Test-Time Training for Image Super-Resolution

Zeeshan Patel*, Yossi Gandelsman
UC Berkeley

{zeeshanp, yossi_gandelsman}@berkeley.edu

Abstract

We introduce a novel approach for Test-Time Training
(TTT) in Single Image Super-Resolution (SR), which en-
hances the performance of deep learning SR models in an
online setting without requiring external data for pretrain-
ing. Our TTT for SR method consists of two primary compo-
nents: self-supervised fine-tuning and model patching. The
baseline SwinlR transformer model is fine-tuned for every
new test image encountered, using a self-supervised learn-
ing task that generates data solely from the test image. By
employing an iterative updating strategy, our model adapts
to new test examples as they arrive, allowing knowledge
from previous test examples to influence future inferences.
To obtain the best results, we merge the the pretrained and
fine-tuned TTT models using a linear interpolation of their
learned weights. Our approach is applicable to various vi-
sion models and has the potential to advance generalization
for several vision tasks.

1. Introduction

Generalization, a crucial aspect of supervised learning
and intelligence, is often studied under the assumption that
training and test data share the same distribution. However,
this is rarely true in real-world scenarios, leading to mod-
els that struggle with adapting to distribution shifts during
deployment. This issue inspires an alternative approach to
generalization: adapting to the future as it unfolds rather
than preparing for all possible scenarios [11, 13, 14, 30].
Test-time training (TTT) embodies this approach, leverag-
ing the test input as a hint about the new distribution and
modifying the model accordingly [3, 12,29].

Although the test input lacks a ground truth label, self-
supervised learning can generate labels from the input itself,
enabling the model to adapt and better handle previously
unseen distributions. The self-supervised learning task that
we attempt to solve is crucial to TTT. We do not want to
solve a task that is too simple or complicated since we want
to ensure that there is some useful signal that can be derived
from the test input [10,29]. Therefore, we aim to identify a

task with moderate difficulty that is also general enough to
generate valuable features from the test input for our model.

In this work, we investigate how we can apply TTT to
the problem of single-image Super-Resolution (SR). In re-
cent years, we have seen deep learning techniques boost SR
performance drastically over traditional methods [8, 18, 19].
Additionally, with new transformer models such as SwinIR,
there has been a major change in performance for image
restoration tasks using learning tehcniques [0, 21]. Deep
learning techniques have been able to see massive im-
provements in SR due to well-engineered CNN and trans-
former architectures that have been trained on large labeled
datasets. However, when these models are tested on im-
ages that are outside of the training distribution or have
been downscaled in non-ideal conditions, most deep learn-
ing SR approaches tend to underperform [2]. Specifically,
most models for SR are trained using high-quality, realis-
tic images that were generated using a known downscaling
kernel (i.e. bicubic kernel with antialiasing). With real low-
resolution (LR) images though, we often see sensor noise,
compression artifacts, or other disturbances and aberrations
that can create problems during inference for SoTA deep
learning SR techniques [2,21]. Additionally, there are the-
oretically an extremely large number of test LR images that
a SR model would encounter when deployed in real-time.
The test distribution will continually change, which is why
we need a generalization approach that can be adapted in
real-time for optimal SR results.

In this paper, we introduce an algorithm for Test-Time
training for single-image SR, which utilizes the power of
self-supervised learning to generalize pretrained deep learn-
ing models for SR on unseen test distributions. At a high
level, we set up a one-sample learning problem and use self-
supervised learning to “overfit” our model to the LR test in-
put. This process allows us to look into the future by gener-
ating a fine-tuned version of our model that will be adapted
to the self-supervised task and will also maintain the previ-
ous knowledge of the SR task it learned from pretraining. In
addition to the test-time training step, we linearly interpo-
late the weights of the pretrained model and TTT model by a
weight a. This technique, which is known as model patch-

ing [15], creates a new model that is able to improve ac-
curacy on specific tasks without worsening its performance
on tasks where it already produces desirable results. In our
algorithm, we run the model patching procedure on a vari-
ety of a values for each test image and choose the model
that produces the best results in terms of PSNR. For our
experiments, we used a pretrained SwinlR transformer as
our baseline for x4 image SR [21]. In our experiments, we
noticed that TTT outperforms the baseline SwinIR model
in specific regions of the test input, and on average, TTT
provides similar results to the pretrained SwinIR or slightly
better results on certain test sets.

