the normalization of the Laplacian prohibitive and (ii) possible negative
eigenvalues of the graph Laplacian, making the frequency ordering somewhat ambiguous, i.e., whether the
smallest negative, positive, or absolute value, eigenvalues should be used as low frequency (Knyazev, 2017).

To address these issues, we turn to signed graph signal processing (Dittrich & Matz, 2020) which provides
frequency interpretation for features lying on the signed graphs, and propose spectral domain signed GNNs
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based on it. Specifically, we propose two different GNN designs for signed graphs: Spectral-SGCN-I and
Spectral-SGCN-II. The former considers fixed low-pass filter keeping only low-frequency information during
aggregation process, whereas the later is based on attention mechanism retaining low as well as high-frequency
information. Extending these methods to directed signed graphs is another challenge. For handling directed
signed graph, we further introduce spectral methods for directed signed graphs. We evaluate the performance
of our methods on node classification and link sign prediction tasks on signed graphs. Our contributions are
summarized below.

• We present a principled approach to designing graph neural networks for signed graphs based on the
spectral domain analysis over signed graphs.

• We instantiate our approach with two graph neural network architectures for signed graphs, one
behaves like a low-pass filter and one also retains high-frequency information.

• We introduce signed magnetic Laplacian (see Table 1) for spectral analysis of directed signed graphs
and utilize it in feature aggregation process.

• We evaluate our method through extensive evaluations on node classification as well as link sign
prediction tasks for signed graphs and achieve state-of-the-art performances.

Table 1: Different Laplacians and their applicability.
Unsigned Directed Signed Directed Signed

Laplacian L ✓ ✗ ✗ ✗
Magnetic Laplacian Lq ✓ ✓ ✗ ✗

Signed Laplacian L̄ ✓ ✗ ✓ ✗

Signed Magnetic Laplacian L̄q ✓ ✓ ✓ ✓

Related Work: There exist many different methods to learn node representations (embeddings) on signed
graphs. Most of these methods are derived from the balance theory and can be classified into two categories:
unsupervised network embeddings and GNN based methods. Unsupervised network embedding methods
including SiNE (Wang et al., 2017), SIDE (Kim et al., 2018), SIGNet (Islam et al., 2018), SLF (Xu et al.,
2019), and ASiNE (Lee et al., 2020) learn node representations in an unsupervised manner so that nodes
connected via positive links are in close proximity to each other, whereas nodes connected via negative links
are distant from each other. These node embeddings are then used for task in hand separately. Thus, these
approaches are not end-to-end.

GNN based methods including signed graph convolutional networks (SGCN) (Derr et al., 2018), signed graph
attention networks (SiGAT) (Huang et al., 2019), signed network embedding based on attention (SNEA) (Li
et al., 2020), and group signed graph neural network (GS-GNN) (Liu et al., 2021) are jointly trained to learn
node embeddings along with the task in hand in an end-to-end manner. SGCN is a state-of-the-art signed
GNN model considering balanced and unbalanced paths motivated from the balance theory to aggregate local
graph information with fixed coefficients. SNEA further extended SGCN to incorporate learnable attention
coefficients for aggregating balanced and unbalanced paths. SiGAT is a motif-based GNN model to learn
the node representation inspired by GAT (Veličković et al., 2018). SDGNN (Huang et al., 2021) is a recent
work applicable to signed directed graphs based on balance and status theory. SSSNET (He et al., 2022a) is
another GNN based work with a focus on clustering of signed graphs. For balanced graphs, the eigenvectors
of the signed Laplacian follow certain properties as analyzed in (Dittrich & Matz, 2020). However, it is
difficult to relate the signed spectral analysis with balance theory in case of unbalanced graphs. It is an
interesting problem to explore the relationship between balance theory and spectral analysis for unbalanced
graphs, which is out of scope of this work.

2 Preliminaries

Let G = (V, E+ ∪ E−) be a directed signed graph, where V is the set of N number of nodes, E+ is the
set of directed positive edges, and E− is the set of directed negative edges. The adjacency matrix of the
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graph is denoted as A ∈ RN×N and has entries from {+1, −1, 0}1. If (i, j) is not an edge of the graph, then
the corresponding entry is A(i, j) = 0. A(i, j) = +1 denotes a positive edge from node i to j, whereas
A(i, j) = −1 denotes a negative edge from node i to j. Denote N +

i as the set of neighbors connected to node
i via positive edges and N −

i as the set of neighbors connected to node i via negative edges. In addition, a
feature matrix X ∈ RN×F is utilized to describe nodes properties (input features), with xi ∈ RN (column of
X) representing the ith feature channel of X and F denotes the total number of feature channels.

2.1 Traditional GSP and Spectral Domain GNN Designs

Popular spectral domain designs of graph neural networks including ChebNet (Defferrard et al., 2016),
GCN (Kipf & Welling, 2017) and their further improvements such as AGCN (Li et al., 2018), Simplified
GCN (Wu et al., 2019), and FAGCN (Bo et al., 2021) are based on the spectral analysis of signals (features)
defined on an unsigned graph. The spectral analysis of graph signals has been studied under the umbrella of
the graph signal processing (GSP) framework (Shuman et al., 2013; Ortega et al., 2018). The graph Fourier
(spectral) analysis relies on the spectral decomposition of graph Laplacians. The traditional combinatorial
graph Laplacian is defined as L = D − A, with D = diag{d1, d2, . . . , dN } and di =

∑
j Aij ; its normalized

version is Ln = D−1/2LD−1/2. Based on the eigendecomposition of the graph Laplacian L = UΛUT ,
where U ∈ RN×N comprises of orthonormal eigenvectors and Λ = diag{λ1, . . . , λN } is a diagonal matrix of
eigenvalues, the graph Fourier transform is defined with eigenvectors of the graph Laplacian being the graph
Fourier modes (harmonics) and the corresponding eigenvalues being the graph frequencies (Shuman et al.,
2013). Assuming λ1 ≤ λ2 ≤ . . . ≤ λN , λ1 corresponds to the lowest (zero) frequency and λN corresponds to
the highest frequency of the graph. For the case of normalized Laplacian Ln, all the graph frequencies lie in
the range [0, 2] (Shuman et al., 2013), with λ1 = 0.

