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Abstract

Video understanding is a complex challenge that
requires effective modeling of spatial-temporal
dynamics. With the success of image founda-
tion models (IFMs) in image understanding, re-
cent approaches have explored parameter-efficient
fine-tuning (PEFT) to adapt IFMs for video. How-
ever, most of these methods tend to process spatial
and temporal information separately, which may
fail to capture the full intricacy of video dynam-
ics. In this paper, we propose MoMa, an effi-
cient adapter framework that achieves full spatial-
temporal modeling by integrating Mamba’s se-
lective state space modeling into IFMs. We pro-
pose a novel SegMod operation to inject spatial-
temporal information into pre-trained IFMs, with-
out disrupting their original features. By incor-
porating SegMod into a Divide-and-Modulate ar-
chitecture, MoMa enhances video understand-
ing while maintaining computational efficiency.
Extensive experiments on multiple video bench-
marks demonstrate the effectiveness of MoMa,
achieving superior performance with reduced
computational cost.

1. Introduction

Video understanding is a crucial yet challenging task in
computer vision. The key to addressing this challenge lies
in learning effective spatial-temporal representations from
video data (Tong et al., 2022; Feichtenhofer et al., 2022;
Carreira & Zisserman, 2017; Hara et al., 2017; Feichten-
hofer et al., 2019; Liu et al., 2022). Since video data ex-
hibits complex spatial-temporal dynamics, training such a
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video understanding model from scratch is highly inefficient
and data demanding. In contrast, image understanding has
made significant progress by using image foundation models
(IFMs) (Radford et al., 2021; Bao et al., 2021; Wang et al.,
2022). This progress has spurred efforts to leverage IFMs
for video understanding, as IFMs provide strong pre-trained
representations, reducing the reliance on training models
from scratch for specific tasks.

Some early works have attempted to adapt IFMs to video
understanding by conducting full parameter training on
video data (Xue et al., 2022; Li et al., 2023). These meth-
ods, although effective, still require considerable computa-
tional resources and data. To alleviate this, a more efficient
approach is to adapt IFMs using parameter-efficient fine-
tuning (PEFT), and keeping most of the parameters frozen.
Since IFMs do not explicitly model temporal dynamics dur-
ing pre-training, these PEFT-based methods are compelled
to incorporate additional modules to capture temporal de-
pendencies across frames, often independently of the origi-
nal spatial representations. For instance, AIM (Yang et al.,
2023a) introduces a temporal attention layer within each
Transformer block. DualPath (Park et al., 2023) designs two
separate adapter modules for spatial and temporal modeling,
and DiST (Qing et al., 2023) introduces a parallel temporal
encoding branch alongside the spatial one. By processing
spatial and temporal information separately, these PEFT
designs simplify the full modeling of sequences. As a re-
sult, patches at different spatial and temporal positions can
only interact with each other in an indirect, implicit manner.
This is potentially insufficient for capturing the complex
dynamics inherent in video data.

To explicitly capture the full spatial-temporal dynamics
while using PEFT, one straightforward method is to apply
an additional full attention over the entire spatial-temporal
sequence after IFMs. However, due to the long length of
the spatial-temporal sequence, the quadratic complexity of
full attention causes scalability issues, resulting in a drastic
increase in memory usage and inefficiencies in speed when
processing multiple frames. In this context, recent low-cost
operators like Mamba (Gu & Dao, 2023) offer a promising
solution with its selective state space model (SSM), achiev-
ing linear complexity for long-term dynamic modeling. This
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motivates us to explore how Mamba can be leveraged in
PEFT to capture the full spatial-temporal dynamics within
IFMs, while maintaining training efficiency.

A naive way to integrate Mamba is to first extract each
frame’s spatial features using IFMs, then flatten and concate-
nate into a spatial-temporal sequence, which is processed
by Mamba. However, we found that this approach is often
suboptimal. Most hybrid architectures require fewer layers
of attention compared with Mamba to achieve best perfor-
mance (Waleffe et al., 2024; Lieber et al., 2024), which
is opposite in our case. Inserting a lightweight Mamba
module directly into a pre-trained heavy Transformer-based
IFMs may confuse the model, especially when the Trans-
former parameters are frozen. To better integrate Mamba
into pre-trained Transformer, we propose a sophisticated
sequence modulation operation SeqgMod for efficiently in-
Jjecting spatial-temporal information using the lightweight
Mamba, i.e., rather than directly modifying the features of
IFMs, features are adjusted by learnable scale and bias. This
modulation operation prevents interference with IFMs, and
through a conditional adjustment mechanism using Mamba,
spatial-temporal dynamics can still be explicitly learned,
thus preserving training efficiency and flexibility.

