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ABSTRACT

Forgetting presents a significant challenge during incremental training, making it
particularly demanding for contemporary AI systems to assimilate new knowledge
in streaming data environments. To address this issue, most approaches in Continual
Learning (CL) rely on the replay of a restricted buffer of past data. However, the
presence of noise in real-world scenarios, where human annotation is constrained
by time limitations, frequently renders these strategies vulnerable. In this study, we
address the problem of CL under Noisy labels (CLN) by introducing Alternate
Experience Replay (AER), a novel strategy that takes advantage of forgetting to
maintain a clear differentiation between clean, complex, and noisy samples in the
memory buffer. The idea is that complex or mislabeled examples, which hardly fit
the previously learned data distribution, are the ones most likely to be forgotten. To
grasp the benefits of such a separation, we equip AER with Asymmetric Balanced
Sampling: a new sample selection strategy that prioritizes purity on the current task
while retaining relevant samples from the past. Through extensive computational
comparisons, we demonstrate the effectiveness of our approach in terms of both
accuracy and purity of the obtained buffer, resulting in a remarkable average gain
of 7.45% points in accuracy w.r.t. existing loss-based purification strategies.

1 INTRODUCTION

Despite the latest breakthroughs, modern AI still struggles to learn in a continuous fashion and suffers
from catastrophic forgetting (McCloskey & Cohen (1989)), i.e. the latest knowledge quickly replaces
all past progress. Therefore, Continual Learning (CL) has recently gathered an increasing amount of
attention: among the others, one prominent strategy is to interleave examples from the current and old
tasks (rehearsal). To do so, a small selection of past data is retained in a memory buffer (van de Ven
et al. (2022); Chaudhry et al. (2019)), as in Experience Replay (ER) (Ratcliff (1990); Robins (1995)).

Intuitively, the effectiveness of these methods depends strictly on the content of the memory: the
larger the gap between the memory and the true distribution underlying all the previous tasks, the
lower the chances of learning a reliable model. In this respect, several factors may intervene and
degrade the snapshot portrayed by the buffer. Several works have highlighted the shortcomings of
low-capacity buffers and their link to severe overfitting (Verwimp et al. (2021); Bonicelli et al. (2022)).
More recently, the plausible presence of annotation errors has emerged as an engaging factor (Kim
et al. (2021); Bang et al. (2022)), due to the subsequent poisoning the memory buffer would be
subject to. Indeed, not only a few observations of past tasks would be available for the learner, but
they might be even erroneously annotated. It is noted that the presence of noisy annotations (Xiao
et al. (2015); Lee et al. (2018); Li et al. (2017)) is an inescapably characteristic of CL: to allow the
learner to digest incoming training examples on-the-fly, data has to be annotated within a restricted
temporal window, leading to both poor human annotations and hasty quality controls.

In light of this, preliminary works (Kim et al. (2021); Bang et al. (2022)) focus on purifying the
memory buffer, which allows these approaches to favourably consolidate their knowledge at the
end of the current task (or while learning the task itself (Karim et al. (2022))). To do so, they spot
clean samples by leveraging the popular memorization effect (Arpit et al. (2017); Han et al. (2018);
Jiang et al. (2018)), stating that the most trustworthy examples are those favoured during the first
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Figure 1: A visualization of the training loss of clean and noisy buffer samples during the second task
of Seq. CIFAR-10 with 40% noise. Standard replay makes the two lines indistinguishable (left) while
alternating epochs of replay and forgetting result in a significant and persistent loss separation (right).

training stages, and hence they tend to exhibit a lower value of the loss function. However, despite its
effectiveness in the offline scenario, such a criterion may be weak in CL: as learning does not re-start
from scratch but builds upon previous knowledge, the adaption is faster and hence the loss-value
separation between clean and noisy samples tends to vanish (Zhang et al. (2017); Arpit et al. (2017)).

