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ABSTRACT

Scaling neural networks to “large” sizes, with billions of parameters, has been
shown to yield impressive results on many challenging problems. However, the in-
ference cost incurred by such large models often prevent their application in most
real-world settings. In this paper, we propose a two-stage framework based on dis-
tillation that realizes the modelling benefits of the large models, while largely pre-
serving the computational benefits of inference with more lightweight models. In
a nutshell, we use the large teacher models to guide the lightweight student models
to only make correct predictions on a subset of “easy” examples; for the “hard”
examples, we fall-back to the teacher. Such an approach allows us to efficiently
employ large models in practical scenarios where easy examples are much more
frequent than rare hard examples. Our proposed use of distillation to only handle
easy instances allows for a more aggressive trade-off in the student size, thereby
reducing the amortized cost of inference and achieving better accuracy than stan-
dard distillation. Empirically, we demonstrate the benefits of our approach on both
image classification and natural language processing benchmarks.

1 INTRODUCTION

Scaling neural networks to “large” sizes has brought dramatic quality gains over a wide variety of
machine learning problems, including at the tails. In computer vision, the high performing models
for image classification (Kolesnikov et al., 2019; Xie et al., 2020; Tan & Le, 2019; Foret et al.,
2021) and segmentation (Ghiasi et al., 2020) have upto 928M parameters and require up to 600G
FLOPs for a prediction. Similarly, in natural language processing, transformer-based approaches,
which have several billion parameters and require up to a tera-FLOP for a prediction, are leading
performance on language understanding tasks (Raffel et al., 2019; Brown et al., 2020; Fedus et al.)
and neural machine translation (Bapna & Firat, 2019; Huang et al., 2018).

The immensely expensive inference cost of these large models is, however, hindering their direct
widespread adoption (Jouppi et al., 2017; Ning, 2013; Crankshaw et al., 2017; Zhang et al., 2019).
The issue is further exacerbated in deployment over resource-constrained edge devices such as mo-
bile phones (Zhang et al., 2020). As a workaround, many model compression techniques have been
proposed to reduce the computational cost and memory footprint by trading-off accuracy, including
quantization (Mozer & Smolensky, 1988; Han et al., 2015), pruning (LeCun et al., 1989; Hassibi &
Stork, 1993), and distillation (Bucilǎ et al., 2006; Romero et al., 2014; Hinton et al., 2015). However,
there is a limit to how far such model compression techniques can be pushed to reduce inference
cost while retaining good performance across all inputs (cf. teacher-student accuracy gaps in (Cho
& Hariharan, 2019; Menon et al., 2020b; Mirzadeh et al., 2020; Wang et al., 2017a)).

Ideally, the compute required to make predictions on an instance should depend on the hardness
of the instance. But the large models do not adapt their computational budget based on the com-
plexity of the task at hand. We conjecture that the full ability of a large model is needed only for a
small fraction of “hard” instances. The majority of real-inputs are “easy”, for which performing full
computation of a large model is wasteful; rendering the overall ML system inefficient. Such an inef-
ficient utilization of compute gets even more pronounced for many real-world data that are heavily
long-tailed (Zhu et al., 2014; Wang et al., 2017b; Van Horn & Perona, 2017), with hard instances
belonging to the tail.
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Figure 1: Left: A schematic of the proposed two-stage inference framework where after distillation
we retain both the lightweight student model and the large teacher model. At inference time if
the student finds an instance hard, we fall back to the teacher for a prediction. Right: The two-
stage framework on CIFAR-100 image classification task using ResNets allows us to aggressively
trade-off size of the student, thereby reducing the overall computation in expectation and achieving
better accuracy compared to performing inference based on only the student. Note that the numbers
annotated at each (student size, total compute cost) point on the plots denote the overall accuracy of
the corresponding setup. For the two-stage inference, as we increase the size of the student, we can
always achieve an accuracy of 0.75 by delegating an appropriate fraction of instances to the teacher.
Compared to classifying all examples using the teacher, computation cost savings come from those
instances where the student makes the final prediction.

In this paper, we focus on realizing the benefits of a large model on the hard instance without
incurring the unnecessary large inference cost on prevalent easy instances. Towards this, we propose
to employ a novel distillation-based two-stage inference framework in Figure 1 (left): First use a
lightweight student model to make a prediction. If the student is confident, we emit the prediction
and we want the student to be confident on all the easy instances, which should be a large fraction of
the test time queries. When the student is in doubt, ideally only for a small number of hard examples,
we fall-back to the large teacher. Our main contributions for leveraging the excellent performance
of large models to realize a desirable inference cost vs. performance trade-off are as follows.

• The instance-aware two-stage inference mechanism crucially relies on the ability of the student
model to detect the “hardness” of an input instance on the fly and routing it to the large model. To
enable this routing, we propose modified distillation procedures. In particular, we employ novel
distillation loss functions (cf. Sec. 4) such that the student gets penalized heavily for making
mistakes on easy examples while for harder out-of-domain examples we encourage the student
to be less confident, e.g., the prediction distribution be closer to the uniform distribution.
• We conduct a detailed empirical evaluation of the proposed distillation-based two-stage inference

framework (cf. Sec. 5) and show that it allows us to much more aggressively trade-off size of the
student for multiple image classification and natural language processing (NLP) benchmarks.
Interestingly, as summarized in Figure 1, there is a sweet spot where we can achieve the same ac-
curacy as the teacher with 45% less compute. This benefit is further magnified when considering
only in-domain examples. Thus, we can reduce the overall computation over the data distribution
and achieve better accuracy than performing inference with only the student model.

Note that, traditionally, the distillation approach aims to utilize a complex model to learn a simple
model that has its overall performance as close to the complex model as possible. This is done under
the assumption that during the inference time one can ‘throw away’ the complex model and rely on
only the simple model for the final predictions. We would like to highlight that our goal is not to
train a student/simple model that will be used as a standalone model to generate predictions.

It’s worth mentioning that the proposed two-stage inference can also be useful in a modern setup
like edge computing and 5G cloudlets (Fang et al., 2019), where a lightweight student model runs on
a device to make most of the predictions with low latency and only once in a while a hard instance
is delegated to a shared large teacher model running in the cloud.