Let x ∈ RN be a single-channel input signal on the graph, then the graph Fourier transform and the inverse
Fourier transform are defined as x̂ = UT x and x = Ux̂, respectively. Graph convolution of the input graph
signal x with a filter g is x ∗ g := UĜUT x, where Ĝ := diag(ĝ) = diag{ĝ1, . . . , ĝN }. For computational
efficiency, the filter coefficients ĝ1, . . . , ĝN can be approximated via Kth order polynomials of the graph
frequencies (K << N), i.e., ĝ(λj) =

∑K
i=0 θiλ

i
j with θ ∈ RK+1 being the (polynomial) filter coefficients.

In GCN, (Kipf & Welling, 2017) simplified the graph convolution by assuming first order polynomial filter
(K = 1) with θ0 = 2θ and θ1 = −θ, and thereby reducing the graph convolution to

x ∗ g ≈ θ (2I − Ln) x = θ (I + D−1/2AD−1/2) x. (1)

As a different interpretation, the above can also be viewed as a combination of two operations: (i) Feature
aggregation via term (I + D−1/2AD−1/2) and (ii) Feature transformation via learnable parameter θ. Note
that the feature aggregation operation corresponds to low pass filtering since the spectral response of the
spatial filter 2I − Ln is ĝ(λ) = 2 − λ which amplifies low-frequency signal (λ ≈ 0) and restrains high-frequency
signal (λ ≈ 2). In its final design, for numerical stability, the feature aggregation operation in GCN is modified
by adding self-loops for each node and as a result the modified graph convolution takes the form (Kipf &
Welling, 2017; Wu et al., 2019)

x ∗ g ≈ θ (D̃−1/2ÃD̃−1/2) x, (2)
where Ã = A + I and D̃ = D + I. When generalized to multi-channel input X, the output of the ℓth layer of
the GCN reads

H(ℓ) = σ(P H(ℓ−1) Θ(ℓ)), H(0) = X, (3)
where P = D̃−1/2ÃD̃−1/2 is the low-pass feature aggregation filter, Θ(ℓ) is a learnable transformation matrix,
and σ is non-linearity such as ReLU.

2.2 Issues with Signed Graphs

In each GCN layer, the feature aggregation operation corresponds to low pass filtering with the filter being
first order polynomial in Ln. However for signed graphs, the inverse of the degree matrix D (or D̃) becomes

1For weighted signed graphs, the weighed adjacency matrix can be used taking any real value as edge weights. Our analysis
and GNN models are applicable to general weighted signed graphs.
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problematic since the degree values might be zero or negative values for some nodes and as a consequence
the normalized Laplacian Ln is not well defined. Since the normalized Laplacian is not well defined, one is
tempted to interpret the aggregation operator as a low pass filter based on unnormalized Laplacian L. This
again poses difficulty in frequency ordering as the eigenvalues of the Laplacian L can take negative values for
signed graphs. The graph frequencies (Laplacian eigenvalues) are ordered based on the total variation (TV) of
the corresponding eigenvectors on the graph (Sandryhaila & Moura, 2014; Ortega et al., 2018). TV quantifies
global smoothness (or variation) of a graph signal. For unsigned graphs, the quadratic form xT Lx is often
used as TV of signal x on the graph (Shuman et al., 2013). However for signed graphs, the quadratic form
xT Lx may take negative values and thereby invalidating its use as TV. Another definition of TV of a graph
signal x is (Singh et al., 2016) TV(x) = ||Lx||1 and it can be shown that TV(ui) > TV(uj), if |λi| > |λj |.
Thus the eigenvalues with smaller absolute values act as low frequencies and vice-versa.
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Figure 1: (a) A toy signed graph (Red color edges represent negative links and Green color edges represent
positive links), (b) corresponding low-pass filter based on the unnormalized Laplacian, (c) Eigenvector
corresponding to the lowest frequency based on the unsigned Laplacian, and (d) Eigenvector corresponding
to the lowest frequency based on the signed Laplacian.

Although one can order the signed frequencies based on the absolute eigenvalues of the graph Laplacian L,
one needs new designs of low pass filters to be used as aggregation operator. For example, a low pass filter
for the toy graph in Figure 1a with frequency response ĝ(λ) = 1 − |λ|

|λ|max
is shown in Figure 1b where |λ|max

is the maximum absolute frequency of the underlying graph. This filter design has certain drawbacks since
it requires computation of |λ|max and cannot be directly realized as a first order polynomial (in the graph
Laplacian) in the spatial domain as the latter corresponds to a straight line. One can go for higher order
filters with additional computational cost.

Moreover, the frequency interpretation also becomes ambiguous for signed graphs. Since the zero eigenvalue
being the lowest frequency and the corresponding eigenvector being a constant signal on the graph (as shown
in Figure 1c), it is intuitive only under similarity assumption (i.e. positive edges). For example, foes/enemies
(users connected via negative links) having similar opinions (traits or features) suggests a high amount of
variation and friends (users connected via positive links) having similar opinions constitutes small variation.
However, this intuition is violated when using unsigned Laplacian: lowest frequency eigenvector values at
nodes 1 and 3 connected via negative links in Figure 1c have same values.