To overcome this limitation, our work explores a radically different approach, which could be
summarized by a quote ascribed to Julius Caesar “si non potes inimicum tuum vincere, habeas eum
amicum”. While existing methods see forgetting only as an issue to solve, we instead use it to identify
noisy examples within the data stream. Indeed, we build upon the work of Toneva et al. (2019);
Maini et al. (2022), which shows that noisy samples are highly prone to be forgotten. In particular,
the notable work of Maini et al. (2022) mathematically proves that mislabeled examples exhibit rapid
forgetting, whereas complex or rare instances are retained for longer periods (or not forgotten at all).

To illustrate such a phenomenon, we depict the loss trend for both the clean and noisy samples in
a memory buffer produced by a rehearsal baseline (ER-ACE (Caccia et al. (2022))). In particular,
Fig. 1 (left) shows the loss value sampled during standard training; differently, in Fig. 1 (right) we
alternatively switch replay regularization on and off at each epoch. As can be seen, stopping replay
has a distinct impact: while the loss value of clean samples remains low, it hugely increases for
mislabeled examples. We remark that such a gap – in line with the results of Sec. 4.3 of Maini et al.
(2022) – is maintained even when replay regularization turns on, as the model easily adapts to clean
samples and hence learns them faster (Arpit et al. (2017); Jiang et al. (2018); Wei et al. (2020)).

In light of this, our main contribution is the introduction of Alternate Experience Replay (AER),
a novel CL optimization scheme that alternates steps of buffer learning and buffer forgetting to
encourage the separation of clean and noisy samples in the buffer. To the best of our knowledge,
our work is the first one that exploits forgetting to purify the memory buffer while learning from
an online stream. Furthermore, to take advantage of the enhanced separation brought by AER, we
propose Asymmetric Balanced Sampling (ABS): a new sample selection strategy designed to select
only clean samples while keeping the most informative samples from the past. By means of extensive
experiments, we show that our proposals vastly improve the model’s stability and performance, and
can be easily applied to other rehearsal-based methods.

2 RELATED WORKS

2.1 CONTINUAL LEARNING

Continual Learning methods can be broadly categorized into regularization-based – these combat
forgetting by limiting changes to key task-related parameters (Kirkpatrick et al. (2017); Zenke et al.
(2017)) – and rehearsal-based methods (van de Ven et al. (2022)).

Rehearsal Complementing the current training data with samples from the past has been shown to
prevent the forgetting of previous tasks better than any of the regularization-based methods in most
existing CL scenarios (Chaudhry et al. (2019); van de Ven et al. (2022); Buzzega et al. (2020a)).
A simple yet effective method is Experience Replay (ER) (Ratcliff (1990); Robins (1995)) which
consists in interleaving the current training batch with past examples. Otherwise, Greedy Sampler
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and Dumb Learner (GDumb) (Prabhu et al. (2020)) takes this idea to the extreme by greedily storing
samples as they come and then trains a model from scratch using only samples inside the buffer.

Sampling strategies Given their low capacity, buffers need to contain a balanced outlook of all
seen classes. For this purpose, many employ reservoir sampling (Vitter (1985)) to update the
memory (Buzzega et al. (2020a); Bang et al. (2021); Caccia et al. (2022)). The outcome is an i.i.d.
snapshot of the incoming tasks. However, not every sample comes with the same significance or
robustness against forgetting, as highlighted by Buzzega et al. (2020b); Bang et al. (2021); Aljundi
et al. (2019). Indeed, in Buzzega et al. (2020b); Bang et al. (2021); Aljundi et al. (2019) the authors
show that retaining complex samples is crucial for preserving the performance, which they detect
through their loss value or model uncertainty, respectively.

2.2 LEARNING WITH NOISY LABELS

A popular approach for identifying noisy data is grounded on the memorization effect (Arpit et al.
(2017); Jiang et al. (2018)), according to which correctly labeled (clean) instances tend to produce a
smaller loss than mislabeled (noisy) ones during the initial stages of training. However, as training
ensues and the model starts to learn wrong patterns from noise, its predictions become more unreliable
(confirmation bias). In this regard, Han et al. (2020) rely on an explicit gradient ascent objective on
the noisy samples, building on top of existing sample selection strategies or enhancing loss correction
algorithms. Other works exploit two separate networks to address the sample selection phase and
train only on a clean subset (CoTeaching (Han et al. (2018)), MentorNet (Jiang et al. (2018))) or on
all seen samples with semi-supervised objectives (DivideMix (Li et al. (2020)), Arazo et al. (2019)).