To fully leverage this, we further propose MoMa, a frame-
work that integrates this modulation operation with Mamba
within IFMs for PEFT. Specifically, it incorporates a two-
stage Divide-and-Modulate process applied to each layer
of a given Transformer-based IFM. In the first Divide stage,
we aim to enhance the efficiency of the attention mechanism.
Rather than processing each video frame individually, we
divide each frame into smaller windows and apply local
attention within each window. This window-based approach
significantly reduces computational overhead by capturing
short-term spatial dependencies. Then, in the second Modu-
late stage, we focus on capturing the global spatial-temporal
dynamics. We employ the strong SeqMod operation to
ensure that comprehensive spatial-temporal information is
effectively injected through sequences of short-term spatial
features. This framework not only improves computational
efficiency, but also enables PEFT to capture intricate spatial-
temporal relationships in video data using IFMs.

To sum up, our contributions lie three fold:

e We pioneer to use Mamba as an efficient adapter for image
foundation models (IFMs). With our sequence modulation
operation SegMod, full spatial-temporal dynamics can be
captured without interfering the pre-trained IFMs.

e We propose a novel framework MoMa, which consists
of a Divide and Modulate stage. For each layer of IFM, It
first applies window-based spatial local attention, followed
by modulation via SegMod to inject full spatial-temporal
information.

e We conduct extensive experiments and ablations on mul-
tiple video understanding benchmarks, showing MoMa’s
significantly improvements in both performance and com-
putational efficiency compared to existing methods.

2. Related Works

Video Understanding. One crucial aspect of video un-
derstanding is capturing the temporal patterns in videos.
CNN-based methods introduced 3D convolutions and other
temporal modules to handle this (Feichtenhofer et al., 2019;
Feichtenhofer, 2020). Compared with the limited receptive
field of 3D convolutions, Transformer-based methods with
global attention mechanisms (Arnab et al., 2021; Zhang
et al., 2021; Li et al., 2022) have achieved promising perfor-
mance. These models can capture long-range dependencies
across frames, enabling them to better understand the com-
plex temporal relationships inherent in video data. While we
aim to capture full spatial-temporal dynamics using Mamba
architecture for more efficient video understanding.

Image Foundation Models Adaptation. Recently, image
foundation models (IFMs) has made remarkable progress.
The introduction of self-supervised learning (Oquab et al.,
2023; Chen et al., 2020) and multi-modal contrastive learn-
ing (Jia et al., 2021; Radford et al., 2021; Zhai et al., 2023)
techniques enable models to learn effective representations
from unlabeled images. And, the come up of large-scale
datasets such as LAION-5B (Schuhmann et al., 2022) and
COYO-700M (Byeon et al., 2022) has led to even more
powerful visual representations. IFMs trained on such web-
scale datasets have been shown to be well generalized and
effective in a wide range of computer vision tasks. Adapting
these IFMs to these tasks has earned significant attention.
Several approaches have been proposed to adapt IFMs to
downstream tasks like detection (Kuo et al., 2022; Gu et al.,
2021b; Minderer et al., 2023; Zhong et al., 2022), segmen-
tation (Ma et al., 2022; Yang et al., 2024b; Ma et al., 2023b;
Liu et al., 2023; Ma et al., 2025), image captioning (Hes-
sel et al., 2021; Nukrai et al., 2022; Mokady et al., 2021),
2D/3D generation and reconstruction (Shi et al., 2025; Li
et al., 2024c; Xiong et al., 2025; Li et al., 2024a; Ma et al.,
2023a), and some trustworthy scenarios (Han et al., 2025;
Yang et al., 2023b; 2021). In this work, we follow the re-
search direction of EVL (Lin et al., 2022b), ST-Adapter (Pan
etal., 2022), AIM (Yang et al., 2023a) and DiST (Qing et al.,
2023), and aim to adapt IFMs to video understanding tasks.

State Space Model. Compared to Transformers that
based on quadratic-complexity attention, State Space Mod-
els (SSMs) (Gu et al., 2021a) excels at processing long se-
quences with linear complexity. And recently, Mamba (Gu
& Dao, 2023) distinguishes itself by incorporating a data-
dependent selection mechanism and hardware-efficient algo-
rithms, further improve its efficiency for sequential model-
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Figure 1. Overview of our proposed MoMa. The Divide stage aim to cut down the computational cost by narrowing the attention
range. We utilize the original CLIP attention layers, but splits the input video sequence into smaller windows and processes attention
independently for each window. In Modulate stage, we aim to capture full spatial-temporal dynamics using lightweight Mamba. We
first forward the sequence through an SSM layer to obtain sequences of scale and bias, then use our proposed sequence modulation
operation (SegMod) to inject spatial-temporal information into IFMs without interfering with their pre-trained parameters. Finally, the
output is fed into CLIP’s feed-forward layer. Only SSM layers are trainable through the whole architecture.

ing tasks. In vision domain, backbones built on Mamba (Liu
et al., 2024; Zhu et al., 2024; Hatamizadeh & Kautz, 2024)
shows great potential, and introduces new solution in pro-
cessing visual data at large scale and high dimension such
as video (Li et al., 2024b; Chen et al., 2024) and 3D point
cloud (Liang et al., 2024; Zhang et al., 2024). The great
potential of Mamba motivates a series of works (Teng et al.,
2024; Wan et al., 2024; Yang et al., 2024c;a; Pan et al., 2024)
on downstream tasks, further demonstrates Mamba’s better
performances and higher GPU efficiency.

