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Abstract
Dense retrieval models, which aim at retriev-001
ing the most relevant document for an input002
query on a dense representation space, have003
gained considerable attention for their remark-004
able success. Yet, dense models require a vast005
amount of labeled training data for notable per-006
formance, whereas it is often challenging to ac-007
quire query-document pairs annotated by hu-008
mans. To tackle this problem, we propose a009
simple but effective Document Augmentation010
for dense Retrieval (DAR) framework, which011
augments the representations of documents012
with their interpolation and perturbation. We013
validate the performance of DAR on retrieval014
tasks with two benchmark datasets, showing015
that the proposed DAR significantly outper-016
forms relevant baselines on the dense retrieval017
of both the labeled and unlabeled documents.018

1 Introduction019

Retrieval systems aim at retrieving the documents020

most relevant to the input queries, and have re-021

ceived substantial spotlight since they work as core022

elements in diverse applications, especially for023

open-domain question answering (QA) (Voorhees,024

1999). Open-domain QA is a task of answering025

the question from a massive amount of documents,026

often requiring two components, a retriever and a027

reader (Chen et al., 2017; Karpukhin et al., 2020).028

Specifically, a retriever ranks the most question-029

related documents, and a reader answers the ques-030

tion using the retrieved documents.031

Traditional sparse retrieval approaches such as032

BM25 (Robertson et al., 1994) and TF-IDF rely033

on term-based matching, hence suffering from the034

vocabulary mismatch problem: the failure of re-035

trieving relevant documents due to the lexical dif-036

ference from queries. To tackle such a problem,037

recent research focuses on dense retrieval mod-038

els to generate learnable dense representations for039

queries and documents with a dual encoder struc-040

ture (Karpukhin et al., 2020; Xiong et al., 2021).041
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Figure 1: (Left) A number of labeled and unlabeled
documents for the Natural Question dataset. (Right) T-
SNE (Maaten and Hinton, 2008) visualization of randomly
sampled document representations from the DPR model.

Despite their recent successes, some challenges 042

still remain in the dense retrieval scheme for a cou- 043

ple of reasons. First, dense retrieval models need 044

a large amount of labeled training data for a de- 045

cent performance. However, as Figure 1 shows, 046

the proportion of labeled query-document pairs is 047

extremely small since it is almost impossible to 048

rely on humans for the annotations of a large docu- 049

ment corpus. Second, in order to adapt a retrieval 050

model to the real world, where documents con- 051

stantly emerge, handling unlabeled documents that 052

are not seen during training should obviously be 053

considered, but remains challenging. 054

To automatically expand the query-document 055

pairs, recent work generates queries from genera- 056

tive models (Liang et al., 2020; Ma et al., 2021) 057

or incorporates queries from other datasets (Qu 058

et al., 2021), and then generates extra pairs of aug- 059

mented queries and documents. However, these 060

query augmentation schemes have serious obvi- 061

ous drawbacks. First, it is infeasible to augment 062

queries for every document in the dataset (see the 063

number of unlabeled documents in Figure 1), since 064

generating and pairing queries are quite costly. Sec- 065

ond, even after obtaining new pairs, we need extra 066

training steps to reflect the generated pairs on the 067

retrieval model. Third, this query augmentation 068

method does not add variations to the documents 069

but only to the queries, thus it may be suboptimal 070

to handle enormous unlabeled documents. 071
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Figure 2: Our document augmenting schemes of interpola-
tion and perturbation on a dense representation space. Pos.
and Neg. denote positive and negative documents to the query.