2. Related Work

A variety of approaches have utilized Test-Time Train-
ing (TTT) for generalization under distribution shifts across
various problems. Furthermore, self-supervised image SR
has also been explored with notable results. In this section,
we first examine related works in this specific context, fol-
lowed by a discussion on the two components of our algo-
rithm: TTT and model patching.

2.1. Zero-Shot Image SR

Within the realm of zero-shot image super-resolution, an
influential work worth mentioning is “Zero-Shot” Super-
Resolution with Deep Internal Learning (ZSSR) by Shocher
et al. In ZSSR, the authors train a lightweight CNN on a
single test-image, specializing it for super-resolution of that
specific test image [2]. This pioneering attempt at zero-shot
SR demonstrated that high-quality super-resolved images
surpassing state-of-the-art models can indeed be generated
using no external data.

To justify their results, the authors employed the concept
of Deep Internal Learning (DIL) in the ZSSR technique.
DIL leverages the natural recurrence of internal informa-
tion within natural images to train an accurate model using
a single test image [32]. This recurrence of internal infor-
mation in small image patches yields powerful internal im-
age statistics that surpass general external statistics learned
from an external training dataset [2, 32]. This crucial in-
sight is also applicable to TTT for SR: by beginning with a
pretrained model and exposing it to the test image’s inter-
nal statistics, the model’s performance can be enhanced at
test-time. In ZSSR, the authors generated a training dataset
for the self-supervised learning problem using a single test-
image. They obtained this dataset by downscaling the LR
test image I by the desired scaling factor s, and augment-
ing the lower-resolution image using rotations in 90° incre-
ments, as well as vertical and horizontal mirroring [2]. This
approach resulted in substantial improvements in SR qual-
ity, with approximately 0.2d B gains in PSNR.

2.2. Test-Time Training

Test-Time Training (TTT) has gained traction in recent
years, as more research has explored its potential to main-
tain robust models in real-time settings. There are numerous
applications of continual model training during deployment,
including facial recognition [16], video segmentation [27],
object tracking [9], and medical imaging [17]. TTT offers a
continual learning framework that addresses the generaliza-
tion problem in supervised models. With TTT, a new model
is trained for every test data point using self-supervision,
enabling the pretrained baseline to adapt to any underlying
distribution shifts.

In practice, TTT is similar the technique of Unsupervised
Domain Adaptation (UDA). In UDA, we use labeled data
from the training domain and unlabeled test data from the
target domain to learn how to complete various tasks in the
target domain [5,7,23,24]. In terms of super-resolution, this
would mean using some LR-HR image pairs from the train-
ing data and some unlabled test data to fine-tune our pre-
trained model to learn how to adapt to our new test images.
In TTT, we use a similar approach that is much more pow-
erful: we reduce the target sample to the test image itself.
This approach is much more precise and efficient as we no
longer have the need to generalize to other data points from
the test distribution, and we also do not need to generate a
set of target samples to fine-tune our models. We can sim-
ply use the test image to generate a variety of LR-HR image
pairs for our self-supervised SR task, and with this data, our
model can learn to “overfit” on this test image [2, | 0]. This
process allows our pretrained model to continually update
its parameters such that it can provide better inferences on
test data in real-time.

Another noteworthy advantage of TTT is its ease of de-
ployment and applicability in workflows requiring on-the-
fly inferences. To deploy a TTT-based generalization mech-
anism, simply set up a self-supervision task using the test
input and fine-tune the model for a small number of gradient
steps [10,29]. This process can be efficiently parallelized to
accelerate training and inference generation.

2.3. Model Patching

Model patching is founded on the idea that interpolating
the weights of two distinct models, one pretrained model
and another fine-tuned version of that same model for a
specific task, can yield superior results for zero-shot per-
formance [15]. The term patching stems from the belief
that interpolating the weights of the pretrained and fine-
tuned models will create a new model capable of improving
performance on specific tasks without compromising accu-
racy on tasks where it already achieves satisfactory results.
In [15], the authors demonstrated substantial performance
improvements using their model patching technique on sev-
eral zero-shot vision tasks. This work supports the idea of

employing model patching at test-time to merge our pre-
trained and TTT models, retaining the knowledge gained
by the model from the training distribution while introduc-
ing new context regarding the unknown test distribution.
Through model patching, a new model can be created that
incorporates knowledge from the self-supervised SR task
derived from the LR test image, as well as retaining knowl-
edge obtained from pretraining to perform SR on training
images.