2.3 CONTINUAL LEARNING UNDER NOISY LABELS

Recent studies (Bang et al. (2022); Kim et al. (2021); Karim et al. (2022)) conducted in the online CL
setup have shown that existing sampling strategies fail to produce meaningful gains in noisy scenarios.
In this respect, PuriDivER (Bang et al. (2022)) proposes a sampling strategy that promotes a trade-off
between purity and diversity for samples in the buffer. Methods like SPR (Kim et al. (2021)) and
CNLL (Karim et al. (2022)) use multiple buffers to gradually isolate clean samples: a delayed buffer
temporarily collects data from the stream, and only clean examples are transferred to a replay or
purified buffer. SPR trains a network using a self-supervised loss on samples from both buffers, while
CNLL adopts a semi-supervised approach inspired by FixMatch (Sohn et al. (2020)).

3 METHOD

3.1 PROBLEM SETTING

We formalize the problem of Continual Learning as learning from a sequence of T tasks. During
each task t ∈ {0, 1, . . . , T}, input samples Xt and their annotations Yt are drawn from an i.i.d.
distribution Dt. We follow the well-established class-incremental scenario (van de Ven et al. (2022);
Farquhar & Gal (2018); Buzzega et al. (2020a)) in which Ỹi ∩ Ỹj = ∅ and at task t the learner fθ is
required to distinguish between all observed classes. Ideally, we wish to minimize:

θ∗ = argmin
θ

Et

[
E

B∼Dt

[
L(fθ(x), y)

]]
, (1)

where L is the cross-entropy loss and B = (x, y). As in CL the objective above is inaccessible, we
leverage a fixed-size buffer M to store and replay part of the incoming samples.

Formally, the generalized learning objective for rehearsal CL can be defined as:

θ∗ = argmin
θ

E
(x,y)∼Dt

[
L(fθ(x), y)

]
+ LR, (2)

where the replay regularization term LR depends on the choice of the replay-based method.

In this work, we start from the simple form of Experience Replay(Ratcliff (1990); Robins (1995)):

LR = E
(xr,yr)∼M

[
L(fθ(xr), yr)

]
. (3)
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Figure 2: Depiction of Asymmetric Balanced Sampling (ABS). Samples of past classes are chosen to
retain the most complex ones (i.e. maximize diversity to better counter forgetting), while we reverse
the objective for the current task to maximize purity.

However, we wish to note that our proposal does not depend on the underlying choice of rehearsal
CL and can be easily applied to more sophisticated choices of LR, as shown in Sec. 5.3.

Precisely, in this manuscript, we focus on the offline continual setting and tackle the challenge of
Continual Learning under Noisy Labels (CLN), wherein the dataset is contaminated with spurious
annotations to simulate noise in the data labelling process. For a given instance xi ∈ Dt, we indicate
with ỹi the label corrupted with annotation noise and with Pr (ỹi ̸= yi) the respective noise rate.

3.2 ALTERNATE EXPERIENCE REPLAY

Our desiderata is the construction of a memory set M as clean as possible to address the performance
degradation caused by Ỹt and mitigate forgetting. For this purpose, we wish to maintain a strong
gap between the loss of clean and noisy samples to facilitate sample selection based on the popular
small-loss criterion. Indeed, with no countermeasure, the loss gap starts to deteriorate as the replay of
a small selection of data ensues (Fig. 1a). This effect is even more pronounced in the popular offline
(i.e. multi-epoch) CL setting (Rebuffi et al. (2017); Wu et al. (2019); Buzzega et al. (2020a)), where
we might be forced trade-off convergence on the current task to avoid overfitting the mislabeled
samples (Zhang et al. (2017); Arpit et al. (2017)).