Since augmenting additional queries is costly,072

the question is then if it is feasible to only manip-073

ulate the given query-document pairing to handle074

numerous unlabeled documents. To answer this075

question, we first visualize the embeddings of la-076

beled and unlabeled documents. Figure 1 shows077

that there is no distinct distributional shift between078

labeled and unlabeled documents. Thus it could079

be effective to manipulate only the labeled docu-080

ments to handle the nearby unlabeled documents as081

well as the labeled documents. Using this observa-082

tion, we propose a novel document augmentation083

method for a dense retriever, which not only in-084

terpolates two different document representations085

associated with the labeled query (Figure 2, center),086

but also stochastically perturbs the representations087

of labeled documents with a dropout mask (Fig-088

ure 2, right). One notable advantage of our scheme089

is that, since it manipulates only the representations090

of documents, our model does not require explicit091

annotation steps of query-document pairs, which is092

efficient. We refer to our overall method as Docu-093

ment Augmentation for dense Retrieval (DAR).094

We experimentally validate our method on stan-095

dard open-domain QA datasets, namely Natural096

Question (NQ) (Kwiatkowski et al., 2019) and Triv-097

iaQA (Joshi et al., 2017) (TQA), against various098

evaluation metrics for retrieval models. The experi-099

mental results show that our method significantly100

improves the retrieval performances on both the101

unlabeled and labeled documents. Furthermore, a102

detailed analysis of the proposed model shows that103

interpolation and stochastic perturbation positively104

contribute to the overall performance.105

Our contributions in this work are threefold:106

• We propose to augment documents for dense107

retrieval models to tackle the problem of insuffi-108

cient labels of query-document pairs.109

• We present two novel document augmentation110

schemes for dense retrievers: interpolation and111

perturbation of document representations.112

• We show that our method achieves outstanding113

retrieval performances on both labeled and unla-114

beled documents on open-domain QA tasks.115

2 Related Work 116

Dense Retriever Dense retrieval models (Lee 117

et al., 2019; Karpukhin et al., 2020) have gained 118

much attention, which generate dense representa- 119

tions for queries and documents. However, dense 120

retrieval faces a critical challenge from limited 121

training data. Recent work has addressed such a 122

problem by generating extra query-document pairs 123

to augment those pairs to the original dense re- 124

trieval model (Liang et al., 2020; Ma et al., 2021; 125

Qu et al., 2021), or by regularizing the model (Ros- 126

set et al., 2019). However, unlike ours that automat- 127

ically augments data during a training phase, these 128

methods require extensive computational resources 129

for an additional generation step of explicitly query- 130

document pairing before retriever’s training. 131

Data Augmentation Since enlarging the volume 132

of training data is crucial to the performance of 133

deep neural networks, data augmentation is applied 134

to diverse domains (Shorten and Khoshgoftaar, 135

2019; Hedderich et al., 2021), where interpolation 136

and perturbation are dominant methods. Mixup 137

interpolates two different items, such as pixels of 138

images, to augment the training data (Zhang et al., 139

2018; Verma et al., 2019), which is also recently 140

adopted for NLP tasks (Chen et al., 2020a; Yin 141

et al., 2021). However, none of the previous work 142

has shown the effectiveness of mixup when applied 143

to retrieval tasks. Besides interpolation, Wei and 144

Zou (2019) and (Ma, 2019) proposed perturbation 145

over words, and Lee et al. (2021) proposed pertur- 146

bation over word embeddings. Jeong et al. (2021) 147

perturbed document embeddings to generate di- 148

verse summaries. In contrast, we address the dense 149

retrieval task by perturbing document representa- 150

tions with dropout (Srivastava et al., 2014). 151

3 Method 152

We begin with the definition of dense retrieval. 153

Dense Retrieval Given a pair of query q and doc- 154

ument d, the goal of dense retrieval is to correctly 155

calculate a similarity score between them from the 156

dense representations q and d, as follows: 157

f(q, d) = sim(q,d),

q = EQ(q; θq) and d = ED(d; θd),
(1) 158

where f is a scoring function that measures the 159

similarity between a query-document pair, sim is a 160

similarity metric such as cosine similarity, and EQ 161

and ED are dense encoders for a query and docu- 162

ment, respectively, with parameters θ = (θq, θd). 163
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Natural Questions (NQ) TriviaQA (TQA)
MRR MAP T-100 T-20 T-5 T-1 MRR MAP T-100 T-20 T-5 T-1

BM25 32.46 20.78 78.25 62.94 43.77 22.11 55.28 34.85 83.15 76.41 66.28 46.30
DPR 39.55 25.61 83.77 72.94 54.02 27.45 44.29 27.24 80.50 71.07 57.74 33.63
DPR w/ QA 40.00 24.93 83.46 72.13 55.46 27.67 46.27 28.08 80.76 71.88 59.14 35.90
DPR w/ DA 41.28 26.60 83.68 72.83 55.51 29.31 46.08 27.82 80.42 71.55 58.64 35.85
DPR w/ AR 41.18 26.04 83.60 73.41 55.51 29.11 45.13 27.57 80.65 71.68 58.09 34.52
DAR (Ours) 42.92 27.12 84.18 75.04 57.62 30.42 47.32 28.70 81.30 72.66 59.88 36.94

Table 1: Retrieval results on NQ and TQA datasets. BM25 is the sparse retrieval model, whereas
others are dense retrieval models. The numbers in bold denote the best model among dense
retrieval models, which we aim to improve in this work.

Labeled
43
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47

48 DPR
DPR w/ QA
DPR w/ DA
DPR w/ AR
DAR (Ours)

Unlabeled
34

35

36

37

38

39
MRR on Natural Question

Figure 3: Retrieval results on
the labeled and unlabeled doc-
uments in the NQ dataset.