Unlike previous works which train Mamba-related architec-
tures from scratch, we aim to build a hybrid architecture
on top of pre-trained IFMs. This approach allows us to in-
herit the linear complexity advantages of Mamba while fully
leveraging the powerful representations learned by IFMs.

Mamba and Attention Hybrid Architectures. Consid-
ering the efficiency of the Mamba structure, many meth-
ods have tried to combine Mamba with other structures.
For example, Jamba (Lieber et al., 2024) and Mamba-2-
Hybrid (Waleffe et al., 2024) attempt to construct hybrid
language models by interleaving attention, MLP and Mamba
layers. For vision tasks, MambaVision (Hatamizadeh &
Kautz, 2024) combines Mamba, attention and convolution
layers together. PoinTramba (Wang et al., 2024) utilizes
both Transformer and Mamba encoders. However, these
methods aim to find a scratch training model, and thus focus
more on architecture design such as the optimal attention-
Mamba ratio. In contrast, adapting Mamba to a pre-trained
model has many constraints. Our architecture builds upon

CLIP and cannot change drastically. Thus, our focus is on
how to maximize the advantages of Mamba without disrupt-
ing the original pre-training weight.

3. Method

3.1. Preliminary and Overview

This work adopts image foundation models (IFMs) for
video understanding tasks. We leverage Mamba as an ef-
ficient adapter, due to its linear complexity in long-term
spatial-temporal modeling. For IFMs, following previous
works (Pan et al., 2022; Lin et al., 2022b), we use CLIP as
a representative because of its rich semantic information,
strong generalization, and multi-modal learning capabilities.
Below, we first provide some preliminaries, and then present
our architecture overview based on CLIP.

CLIP. Given a image I € R7*Wx3 CLIP first employs a
patch embedding layer to encode the image into an initial
image embedding, denoted as I°. CLIP then consists of a
series of Transformer layers, where each layer performs two
primary operations: Attention and FFN. Specifically,
for the i-th layer with input feature I*, the forward process
can be written as:

I'*! = FEN(Attention(TY)). (1)
Since CLIP is primarily an image model, it lacks inherent
modeling of temporal information. Common approaches to
adapting CLIP for video tasks typically involve adding addi-
tional temporal modules to capture the sequential dynamics.
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Architecture Overview. Our method achieves parameter-
efficient fine-tuning of CLIP by inserting a small number
of learnable parameters. Specifically, for each Transformer
layer, we introduce two important stage: Divide and Mod-
ulate, as shown in Figure 1. (1) In Divide stage, we aim
to cut down the computational cost by narrowing the atten-
tion range in pre-trained CLIP. We achieve this by replacing
the original image-level attention into a non-overlapping
2D window-level attention on video sequence. Using this
method, we can reduce the computational cost while still
able to capture short-term dependencies. (2) In Modulate
stage, we aim to introduce full spatial-temporal interaction
and capture long-range dependency. We utilize the linear-
time complexity State Space Model (SSM) for efficient long
sequence processing. Then, to integrate SSM’s output with
the original CLIP output, we propose a sophisticated se-
quence modulation operation to combine sequences from
different sources effectively. Formally, the forward process
in Equation (1) is modified as:

Vitl = FFN(Modulate(Divide(V?))), (2)

where Vi € RIWTXC denotes the input video feature in
the i-th layer. In the following sections, we will first detail
the Divide stage (Section 3.2) and the Modulate stage (Sec-
tion 3.3). Then, Section 3.4 describes the training process.
And we provide an in-depth discussion in Section 3.5.

3.2. Divide Stage

Similar to self-attention, our Divide stage transforms the
input video sequence without altering its shape. Since CLIP
model is initially trained for image level understanding,
most previous adapter based methods tend to follow this
pattern and utilize CLIP attention to only process videos
frame-by-frame (Pan et al., 2022; Yang et al., 2023a; Qing
et al., 2023). While we aim to have a more precise control
over the reception field of attention mechanism, and reduce
the computational overhead accordingly. Thus, we propose
to further divide each frame into multiple windows and
apply local attention within each window. For input video
feature Vi € REIWTXC gt the i-th layer, we cut it with
a fixed 2D window size w X w. Let the total number of
window across the video be denoted as [V, so that:

* S}:V])
, N=HWT/uw*

V' — s, s, .. ;
Sf’], EszXC ( )
Here s1, 89, . .., s are non-overlapping flattened windows
in frames of the video. For each window s!,, we apply
self-attention independently:

si' = Attention(s!). @

n

Attention is the pre-trained CLIP attention layer. This
attention mechanism allows the video sequence to exchange

information locally inside each window. After attention
operation, we concatenate the output of each window to
obtain a new sequence for next stage process. The complete
Divide stage can be written as:

x' = Divide(V?)
siv])

= [Attention(s}),...,Attention(sk)]

= Divide([s!,...