To mitigate such an effect, we propose a new learning methodology named Alternate Experience
Replay (AER), which encourages the separation between the losses of noise and clean samples
by simulating forgetting of the buffer itself. Specifically, we distinguish between buffer learning
and buffer forgetting epochs. During the former, we train the model with Eq. 2 while keeping
the samples in M fixed. Then, during the latter, we disable LR and train only on data from Dt to
encourage forgetting. Exclusively in this specific stage, we enable sample selection to update M and
take advantage of the different learning dynamics between clean and noisy samples (Fig. 1b). With
the help of the sample selection strategy presented in Section 3.3, after the buffer forgetting epoch,
we obtain a cleaner version of the memory buffer. However, simply cycling between buffer learning
and forgetting results in the buffer being under-optimized, as it is effectively exploited during the
former epochs. We avoid this by restoring fθ to its previous state at the end of each forgetting epoch.

Finally, as noted by Ahn et al. (2021), the objective in Eq. 3 promotes the accumulation of bias
towards the current task, which might skew the estimation of the loss and hamper sample selection. To
mitigate this, we adopt the asymmetric cross-entropy of Caccia et al. (2022) to separate contributions
of data from the incoming stream from those in M.

3.3 SAMPLE SELECTION

3.3.1 SAMPLE INSERTION

At this stage, we prioritize mitigating the impact of noise on model training, leaving the task of
determining the elements to retain to the sample replacement strategy introduced thereafter. In
particular, when choosing which samples to include in the buffer, we perform an initial sample
selection on the current batch of data B. Let α be a threshold, we compute R = {(x, ỹ) ∈ B :
L(x, ỹ) < α}. In our experiments, we set α as the 75th percentile of the loss computed on B.

4



Under review as a conference paper at ICLR 2024

3.3.2 SAMPLE REPLACEMENT

Asymmetric sampling. Ideally, an effective strategy for sample selection should preserve the most
representative samples from the past, while at the same time favour the release of mislabeled samples
from the current task. As observed in Bang et al. (2022), the two objectives are in contrast with
each other: most informative samples lie in the proximity of the decision boundary, thus tend to
exhibit higher loss value (Aljundi et al. (2019); Buzzega et al. (2020b); Bang et al. (2021)); instead,
methods that use the memorization effect select samples with smaller loss (Jiang et al. (2018); Han
et al. (2018); Li et al. (2020)).

Remarkably, despite the opposite objectives, both benefit from AER; indeed, noisy and complex/rare
samples tend to be forgotten faster than easy and clean samples. In light of this, we propose an
asymmetric sampling objective, where for each x ∈ M we define a score function s(x):

s(x) =

{L(x, ỹ), if (x, ỹ) ∼ Dt

−L(x, ỹ), if (x, ỹ) ∼ D<t
(4)

Then, we use s to select the item to be replaced by prioritizing the release of those with higher score.

If we assume that the score of noisy samples far surpasses that of complex/easy ones, such a strategy
ensures that most samples from the present are clean without disregarding complexity. Such an
observation is supported both by our own empirical evidence (Sec. 5.1) and by the mathematical
analysis of Maini et al. (2022). Hence, we switch the objective for samples from the past to only
retain the most complex samples, i.e. those that have a stronger effect against forgetting. A depiction
of this strategy can be seen in Fig. 2.

Asymmetric Balanced Sampling (ABS). The score s does not trivially allow the definition of a
single probability distribution p(x) from which to draw the sample to replace. For example, since
L(x, y) ≥ 0, ∀(x, y), simply normalizing s(x) would strongly favour samples from either the current
or the past task (more details can be found in the supplementary material). Instead, we ensure a
balanced occurrence of elements from both past and present tasks. Let ϕ be a binomial distribution
with probability q = |Mcurr|/|M|:

p(x) = ϕpcurr(x) + (1− ϕ)ppast(x), (5)

where pcurr(x) =
∑

x ∈ Mcurr is the normalized score s(x) for samples from the current task
(vice-versa for ppast using Mpast = M−Mcurr). In Eq. 5, we use ϕ as a binary selector to choose
whether to replace a sample from the present or the past. A detailed algorithmic overview of the
entire procedure can be found in the supplementary material.