3. Method

There are two primary components in our TTT for SR
approach: self-supervised fine-tuning and model patching.
The majority of our design effort was dedicated to develop-
ing a suitable self-supervised learning problem for TTT.

3.1. Model Architecture

The central idea of TTT is to fine-tune a pretrained model
for every new test image encountered. For SR, we opted
for the SwinIR [21] transformer model as our baseline pre-
trained model. SwinIR has established itself as the SOTA in
several image restoration tasks, including SR. Nonetheless,
our approach is not tied to a specific model architecture and
can be applied to various vision models.

3.2. TTT Setup

To implement TTT, we first need to establish a self-
supervised learning task for fine-tuning our model. Con-
sequently, the initial step in setting up TTT is devising a
mechanism to generate a dataset from a single test image
for fine-tuning. We employ a strategy similar to [2] to ex-
ploit the internal image statistics from our test inputs. To
generate our TTT training set, we begin by taking a sliding
window of size 48 x 48 across the entire test image, forming
a set of image patches. This initial set of patches ensures
that all parts of the image are considered during TTT. We
then randomly generate additional patches of the same size
from the test image. These generated patches will serve as
the HR targets for the self-supervised task. We downscale
these patches by the desired scaling factor s to create the
LR inputs for the SwinIR model during TTT. We also ran-
domly augment these LR-HR pairs using rotations in 90°
increments and vertical and horizontal mirroring.

Once the training set is generated, we proceed to fine-
tune our model. Let M;, be the i" TTT model, X be the
set of input LR image patches for the self-supervised learn-
ing problem, and Y be the set corresponding original LR
image patches from which we generated X . In other words,
X is a downscaled version of Y;, which was the orignal LR
test image patch.

Then, our loss for TTT is defined as follows:

LM, X,Y) =

3=

i(Mti (Xi) = Ya)?. (1

Here, we generate n training examples (X;,Y;) from
the original LR input image. Our loss £ is simply the
mean-squared error (MSE) between the TTT model output
M;,(X;) and the corresponding target Y;. This loss
function is suitable for our self-supervised task as we aim
to optimize our PSNR results, which depend on the MSE
between the LR and HR images.

Using this loss function, we can define the test error
on our unknown test distribution Z. During TTT, we are
updating the parameters 6;, of our i** TTT model M;, by
training on the test input X. Thus, our expected test error
is the following:

TTT Test Error = Ez [L(My,, X,Y);0:,(X)]. (2)

To select an optimizer, we experimented with several
learning rates for stochastic gradient descent (SGD) with
momentum, Adam [20], and AdamW [25]. We found that
Adam and AdamW caused issues with TTT since our per-
formance deteriorated after too many steps. With SGD, we
observed improvements in performance even after 40 steps
of TTT for certain test images. Using SGD enables our TTT
model to learn to adapt to all distribution shifts without any
early stopping mechanism.

To adapt our method for an online setting, we iteratively
update our TTT models as new test examples arrive. In
an online setting with test examples X7, Xo,..., X,, we
train our pretrained baseline model M, with parameters 6,
and fine-tune it using TTT on X to generate our first TTT
model M, with parameters 6, . Then, we use TTT to fine-
tune M, on Xy, and we iteratively continue this process
till we generate our final model M, with parameters 6, _,
which has been fine-tuned for input X,,. Using this strat-
egy, our model can use knowledge from other test examples
to influence its inference on future test inputs as they ar-
rive [29].

3.3. Model Merging

Before generating inferences, we aim to merge the out-
puts of the pretrained model M,, and the fine-tuned TTT
model M; to obtain the “best of both worlds.” During our
experiments, we attempted to determine a theoretical up-
per bound for the best PSNR results after merging the pre-
trained and TTT outputs for our test images. Since we had
access to the HR ground truth for our test sets, we merged
the outputs of M, and M; by selecting pixels from each
inference image with a lower MSE compared to the cor-
responding pixels in the HR image. This process demon-
strated that TTT performs better in certain regions of our

Test Input Stream

{X17X27"‘7Xn} €Z

L

Pretrained Test-Time Training

SwinIR Model

o 0

Inference

0.(X)

Model Patching
9;::(1—0[)9}74’0[9t

Figure 1. TTT for Image SR process.

test image than the baseline SwinIR model and vice versa.
Initially, we planned to design another learning problem
where we would train an additional model to learn where
M, performs better than M, on our test image. However,
this is a challenging problem to solve due to the large vari-
ance in our test images and the inconsistency in which re-
gions of the test image M; outperforms M,,. Instead, we
chose to use model patching [5] to develop a cleaner, more
generalizable approach for adapting our model to the test
distribution while preserving knowledge from pretraining.