3 Proposed Method

In this section we present our spectral domain analysis approach to graph neural networks for signed graphs.
We then instantiate the approach to two specific network designs.

3.1 Spectral Domain Analysis of Signed Graphs

To address the issues mentioned in Section 2.2 while retaining the frequency interpretation of the aggregation
operation, we turn to the signed graph signal processing (Dittrich & Matz, 2020). Instead of the standard
graph Laplacian, we consider the signed Laplacian matrix (Kunegis et al., 2010; Dittrich & Matz, 2020)
L̄ = D̄ − A, where D̄ = diag{d̄1, . . . , d̄N } is a diagonal matrix with d̄i =

∑
j |Aij |. In (Dittrich & Matz, 2020)

the authors formalized the spectral domain analysis of the signals over signed graph via eigendecomposition
of the signed Laplacian matrix with the eigenvalues being the signed graph frequencies and the corresponding
eigenvectors being the signed graph harmonics.
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More precisely, we consider the normalized signed Laplacian matrix

L̄n = D̄−1/2L̄D̄−1/2 = I − D̄−1/2AD̄−1/2. (4)

The eigenvalues of the normalized signed Laplacian lie in the range [0, 2] with smaller eigenvalues corresponding
to low frequencies, and vice-versa. This frequency ordering directly follows from using quadratic Laplacian
form

TV(x) = xT L̄nx (5)

as the definition of TV on signed graphs. Using the eigenvectors of the signed Laplacian as graph harmonics
provides natural frequency interpretation for signed graphs. The eigenvector corresponding to the lowest
frequency of a signed graph is shown in Figure 1d. It can be seen that the nodes connected via negative
links (foes) have opposite values and nodes connected via positive links (friends) have similar values thereby
exhibiting small amount of variation; this phenomenon is intuitive for being a low frequency signal.

Our approach to signed graph neural networks naturally follows by redefining graph convolution based on
the normalized signed Laplacian equation 4. Building on this idea, we propose below two specific graph
network designs for signed graphs: Spectral-SGCN-I and Spectral-SGCN-II. The former behaves like a
low-pass filtering and can be viewed as a signed graph counterpart of the vanilla GCN (Kipf & Welling, 2017).
The latter is able to retain high-frequency information and can be viewed as a signed graph counterpart of
FAGCN (Bo et al., 2021).

3.2 Spectral-Signed-GCN-I

Our first network design, Spectral-SGCN-I, is similar to the vanilla GCN (Kipf & Welling, 2017). It can be
viewed as a low-pass feature aggregation on the underlying signed graph followed by feature transformation.
At each layer, the features are first aggregated via low-pass filter P = D̃−1/2ÃD̃−1/2 with Ã = A + I and
D̃ = D̄ + I. It resembles equation 2 but uses the signed Laplacian. Note that, just like equation 2, we adopt
the renormalization trick to improve numerical stability (Kipf & Welling, 2017).

In more details, the aggregated features in ℓth layer is H̄(ℓ) = PH(ℓ−1). Let H̄(ℓ) = [h̄(ℓ)
1 , h̄(ℓ)

2 , . . . , h̄(ℓ)
N ]T ,

then the aggregation can be written in the message passing form

h̄(ℓ)
i = 1

d̄i + 1
h(ℓ−1)

i +
∑

j∈N +
i

1√
(d̄i + 1)(d̄j + 1)

h(ℓ−1)
j −

∑
k∈N −

i

1√
(d̄i + 1)(d̄k + 1)

h(ℓ−1)
k .

After aggregation, the features are transformed via a learnable parameter matrix along with non-linearity to
give node representation output in ℓth layer as H(ℓ) = σ

(
H̄(ℓ) Θ(ℓ)).

The Spectral-SGCN-I aggregates only low frequency information via a low-pass aggregation filter as illustrated
in Figure 2a. As it has been shown in (Wu et al., 2019) that removing nonlinearities and collapsing
weight matrices between consecutive layers greatly simplifies the GCN complexity. Similarly, we propose
spectral simplified signed graph convolution network (Spectral-S2GCN) such that the output of ℓth layer is
H(ℓ) = PℓXΘ, with Θ being the only learnable parameter matrix.

3.3 Spectral-Signed-GCN-II

As has been noted in FAGCN (Bo et al., 2021), besides low frequency components, it is beneficial to incorporate
the high frequency components during feature aggregation as well. Based on this idea and the frequency
interpretation on signed graphs, we extend FAGCN to signed graphs by considering low as well as high
frequency information. To this end, we use low pass filter PLow = I + D̄−1/2AD̄−1/2 = 2I − L̄n and high
pass filter PHigh = I − D̄−1/2AD̄−1/2 = L̄n along with attention to learn the proportion of low-frequency
and high-frequency features to be propagated.

Let βLow
ij be the coefficient of attention aggregation for low frequency features from node j to node i. Similarly,

let βHigh
ij be the coefficient of attention aggregation for high frequency features from node j to node i. Note
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(a) Spectral-SGCN-I.
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k

1

Low-pass Low-pass
(hj)(−hk)
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βik < 0 βij < 0

βik > 0 βij > 0

(b) Spectral-SGCN-II.

Figure 2: Spectral-SGCN-I propagates only low-pass information from its neighbors. Spectral-SGCN-II
propagates low-pass as well as high-pass information from its neighbors via attention coefficients.