3.4 BUFFER CONSOLIDATION AND MIXMATCH

By combining AER with ABS we obtain a balance between purity – for samples of the current task –
while preserving the complexity of those from the past. To achieve this, the backbone network had to
be trained on a stream of noisy data. While we find that the effect of noise from the current task is
mitigated by AER (Sec. 5.4), we can further reduce its influence with the help of the memory buffer.

In principle, with an ideal sample selection strategy we could simply train on samples from M to
adjust the predictions of the network at the end of the task in a fully-supervised fashion (buffer fit.).
While we empirically find in Sec. 4 that such a strategy delivers remarkable results, we can refine it
to handle more complex noise scenarios.

In particular, we use a modified version of MixMatch (Berthelot et al. (2019)) to obtain a more
robust model, using the most uncertain samples as a source for unlabeled data. Similarly to Arazo
et al. (2019), we fit a two-component Gaussian Mixture Model (GMM) g(L) on the loss L of each
(x, ỹ) ∈ M. Then, we compute the perceived uncertainty of each sample u(x) as the posterior
g(l|L), where l indicates the Gaussian component with a smaller mean. Samples are then separated
into pure P and uncertain U with a simple threshold on g(l|L).
From this, samples in P have label ỹ ≈ y, thus we can use them to compute a supervised loss term.
Instead, for x ∈ U we compute ŷ using the model’s response on different augmentations T of x:

ŷ = u(x)ỹ +
1− u(x)

η

η∑
i=1

fθ(T (x)), (6)
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Table 1: Final Average Accuracy (FAA) [↑] across all tasks of different CNL methods on multiple
datasets with different noise rates. †Additional baselines created by adapting existing loss-based and
CL approaches to the multi-epoch scenario.

Benchmark Seq. CIFAR-10 Seq. CIFAR-100

symm symm asymm
Noise rate 20 40 60 20 40 60 20 40
Joint 79.65 73.12 60.53 54.77 38.46 23.36 56.70 42.61
Finetune 18.83 18.01 15.99 08.65 07.55 06.15 07.78 05.73

Reservoir (Vitter (1985)) 50.53 33.64 22.92 25.14 14.64 8.92 29.42 18.91
+ CoTeaching (Han et al. (2018)) 50.11 34.89 22.98 25.79 14.46 8.92 32.18 20.76
+ DivideMix (Li et al. (2020)) 55.69 38.87 26.13 33.31 22.91 13.58 36.98 26.10

GDumb (Prabhu et al. (2020)) 35.45 27.76 19.41 16.96 11.31 7.62 17.25 11.75
+ CoTeaching (Han et al. (2018)) 36.94 31.26 19.75 17.02 13.17 8.17 17.07 12.05
+ DivideMix (Li et al. (2020)) 38.60 32.25 21.06 19.26 15.67 10.51 18.80 13.29

PuriDivER (Bang et al. (2022)) 30.96 27.23 24.31 27.53 24.36 17.81 25.46 18.84
PuriDivER.ME† 55.49 49.44 41.74 41.25 37.61 27.18 41.65 30.22
DividERMix† 57.07 45.65 32.19 29.21 22.41 14.21 29.38 21.23

OURs 60.82 59.47 45.07 44.34 38.64 26.34 41.24 29.26
w. buffer fit. 69.12 64.81 50.04 47.58 41.58 30.13 42.85 31.49
w. consolidation 68.82 67.14 54.59 46.11 40.27 34.81 43.67 32.64

Finally, we obtain the refined set R = {(x, ŷ) : (x, ỹ) ∈ U} and follow up with the MixMatch
procedure to compute the supervised and self-supervised loss terms Ls and Lu respectively. The
overall loss term is computed as Ls + λuLu, where λu is a regularization hyperparameter.

4 EXPERIMENTS

In line with other notable CL works (Rebuffi et al. (2017); Hou et al. (2019); Wu et al. (2019);
Buzzega et al. (2020a); Bang et al. (2021); Boschini et al. (2022)), we adhere to a multi-epoch
setting, in which samples can be experienced multiple times within the respective task. Additional
results including an assessment of our implementation of PuriDivER, the applicability of PuriDivER’s
consolidation on our proposal, a deeper analysis of the computational costs, and a thorough ablative
study on the impact of each component can be found in the supplementary material.