&)

i/ ;!
=[s],...,Sy |

Complexity Analysis. For a video sequence with spa-
tial and temporal H x W x T, the computational com-
plexity for full spatial-temporal attention is O ((HWT)?).
And the complexity for frame-by-frame spatial attentionis
O ((HW)2T). For our Divide stage with window size
w X w, the complexity can be written as:

HWT
o™

= (w2)2> =0 (w*-HWT). (6)
By restricting the attention range within each window, we
reduce the computational burden by a large margin and

achieve linear time complexity.

3.3. Modulate Stage

In this stage, we aim to capture full spatial-temporal dynam-
ics using Mamba, thus achieving linear-time complexity.

Overview. The main part of this stage is SeqMod, a novel
sequence modulation operation to inject lightweight Mamba
features into pre-trained Transformer-based IFMs. Rather
than directly modifying the features of IFMs, SegMod can
adjust features by learnable scale and bias sequences.

In this stage, for any input sequence x*, we first use one SSM
layer introduced in Mamba (Gu & Dao, 2023) to learn two
sequences representing the scale and bias for modulation
parameter. Then we conduct SegMod operation and inject
full spatial-temporal information during the process. We
will explain in detail below.

SSM Forwarding Layer. We use an SSM layer to introduce
full spatial-temporal interaction and capture long-range de-
pendency. Figure 2 shows the detailed structure of our SSM
forwarding layer. We use the similar architecture as pro-
posed in Mamba (Gu & Dao, 2023). To extend the module’s
ability to output two sequences, for Divide stage output
x*, we slightly modify the original SSM layer to double
the channel number of the output projection layer. After
that, we split the output by channel to obtain two output
sequences y* and y$. This can be formulated as:

yi,yh = SSM(x"). (7
Besides, following VideoMamba (Li et al., 2024b), we also

conduct multiple times of bidirectional scanning operations
through both spatial and temporal dimensions.



MoMa: Modulating Mamba for Adapting Image Foundation Models to Video Recognition

iH

Spatial Scan Temporal Scan
........................................ e
x Linear yi—
BXxLxc (c>2c) BXxLXc
— Y2
BXLXxc

State Space Model

Figure 2. Detailed architecture of State Space Model (SSM) for-
warding layer. The SSM module is designed to learn two sequences
y1 and y2 that are used in further modulation operation. We con-
duct multiple times of bidirectional scanning through both spatial
and temporal dimensions. The final projection channel is then
doubled, and we split the output into two sequences.

Sequence Modulation Operation (SegMod). For atten-
tion output x* and SSM output y!, y5, we aim to effectively
integrate these sequences together. We draw inspiration
from the adaptive normalization (AdaN), and design a new
sequence modulation operation, SeqMod. In the follow-
ing, we will detail the design of our sequence modulation
operation.

The concept of adaptive normalization (AdaN) refers to a
series of methods that adjust the input’s mean and variance
globally with an outer condition. This concept was first in-
troduced in FiLM (Feature-wise Layer Modulation) (Perez
etal., 2017). At the same time, Huang & Belongie (2017)
implemented this adaptation before the network normaliza-
tion layer, which led to the term “Adaptive Instance Nor-
malization” (AdaIN). Dumoulin et al. (2018) summarized
these concepts as “feature-wise transformations”, which
have since been widely applied across a variety of tasks
such as image recognition and generative modeling. For
example, StyleGAN (Karras et al., 2018) uses it to inject
style information into images, while DiT (Peebles & Xie,
2022) applies it to achieve text-to-image diffusion task. The
general AdaN formula can be written as follows:

AdaN(x) = a¢ - D(vex + fBe) + x, ®)

Here, x is the input sequence. ®(-) is an arbitrary module,
and «., 8., 7. are learnable scaler parameters derived from
the given condition. Without loss of generality, here we
choose ®(x) = x for simplicity. Then the derived form is:

AdaN(x) = acvye X + acfe + X . )
~—— —~— ~—~
scale bias skip connection

We can observe from Equation (9) that the core of AdaN
consists of three components: scale and bias, and skip con-
nection. Note that, both the scale and bias are scalar, and
the sequence is modulated globally. This global modu-
lation best suits in tasks like style transfer, where image
feature should be considered as a whole. However, in our
scenario, the spatial-temporal information is fine-grained.
Condensing the whole sequence output from SSM into a
single scalar will obviously lose information. Therefore,
we introduce a sequence modulation operation: SegMod.
It extends the scalar scale and bias item into tensors with
the same shape as the input sequence, and thus provide a
fine-grained sequence-to-sequence modulation. Formally,
this operation takes a similar form to that in Equation (9),
and can be expressed as:

SegMod(x,y1,y2) = y1 OxX+ y2 + x
~— ~~ —~

skip connection

(10)
where y; and y are the output of SSM, serving as se-
quential scale and bias; ® is element-wise multiplication.
The modulated sequence is then fed into the original CLIP
feed-forward layer for further processing:

scale bias

Vit = FEN(SeqMod(x’, yi, y5)). (1)

And the output Vi*1 is then input for the (i + 1)-th layer
of Divide stage.