βLow
ij = βHigh

ij = 0 if node i is not connected to node j. For target node i, define low-pass attention matrix
as BLow

i = diag{βLow
i1 , . . . , βLow

iN } and high-pass attention matrix as BHigh
i = diag{βHigh

i1 , . . . , βHigh
iN }. Let

H(ℓ−1) = [h(ℓ−1)
1 , h(ℓ−1)

2 , . . . , h(ℓ−1)
N ]T be the node embeddings at layer ℓ − 1, then the ℓth GNN layer reads

(assuming self-loops)

h(ℓ)
i = 1

2

(
PLowBLow

i H(ℓ−1)
)

i
+ 1

2

(
PHighBHigh

i H(ℓ−1)
)

i

= (βLow
ii + βHigh

ii )h(ℓ−1)
i +

∑
j∈N +

i

(βLow
ij − βHigh

ij )√
d̄id̄j

h(ℓ−1)
j −

∑
k∈N −

i

(βLow
ik − βHigh

ik )√
d̄id̄k

h(ℓ−1)
k .

The coefficient βLow
ij + βHigh

ij acts as a scaling factor and can be set to be 1 for simplicity. Now denote
βLow

ij − βHigh
ij = βij , then the above becomes

h(ℓ)
i = h(ℓ−1)

i +
∑

j∈N +
i

βij√
d̄id̄j

h(ℓ−1)
j −

∑
k∈N −

i

βik√
d̄id̄k

h(ℓ−1)
k .

When the attention coefficients are constant and equal to 1, the above reduces to Spectral-SGCN-I. In
Spectral-SGCN-II, the attention coefficients are learned as βij = tanh

(
aT [hi, hj ]

)
taking values in range

[−1, 1], where a is learnable linear parameter. When βij = βLow
ij − βHigh

ij > 0, the low-frequency information
is propagated from node j to node i and when βij < 0, the high frequency information is propagated,
as illustrated in Figure 2b. Before passing the given input features X to the first layer, they are first
transformed to get h(0)

i = σ (Θ1xi) and after L number of stacked layer, we get the final output embeddings
as hi = Θ2h(L)

i .

4 Directed Signed Graphs

The methods proposed in Section 3 are limited to undirected signed graphs. For unsigned graphs, the
magnetic Laplacian (Fanuel et al., 2017; 2018; Furutani et al., 2019) has been utilized to encode the edge
directionality information. Recently, Zhang et al. (2021) used magnetic Laplacian for designing GNNs for
directed (unsigned) graphs. In its original form, the magnetic Laplacian is defined as

Lq = D − Aq = D − As ⊙ Φq, (6)

where As is symmetric adjacency matrix with entries As(i, j) = 1
2 (A(i, j)+A(j, i)), D = diag{d1, d2, . . . , dN }

with di =
∑N

j=1 As(i, j). Moreover, Φq is a Hermitian matrix with elements

Φq(i, j) = eι2πq(A(i,j)−A(j,i)), (7)

where ι is an indeterminate satisfying ι2 = −1 and q ∈ [0, 0.50) is the phase parameter. The normalized
magnetic Laplacian is Lq

n = D−1/2LqD−1/2.
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It can be shown that Lq as well as Lq
n are positive semidefinite for the unsigned case and the eigenvalues of

Lq
n lie in the interval [0, 2]. However, when the underlying graph is signed, the degree matrix can have zero

diagonal entries and the normalized magnetic Laplacian is not well defined. Moreover, Lq becomes indefinite
matrix for signed graphs. To handle these issues in directed signed graphs, we introduce signed magnetic
Laplacian.

4.1 Signed Magnetic Laplacian

We define signed magnetic Laplacian as

L̄q := D̄ − Aq = D̄ − As ⊙ Φq, (8)

where Aq = As ⊙Φq contains the directional signed information via Φq and the degree matrix is considered to
be D̄ = diag{d̄1, d̄2, . . . , d̄N } with d̄i =

∑N
j=1 |As(i, j)| representing the connection strength of node i. Note

that the phase parameter q ∈ [0, 0.25) for this signed directed settings (see Figure 3 for illustration of different
scenarios). The normalized signed magnetic Laplacian is L̄q

n := D̄−1/2L̄qD̄−1/2. The eigendecomposition of
L̄q

n can be used for spectral analysis of directed signed graphs and directed signed convolution operations can
be defined as in Section 2.1. The spectrum of our signed magnetic Laplacians follow desirable properties as
given by the following propositions.

1 2 3

4 5 6

i j i j i j

i j i j i j

Aqij = 1 Aqij =
1
2 eι2πq Aqij =

1
2 e−ι2πq

Aqij = −1 Aqij = − 1
2 e−ι2πq Aqij = − 1

2 eι2πq

1

2

3

4

5

6

Re

Im

Figure 3: Illustration of different directed signed scenarios and singed directional phase locations on complex
plane with q = 0.125.

Proposition 1. The signed magnetic Laplacian L̄q and normalized signed magnetic Laplacian L̄q
n are positive

semidefinite.
Proposition 2. The eigenvalues of the normalized signed magnetic Laplacian L̄q

n lie in [0, 2].

4.2 Directed Signed Graph Convolution Network

Based on signed magnetic Laplacian, similar to MagNet (Zhang et al., 2021), we propose Signed-MagNet. In
its aggregation operation, Signed-MagNet aggregates features by performing low-pass filtering as

h̄(ℓ)
i = 1

d̄i + 1
h(ℓ−1)

i +
∑

j∈Ni

Aq(i, j)√
(d̄i + 1)(d̄j + 1)

h(ℓ−1)
j , (9)

where Ni is the set of all the nodes connected to/from node i. Note that the latent embeddings in signed-
MagNet are complex and at the last layer, we concatenate the real and imaginary parts. After aggregation
operation in each layer, the features are transformed via a learnable complex matrix Θ.