2 RELATED WORK

Techniques to reduce inference cost for deep models mainly fall under two different approaches:
quantization and pruning, and adaptive computation.
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Quantization and pruning. The primary way suggested in the literature to accelerate predictions
from deep neural networks has been quantization and pruning (Mozer & Smolensky, 1988; LeCun
et al., 1989; Hassibi & Stork, 1993; Li et al., 2020; Carreira-Perpinán, 2017; Howard et al., 2019).
Significant progress was made by introducing Huffman encoding methods for non-uniform quan-
tization which led to a reduction in network sizes by orders of magnitude and up to 4x reduction
in overall prediction cost (Han et al., 2015). Since then pruning and quantization have been widely
adopted in computer vision and more details can be found in the recent survey by Liang et al. (2021).
In the NLP domain, Gordon et al. (2020); Zadeh et al. (2020) proposed pruning BERT during train-
ing, which resulted in 30%-40% reduction in model size with minimal effect on the accuracy of the
final task, however, not much compute/time savings was observed as arbitrary sparsity might not be
leveraged by modern hardware accelerators. Towards this, structured pruning is more beneficial, as
it removes a series of weights that correspond to an entire component of the model (Ganesh et al.,
2020). In transformers, this would correspond to pruning out entire attention heads (Kovaleva et al.,
2019; Raganato et al., 2020) or encoder units (Fan et al., 2019). Our proposed approach of two-stage
inference is complementary to such techniques and can be combined with these to further reduce the
inference cost.

Adaptive computation. In line with our proposed approach, there have been works trying to adapt
the amount of computation of neural model based on an input instance. Effort in this space started
in the vision community for enabling real-time object detection by Rowley et al. (1998) and later
formalized by Viola & Jones (2001). The basic idea was to design a cascade of independent classifier
and reject early on and cheaply. The idea has been generalized from a linear chain of cascaded
classifiers to trees (Xu et al., 2014). Instead of combining many independent classifiers, a similar idea
to stop early has emerged in monolithic deep models. One approach to this problem is represented
by Adaptive Computation Time (ACT) (Graves, 2016; Chung et al., 2016). ACT is a mechanism for
learning a scalar halting probability, called the “ponder time”, to dynamically modulate the number
of computational steps needed for each input. An alternative approach is represented by Adaptive
Early Exit Networks (Bolukbasi et al., 2017), which gives the network the ability to exit prematurely
- i.e., not computing the whole hierarchy of layers - if no more computation is needed. A modern
incarnation of this approach in NLP with transformers encoders appeared in Schwartz et al. (2020);
Liu et al. (2020); Dabre et al. (2020). This idea has been extended to generative tasks as well,
where a number of decoder layers per time step are adapted in Elbayad et al. (2020). As a further
generalization, Bapna et al. (2020) introduced “control symbols” to determine which components
are skipped in a transformer, i.e. not all previous components need to be executed. Similar ideas
had already existed in the vision community, for example, Wang et al. (2017a; 2018) introduced a
method for dynamically skipping convolutional layers. All of these approaches are specialized to
a task and rely on designing the whole pipeline from scratch which can be expensive if we want
to achieve state-of-the-art (SoTA) performance. In contrast, we want to design efficient inference
techniques achieving SoTA performance by only training cheap components, like the student model
using a novel distillation procedure, while leveraging existing SoTA large models without re-training
or modifying them. Moreover, our approach is a generic framework to leverage the large models
independent of the underlying model architecture and problem domain. Our proposed approach
ensures that large model is only invoked on instances that necessarily benefit from its large model
capacity and a lite distilled model suffices to predict a large portion of test instances.

3 BACKGROUND

3.1 MULTICLASS CLASSIFICATION

Consider a standard multiclass classification problem where given an instance x ∈ X, the objective is
to classify the instance as a member of one of theL classes, indexed by Y , [L]. In the most common
setting, given a training set comprising of n instance and label pairs or training examples Sn =
{(xi, yi)}i∈[n], one learns a classification model f : X → RL, where f(x) = (f(x)1, . . . , f(x)L)
represent the model scores assigned to instance x for L classes. Based on the model scores, an
instance can be predicted to belong to class ŷx , argmaxi∈[L] f(x)i. Accordingly, the model (top-
1) accuracy is defined as

P [ŷx = y] = EX,Y [1ŷx=y] = 1− EX,Y [1ŷx 6=y] . (1)
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Ideally, one prefers a classification model with a high accuracy. Let ` : Y× RL → R be a surrogate
loss function such that `(y, f(x)) closely approximates the misclassification error 1ŷx 6=y . Typically,
given the training set Sn and the loss function `, one selects a desired classification model via empir-
ical risk minimization (ERM). Softmax cross-entropy loss is one of the most widely used surrogate
loss functions for multiclass classification: Given model scores f(x) = (f(x)1, . . . , f(x)L), one
computes the softmax distribution

p̂f,x(i) = eτ ·f(x)i/
∑

j∈[L]
eτ ·f(x)j , for y ∈ [L], (2)

where τ denotes the temperature parameter of the softmax operation.1 Further, we define py ∈
{0, 1}L to be the one-hot label distribution corresponding to the true label y ∈ [L], which has
non-zero value at only y-th coordinate. Now, softmax cross-entropy loss corresponds to the distance
between the distributions py and p̂f,x, as measured by the cross-entropy function.

`(y, f(x)) = H(py, p̂f,x) , −
∑

i∈[L]
py(i) · log p̂f,x(i).

3.2 MODEL DISTILLATION

Distillation is a celebrated training techniques that utilizes one model’s scores to train another
model (Bucilǎ et al., 2006; Hinton et al., 2015). The former model is typically referred to as the
‘teacher’ model while the latter model is called the ‘student’ model. During distillation, given a
teacher model g : X → RL and an example (x, y) ∈ X × Y, one first defines the teacher (soft-
max) distribution p̂g,x(i) as per (2). Now, as opposed to utilizing the ‘one-hot’ label distribution py ,
we treat p̂g,x(i) as the pseudo label distribution and define the distillation version of the softmax
cross-entropy loss for the student model f : X → RL as `distill(g(x), f(x)) = H(p̂g,x, p̂f,x). For
a, b ∈ R+, distillation involves minimizing

a

n

∑
i∈[n]

`(yi, f(xi)) +
b

n

∑
i∈[n]

`distill(g(xi), f(xi)) (3)

Note that the objective in (3) utilized both the true labels {yi} and the teacher scores {g(xi)}. When
b = 0, this reduces to the standard training. More interestingly, when a = 0, (3) correspond to
training with solely p̂g,x(i) – a fairly common way to utilize distillation (Menon et al., 2020a).
Remark 1. For distillation, teacher models are usually much more complex and powerful as com-
pared to student models (Bucilǎ et al., 2006; Hinton et al., 2015). However, the distillation with an
equally complex, and even a simpler, teacher model has been shown to improve the quality of the
student model via distillation (see, e.g., Rusu et al., 2016; Furlanello et al., 2018; Yuan et al., 2020).