3.4. Training Process

We average the output feature from final layer of CLIP
model to obtain video representation y,,.

Vo = Average(V%). (12)

Here L is the total number of CLIP layers.

All CLIP’s parameters are kept frozen during training, and
only newly introduced SSM layers are trainable. Besides
the classification loss, we also add a CLIP distillation loss to
keep CLIP’s ability on zero-shot understanding and ensure
the output feature space is not altered too much. The whole
architecture is trained end-to-end.

3.5. Other Fusion Designs

In Figure 3, we show some other designs to integrate two
sequences. (a) Weighted average. (b) Element-wise max
pooling. (c) Concatenation in channel dimension. Unfor-
tunately, the performance of these methods are suboptimal,
evidenced in Table 5. Similarly, as evidenced in Yang et al.
(2024c), Mamba-based module does not inherently fit Trans-
former well. It is likely that directly inserting a completely
new Mamba framework into an already trained Transformer
may confuse the model, especially when the Transformer
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Table 1. Comparison on Kinetics-400 (Kay et al., 2017) dataset. Views are in the format of #frames x #temporal x #spatial. We compare
with previous PEFT methods as well as full-parameter-fine-tuning methods. Best results are in bold.

Methods PEFT %’:{j GFLOPs  PuamM) 00 Top-1 Top-5  Views
MViT-B (Fan et al., 2021) X 4095 37 37 812 951  64x3x3
TokenLearner-L/10 (Ryoo et al., 2021) X 48912 450 450 854 963  64x4x3
MViTv2-L (312 1) (Li et al., 2022) X 42420 218 218 86.1 970  32x3x5
UniFormer-B (Li et al., 2021) X IN-1k 3108 50 50 830 954  32x4x3
ViViT-L/16x2 FE (Arnab et al., 2021) X IN-21k 3980 311 311 806 927  32xlIxl
TimeSformer-L (Bertasius et al., 2021) X IN-21k 7140 121 121 80.7 94.7 64x1x3
VideoSwin-L (Liu et al., 2022) X IN-21k 7248 197 197 831 959  32x4x3
MTV-L (Yan et al., 2022) X IN-21k 18050 876 876 843 963  32x4x3
VideoMamba-M (Li et al., 2024b) X CLIP-400M 2424 74 74 834 959  16x4x3
ActionCLIP (Wang et al., 2021) X CLIP-400M 16890 142 142 838 971 32x10x3
X-CLIP-L/14 (Ni et al., 2022) X CLIP-400M 7890 420 420 871 976  8x4x3
AIM ViT-B/16 (Yang et al., 2023a) v CLIP-400M 1214 97 11 845 966  16x3x1
DiST ViT-B/16 (Qing et al., 2023) v CLIP-400M 986 112 26 844 967  16x3x1
MoMa (Ours) ViT-B/16 v/ CLIP-400M 451 97 11 837 965  8x3xl
MoMa (Ours) ViT-B/16 v/ CLIP-400M 902 97 11 848 969  16x3xI1
EVL ViT-L/14 (Lin et al., 2022b) v/ CLIP-400M 8088 368 59 87.3 - 32x3x1
AIM ViT-L/14 (Yang et al., 2023a) v CLIP-400M 5604 341 38 873 976  16x3x1
DiST ViT-L/14 (Qing et al., 2023) v CLIP-400M 4534 343 40 876 978  16x3x1
MoMa (Ours) ViT-L/14 v CLIP-400M 2076 342 39 867 967  8x3xl
MoMa (Ours) ViT-L/14 v CLIP-400M 4152 342 39 87.8 980  16x3x1

wi X + w, Yy

2

()  concat in channel: concatl: X |y :I

(@  weighted average:

(b)  max pooling: max [ x

Figure 3. Some other designs of sequence fusion operations to
integrate two sequences x and y. (a) Weighted average operation
with hyperparameter w; and ws; (b) Element-wise max pooling
operation; (c) Concatenation in channel dimension.

parameters are frozen and unable to adapt to this new struc-
ture.

By drawing inspiration from multi-modal fusion techniques,
specifically from AdaN, our MoMa introduce Mamba’s in-
formation in a manner that minimally disrupts the original
IFM’s forwarding process while still effectively integrat-
ing Mamba’s processing results. In essence, this method
strikes a balance between the power of IFMs and the ef-
ficiency of Mamba’s linear complexity, enabling effective
video sequence understanding without the need to discard
the benefits of prior pre-training weights.

4. Experiments

We performed a thorough evaluation of our model across
several benchmarks: Section 4.1 for standard CLIP-adapter

baselines, Section 4.2 for long video baselines, and Sec-
tion 4.3 for zero-shot transfer. Section 4.4 provides ablation
studies to analyze our model from multiple perspectives.