Table 2: Signed graph datasets.
Wiki-Editor Wiki-Elections Wiki-RfA Bitcoin-Alpha Bitcoin-OTC Slashdot

#Nodes 21535 7194 11381 3783 5881 79120
#Classes 2 2 2 - - -

#Positive Links 269251 81862 139345 22650 32029 392179
#Negative Links 79004 22497 39433 1563 3563 123218
%Positive Links 77.31 % 78.44 % 77.94 % 93.54 % 89.99 % 76.09 %
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5 Experiments

We evaluate our proposed methods for node classification and link sign predictions tasks on signed networks.
We used Deep Graph Library (DGL) (Wang et al., 2019) for implementation of our methods. We also utilized
PyTorch Geometric Signed Directed (He et al., 2022b) for implementing existing signed GNN baselines for
node classification tasks.

5.1 Datasets

We perform node classification task on three datasets: Wiki-Editor, Wiki-Election, and Wiki-RfA. Wiki-Editor
is extracted from the UMDWikipedia dataset (Kumar et al., 2015). There is a positive edge between two
users if their co-edits belong to the same categories and a negative edge represents the co-edits belonging to
different categories. Each node is labeled as either benign or vandal. Wiki-RfA (West et al., 2014) and Wiki-
Election (Leskovec et al., 2010) are datasets of editors of Wikipedia that request to become administrators.
A request for adminship (RfA) is submitted, either by the candidate or by another community member and
any Wikipedia member may give a supporting, neutral, or opposing vote. From these votes a signed network
is built for each dataset, where a positive (resp. negative) edge indicates a supporting (resp. negative) vote
by a user and the corresponding candidate. The label of each node in these networks is given by the output
of the corresponding request: positive (resp. negative) if the editor is chosen (resp. rejected) to become an
administrator. We use dataset extraction code provided by Mercado et al. (2019) 2.

For link sign prediction, we use three additional datasets: Bitcoin-Alpha, Bitcoin-OTC, and Slashdot 3.
Bitcoin-Alpha and Bitcoin-OTC (Kumar et al., 2016; 2018) are two exchanges in Bitcoins, where nodes
represent Bitcoin users and edges represent the level of trust/distrust they have in other users. A positive
edge implies trust, while a negative edge represents distrust (fraud). Slashdot dataset (Kunegis et al., 2009)
is a network of interactions among users on Slashdot. Nodes represent users and edges represent friends
(positive) or foes (negative). The dataset statistics are summarized in Table 2.

5.2 Results

We first present experiments on synthetic data generated by signed stochastic block model Cucuringu et al.
(2019); He et al. (2022a) with different levels of imbalance. We simulate two clusters with intra-cluster edge
probability of 0.02 having positive signs and inter-cluster probability of 0.01 having negative signs. Such a
graph is a balanced graph. We then flip the inter-cluster as well as intra-cluster edge signs with different
probabilities creating varying levels of imbalance. With only 2 node labels known per cluster for a total of
1000 nodes, the node classification performance is shown in Figure 4 (one hot vectors as input features and
hidden dimension of 16). Clearly, our proposed methods outperform SGCN significantly.

flip signs with probability q

class 1 class 2

Figure 4: Performance with varying levels of imbalance.

5.2.1 Node Classification

Next, we perform node classification task in a semi-supervised setting, i.e., we have access to the test data, but
not the test labels, during training. For all the three datasets, we use three different ratios for training (known
labels): 1%, 2%, 5% of the total nodes. Out of the remaining nodes, we use 90% for testing, and use rest of the

2https://github.com/melopeo/GL
3https://networks.skewed.de
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Table 3: Test accuracies averaged over 20 different seeds for data shuffles and initializations.
Dataset WikiEditor WikiElection WikiRfA

Known Labels 1 % 2 % 5 % 1 % 2 % 5 % 1 % 2 % 5 %

MLP 72.3 ± 1.7 73.6 ± 1.1 74.8 ± 0.7 90.3 ± 0.9 93.7 ± 0.8 95.5 ± 0.6 91.5 ± 0.8 92.4 ± 1.2 93.8 ± 0.5

GCN 73.0 ± 0.8 73.3 ± 0.9 74.5 ± 1.0 88.9 ± 3.4 89.8 ± 3.7 89.9 ± 3.8 88.1 ± 2.2 89.4 ± 2.2 90.0 ± 2.8

SAGE 70.3 ± 0.8 72.8 ± 0.9 76.1 ± 0.5 87.2 ± 1.2 89.7 ± 1.2 93.3 ± 0.7 87.9 ± 0.9 89.9 ± 0.8 93.3 ± 0.6

FAGCN 75.4 ± 1.1 77.2 ± 0.9 78.8 ± 0.5 92.1 ± 1.4 93.3 ± 0.9 95.4 ± 0.7 91.5 ± 1.0 92.4 ± 0.8 94.1 ± 0.4

SGCN 79.4 ± 0.7 80.3 ± 0.9 82.1 ± 0.4 87.5 ± 1.2 89.9 ± 0.7 93.8 ± 0.4 87.9 ± 1.2 89.5 ± 1.7 91.3 ± 1.5

SNEA 79.5 ± 1.1 79.9 ± 1.0 81.1 ± 1.3 93.1 ± 1.5 94.1 ± 1.7 95.2 ± 1.7 93.0 ± 1.0 94.0 ± 1.1 94.4 ± 1.2

SDGNN 80.5 ± 1.3 81.1 ± 0.9 82.2 ± 0.7 95.8 ± 1.0 96.1 ± 0.6 96.7 ± 0.8 94.8 ± 1.1 95.0 ± 0.7 95.3 ± 0.4

Spectral-SGCN-I 81.1 ± 0.8 81.3 ± 0.8 82.8 ± 0.4 95.7 ± 1.0 97.1 ± 0.5 97.6 ± 0.4 94.4 ± 0.7 95.1 ± 0.5 95.7 ± 0.6