4 DISTILLATION FOR TWO-STAGE INFERENCE

We now propose various distillation approaches to power the proposed two-stage inference frame-
work. Recall that we intend to obtain a lightweight student model that can generate highly accurate
predictions on easy instances and route hard instances to the large teacher model. This raises an
interesting question if one needs to modify the distillation process in any way whatsoever to aid our
objective as typically distillation envisions the student model to be used as a standalone model.

Towards this, we explore a general distillation framework that partitions the training examples S
into two groups: 1) easy instances Seasy and 2) hard instances Shard. Accordingly, we modify the
distillation process such that the student incurs larger loss when it makes incorrect predictions Seasy.
Furthermore, we penalize the student less for making mistakes on Shard, which we accomplish by
carefully designed supervision during the distillation. Now, we present two specific realizations of
the above generic distillation framework based on two different strategies to partition the training
examples into Seasy and Shard.

4.1 CLASS-SPECIFIC DISTILLATION

Many real-world data distributions exhibit a long-tail behavior where most of the instances we
observe belong to a small number of classes, and the remaining classes are represented by very

1For brevity, we do not explicitly represent the temperature parameter in the rest of the paper.
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few instances. This has sparked a long line of work on improving model performance on the tail
classes (see, e.g., Cui et al., 2019; Cao et al., 2019; Kang et al., 2020; Menon et al., 2021). In
contrast, we explore an orthogonal direction and leverage the data imbalance to enable efficient
inference with large models. In particular, for Lin ⊆ [L], we define

Seasy = {(x, y) ∈ S : y ∈ Lin} and Shard = S\Seasy = {(x, y) ∈ S : y /∈ Lin}.
Thus, we require the lite model to perform well only on a subset of classes Lin and route the exam-
ples from the remaining classes to the large model. Here, we hypothesize that the smaller model can
better utilize its limited capacity to perform well on a subset of classes. Now, setting Lin to be the
head classes will ensure that the lite model itself tries to predict the examples from the head classes.
Since the underlying data-distribution is long-tail, only the examples from the tail classes (and a few
hard examples from the head classes depending on the exact implementation details described later)
are sent to the large model during inference.

With this general approach in mind, we propose a class-specific distillation approach.2 Now, given
a large teacher model g and example (x, y), we define a pseudo label distribution p̃classg,x as follows:

p̃classg,x =

{
p̂g,x if y ∈ Lin,

(1− α) · py + α
L · 1 if y ∈ [L]\Lin,

(4)

where p̂g,x and py denote the teacher’s softmax distribution and the one-hot label distribution, re-
spectively. In addition, α ∈ [0, 1] denotes a label-smoothing parameter. Now, we train a lite student
f : X → RL with the distillation loss

`classdistill

(
g(x), f(x)

)
, H

(
p̃classg,x , p̂f,x

)
. (5)

Note that the loss in (5) utilizes teacher softmax distribution for classes in Lin and relies on label-
smoothed one-hot distribution for the remaining classes. This loss has two desirable properties for
our two-stage inference objective: 1) As a result of standard distillation, the lite student behaves as
a well-calibrated model with good performance on the examples from the classes in Lin. 2) Due
to standard label-smoothing (Szegedy et al., 2016; Müller et al., 2019), the lite student achieves a
smaller margin on the examples belonging to the classes in [L]\Lin.

Let fLin
be the lite student model obtained by minimizing the loss in (5). Now, given a test instance

x ∈ X , we first run inference with the lite model to obtain fLin
(x). Subsequently, we decide if we

need to make the final prediction based on fLin(x) or delegate the example to the large teacher g to
obtain the final prediction. We identify two useful delegation schemes, which we detail next.

Class-based delegation. Recall that the class-specific distillation aims to utilize the lite model to
classify only the examples belonging to the classes in Lin. Thus, the prediction made by fLin serves
as a natural candidate for the delegation. In particular, when

ŷstudent(x) , argmaxj∈[L] fLin(x) ∈ Lin,

we declare ŷstudent(x) as the final prediction. Otherwise, x is sent to the teacher and
ŷteacher(x) , argmaxj∈[L] g(x) becomes the final prediction.

Margin-based delegation. The class-based delegation is designed under the assumption that the
lite model achieves high accuracy on the examples belonging to the classes in Lin and identifies the
examples from [L]\Lin with high fidelity. Both of these assumptions don’t always hold in practice.
In particular, fLin may find some instances from Lin hard and incorrectly predict a wrong class in
Lin when presented with those instances. Similarly, fLin

may predict a class from Lin when the test
instance belongs to [L]\Lin.

Recall that the distillation loss in (5) is designed to ensure that fLin
is well-calibrated on the instances

from Lin; as a result, it attains small margin on hard instances from Lin. Moreover, by design, fLin

realizes small margin on the instances from [L]\Lin. Thus, one can utilize the margin of the lite
model fLin

to perform delegation. Towards this, recall that

γfLin
(x) , p̂fLin

,x([1])− p̂fLin
,x([2]) (6)

2In what follows, without loss of generality, we assume Lin = [L′], for L′ ≤ L. One can easily express our
approach for general Lin with slightly cumbersome notation.
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denotes the margin realized by fLin
on x. Here, p̂fLin

,x([i]) denotes the i-th largest element of the
vector p̂fLin

,x. Now, given a design parameter ρ ∈ (0, 1), we assign the following final prediction to
a test instance x ∈ X .

ŷ(x) =

{
ŷstudent(x) if γfLin

(x) ≥ ρ,
ŷteacher(x) if γfLin

(x) < ρ.
(7)

The margin-based delegation aims to ensure that hard instances from Lin as well as all instances in
[L]\Lin get routed to the teacher for the final prediction.

Remark 2. The distillation based on the loss in (5) constitutes only one of many possible ways to
transfer the performance of a teacher over a subset of classes to a lite student. We discuss two other
class-specific distillation-based approaches in Sec. A of the appendix and evaluate those in Sec. 5.