‘We merge the models M), and M, by taking an interpola-
tion of their learned weights. Let 6, be the pretrained model
weights and 6; be the TTT model weights. Then, we merge
the two model weights as follows:

0, =1-a) 0,4+ -6 3)

where 0, are the weights of the final merged model, M.,
and o € [0,1]. We test several values for v and choose
the model that generates the inference image with the best
PSNR. The process of selecting « could be learned or de-
cided through validation for a specific test distribution. The
general process for our method is illustrated in Fig. 1.

4. Experiments and Results
4.1. Implementation Details

In all of our experiements, we use a SwinIR transformer
as our baseline model that has been trained for 500K iter-
ations on the DIV2K [1] dataset. This pretrained SwinlR
model is fine-tuned with each individual test image in our
test sets. Specifically, we tested our technique for x4 SR
on the Set5 [4], Setl14 [31], and BSD100 [26] datasets. Af-
ter generating each of the fine-tuned TTT models, we use a
weight merging mechanism similar to [15] to linerly inter-
polate the weights of the pretrained and fine-tuned models
by some a. We use the performance of the inference versus
the ground truth in our validation set to determing the best
value of alpha for each model. We used the original imple-
mentation of the SwinIR model for TTT.

Steps vs. TTT Loss (Set 14)

0.12

0.101

0.08 1

loss

0.04 1

0.02 1

0.00

T T T T T T
0 5 10 15 20 25
Steps

Figure 2. MSE loss during TTT for Setl4 [31]. SGD keeps im-
proving or maintains performance even after 30 steps.

We run TTT for 30 epochs for every test-image using
SGD with a momentum of 0.9, weight decay of 0.2, and an
initial learning rate of le-4. The learning rate is periodi-
cally updated by a learning rate scheduler that decreases the
learning rate whenever a metric stops improving. We chose
to perform TTT for 30 epochs since empirically, we noticed
that TTT performance gains with more steps are marginal
and would not impact the results significantly as seen in
Fig. 2. Additionally, we needed to determine a suitable size
for the dataset we generated for the self-supervised learn-
ing task during TTT. Since we needed to ensure our model
is able to see all regions of the image, we first generated
patches using a sliding window, and then we sampled addi-
tional patches from the image randomly. In order to truly
“overfit” on the test image, we used 100 LR-HR pairs gen-
erated from the LR test input using the method described in
Sec. 3.2. This provided us with sufficient data to learn inter-
nal image statistics and ensured that the model was learning
new information during TTT. We use one NVIDIA GeForce
RTX 2080 Ti GPU that performs TTT on each test image

baboon
barbara
bridge
coastguard
comic
face
flowers
foreman
lenna
man
monarch
pepper
ppt3
zebra

Original LR Original HR 4x SwinlR Pretrained Original LR Original HR 4x SwinlIR Pretrained

AxTIT 4x Patched L2 Loss
4x TTT 4x Patched L2 Loss

Original LR Original HR 4x SwinIR Pretrained Original LR Original HR 4x SwinIR Pretrained

4x TTT 4x Patched L2 Loss
4x TIT 4x Patched L2 Loss

Original LR Original HR 4x SwiniR Pretrained Original LR Original HR 4x SwinIR Pretrained

4xTTT 4x Patched L2 Loss
2 v 2 T 4x TTT 4x Patched L2 Loss

Original LR Original HR 4x SwinlR Pretrained Original LR Original HR 4x SwinlR Pretrained

4xTTT 4x Patched L2 Loss 4x TTT 4x Patched L2 Loss

Figure 3. SwinIR vs. TTT outputs. Green pixels indicate SwinIR has lower error; Red pixels indicate TTT has lower error. TTT is able
to perform better in areas with finer details. However, on some images, it does not improve the error and SwinlR outperforms TTT overall.
Uncolored pixels on the ¢2 loss map indicate equal error between the SwinIR and TTT outputs. Patched images are generated by using the
patched models merged with the best interpolation coefficient c € [0, 1]. We use validation on the same test image to choose a.