Spectral-SGCN-II 80.0 ± 2.2 80.9 ± 1.5 82.3 ± 1.4 96.7 ± 1.0 97.4 ± 0.3 98.0 ± 0.3 94.9 ± 0.4 95.6 ± 0.4 96.0 ± 0.2

Spectral-S2GC 81.1 ± 0.8 81.8 ± 0.7 82.7 ± 0.7 96.6 ± 0.9 97.3 ± 0.5 97.8 ± 0.2 94.3 ± 0.7 95.2 ± 0.4 95.9 ± 0.2

Signed-MagNet 81.0 ± 1.1 82.0 ± 0.8 83.0 ± 0.4 97.2 ± 0.6 97.6 ± 0.3 98.0 ± 0.2 96.0 ± 0.4 96.2 ± 0.3 96.4 ± 0.2

nodes for validation. Since the features are not given for the nodes, we use truncated SVD of the symmetric
adjacency matrix with dimension of 64 as input features. For comparison, we use traditional unsigned GNN
designs namely GCN (Kipf & Welling, 2017), GraphSAGE (Hamilton et al., 2017), and FAGCN (Bo et al.,
2021). For these methods, we do not consider the sign of the links, since the signed edge information is not
applicable for these methods. We also use the state-of-the-art GNN designs based on balance theory including
SGCN (Derr et al., 2018), SNEA (Li et al., 2020), and SDGNN (Huang et al., 2021) for comparison. For fair
comparison, we use two layer networks with hidden dimension of 64 for all the GNN-based methods. Binary
cross-entropy loss based on the known labels is used as a loss function. We use ReLU as the non-linearity
function in between the layers. Adam is used as the optimizer along with ℓ2-regularization to avoid overfitting.
We tune the learning rate and weight decay (ℓ2-regularization) hyperparameters over validation data using a
grid search. For Signed-MagNet implementation, we fix q = 0.125 for all the experiments. Further details on
implementation and hyperparameter tuning are provided in Appendix.

The classification results are summarized in Table 3. The experiments were run for 300 epochs and the
results are averaged over 20 different random splits of training and test data. The average of best accuracies
along with the standard deviation over 20 runs is reported. The best performing model for each dataset is
in bold. We observe that our proposed signed GNNs consistently outperform the other methods in all the
three datasets. For the two datasets Wiki-Election and Wiki-RfA, even traditional methods without signed
information outperform SGCN.

5.2.2 Link Sign Prediction

Finally, we evaluate our methods for the task of link sign prediction that aims to predict the missing sign
of a given edge. There exist three type of links in a signed graph: positive link, negative link, and no link.
Denote this as a set S ∈ {+, −, ?}, with “?” representing no link. Specifically, the training data contains a set
of nodes Vt and a set of link triplets T consisting of triplets of the form (u, v, suv) with u, v ∈ V being node
pairs and suv ∈ S denoting type of link between u and v. The final embeddings (obtained from the GNN
model) of the two nodes u and v are concatenated together [hu, hv] as the set of features for the edge and
then fed to a three-class MLP classifier. The models are trained using the labeled edges from the training
data. Let one-hot encoded vector of link type suv be suv ∈ {0, 1}|S|. We use multi-class (three) cross entropy
loss:

L(Θ, W) = − 1
|T |

∑
(u,v,suv)∈T

|S|∑
c=1

suv(c) log(ŝuv(c)),

where ŝuv(c) is the predicted probability for class c via softmax function. In the above loss function, Θ
denotes the set of GNN parameters and W denotes the parameters of MLP classifier. We use 80% of the
links for training and rest 20% for testing. We use twice the number of training links as “no links" obtained
using negative sampling.
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Table 4: Link prediction results with Macro-F1 and Micro-F1 scores over 10 different runs.

Method Bitcoin-Alpha Bitcoin-OTC Slashdot WikiElection WikiEditor WikiRfA

SiNE 0.6790 0.9440 0.6832 0.9328 0.7238 0.8192 0.6940 0.7832 0.7858 0.8244 0.7263 0.8160
SLF 0.7475 0.9453 0.7483 0.9466 0.7943 0.8564 0.7616 0.8487 0.7521 0.8442 0.7881 0.8640

SGCN 0.6648 0.9184 0.7420 0.9012 0.7422 0.8260 0.7363 0.8360 0.8225 0.8548 0.7510 0.8430
SNEA 0.6796 0.9210 0.7580 0.9038 0.7431 0.8308 0.7388 0.8372 0.8290 0.8672 0.7542 0.8497

SDGNN 0.7412 0.9480 0.8020 0.9346 0.7820 0.8504 0.7550 0.8508 0.8529 0.8810 0.7832 0.8598
Spectral-SGCN-I 0.7518 0.9547 0.8371 0.9437 0.7705 0.8410 0.7466 0.8390 0.8560 0.9128 0.7740 0.8410
Spectral-SGCN-II 0.7630 0.9562 0.8356 0.9538 0.7724 0.8438 0.7645 0.8512 0.8825 0.9237 0.7735 0.8476
Spectral-S2GCN 0.7030 0.9418 0.7820 0.9284 0.7352 0.8194 0.7182 0.8390 0.8448 0.9083 0.7221 0.8278
Singned-Magnet 0.7880 0.9432 0.8548 0.9580 0.7781 0.8463 0.7818 0.8649 0.8652 0.9184 0.7692 0.8543

Table 5: Link prediction results with AUC scores over 10 different runs.