4.2 MARGIN-BASED DISTILLATION

As discussed before, the margin assigned to an instance by a model is a natural proxy for the hardness
of the instance, as viewed by the model. In Sec. 4.1, we utilize the margins assigned by the student
to delegate the examples to the teacher. This raises an interesting question if one can utilize the
margins to partition the training data into Seasy and Shard example during the distillation. Towards
this, given a teacher g and a parameter ρtr ∈ (0, 1), we add a training example (x, y) to Seasy iff

γg(x) , p̂g,x([1])− p̂g,x([2]) > ρtr. (8)

Given this data partition, for an example (x, y), we define the pseudo label distribution as follow:

p̃margin,L
g,x =

{
(p̂g,x(1), . . . , p̂g,x(L)) if (x, y) ∈ Seasy

(1− α) · py + α
L · 1 otherwise .

(9)

Now, we obtain a (lite) student fLρtr : X → RL by minimizing

`margin,L
distill

(
g(x), f(x)

)
= H(p̃margin,L

g,x , p̂f,x). (10)

For the two-stage inference, given a test instance x, we make the following final prediction.

ŷ(x) =

{
ŷfLρtr

= argmaxj f
L
ρtr(x)j if γfLρtr (x) ≥ ρ,

ŷteacher(x) otherwise,

where ŷfLρtr = argmaxj f
L
ρtr(x)j .

Remark 3. For a small value of ρtr, we expect the student to make the correct prediction on almost
all examples. Thus, the margin-based distillation proposed above becomes very similar to the normal
distillation discussed in Sec. 3.2. On the other hand, for large values of ρtr, the student is expected
to do well on only a small subset of examples during training and be able to identify the rest of the
examples as hard instances that need to be routed to the teacher.

Similar to class-specific distillation, there are multiple potential variants of the margin-based distil-
lation. We discuss one such variant that relies on an ‘abstain’ class in Sec. C of the appendix.

5 EXPERIMENTS

We now conduct a comprehensive empirical study of our distillation-based two-stage inference pro-
cedure. In particular, we evaluate various distillation frameworks introduced in Sec. 4 along with
different choices of delegation methods. On standard image classification tasks, we establish that:

(i) A large improvement in accuracy over the student-only approach can be realized by delegating
only a small fraction of examples to the large teacher model (Sec. 5.1). This validates our claim
that one can rely on a much smaller student and achieve an accuracy similar to the teacher-only
approach with a small increment in inference cost.
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Figure 2: Comparison of various class-specific distillation methods on CIFAR-100. Baseline denotes
the standard distillation from (3). CD-I, CD-II, and CD-III denote the class-specific distillation ap-
proaches defined in Sec. 4.1, Sec. A.1, and Sec. A.2, respectively, with |Lin| = L′ = 30. Accord-
ingly, we compute in-domain accuracy on test instances from the 30 classes in Lin. Here, each lite
student (ResNet-32) employs margin-based delegation to the teacher. The right-most plot depicts
the (inference) latency vs. in-domain accuracy trade-off for the two-stage inference procedure.

(ii) Advantages of the two-stage inference are even more pronounced if we focus on the in-domain
performance, where the in-domain portion of the instance space corresponds to a subset of
classes or instances with a large margin (based on the large teacher model). This validates the
utility of two-stage inference for those real-world settings where a large data imbalance exists in
favor of in-domain instances (Sec. 5.2).

(iii) Class-specific distillation defined by (5) indeed achieves the desired behavior where the student
enables a clear dichotomy among the in-domain and out-of-domain instances. By varying the
label-smoothing parameter, we can improve in-domain model performance and delegate a small
number of instances to the teacher at the cost of performance on the entire test data (Sec. 5.2).

Furthermore, by delegating a small fraction of hard instances to a large teacher model, our proposed
class-specific distillation and a variant of margin-based distillation enable efficient inference on
sentence classification and reading comprehension tasks in the NLP domain, respectively (Sec. 5.3).

We mainly focus on three benchmark image datasets – CIFAR-100 (Krizhevsky, 2009), ImageNet-
1k (Russakovsky et al., 2015), and ImageNet-21k (Deng et al., 2009). In addition, we also
evaluate the proposed two-stage inference procedure on a sentence classification task based on
MNLI (Williams et al., 2018) and a reading comprehension task based on SQuAD dataset (Rajpurkar
et al., 2016). On image classification tasks, we use EfficientNet-L2 (Xie et al., 2020) as the large
teacher. As for the lite student, we utilize ResNet (He et al., 2016a;b) and MobileNetV3 (Howard
et al., 2019) for CIFAR-100 and ImageNet, respectively. For the sentence classification and reading
comprehension tasks, RoBERTa-Large (Liu et al., 2019) and T5-11B (Raffel et al., 2019) serve as
the teachers, respectively. We use MobileBERT (Sun et al., 2020) as the lite student for both MNLI
and SQuAD. We provide a detailed description in Sec. D of the appendix.

5.1 OVERALL ACCURACY GAINS

We begin by establishing the utility of the two-stage inference procedure for overall performance
improvement. Towards this, Fig. 2a, 3a, and 5a (in appendix) depict the two-stage overall accuracy
achieved by various class-specific distillation approaches via margin-based delegation. Besides, we
also include conventional model distillation as Baseline in our evaluation. Note that, for all ap-
proaches, allowing the lite student model to delegate hard instances (the ones with a small mar-
gin) to the large teacher significantly increases the accuracy as compared to the performance of
(one-stage) student-only inference approach. Focusing on CIFAR-100, both Baseline and CD-I can
approximate the performance of the teacher model by delegating only ∼40% test instance, which
translates to∼60% reduction in the inference cost as compare to the large teacher (cf. Fig. 2a). Here,
we note that CD-II and CD-III train the student to make the correct prediction on only the instances
belonging to the classes in Lin, leading to poor overall accuracy on the entire test set. However,
unsurprisingly, as student delegates more instances to the teacher, the two-stage overall accuracy
improves. Similar conclusions also hold on ImageNet datasets (cf. Fig. 3a and 5a). Table 1 and 4
(in the appendix) show that the class-specific distillation based two-stage inference leads to similar
improvements in the overall accuracy when we employ class-based delegation from Sec. 4.1.
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Figure 3: Comparison of various class-specific distillation methods on ImageNet-1k. Baseline de-
notes the standard distillation from (3). CD-I and CD-III denote the class-specific distillation ap-
proaches defined in Sec. 4.1 and Sec. A.2, respectively, with |Lin| = L′ = 300. Accordingly, we
compute in-domain accuracy on the test instances from the 300 classes inLin. Here, each lite student
(MobileNetV3-0.75) employs margin-based delegation. The right-most plot depicts the (inference)
latency vs. in-domain accuracy trade-off for the two-stage inference procedure.