Model Set5 [4] Setl4 [31] BSD100 [26]
PSNR (Y) | SSIM (Y) | PSNR (Y) | SSIM (Y) | PSNR (Y) | SSIM (Y)
SwinIR baseline 32.72 0.9021 28.94 0.7914 27.83 0.7459
TTT (ours) 32.83 0.9024 29.05 0.7917 27.85 0.7459
Patched Model (ours) | 32.75 0.9022 29.09 0.7917 27.87 0.7461

Table 1. Comparison of PSNR (Y) and SSIM (Y) for x4 single image SR. Metrics calculated in the Y-channel of the YCbCr space.

sequentially. However, TTT training can benefit from par-
allelism across multiple GPUs to improve training speed.

The final component of our method is model patching.
Using the general approach outlined in [15], we merged
the model weights for every value of alpha that we tested
for each pair of SwinlR pretrained and TTT models as in
Eq. (3). This process can be slow, so we implemented a
distributed hyperparameter search to find the best value of
« for every TTT model. This significantly improved model
patching performance, especially for larger test sets such as
BSD100 [26]. For model patching, we used 10 NVIDIA
GeForce RTX 2080 Ti GPUs in parallel to decrease
running time, but it is possible to obtain results in a reason-
able amount of time with fewer GPUs.

4.2. Results

We generated results for SetS [4], Setl4 [31], and
BSD100 [26] for a x4 scaling factor using our TTT method.
We chose x4 specifically as it is reasonably hard to extract
internal information as downscaling factor is increased,
which would serve as an adeuquate challenge for TTT.
However, in theory, our results would be similar for other
scaling factors.

In Tab. 1, we show PSNR and SSIM results for the
SwinlIR baseline, TTT, and patched models. In Fig. 3, we
display differences between the SwinIR baseline TTT, and
patched model outputs. In these images, red pixels indi-
cate that TTT outperformed the baseline SwinIR with re-
spect to the ground truth, and the green pixels indicate that
SwinlR performed better than the corresponding TTT mod-
els. Pixels that are not highlighted in green or red had simi-
lar performance in both SwinIR and TTT outputs. We used
the /5 loss to determine which pixel performed better in the
SwinlIR and TTT outputs with respect to the ground truth.

Overall, we didn’t see massive improvements in PSNR
or SSIM using our method, on average. However, for spe-
cific test images, our method significantly improves the per-
ceptual quality of the image. In Tab. 1, we can see that on
average, our technique provided 0.1dB gains in PSNR for
Set5 [4] and Set14 [31], but we did not see any significant
difference in BSD100 [26]. Additionally, for all the test
sets, we saw minimal differences in the SSIM.

In Fig. 3, we can see in the first four images being com-
pared, the TTT model is able to capture finer details in the

image better than the SwinIR model. For example, in the
very first image, we can see that the TTT model has a lower
error on the tablecloth and the woman'’s clothes. However,
in other images, such as the image of the elephants from
BSD100 [26], we see that the SwinIR model performs better
on the outline of the elephants and TTT does not contribute
in lowering the error by any significant amount. Although
TTT is able to capture more information in some images,
it tends to perform as well as the SwinIR model in many
cases.

As mentioned in Sec. 3.3, we attempted to find a loose
theoretical upper bound on the best PSNR/SSIM we could
achieve by merging the SwinIR baseline outputs with the
TTT outputs based off which corresponding pixels had a
lower error with respect to the ground truth HR image.
From this process, we determined that it would be possible
to see upwards of approximately 1.3d B increases in PSNR,
on average. In our real experiments though, we were not
able to attain such results. We believe that this is due to
model patching not accurately transferring the new knowl-
edge learned during TTT. In addition to model patching,
we also tried to merge the outputs of the SwinIR baseline
and TTT models using different techniques such as clas-
sification, regression, or generative modeling. However,
these approaches ultimately worsened our results and were
unable to provide any performance improvements over the
baseline. We also tested performance with varying num-
bers of TTT steps, but we did not notice any performance
gains after 30 steps of TTT. However, we did notice the
double descent phenomena [28] occur when testing TTT
with AdamW. Specifically, we saw TTT loss increase af-
ter approximately 40 steps of TTT on Set14 [31] images. It
eventually decreased below the previous minimum loss af-
ter about 80 steps. When testing these models, we did not
see any performance improvements over TTT models that
were trained for 30 steps.