Implementation Details. We use the pre-trained CLIP as
our base model. We set the split window size w = 8. For
SSM hyper-parameters, we set its hidden state 16, hidden
dimension 384 and use gelu activation layer similar with
CLIP. We adopt the same prompt in ActionCLIP (Wang
etal., 2021). We use 8 Tesla V100 GPUs and fp16 precision
for training. We use AdamW optimizer with learning rage
3e-4 and weight decay 0.05. Training a model on K400
dataset with 30 epochs takes about 12 hours to converge.

4.1. Standard Video Recognition Benchmarks

Datasets. We first evaluate our method on Kinetics-400
(K400) (Kay et al., 2017) and Something-Something V2
(SSv2) (Goyal et al., 2017). K400 is an action recognition
dataset containing 240K training videos and 20K valida-
tion videos for 400 human action categories. Each video
is trimmed to have a length of 10 seconds. SSv2 is a
more challenging dataset requiring stronger temporal mod-
eling (Sevilla-Lara et al., 2021). It contains about 168.9K
training videos and 24.7K validation videos for 174 classes.

Table 1 and Table 2 show the comparison of our method with
the state-of-the-art methods on K400 and SSv2. Notably,
we achieve the best performance while requiring substan-
tially fewer FLOPs (25.6% off than AIM and 8.5% off than
DiST) and trainable parameters than most other approaches.
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Table 2. Comparison on Something-Something-v2 (Goyal et al., 2017) dataset. Views are in the format of #frames x #temporal x #spatial.
We compare with previous PEFT methods as well as full-parameter-fine-tuning methods. Best results are in bold.

Methods PEFT %";{; GFLOPS  Param (M) PZ;‘;;‘ZI{;) Top-1 Top-5  Views
MViT-B (Fan et al., 2021) X 510 37 37 67.1 908 32x1x3
MViTv2-B (Li et al., 2022) X 675 51 51 705 927  40x1x3
MViTv2-L (312 1) (Li et al., 2022) X 8484 213 213 733 941  32x1x3
UniFomer-B (Li et al., 2021) X IN-1k 777 50 50 712 928  32x1x3
ViVIT-L/16 x2 (Arnab et al., 2021) X IN-21k 11892 311 311 654 898  16x4x3
TimeSformer-L (Bertasius et al., 2021) X IN-21k 7140 121 121 62.4 - 64x1x3
VideoSwin-B (Liu et al., 2022) X IN-21k 963 89 89 69.6 927 32x1xl
MTV-B (Yan et al., 2022) X IN-21k 4790 310 310 676 904  32x4x3
VideoMamba-M (Li et al., 2024b) X CLIP-400M 1212 74 74 710 927  16x2x3
EVL ViT-B/16(Lin et al., 2022b) v CLIP-400M 2047 182 86 62.4 - 32x1x3
AIM ViT-B/16 (Yang et al., 2023a) v CLIP-400M 2496 100 14 69.1 922  32x1x3
DiST ViT-B/16 (Qing et al., 2023) v CLIP-400M 1972 112 26 709 921  32x1x3
MoMa (Ours) ViT-B/16 v CLIP-400M 902 97 11 69.3 918  16x1x3
MoMa (Ours) ViT-B/16 v CLIP-400M 1804 97 11 715 929  32x1x3
EVL ViT-L/14(Lin et al., 2022b) v CLIP-400M 9641 484 175 66.7 - 32x1x3
AIM ViT-L/14 (Yang et al., 2023a) v CLIP-400M 11508 354 50 706 927  32x1x3
DiST ViT-L/14 (Qing et al., 2023) v CLIP-400M 9068 343 40 73.1 932  32x3xl
MoMa (Ours) ViT-L/14 v CLIP-400M 4152 342 39 722 928  16x1x3
MoMa (Ours) ViT-L/14 v CLIP-400M 8304 342 39 738 936 32x1x3

Specifically, on SSv2 dataset where the temporal model-
ing is more critical, our method outperforms the previous
adapter methods like AIM and EVL by a large margin, and is
also better than DiST. But DiST introduces a totally new en-
coder to capture the temporal information, while our method
only needs a few adaptation layers inside the Transformer.

4.2. Long-term Video Recognition Benchmark

Datasets. To further demonstrate the effectiveness of our
method in capturing long video sequence, we evaluate our
method on Breakfast (Kuehne et al., 2014) and COIN (Tang
et al., 2019). Breakfast comprises 1,712 videos, encapsu-
lating 10 intricate cooking activities over 77 hours. COIN
features 11,827 videos across 180 unique procedural tasks,
with an average duration of 2.36 minutes. Following Video-
Mamba’s (Li et al., 2024b) setting, we further PEFT our
models trained on K400 from Table 1.

Table 3 shows the comparison result. Our method surpasses
those non end-to-end methods by a large margin, demon-
strating the effectiveness of our method in capturing long-
term video understanding. Meanwhile, by conducting PEFT
on top of CLIP model, we also outperforms VideoMamba.