4.1 SETTING

We conducted experiments on five distinct datasets and explored various levels of noise to com-
prehensively assess the efficacy of our proposal across a diverse spectrum of tasks, including non-
image-based classification. We use CIFAR-10 and CIFAR-100 datasets (Krizhevsky et al. (2009)),
containing 32× 32 colour images, and the NTU RGB+D (Shahroudy et al. (2016)) dataset for 3D
skeleton-based human action recognition. On these datasets, we inject two types of synthetic noise
commonly employed in literature (Li et al. (2020); Jiang et al. (2018); Han et al. (2018)) to replicate
noisy labels: symmetric and asymmetric noise*. To address real-world label noise, we evaluate our
method on WebVision (Li et al. (2017)) and on Food-101N (Lee et al. (2018)), composed of images
gathered from the web, thus containing instance-level annotation noise.

We define sequential CL tasks for each dataset, under the ClassIL setting. Namely, for Seq. CIFAR-10
and Seq. WebVision and Seq. Food-101N, we split the classes into 5 tasks, while we consider a longer
sequence of 10 tasks for Seq. CIFAR-100. For Seq. CIFAR-10/100, we employed ResNet18 (He
et al. (2016)) as the backbone and conducted training on each task for 50 epochs. In the case of Seq.
Food-101N and Seq. WebVision, ResNet34 (He et al. (2016)) was used as the backbone, with training
for 20 epochs for the former and 30 epochs for the latter. For Seq. NTU-60, EfficientGCN-B0 (Song
et al. (2021)) served as the backbone, and training was performed for 30 epochs.

*Additional details regarding the noise injection process can be found in the supplementary material.
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Table 2: Final Average Accuracy (FAA) [↑] on
Seq. NTU-60 and Seq. WebVision. † Additional
baselines created by adapting existing loss-based
and CL approaches to the multi-epoch scenario.

Benchmark Seq. NTU-60 Seq. WV
noise rate 20 40 N/A
Joint 68.26 63.02 54.80
SGD 14.30 12.48 15.96

Reservoir 35.16 16.21 27.10
+ CoTeaching 44.43 32.03 27.80
+ DivideMix 40.92 32.07 29.93

GDumb 11.34 7.34 25.00
+ CoTeaching 13.81 9.18 25.20
+ DivideMix 15.96 6.59 28.00

PuriDivER 39.33 38.86 29.10
PuriDivER.ME† 43.10 38.07 36.40
DividERMix† 32.61 20.23 36.20

OURs 46.69 44.56 34.20
w. buffer fit. 49.59 48.18 36.84
w. consolidation 48.73 45.19 38.87

Table 3: Final Average Accuracy (FAA)
[↑] of our method and main competitor
on a real-world noisy dataset.

Benchmark Food-101N
Joint 39.91

PuriDivER.ME† 29.23

OURs 29.86
w. buffer fit. 34.63

Table 4: Accuracy (FAA) comparison
with SPR and CNLL. ‡ training itera-
tions spread across epochs.

Seq. CIFAR-10 – 40% symm
Buffer size (total) 2500 unlimited

CNLL 1 epoch 38.14 57.26
CNLL 50 epochs 35.46 43.43
OURs 50 epochs 67.10 76.83

Buffer size (total) 1000

SPR‡ 25 epochs 26.34
OURs 25 epochs 63.65

The evaluation results are presented in terms of Final Average Accuracy (FAA), computed at the
end of the final task as the average accuracy on all tasks and averaged across 5 runs. Due to space
constraints, we refer the reader to the supplementary material for the results in terms of Final
Forgetting, a detailed overview of our experimental settings, hyperparameters, and standard errors.