We also noticed that TTT did not improve images with
motion artifacts. However, the SwinIR baseline model also
exhibited similar results. This can potentially mean that
TTT cannot improve performance under massive distribu-
tion shifts [22] or that our self-supervised learning problem
was not effectively helping the model learn new informa-
tion in those situations.

Although our results are not significantly better than the

baseline model, we still believe that TTT can help with
distribution shifts for SR tasks. We believe that our self-
supervised learning problem is the main reason why our re-
sults were not significantly better than the baseline model.
There are several ways to frame the self-supervised learn-
ing problem, and it is possible that extracting other image
statistics from the test image can provide more useful infor-
mation during TTT. This remains part of our future work.

5. Conclusion

In this work, we introduce Test-Time Training for Image
Super-Resolution, which enables on-the-fly enhancement of
deep learning-based SR models in an online setting. Our
method eliminates the need for external data during pre-
training and relies exclusively on the test image. With a
self-supervised learning strategy, we fine-tune the baseline
model at test-time, using data generated exclusively from
the test image. This approach not only improves the per-
ceptual quality of SR inferences at test-time but also offers
an efficient mechanism for implementing continual learn-
ing for deep learning SR models. We anticipate that our
contribution will inspire further advancements in Test-Time
Training approaches for image restoration.

References

[1] Eirikur Agustsson and Radu Timofte. Ntire 2017 challenge
on single image super-resolution: Dataset and study. In 2017
IEEE Conference on Computer Vision and Pattern Recogni-
tion Workshops (CVPRW), pages 1122-1131, 2017. 4

[2] Michal Irani Assaf Shocher, Nadav Cohen. Zero-shot super-
resolution using deep internal learning. In The IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
June 2018. 1,2, 3

[3] Pratyay Banerjee, Tejas Gokhale, and Chitta Baral. Self-
supervised test-time learning for reading comprehension,
2021. 1

[4] Marco Bevilacqua, Aline Roumy, Christine Guillemot, and
Marie line Alberi Morel. Low-complexity single-image
super-resolution based on nonnegative neighbor embedding.
In Proceedings of the British Machine Vision Conference,
pages 135.1-135.10. BMVA Press, 2012. 4, 6

[5] Minmin Chen, Kilian Q Weinberger, and John Blitzer. Co-
training for domain adaptation. In J. Shawe-Taylor, R.
Zemel, P. Bartlett, F. Pereira, and K.Q. Weinberger, editors,
Advances in Neural Information Processing Systems, vol-
ume 24. Curran Associates, Inc., 2011. 2

[6] Marcos V. Conde, Ui-Jin Choi, Maxime Burchi, and Radu
Timofte. Swin2sr: Swinv2 transformer for compressed im-
age super-resolution and restoration, 2022. 1

[7] Gabriela Csurka. Domain adaptation for visual applications:
A comprehensive survey, 2017. 2

[8] Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou
Tang. Image super-resolution using deep convolutional net-
works, 2015. 1

(9]

[10]

(11]

(12]

(13]

[14]

(15]

[16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

Yang Fu, Sifei Liu, Umar Igbal, Shalini De Mello,
Humphrey Shi, and Jan Kautz. Learning to track instances
without video annotations, 2021. 2

Yossi Gandelsman, Yu Sun, Xinlei Chen, and Alexei A.
Efros. Test-time training with masked autoencoders, 2022.
1,2

Robert Geirhos, Carlos R. Medina Temme, Jonas Rauber,
Heiko H. Schiitt, Matthias Bethge, and Felix A. Wichmann.
Generalisation in humans and deep neural networks, 2020. 1
Nicklas Hansen, Rishabh Jangir, Yu Sun, Guillem Alenya,
Pieter Abbeel, Alexei A. Efros, Lerrel Pinto, and Xiaolong
Wang. Self-supervised policy adaptation during deployment,
2021. 1

Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kada-
vath, Frank Wang, Evan Dorundo, Rahul Desai, Tyler Zhu,
Samyak Parajuli, Mike Guo, Dawn Song, Jacob Steinhardt,
and Justin Gilmer. The many faces of robustness: A critical
analysis of out-of-distribution generalization, 2021. 1

Dan Hendrycks and Thomas G. Dietterich. Benchmarking
neural network robustness to common corruptions and per-
turbations. CoRR, abs/1903.12261, 2019. 1

Gabriel Ilharco, Mitchell Wortsman, Samir Yitzhak Gadre,
Shuran Song, Hannaneh Hajishirzi, Simon Kornblith, Ali
Farhadi, and Ludwig Schmidt. Patching open-vocabulary
models by interpolating weights, 2022. 2, 4, 6

Vidit Jain and Erik Learned-Miller. Online domain adapta-
tion of a pre-trained cascade of classifiers. In CVPR 2011,
pages 577-584, 2011. 2

Neerav Karani, Ertunc Erdil, Krishna Chaitanya, and En-
der Konukoglu. Test-time adaptable neural networks for ro-
bust medical image segmentation. Medical Image Analysis,
68:101907, feb 2021. 2

Jiwon Kim, Jung Kwon Lee, and Kyoung Mu Lee. Accu-
rate image super-resolution using very deep convolutional
networks. 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 1646-1654, 2015. 1
Jiwon Kim, Jung Kwon Lee, and Kyoung Mu Lee. Deeply-
recursive convolutional network for image super-resolution,
2016. 1

Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization, 2017. 3

Jingyun Liang, Jiezhang Cao, Guolei Sun, Kai Zhang,
Luc Van Gool, and Radu Timofte. Swinir: Image restora-
tion using swin transformer, 2021. 1, 2, 3

Yuejiang Liu, Parth Kothari, Bastien van Delft, Baptiste
Bellot-Gurlet, Taylor Mordan, and Alexandre Alahi. Ttt++:
When does self-supervised test-time training fail or thrive?
In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and
J. Wortman Vaughan, editors, Advances in Neural Informa-
tion Processing Systems, volume 34, pages 21808-21820.
Curran Associates, Inc., 2021. 6

Mingsheng Long, Yue Cao, Jianmin Wang, and Michael 1.
Jordan. Learning transferable features with deep adaptation
networks, 2015. 2

Mingsheng Long, Han Zhu, Jianmin Wang, and Michael 1.
Jordan. Unsupervised domain adaptation with residual trans-
fer networks, 2017. 2

[25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

Ilya Loshchilov and Frank Hutter. Decoupled weight decay
regularization, 2019. 3

David R. Martin, Charless C. Fowlkes, Doron Tal, and Jiten-
dra Malik. A database of human segmented natural images
and its application to evaluating segmentation algorithms and
measuring ecological statistics. Proceedings Eighth IEEE
International Conference on Computer Vision. ICCV 2001,
2:416-423 vol.2, 2001. 4, 6

Ravi Teja Mullapudi, Steven Chen, Keyi Zhang, Deva Ra-
manan, and Kayvon Fatahalian. Online model distillation
for efficient video inference, 2020. 2

Preetum Nakkiran, Gal Kaplun, Yamini Bansal, Tristan
Yang, Boaz Barak, and Ilya Sutskever. Deep double descent:
Where bigger models and more data hurt, 2019. 6

Yu Sun, Xiaolong Wang, Zhuang Liu, John Miller, Alexei A.
Efros, and Moritz Hardt. Test-time training with self-
supervision for generalization under distribution shifts,
2020. 1,2,3

Igor Vasiljevic, Ayan Chakrabarti, and Gregory
Shakhnarovich. Examining the impact of blur on recognition
by convolutional networks, 2017. 1

Roman Zeyde, Michael Elad, and Matan Protter. On single
image scale-up using sparse-representations. In Curves and
Surfaces, 2010. 4, 6

Maria Zontak and Michal Irani. Internal statistics of a single
natural image. CVPR 2011, pages 977-984, 2011. 2

	. Introduction
	. Related Work
	. Zero-Shot Image SR
	. Test-Time Training
	. Model Patching

	. Method
	. Model Architecture
	. TTT Setup
	. Model Merging

	. Experiments and Results
	. Implementation Details
	. Results

	. Conclusion