4.3. Zero-shot Ability

Similar to DiST (Qing et al., 2023), our method also has the
ability to perform zero-shot tasks. Following DiST’s setting,
we use the model trained on K400, and evaluate it on two rel-
atively small video recognition datasets: HMDB51 (Kuehne
et al., 2011) and UCF101 (Soomro et al., 2012). Table 4

shows the comparison result. Our method surpasses DiST
on both datasets, demonstrating the effectiveness of our
method in zero-shot transfer learning.

4.4. Ablation Studies

In this section, we introduce some baseline implementations
under similar Mamba architecture. We also ablated each
crucial part of our architecture. All ablations are conducted
on the Kinetics-400 dataset and CLIP ViT-B/16 backbone
with 16 frames as input, unless otherwise specified.

Baselines for Sequence Modulation Operation. As dis-
cussed in Section 3.5, inserting Mamba module directly into
well pre-trained Transformer architecture is sub-optimal.
Here we compare our method with other implementations
to integrate the two sequences. (1) Skip: We skip the whole
SSM forward module and use sequence from Divide op-
eration directly, which can be seen as a lower bound. (2)
Add: We add the two sequences in an 1:1 ratio; (3) Max:
Replacing addition with element-wise max introduces non-
linearity, and this may enhance the model capability; (4)
Concat: We concatenate the two sequences in channel and
then use a linear layer to reduce the dimension; (5) Raw-
AdaN: We use the vanilla AdaN formula which learns scaler
scale and bias.

Table 5 shows the comparison result. We find that sim-
ple fusion methods such as Add and Max performs even
worse than purely skip the whole SSM block. This indi-
cates fusing different output sequences directly may lead to
information “confusion”, especially when the two features
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Table 3. Comparison on long video datasets Breakfast (Kuehne et al., 2014) and COIN (Tang et al., 2019). f32 and fs4 denote the number
of frames sampled during training and testing. Best results are in bold.

Model end-to-end Archi Extra Data Breakfast COIN
Timeception (Hussein et al., 2019a) X 3D-ResNet Conv. IN-1K+K400 71.3 -
VideoGraph (Hussein et al., 2019b) X 13D Conv.+Atten. IN-1K+K400 69.5 -
GHRM (Zhou et al., 2021) X 13D Graph Conv. IN-1K+K400 75.5 -
Distant Supervision (Lin et al., 2022a) X TimeSformer Atten. w/ KB IN-21K+HTM 89.9 90.0
ViS4mer (Islam & Bertasius, 2022) X Swin-B SSM IN-21K+K600 88.2 88.4
Turbossz (Han et al., 2022) v VideoMAE-B K400 86.8 82.3
Turbo sz (Han et al., 2022) v VideoMAE-B K400+HTM-AA 91.3 87.5
VideoMamba 3, (Li et al., 2024b) v VideoMamba-M K400 94.8 88.3
VideoMamba g4 (Li et al., 2024b) v VideoMamba-M K400 95.8 89.5
MoMa (Ours) ¢32 v CLIP ViT-L/14 K400+CLIP-400M 95.1 89.0
MoMa (Ours) 64 v CLIP ViT-L/14 K400+CLIP-400M 96.9 90.0

Table 4. Comparison of zero-shot action recognition performance
on HMDBS51 (Kuehne et al., 2011) and UCF101 (Soomro et al.,
2012) datasets. All models are based on CLIP ViT pre-training.

Method Model | HMDB51 UCF101

ActionCLIP(Wang et al., 2021) B/16 40.8 58.3
X-CLIP (Ni et al., 2022) B/16 44.6 72.0
DiST (Qing et al., 2023) B/16 554 72.3
DiST (Qing et al., 2023) L/14 57.5 74.9

MoMa (Ours) B/16 56.2 74.0
MoMa (Ours) L/14 59.1 76.2

Table 5. Comparison of different sequence modulation opera-
tions. We implement three baseline methods: “Add”, “Max” and
“Concat” as mentioned in Figure 3. “Skip” is also provided as a
lower bound. Our operation “SegMod” outperforms all baselines.

Methods Operation Top-1 Top-5
(€)) Skip T 72.4 90.8
2 Add T4y 69.3 88.7
3) Max max(z,y) 70.2 89.6
4) Concat Linear([z, y]) 75.5 92.5

5) Raw-AdaN
(6) SegMod

oy - +a+ Py 78.9 94.1
1O +x+ 1y 84.8 96.5

are misaligned or have inconsistent distributions. While
“Concat” preserves more information by adding learnable
linear layer, it does not guarantee that the modification of the
sequence is orthogonal. Raw-AdaN, on the other hand, uses
a “soft gating” mechanism, and changes to the sequence’s
features are orthogonal to the original CLIP feature outputs.
This helps avoid altering the feature distribution of the orig-
inal CLIP too much, reducing interference with pre-trained
knowledge. Built on top of this mechanism, our “SegMod”
operation shows powerful sequence fusion capabilities, far
surpassing all baselines.