5.2 IN-DOMAIN PERFORMANCE
Approach In-domain Overall

Accuracy Fraction Accuracy Fraction

R
es

N
et

-3
2 Baseline 0.71 1.00 0.72 1.00

CD-I (α = 0.0) 0.88 0.74 0.88 0.26
CD-I (α = 0.6) 0.88 0.84 0.86 0.32
CD-II 0.78 1.00 0.24 1.00
CD-III 0.91 0.69 0.90 0.25

R
es

N
et

-5
6 Baseline 0.75 1.00 0.75 1.00

CD-I (α = 0.0) 0.89 0.77 0.90 0.27
CD-I (α = 0.6) 0.90 0.82 0.88 0.29
CD-II 0.80 1.00 0.24 1.00
CD-III 0.92 0.71 0.90 0.25

Table 1: Performance of two-stage inference procedure on
CIFAR-100. The student employs class-specific distillation
with |Lin| = L′ = 30, with in-domain referring to the in-
stances from the classes in Lin. During inference we, use an
appropriate class-based delegation method. See Fig. 2 for the
identity of the distillation approaches. Fraction denotes the
fraction of test instances where the student model makes the
final prediction. Unlike margin-based delegation, for given
teacher and student models, we obtain a single value of (Ac-
curacy, Fraction) tuple with class-based delegation.

Next, we verify that two-stage dis-
tillation is even more beneficial in
those real-world settings where ML
models encounter heavily imbal-
anced data during the inference. Ide-
ally, the lite student model should
make a prediction on frequent but
easy instances and delegate rare but
hard instances to the large teacher.
This would ensure that the two-stage
inference procedure realizes high
overall accuracy (compared to infer-
ence with only the student) while
significantly lowering the inference
cost (compared to inference with
only the teacher). With this in mind,
we evaluate the performance of the
two-stage inference procedure on in-
domain (so-called easy instances).
By design, for class-specific distilla-
tion, in-domain instances belong to
the classes in Lin. Similarly, for the margin-based distillation, in-domain instances are the ones
where teacher assigns a large margin ρ.

For CIFAR-100, Fig. 2b shows that two-stage inference achieves much better in-domain (defined
by |Lin| = 30 classes) accuracy as compared to overall accuracy. This implies that in a real-world
setting where in-domain instances are frequent, the two-stage inference can efficiently achieve very
good overall performance by having the student predict most of the in-domain instances. Note that
overall performances in such a scenario (with data-imbalance) is not captured by Fig. 2a which is
based on fair balanced test data. Instead of aiming to imitate the data imbalance encountered in
practice, we have separately highlighted the performance of two-stage inference on the in-domain
instances. This shows that the more imbalanced the data is the more advantageous two-stage distilla-
tion would be in terms of saving the inference cost without affecting the classification performance.
As per Fig 2c, we essentially maintain same accuracy as the teacher but reduce latency by more
than 2x. Here, we also note that Fig. 2a implies that two-stage inference would indeed enable one to
approximate the teacher performance on all instances, whether they belong to in-domain or not.

Interestingly, Fig. 2 indicates that CD-I with margin-based delegation gives a favorable tradeoff be-
tween in-domain and (balanced) overall accuracy. The label-smoothing parameter α in (4) helps
create a dichotomy between in-domain and out-of-domain instances. The larger values of α ensure
that the student assigns a smaller margin to out-of-domain examples and tries to improve its perfor-
mance on in-domain instances. This is reflected in Fig. 2b where CD-I with large α achieves higher
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Figure 4: Performance of the proposed two-stage inference on NLP tasks. Left half: Overall and in-
domain accuracy of the margin-based distillation coupled with margin-based delegation on MNLI.
Here baseline corresponds to the two-stage inference enabled by the standard distillation (cf. (3)).
Right half: Overall and in-domain accuracy (exact match) comparison of margin-based distillation
on SQuAD task. Here, Baseline denotes a normally trained student used in combination with the
teacher. Note that MD denotes a margin-based distillation with label smoothing.

accuracy by predicting a larger fraction of in-domain instances at the student. We note the similar
trend in Table 1 where we combine class-specific distillation with class-based delegation

We also evaluate the in-domain two-stage performance of class-based distillation on ImageNet-1k
with |Lin| = 300. The conclusions from Fig. 3b, 3c and Table 4 (in the appendix) are similar
to those observed on CIFAR-100. Also, see Fig. 5b (in the appendix) for the identical trends on
ImageNet-21k. Finally, we also studied the in-domain performance of two-stage inference enabled
by margin-based distillation from Sec. 4.2 on both CIFAR-100 and ImageNet-1k in the appendix.

5.3 TWO-STAGE INFERENCE IN NLP DOMAIN

Sentence classification task. Fig. 4a and 4b show the performance of our proposed two-stage in-
ference framework on MNLI. Since it has only 3 classes, we employ margin-based distillation (with
ρtr = 8.0) from (9) with margin-based delegation. Our conclusion for the image classification also
extends to the text domain and the two-stage inference framework enables a lite student to leverage
high-quality teacher by delegating a small portion of (hard) instances to the teacher. We provide
inference-latency vs. in-domain performance trade-off for MNLI in the appendix (cf. Fig. 8a).

Reading comprehension task. To showcase the generality of our approach , we apply the two-
stage inference method to a machine comprehension task (SQuAD), where there is a fundamental
mismatch between student architecture which is based on span selection whereas teacher is based on
encoder-decoder architecture. Thus, one cannot do standard distillation by transferring logits from
teacher to students, but a suitable modification of margin-based distillation from (9) still works. We
partition the training examples into easy and hard instances by thresholding teacher’s log-likelihood
of ground-truth answer given the context. While training student, for easier examples, we use one
hot labels for the start and end span as no teacher logits are available. Whereas for hard examples,
we still employ label smoothing. We try two values α = 0.2, 0.4 in the experiments. Our results in
Fig. 4d and 4d, which has similar conclusions to the classification experiments. See Fig. 8b for the
inference-latency vs. in-domain performance trade-off achieved by the two-stage inference.

6 DISCUSSION

We propose a distillation-based two-stage inference framework to efficiently leverage large models
with prohibitively large inference costs in real-world settings. Given a large model, we distill a lite
student that utilizes its limited model capacity to perform well on easy (in-domain) instances and can
identify hard (out-of-domain) instances. When deployed in tandem, the lite model generates the final
prediction on easy but frequent instances and delegates hard but rare instances to the large model.
This ensures much higher performance (compared to inference based on only the lite model) and a
much smaller inference cost (compared to inference with only the large model). We propose various
distillation methods to enable such two-stage inference. We establish the utility of these approaches
for realizing efficient and accurate inference on both image classification and NLP benchmarks.