4.2 BASELINE METHODS

To assess the merits of our proposal, we compare it against PuriDivER, the current state-of-the-art
sample selection strategy for CLN, as well as common rehearsal CL baselines adapted to our setting.
For the latter, we follow Bang et al. (2022) and apply both CoTeaching and DivideMix to consolidate
the buffer produced by ER and GDumb.

Since current CLN methods are designed for the online setting, a direct comparison may result in
an unfair disadvantage and a weaker evaluation. Therefore, based on the considerations outlined in
Sec. 3.2, we refine PuriDivER by suspending memory updates after the first training epoch; we name
such method PuriDivER.ME. We also compare against SPR and CNLL, adapting the former for
offline CLN and using the same overall memory budget for a fair comparison. Additional details
regarding such methods and their adaptation can be found in the supplementary material.

In a similar fashion, we design an additional baseline by applying DivideMix on samples from both
the current task and the buffer. Notably, this new method, which we name DividERMix, does not
rely merely on buffer consolidation and can exploit all the data from the incoming data stream as a
source of regularization. Finally, we compare against a model jointly trained on all tasks (Joint) and a
lower bound derived by training without any countermeasure to forgetting or noise (Finetune).

4.3 COMPARISON WITH CNL BASELINES

Results for our main evaluation are reported in Tab. 1, 2 and 3‡. When multiple training epochs
are allowed, methods that rely only on buffer consolidation become less effective, especially as the
amount of noise increases. This is particularly true for GDumb: as it relies solely on the buffer, it
cannot take advantage of the abundance of data along the task, and its performance is particularly
limited. This is reflected by the performance of Reservoir-based baselines, as with low noise they
considerably outperform GDumb in all our settings.

‡Due to spatial constraints we only report the comparison between our method and the second best.
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Such an outcome outlines the potential benefits of performing multiple training iterations, thus
justifying the validity of our experimental setting. However, this comes as a double-edged sword, as
we find a severe performance drop for all Reservoir-based methods as the stream becomes noisier.

As for SPR and CNLL, their significantly higher computational requirements make them inapplicable
in all but the easiest CIFAR-10 dataset (Tab. 4), with sub-optimal performance due to degraded loss
gaps. Remarkably, this remains true even in an unrestricted setting with relaxed memory constraints.

4.4 COMPARISON WITH MULTI-EPOCH CNL METHODS

We now turn our comparison to methods designed for the multi-epoch setting. First of all, we find
an impressive performance gain for PuriDivER.ME w.r.t. PuriDivER (15.04% on average), which
further supports our claims of Sec. 3.2. Both versions comprehend PuriDivER’s consolidation Bang
et al. (2022), with the model being fitted to buffer samples at the end of each CL task. Similarly, when
compared with the DivideMix-based buffer consolidation, we find that our baseline DividERMix
provides a performance gain in most scenarios.

However, both PuriDivER.ME and DividERMix are consistently surpassed by our proposal. In
particular, we measure an average 2.25% gain over the best competitor’s performance without any
buffer consolidation. On top of that, we find that a simple consolidation based on a fully-supervised
optimization of the buffer – buffer fit. – provides an additional significant improvement (3.78%
on average). This suggests that our proposal successfully improves the purity and diversity of
samples in the buffer to the extent that it may be exploited without the need for extra regularization.
However, as the sample selection is not perfect, under more complex noise scenarios our buffer
consolidation based on MixMatch tends to prevail, with an average improvement of 7.47% w.r.t. the
baselines. Finally, these considerable gains come with a remarkable speed-up in terms of both time
and resources used (Fig. 4), making it more suitable for a multi-epoch incremental scenario.

5 MODEL ANALYSIS

5.1 PURITY OF THE BUFFER

Our main desiderata is to achieve a balanced set of clean samples while retaining the most relevant
samples for later replay. Thus, in Fig. 5 we evaluate the effective purity and diversity of M after
training on Seq. CIFAR-10 with 40% noise. For each class Ci, we define purity as Ey∈M[Ci][1ỹ=y],
while for diversity we estimate the intra-class variation as the average standard deviation of the
features produced by the Joint ideal model. Finally, we account for the attained balancing between
the different classes by scaling all values by the prior probability of the respective class in M.
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Figure 7: Effect of AER on the speed at
which the model learns the noisy data.