Window Size in Divide Operation. We here explore the
impact of window size in the Divide operation on SSv2
dataset. We upscale the video resolution to 640 x 480 x 16.

Table 6. Evaluation of various window sizes during the Divide
stage. In addition to the 2D window, we also evaluate a 3D window
with dimensions 4 x 4 x 4. Increasing the window size does not
always bring positive gain.

Window Size Frame/Sec  Attn(%) FFN(%) Top-1

Full (40 x 30) 8.2 39.7 41 69.2
16 x 16 10.4 31.7 52 70.3

8 x 8 (Ours) 14.0 23.9 70 70.1

4 x4 x4@3D) 14.0 23.9 70 68.2
4 x4 15.1 18.8 75 67.5

Thus, the input feature scale is 40 x 30 x 16 (patches).
Beside 2D window, we also explore 3D window.

Table 6 shows the comparison result. The divide opera-
tion brings both speed up and performance gain. Speed:
Divide the window from full to 8 x 8 brings significant
increase in speed (175% fps) since attention operation dom-
inates the computation. However, further dividing brings
marginal improvement when FFN becomes the bottleneck.
Performance: Conducting full attention on the whole image
performs worse than window dividing. That’s may because
CLIP originally trained on attention sequence. Understand-
ing long sequence is out of its training scope.

Different Layer Design Pattern. We offer several design
of architectural patterns below: (1) [TM]12: Alternating
sequence of Transformer and SSM layers, each repeated 12
times (our current design). (2) [T]12[M]12 : 12 consecutive
Transformer layers followed by 12 SSM layers, with the
SSMs functioning as the decoder rather than being inserted
as an adapter in the middle of the encoder. (3) [T]6[TM]6 :
No modulation for the first half of the Transformer layers.
(4) [TTM]6 : One modulation layer is inserted between
every two transformer layers

Table 7 shows the result. We find that: (1) Adapting only
the latter half of the backbone is sub-optimal, Since learn
to recognizing temporal information in the early stages of
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Table 7. Ablation study on various layer design patterns. We
found that the best performance is achieved by uniformly alternat-
ing between transformer and mamba layers.

Pattern Top-1 Top-5
(€)) [TM] 12 (Ours) 83.7 96.5
2 [T] 12 [M] 12 80.6 92.8
3) [T] 6 [TMM] 6 81.5 94.0
(@) [TTMM] 6 82.8 95.5

<=k AIM Ours —h- UMT

Inference Speed GPU Memory
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video encoding is essential for effective processing. (2) The
[TTMM]6 pattern performs worse than [TM]12 , suggesting
that a more balanced integration of both components in the
adapter structure is more beneficial.

4.5. Speed Comparison

We compare the speed performance of MoMa with two clas-
sic video sequence processing approaches: full-attention
and spatial-temporal separation. Specifically, we select rep-
resentative methods from each category. UMT (Li et al.,
2023) uses full-attention, treating the entire video sequence
as a single input, leading to quadratic complexity and high
computational cost. AIM (Yang et al., 2023a), on the other
hand, applies spatial and temporal attention separately, first
at the spatial level and then at the temporal level.

As shown in Figure 4, the GPU memory usage of UMT
increases rapidly with the number of input frames and even-
tually runs out of memory at 32 frames. Its inference FPS
also drops significantly as the frame count rises. In contrast,
both AIM and our method show stable memory growth and a
gradual decrease in inference speed as the number of frames
increases. However, thanks to our powerful SegMod opera-
tion, our method achieves faster processing and experiences
a more gradual increase in memory consumption. Addition-
ally, the SSM module is more parameter-efficient than the
attention module, further enhancing the overall efficiency
of our approach.

5. Conclusion

In this work, we proposed a novel method to adapt IFMs
for video understanding. We first introduces a modulation
operation SegMod. It injects spatial-temporal information
into the features of [FMs without interfering with their pre-
trained parameters, thereby maintaining computational effi-
ciency. We further proposed our architecture MoMa with a
“Divide-and-Modulate” strategy. It applies local attention
within each video frame, followed by a modulation step to
capture the full spatial-temporal dynamics. Through exten-
sive experiments on multiple video understanding bench-
marks, we demonstrate that our approach MoMa improves
both performance and efficiency compared to existing meth-
ods, providing a balance between accuracy and scalability.
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Figure 4. Comparison of speed performance. Compared with
full attention method UMT and spatial-temporal separate method
AIM, our method, powered by the SegMod operation, achieves
faster processing with a more gradual increase in memory usage.

Impact Statement

This paper presents work aimed at advancing video under-
standing by improving the spatial-temporal modeling effi-
ciency of pre-trained image foundation models. Our method
has the potential to enhance various applications, such as
video analytics in healthcare, security, and autonomous sys-
tems. While there are broad societal implications, including
privacy concerns and ethical considerations in video-based
Al we do not believe any specific issues need to be high-
lighted beyond the general ethical discussions in the field of
machine learning.
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