Generalizing our framework to design a multi-stage inference procedure is a natural direction for
future research. To enhance the applicability of our method to wider settings, another research di-
rection would be to devise a principled approach for applying our method to other architectures
including non-parametric models like k-NN, generalizing what we did for reading comprehension.
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REPRODUCIBILITY STATEMENT

In Sec. 5 and Sec. D (in the appendix), we provide detailed descriptions of the experimental setup
used in this paper, including the pre-trained (teacher) models, student models, datasets, and how to
train and evaluate our two-stage framework. Also, since we are only training small student models
via standard and proposed distillation methods, it is relatively cheap to reproduce our experimental
results.
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chines with a reject option. In D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou (eds.), Ad-
vances in Neural Information Processing Systems, volume 21, pp. 537–544. Curran Associates,
Inc., 2009.

Alex Graves. Adaptive computation time for recurrent neural networks. arXiv preprint
arXiv:1603.08983, 2016.

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149, 2015.

Babak Hassibi and David G Stork. Second order derivatives for network pruning: Optimal brain
surgeon. Morgan Kaufmann, 1993.

11

https://www.aclweb.org/anthology/2020.ngt-1.3
https://openreview.net/forum?id=SJg7KhVKPH
https://openreview.net/forum?id=SJg7KhVKPH
https://doi.org/10.1145/3304109.3306221
https://doi.org/10.1145/3304109.3306221
https://openreview.net/forum?id=6Tm1mposlrM
https://www.aclweb.org/anthology/2020.repl4nlp-1.18
https://www.aclweb.org/anthology/2020.repl4nlp-1.18


Under review as a conference paper at ICLR 2022

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), June 2016a.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual
networks. In Bastian Leibe, Jiri Matas, Nicu Sebe, and Max Welling (eds.), Computer Vision –
ECCV 2016, pp. 630–645, Cham, 2016b. Springer International Publishing. ISBN 978-3-319-
46493-0.

Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean. Distilling the knowledge in a neural network.
CoRR, abs/1503.02531, 2015.

Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing Tan, Weijun
Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, Quoc V. Le, and Hartwig Adam. Searching
for mobilenetv3. In Proceedings of the IEEE/CVF International Conference on Computer Vision
(ICCV), October 2019.

Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Mia Xu Chen, Dehao Chen, Hy-
oukJoong Lee, Jiquan Ngiam, Quoc V Le, Yonghui Wu, et al. Gpipe: Efficient training of giant
neural networks using pipeline parallelism. arXiv preprint arXiv:1811.06965, 2018.

N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates, S. Bhatia, and
N. Boden et al. In-datacenter performance analysis of a tensor processing unit. In 2017 ACM/IEEE
44th Annual International Symposium on Computer Architecture (ISCA), pp. 1–12, Los Alamitos,
CA, USA, jun 2017. IEEE Computer Society. doi: 10.1145/3079856.3080246. URL https:
//doi.ieeecomputersociety.org/10.1145/3079856.3080246.

Bingyi Kang, Saining Xie, Marcus Rohrbach, Zhicheng Yan, Albert Gordo, Jiashi Feng, and Yan-
nis Kalantidis. Decoupling representation and classifier for long-tailed recognition. In Eighth
International Conference on Learning Representations (ICLR), 2020.

Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver, Jessica Yung, Sylvain Gelly,
and Neil Houlsby. Big transfer (bit): General visual representation learning. arXiv preprint
arXiv:1912.11370, 6(2):8, 2019.

Olga Kovaleva, Alexey Romanov, Anna Rogers, and Anna Rumshisky. Revealing the dark secrets
of bert. arXiv preprint arXiv:1908.08593, 2019.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, 2009.

Yann LeCun, John S Denker, Sara A Solla, Richard E Howard, and Lawrence D Jackel. Optimal
brain damage. In NIPs, volume 2, pp. 598–605. Citeseer, 1989.

Zhuohan Li, Eric Wallace, Sheng Shen, Kevin Lin, Kurt Keutzer, Dan Klein, and Joey Gonzalez.
Train big, then compress: Rethinking model size for efficient training and inference of transform-
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A VARIANTS OF CLASS-SPECIFIC DISTILLATION

Here, we present two additional variants of class-specific distillation that enable transferring the
performance of a large teacher model to a lite student model on a subset of class. Subsequently, the
lite student can be employed in our two-stage inference framework.

A.1 IN-DOMAIN CLASS-DISTILLATION

Since we do not intend the student to make the final prediction on an instance from [L]\Lin, we can
train the student to perform an |Lin| = |L′|-way classification. In particular, given a teacher g and
example (x, y), we define a pseudo-label distribution:

p̃class,L
′

g,x =

{
p̂L

′

g,x ∈ [0, 1]L
′

if y ∈ Lin,
1
L′ · 1 ∈ RL′

if y ∈ [L]\Lin.
(11)

Here, p̂L
′

g,x denotes the softmax distribution restricted to Lin:

p̂L
′

g,x(j) = eg(x)j/
∑

i∈Lin

eg(x)i for j ∈ Lin. (12)

Now we get the student fLin,L′ : X → RL′
by minimizing

`class,L
′

distill

(
g(x), f(x)

)
= H

(
p̃class,L

′

g,x , p̂f,x
)

(13)
A lite model fLin,L′ trained with the loss in (13) aims to classify an instance from Lin to the cor-
rect class. At the same time, such a model is also trained to generate a non-informative uniform
distribution 1

L′ · 1 on the instances from [L]\Lin, which by definition corresponds to zero margin.

Now, given the student fLin,L′ and teacher g, one can define a two-stage inference by using margin-
based delegation. In particular, for a test instance x ∈ X , the final prediction becomes

ŷ(x) =

{
argmaxj∈[L′] fLin,L′(x)j if γfLin,L

′ (x) ≥ ρ,
argmaxj∈[L] g(x)j if γfLin,L

′ (x) < ρ,

where γfLin,L
′ (x) is the margin assigned to x by the student fLin,L′ .

A.2 IN-DOMAIN CLASS-DISTILLATION WITH ‘ABSTAIN’ OPTION.