We compare ABS against PuriDivER.ME and a simple Loss-Aware Symmetric Sampling (LASS),
where each sample is assigned a score proportional to its loss. As shown in Fig. 5, ABS clearly
outperforms both LASS and PuriDivER.ME in terms of purity and diversity. Unexpectedly, LASS
results in a particularly unbalanced buffer, with only the last few classes presenting a good balance;
this translates into a significant performance drop of around 8.59% on average (Fig. 3). Instead, while
PuriDivER.ME is better at balancing the buffer, it falls behind in terms of purity.

5.2 STABILITY AND GENERALIZATION CAPABILITY

We investigate the effect of noisy data in the memory buffer in terms of flatness of the loss landscape.
Previous works have defined the smoothness of the decision boundaries as a key factor for generaliza-
tion (Keskar et al. (2017); Neyshabur et al. (2017)), while in CL the stability of the attained local
minima has been shown to lead to a lower degree of forgetting (Buzzega et al. (2020a); Boschini et al.
(2022)). As in Bonicelli et al. (2022), we measure the Lipschitz constant L of the model, as a lower
value has been linked to stronger robustness against perturbations (Cisse et al. (2017); Leino et al.
(2021)) and smoother decision boundaries (Xu & Mannor (2012); Szegedy et al. (2014)).

5.3 APPLICABILITY TO OTHER CL METHODS

In this section, we aim to prove that our method remains effective regardless of the specific underlying
rehearsal method employed. We do so by applying AER and ABS to DER++. Here, to estimate s(x)
we measure the overall replay loss of the method, consisting of a distillation term and the replay
regularization term of Eq. 3. In addition, we include the fully-supervised finetuning on the buffer (see
Sec. 4.4), to observe its impact. The results in Fig. 6 depict that our proposals successfully enhance
the capabilities of other CL baselines, thus substantiating our initial claims.

5.4 EFFECTIVENESS OF AER AS A REGULARIZER FOR CNL

In Fig. 7, we depict the effects of enabling and disabling AER during the second task of Seq. CIFAR-
10 on the loss of noisy samples from the current task. Surprisingly, we find that AER vastly reduces
the rate of convergence of noisy samples, which just by itself improves over the baseline in terms of
FAA. Indeed, providing a purified and diverse set of examples to counter forgetting is only part of the
challenge: as the model is subjected to a continuous stream of noisy data from the current task, it
becomes important to also reduce the speed with which noisy samples from the present are learned.

6 CONCLUSIONS

Our study presents an innovative framework for addressing the challenge of Continual Learning in the
presence of Noisy Labels, a common issue in real-world AI applications. Focusing on the established
multi-epoch class-incremental scenario, we find that current methods using the small-loss criterion
fall short: as training ensues, the loss gap between clean and mislabeled samples collapses. To
overcome this limitation, we appeal to a long-standing enemy of continual learning – forgetting – and
propose Alternate Experience Replay to maintain a clear separation between mislabeled, complex,
and clean samples. We also introduce Asymmetric Balanced Sampling to enhance sample diversity
and purity within the buffer. Through extensive experiments, our approach outperforms competitors
by a wide margin, showcasing its potential to significantly improve learning in noisy label scenarios.
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ETHICS STATEMENT

We believe that this work does not possess any harmful applications that could negatively affect the
public. However, it is important to note that our approach, which relies on rehearsal techniques,
involves the storage of raw data and may not be suitable for scenarios where privacy constraints are
of utmost importance.

REPRODUCIBILITY STATEMENT

We provide full code implementation and hyperparameters for all the algorithms covered by our
evaluation as part of the supplementary material. Notably, AER and ABS do not involve additional
hyperparameters, with only the learning rate being tuned.

Our evaluation involves the injection of random noise to simulate an imperfect process of annotation.
To allow the reproduction of our results, we include as part of the code the newly generated annotations
for all datasets and noise scenarios.

In compliance with the Terms and Conditions of the NTU RGB-D dataset, we do not provide links to
download the aforementioned dataset.
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