Method Bitcoin-Alpha Bitcoin-OTC Slashdot WikiElection WikiEditor WikiRfA

SiNE 0.8351 ± 0.0126 0.8575 ± 0.0053 0.8108 ± 0.0021 0.8040 ± 0.0072 0.8631 ± 0.0044 0.7963 ± 0.0260
SLF 0.8438 ± 0.0151 0.8670 ± 0.0052 0.8846 ± 0.0040 0.8803 ± 0.0025 0.9090 ± 0.0027 0.8709 ± 0.0012

SGCN 0.8420 ± 0.0147 0.8780 ± 0.0103 0.8543 ± 0.0064 0.8516 ± 0.0030 0.9068 ± 0.0040 0.8361 ± 0.0078
SNEA 0.8453 ± 0.0062 0.8792 ± 0.0028 0.8621 ± 0.0154 0.8412 ± 0.0083 0.9278 ± 0.0062 0.8259 ± 0.0036

SDGNN 0.9008 ± 0.0081 0.9128 ± 0.0073 0.8734 ± 0.0187 0.8763 ± 0.0134 0.9430 ± 0.0126 0.8870 ± 0.0048

Spectral-SGCN-I 0.9005 ± 0.0345 0.9079 ± 0.0176 0.8345 ± 0.0121 0.8559 ± 0.0316 0.9447 ± 0.0194 0.8228 ± 0.0333
Spectral-SGCN-II 0.9146 ± 0.0066 0.9309 ± 0.0044 0.8677 ± 0.0090 0.8840 ± 0.0018 0.9818 ± 0.0047 0.8420 ± 0.0026

Spectral-S2GCN 0.8670 ± 0.0176 0.8936 ± 0.0095 0.8273 ± 0.0291 0.8149 ± 0.0315 0.9375 ± 0.0121 0.8242 ± 0.0189
Signed-MagNet 0.9227 ± 0.0097 0.9410 ± 0.0076 0.8615 ± 0.0074 0.8881 ± 0.0026 0.9567 ± 0.0144 0.8612 ± 0.0032

We use SiNE (Wang et al., 2017), SLF (Xu et al., 2019), SGCN (Derr et al., 2018), SNEA (Li et al., 2020),
and SDGNN (Huang et al., 2021) as baselines for comparison on link sign prediction tasks. We use a two
layer GNN model along with a single hidden layer MLP classifier. Truncated SVD of the symmetric adjacency
matrix with dimension of 30 is used as input features. We utilize Marco-F1 and Micro-F1 scores for evaluation,
since the positive and negative links are unbalanced. The comparison results in terms of F1 scores are listed
in Table 4. Moreover, the results in terms of Area Under the receiver operating characteristic Curve (AUC)
scores in Table 5. The results reported in these tables are average scores over 10 different runs. We observe
that our methods outperform the baselines for all the dataset except for Slashdot and WikiRfA. Note that
all the numbers for other algorithms in the table are obtained by running the official codes provided by the
respective authors. These could be slightly different from the numbers reported in those papers that may use
filtered/truncated versions of datasets.

6 Conclusion

In this paper, we proposed a new framework for GNN design for signed graphs based on spectral domain analysis
over signed graphs, as opposed to existing balance theory based GNN methods. We also introduced signed
magnetic Laplacian for handling directed signed graphs. We evaluated our methods for node classification as
well as link sign prediction tasks on signed graphs and achieved state-of-the-art performance.

Limitations and Ethical Considerations: One limitation of our method is that it does not consider one
scenario in directed signed graphs when there exist two opposite (directed) edges with different signs signs
between a pair of nodes. All of our data is publicly available for research purposes and does not contain
personally identifiable information or offensive content. The methods presented here has no greater or lesser
impact on society than other graph neural network algorithms.
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A Proof of Proposition 1

Proof. Let X† be the conjugate transpose of X and let x ∈ CN . It is easy to see that L̄q is a Hermitian
matrix and therefore, the imaginary part Im(x†L̄qx) = 0. Denoting Φq(m, n) = eιΘq(m,n), where Θq(m, n) =
2πq(A(m, n) − A(n, m)). The real part

Re(x†L̄qx) =
N∑

n=1
D̄(n, n)x(n)x∗(n) −

N∑
m,n=1

As(m, n)x(m)x∗(n) cos(Θq(m, n))

=
N∑

m,n=1
|As(m, n)||x(m)|2 −

N∑
m,n=1

As(m, n)x(m)x∗(n) cos(Θq(m, n))

≥ 1
2

N∑
m,n=1

|As(m, n)||x(m)|2 + 1
2

N∑
n,m=1

|As(n, m)||x(n)|2

−
N∑

m,n=1
|As(m, n)x(m)x∗(n) cos(Θq(m, n))|

= 1
2

N∑
m,n=1

|As(m, n)|
(
|x(m)|2 + |x(n)|2 − 2|x(m)x∗(n) cos(Θq(m, n))|

)
≥ 1

2

N∑
m,n=1

|As(m, n)|
(
|x(m)|2 + |x(n)|2 − 2|x(m)||x(n)|

)
= 1

2

N∑
m,n=1

|As(m, n)| (|x(m)| − |x(n)|)2

≥ 0.

Letting y = D̄−1/2x and by definition of L̄q
n, we have

x†L̄q
nx = x†D̄−1/2L̄qD̄1/2x = y†L̄qy ≥ 0.

B Proof of Proposition 2

Proof. Since L̄q
n is positive semidefinite due to Proposition 1, we just show that the largest eigenvalue λN ≤ 2.