We next explore another natural candidate for class-specific distillation, where the lite student aims
to correctly classify an instance x from Lin and declares to ‘abstain’ on the instances from [L]\Li.
To realize this, we train the student to perform an (L′+1)-way classification: Given a teacher g and
example (x, y), we define a pseudo label distribution:

p̃class,L
′+1

g,x =

{
(p̂L

′

g,x, 0) ∈ [0, 1]L
′+1 if y ∈ Lin,

(0, . . . , 0, 1) if y ∈ [L]\Lin,

where p̂L
′

g,x denotes the softmax distribution restricted to L′ classes, as defined in (12). Now, one can
perform the distillation by utilizing p̃class,L

′+1
g,x , i.e., minimize

`class,L
′+1

distill

(
g(x), f(x)

)
= H

(
p̃class,L

′+1
g,x , p̂f,x

)
. (14)

Note that (14) encourages the trained lite model fLin,L′+1 to predict (L′ +1)-th class, i.e., ‘abstain’
class, for all instances from [L]\Lin. This leads to a natural abstain class-based delegation approach
for two-stage inference. Let

ŷabstainstudent(x) = arg max
j∈[L′+1]

fLin,L′+1(x)j .

Then, given fLin,L′+1 and g, one makes the following final prediction for a test instance.

ŷ(x) =

{
ŷabstainstudent(x) if ŷabstainstudent(x) ≤ L′,
ŷteacher(x) if ŷabstainstudent(x) = L′ + 1.

In addition, analogous to (7), one can also define a two-stage inference procedure via margin-based
delegation.
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Remark 4. Note that using an ‘abstain’ class is closely related to classification with a reject option
(see Sec. B). However, as opposed to the traditional classification with the reject paradigm, we intend
to provide supervision for the so call reject class as well.

B CLASSIFICATION WITH A REJECT OPTION

There is a large literature on selective classification, also known as classification with a reject option
or abstention Grandvalet et al. (2009); Bartlett & Wegkamp (2008); Cortes et al. (2016); Geifman &
El-Yaniv (2017); Ramaswamy et al. (2018); Ni et al. (2019). Here, one seeks a predictor f : X →
Y ∪{⊥}, where a prediction of⊥ denotes the classifier is uncertain. To avoid the degenerate solution
of abstaining on all samples, one assumes a fixed rejection cost c ∈ (0, 1]. The goal is to then trade-
off the misclassification error on non-abstained samples with the total cost incurred on abstained
samples, i.e., minimize the loss

`(y, f(x)) = 1y 6=f(x)∧f(x)6=⊥ + c · 1f(x)=⊥. (15)

The Bayes-optimal classifier for this objective abstains on samples with high uncertainty on the
“true” label, i.e., Ramaswamy et al. (2018)

f∗(x) =


⊥ if max

y∈Y
P(y | x) ≤ 1− c

argmax
y∈Y

P(y | x) else. (16)

C VARIANT OF MARGIN-BASED DISTILLATION: USING ABSTAIN CLASS

Another natural approach for margin-based distillation is to utilize an ‘abstain’ class to encour-
age student to not spend its model capacity on correctly classifying hard instances (where teacher
achieves a low-margin). Towards this, we can define the following pseudo label distribution for an
example (x, y).

p̃margin
g,x =

{
(p̂g,x(1), . . . , p̂g,x(L), 0) if (x, y) ∈ Seasy

(0, . . . , 0, 1) ∈ {0, 1}L+1 otherwise .

Now, we distill a lite student model fL+1
ρtr : X → RL+1 based on p̃margin

g,x , i.e., we minimize

`margin
distill

(
g(x), f(x)

)
= H(p̃margin

g,x , p̂f,x) (17)

Note that we train the student to perform an (L + 1)-way classification, where it aims to classify
an example in Seasy to one of L original classes and the examples in Shard to the ‘abstain’ class.
Now, one may employ g and fL+1

ρtr to enable a two-stage inference procedure that makes the final
prediction for a test instance x ∈ X as

ŷ(x) =

{
ŷfL+1
ρtr

if ŷfL+1
ρtr
≤ L′ & γfL+1

ρtr
(x) ≥ ρ,

ŷteacher(x) otherwise,

where ŷfL+1
ρtr

= argmaxj f
L+1
ρtr (x)j .

D DETAILS OF EXPERIMENTAL SETUP

Datasets. We use three benchmark image datasets – CIFAR-100 (Krizhevsky, 2009), ImageNet
ILSVRC 2012 (a.k.a. ImageNet-1k) (Russakovsky et al., 2015), and ImageNet-21k (Deng et al.,
2009). CIFAR-100 contains 60k (50k train/10k test) images annotated with one of 100 object cate-
gories distributed uniformly. ImageNet (ILSVRC 2012), on the other hand, is a much larger dataset
with 1.33M (1.28M train/50k test) images annotated with one of 1000 object categories also dis-
tributed uniformly. As for ImagenNet-21k, it originally contains images 12.8M from 21,843 classes.
We select 17,203 classes with at least 100 images and create a balanced test set with 50 images from
each of the selected classes. This remaining images from the selected classes provides us with a
training set containing ∼11.8M images.

In addition to image datasets, we also evaluate the proposed distillation-based two-stage inference
procedure on MNLI (Williams et al., 2018) and SQuAD datasets (Rajpurkar et al., 2016), which are
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Model Parameters FLOPs

ResNet-8 0.09 M 16 M
ResNet-14 0.19 M 30 M
ResNet-20 0.27 M 44 M
ResNet-32 0.46 M 72 M
ResNet-44 0.66 M 100 M
ResNet-56 0.85 M 128 M

Table 2: (Lite) ResNet models for CIFAR-100.

Model Parameters FLOPs

MobileNetv3-0.35 2.14 M 40 M
MobileNetv3-0.50 2.70 M 70 M
MobileNetv3-0.75 4.01 M 156 M
MobileNetv3-1.00 5.50 M 218 M
MobileNetv3-1.25 8.29 M 358 M

Table 3: (Lite) MobileNetV3 models for ImageNet.

standard sentence classification and QA benchmarks, respectively. MNLI dataset corresponds to a
3-way classification task with 392,702 training examples and a matched test set consisting of 9,815
instances. As for the SQuAD dataset, it is a span selection task over a sequence length of 384 with
87,599 and 10,570 train and test examples, respectively.

Large teacher models. For the image classification tasks, we use EfficientNet-L2 (Xie et al.,
2020; Tan & Le, 2019; Foret et al., 2021) which is the state-of-art for image classification on multiple
datasets. It is an optimized convolutional neural network pretrained on both ImageNet and unlabeled
JFT-300M (Sun et al., 2017) with input resolution of 475. EfficientNet-L2 is a large model with
480M parameters which requires 478G FLOPs per inference and achieves an accuracy of 88.6% on
ImageNet. For CIFAR-100, we used base EfficientNet-L2 model with a new fine-tuned classification
layer achieving an accuracy of 94.4%. For the sentence classification task, a RoBERTa-Large (Liu
et al., 2019) model serves as a teacher, which is pre-trained on a general purpose text corpus of 160
GB size. It is a transformer-based encoder model with 355M parameters that requires 155G FLOPs
per inference while achieving an accuracy of 90.2% on MNLI.For the QA task requiring reading
comprehension, we use T5-11B (Raffel et al., 2019) which exhibits competitive performance on a
wide variety of NLP tasks. It is a text-to-text transformer architecture pretrained on a subset of the
common crawl with sequence lengths of 512. T5-11B is a large model with 11B parameters and
requires 6.6T FLOPs per inference achieving an accuracy of 90.2% on SQuAD.

Lite student models. For CIFAR-100, we use small ResNet networks (He et al., 2016a;b) whose
details are listed in Table 2. As for ImageNet, we explore MobileNetV3 (Howard et al., 2019) of
varying sizes as lite student models (see Table 3). For NLP tasks, we use MobileBERT (Sun et al.,
2020) as the lite student model which has 25M parameters and requires 13.5G FLOPs per inference.

Details of the experiment in Figure 1. For this experiment CIFAR-100 dataset was used. To
sweep full spectrum all the way till teacher size, we used ResNet networks as detailed in Table 2
as the student networks and the largest ResNet-56 as the teacher network. We used class-specific
distillation from Sec 4.1.

E ADDITIONAL EXPERIMENTAL RESULTS

Class-specific distillation with class-based delegation. Table 4 represents the two-stage perfor-
mance (both in-domain and overall) realized by class-specific distillation approaches (cf. Sec. 4.1)
on ImageNet when we employ appropriate class-based delegation.

Class-specific distillation on ImageNet-21k dataset. Figure 5 shows the performance of our pro-
posed distillation-based two-stage inference framework on ImageNet-21k dataset. As discussed in
Sec. D, we work with 17,203 out of 21,843 classes originally present in the dataset. Since we don’t
have access to a high-performing teacher model on this dataset, we work with the oracle teacher
(the one that knows the true label) to simulate the two-stage stage inference framework. Also, while
training a MobileNetV3-0.75 model as a student, we use the one-hot labels as the supervision for
the classes in Lin and utilize label-smoothing for the instances belonging to the remaining classes.
Accordingly, Baseline here corresponds to a normally trained student (MobileNetV3-0.75 model)
combined with the oracle teacher.

Margin-based distillation with margin-based delegation. Here, we study both overall and
in-domain performance of two-stage inference enabled by margin-based distillation from Sec. 4.2
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Approach In-domain Overall
Accuracy Fraction Accuracy Fraction

M
ob

ile
N

et
-0

.7
5 Baseline 0.75 1.00 0.68 1.00

CD-I (α = 0.0) 0.85 0.76 0.84 0.23
CD-I (α = 0.4) 0.84 0.82 0.81 0.32
CD-I (α = 0.6) 0.83 0.86 0.78 0.37
CD-III 0.87 0.63 0.85 0.23

M
ob

ile
N

et
-1

.2
5 Baseline 0.79 1.00 0.72 1.00

CD-I (α = 0.0) 0.86 0.79 0.85 0.28
CD-I (α = 0.4) 0.85 0.83 0.83 0.31
CD-I (α = 0.6) 0.85 0.86 0.81 0.36
CD-III 0.87 0.70 0.85 0.25

Table 4: Performance of two-stage inference procedure on ImageNet-1k. The student model is ob-
tained by a class-specific distillation approach with |Lin| = L′ = 300, with in-domain referring to
the instances belonging to the classes in Lin. CD-I and CD-III denote the class-based distillation
approaches defined in Sec. 4.1 and Sec. A.2. Baseline refers to the standard distillation from (3) with
a = 0 and b = 1. The inference procedure employs an appropriate class-based delegation for each
distillation approach. Fraction denotes the fraction of test instances where the student model makes
the final prediction. Note that, for standard distillation (Baseline), the student cannot delegate any
examples to the teacher via class-based delegation.
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Figure 5: Comparison of various class-specific distillation methods on (subset of) ImageNet-21k.
As described in Sec. D, we work with a subset corresponding to 17,203 out of 21,843 classes.
Baseline denotes the standard distillation from (3) with a = 0 and b = 1. CD-I denote the class-
specific distillation approaches defined in Sec. 4.1. with |Lin| = L′ = 1000. Accordingly, in-domain
accuracy is computed via focusing on the test instances from the 1000 classes in Lin. Here, each lite
student model (a MobileNetV3-0.75 model) employs margin-based delegation.

on both CIFAR-100 (cf. Fig. 6) and ImageNet (cf. Fig. 7). Here, in-domain instances correspond to
those instances where the student assigns a margin of at least ρ = 0.4. As evident, margin-based
distillation also leads to improved in-domain two-stage accuracy. However, Baseline and MD from
(17) have very similar performance on both datasets.
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Figure 6: Performance of two-stage inference procedure enabled by the margin-based distillation
approach from Sec. 4.2 on CIFAR-100. Again, Baseline denotes the standard distillation from (3)
with a = 0 and b = 1. MD represent the margin-based distillation approach from (17). Here, each
lite student model (a ResNet-32 model) employs margin-based delegation. In-domain accuracy is
computed on the test instances where student achieves a margin ρ of at least 0.4.
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Figure 7: Performance of two-stage inference procedure enabled by the margin-based distillation
approach from Sec. 4.2 on ImageNet. Here, each lite student model (a MobileNetV3-0.75 model)
employs margin-based delegation. In-domain accuracy is computed on the test instances where
student achieves a margin ρ of at least 0.4.
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Figure 8: The inference-latency vs. in-domain performance trade-off realized by the two-stage in-
ference procedure on the NLP tasks. MD denotes the margin-based distillation with label smoothing
parameter α. Left: On MNLI dataset, RoBERTa-Large and MobileBERT are used as the teacher
and student models, respectively. Here, Baseline corresponds to the two-stage inference enabled by
the standard distillation (cf. (3)). Right: On SQuAD dataset, T5 and MobileBERT are used as the
teacher and student models, respectively. Here, Baseline denotes a normally trained MobileBERT
used in combination with T5 model.
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