We know that the eigenvalue with largest absolute value is

λN = max
x̸=0

x†L̄q
nx

x†x .

Letting y = D̄−1/2x, we have

λN = max
x̸=0

x†D̄−1/2L̄qD̄1/2x
x†x = max

y̸=0

y†L̄qy
y†D̄y

.
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Since the numerator in the above

y†L̄qy =
N∑

m,n=1
|As(m, n)||y(m)|2 −

N∑
m,n=1

As(m, n)y(m)y∗(n) cos(Θq(m, n))

= 1
2

N∑
m,n=1

|As(m, n)||y(m)|2 + 1
2

N∑
m,n=1

|As(m, n)||y(n)|2

−
N∑

m,n=1
As(m, n)y(m)y∗(n) cos(Θq(m, n))

≤ 1
2

N∑
m,n=1

|As(m, n)| (|y(m)| + |y(n)|)2

≤
N∑

m,n=1
|As(m, n)|

(
|y(m)|2 + |y(n)|2

)
= 2

N∑
m,n=1

|As(m, n)| |y(m)|2

= 2
N∑

m=1

(
N∑

n=1
|As(m, n)|

)
|y(m)|2

= 2
N∑

m=1
D̄(m, m) |y(m)|2

= 2y†D̄y,

and thus, λN ≤ 2.

C Further Implementation Details

All the experiments were run on Intel Core i9-9900 machine equipped with NVIDIA GeForce RTX 2080
Ti GPU. We use two layer networks with hidden dimension of 64 for all the GNN-based methods (a
standard practice in unsigned GNN literature). ReLU nonlinearity was used in all the experiments. For
the implementation of Signed-Magnet, we used ReLU non-linearity for real and complex parts separately.
The only hyperparameters to tune are learning rate and regularization (weight decay) coefficient. For all
of our methods we use feature dropout with a rate of 0.5. For Spectral-SGCN-II, we use attention and
feature dropout with dropout rate of 0.5. We tune the learning rate with different values (on log scale) in
the range [1e−3, 1e−1] and regularization rate in the range [1e−6, 1e−3]. For node classification task, the
hyperparameters were tuned based on the validation accuracy with 1% known training labels for each dataset.

Complexity Analysis: Although the time complexity of the existing signed GNN designs (balance theory
based) and our methods is O(|E|) for sparse graphs or O(|V |2) in worst-case, the number of parameters per
layer for these methods are different. For example, SDGNN utilizes four different encoders for capturing
different directionality scenarios. In contrast, our signed spectral methods employ a single (transformation)
encoder in each layer. We provide training times per epoch (averaged over 300 epochs) for different signed
GNN methods in Figure 5.

D Clustering of Directed Signed Graphs

We present experiments on synthetic data generated by directed signed stochastic block model with different
levels of imbalance. In particular, we simulate two clusters (classes) with directed intra-cluster edge probability
of 0.05 having positive signs and directed inter-cluster edge probability of 0.05 having negative signs. Such a
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Figure 5: Time taken per epoch for different methods (on WikiRfA dataset for node classification task with
batch size = 64, number of GNN layers = 2, hidden dimension = 64).

graph is a balanced graph. We then flip the inter-cluster as well as intra-cluster edge signs with different
probabilities creating varying levels of imbalance.
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Figure 6: Clustering results with 100 nodes per cluster for directed signed stochastic block model.

The nodes can be clustered based on the first (complex) eigenvector of the signed magnetic Laplacian
corresponding to the eigenvalue with smallest absolute value plotted on the complex plane. Figure 6 shows
clustering results on directed signed graphs with varying levels of imbalance.

E Connections to SGCN

SGCN (Derr et al., 2018) in its design consider balanced and unbalanced node sets based on balance theory
in feature aggregation process. The balanced node set for a target node i is the set of nodes that have even
number of negative links along a path connecting to i. An ℓ-hop balanced set of nodes for target node i is
denoted as Bi(ℓ) and unbalanced set of nodes as Ui(ℓ). For example graph in Figure 1, B1(1) = {2} and
U1(1) = {3, 4}.

The node representations for these balanced and unbalanced sets are treated separately in feature aggregation
process and are concatenated together to form final node embeddings. In the ℓth layer of the model, it reads

hB(ℓ)
i = σ

ΘB(ℓ)

 ∑
j∈N +

i

hB(ℓ−1)
j

|N +
i |

,
∑

k∈N −
i

hU(ℓ−1)
j

|N −
i |

, hB(ℓ−1)
i


hU(ℓ)

i = σ

ΘU(ℓ)

 ∑
j∈N +

i

hU(ℓ−1)
j

|N +
i |

,
∑

k∈N −
i

hB(ℓ−1)
j

|N −
i |

, hU(ℓ−1)
i

 ,

where ΘB(ℓ) and ΘU(ℓ) are linear transformation parameters for balanced and unbalanced paths, respectively
and the node representation at ℓth layer is the concatenation of the two embeddings h(ℓ) = [hB(ℓ)

i , hU(ℓ)
i ].
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Instead of treating positive and negative neighbors separately, in our architecture of Spectral-SGCN-I we
are aggregating them weighted by their signs and corresponding (absolute) degrees as can be seen from
equation 9.

F Effect of Input Feature Size

We also perform the study on the classification accuracy with varying number of input feature sizes. Figure 7
shows the performance of Spectral-SGCN-II with respect to varying number of input features. As expected,
the performance improves with increase in the dimension of input features.

Figure 7: Spectral-SGCN-I (left) and Spectral-SGCN-II (right) performance with varying dimensions of input
features (5% known labels).
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