A dense retrieval scheme generally uses the164

negative sampling strategy to distinguish the rel-165

evant query-document pairs from irrelevant pairs,166

which generates an effective representation space167

for queries and documents. We specify a relevant168

query-document pair as (q, d+) ∈ τ+, and an irrel-169

evant pair as (q, d−) ∈ τ−, where τ+ ∩ τ− = ∅.170

The objective function is as follows:171

min
θ

∑
(q,d+)∈τ+

∑
(q,d−)∈τ−

L(f(q, d+), f(q, d−)), (2)172

where a loss function L is a negative log-likelihood173

of the positive document. Our goal is to augment174

a set of query-document pairs, by manipulating175

documents with their interpolation or perturbation,176

which we explain in the next paragraphs.177

Interpolation with Mixup As shown in interpo-178

lation of Figure 2, we aim at augmenting the doc-179

ument representation located between two labeled180

documents to obtain more query-document pairs,181

which could be useful to handle unlabeled docu-182

ments in the middle of two labeled documents. To183

achieve this goal, we propose to interpolate the184

positive and negative documents (d+, d−) for the185

given query q, adopting mixup (Zhang et al., 2018).186

Note that, since the input documents to the encoder187

ED are discrete, we use the output embeddings of188

documents to interpolate them, as follows:189

d̃ = λd+ + (1− λ)d−, (3)190

where d̃ is the mixed representation of positive191

and negative documents for the given query q, and192

λ ∈ [0, 1]. We then optimize the model to estimate193

the similarity sim(q, d̃) between the interpolated194

document and the query as the soft label λ with a195

binary cross-entropy loss. The output of the cross-196

entropy loss is added to the original loss in equa-197

tion 2. One notable advantage of our scheme is198

that the negative log-likelihood loss in equation 2199

maximizes the similarity score of the positive pair,200

while minimizing the score of the negative pair;201

thus there are no intermediate similarities between202

# Query MRR R@1k

10K ANCE 42.62 94.60
+ DAR 46.31 94.81

50K ANCE 46.88 95.58
+ DAR 48.20 95.58

Table 2: Results on the
MS MARCO subsets with
ANCE as a denser retriever.

Time (Min.) Relative Time
DPR 19 1.00
DPR w/ QA 41 2.16
DPR w/ DA 38 2.00
DPR w/ AR 29 1.53
DAR (Ours) 21 1.11

Table 3: Wall-clock time and
its relative time for training a
DPR model per epoch.

arbitrary query-document pairs. However, ours 203

can obtain query-document pairs having soft labels, 204

rather than strict positive or negative classes, by 205

interpolating the positive and negative documents. 206

Stochastic Perturbation with Dropout In addi- 207

tion to our interpolation scheme to handle unla- 208

beled documents in the space of interpolation of 209

two labeled documents, we further aim at perturb- 210

ing the labeled document to handle its nearby un- 211

labeled documents as shown in Figure 2 right. In 212

order to do so, we randomly mask the representa- 213

tion of the labeled document, obtained by the doc- 214

ument encoder ED, with dropout, where we sam- 215

ple masks from a Bernoulli distribution. In other 216

words, if we sample n different masks from the 217

distribution, we obtain n different query-document 218

pairs
{
(q,d+

i )
}i=n
i=1

from one positive pair (q,d+). 219

By doing so, we augment n times more positive 220

query-document pairs by replacing a single posi- 221

tive pair (q, d+) in equation 2. Moreover, since the 222

document perturbation is orthogonal to the interpo- 223

lation, we further interpolate between the perturbed 224

positive document d+
i and the negative document 225

d− for the given query in equation 3, to augment a 226

soft query-document pair from perturbation. 227

Efficiency Data augmentation methods are gener- 228

ally vulnerable to efficiency, since they need a vast 229

amount of resources to generate data and to forward 230

the generated data into the large language model. 231

However, since our interpolation and perturbation 232

methods only manipulate the already obtained rep- 233

resentations of the documents from the encoder 234

ED, we don’t have to newly generate document 235

texts and also to forward generated documents into 236

the model, which greatly saves time (See Table 3). 237

We provide a detailed analysis and discussion of 238

efficiency across models in Appendix B.2. 239
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MRR MAP T-20 T-5
DAR (Ours) 42.92 27.12 75.04 57.62
w/o Perturbation 41.26 26.19 73.68 55.37
w/o Interpolation 40.40 25.70 73.41 55.29
DPR 39.55 25.61 72.94 54.02

Table 4: Ablation studies of our DAR on the Natural
Questions (NQ) dataset.

8 16 32
Batch sizes
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20
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DAR (Ours)

Figure 4: T-20 on the NQ dataset
with varying batch sizes.
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Number of retrieved documents

34
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36
37
38
39
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DAR (Ours)

Figure 5: Exact Match (EM)
scores for a reader on the NQ.

4 Experiments240

4.1 Experimental Setups241

Here, we describe datasets, models, and implemen-242

tation details for experiments. For more experimen-243

tal details, please see Appendix A.244

Datasets For documents to retrieve, we use the245

Wikipedia, following Karpukhin et al. (2020),246

where the processed dataset contains 21,015,324247

passages. To evaluate retrieval models, we use two248

open-domain QA datasets, following Karpukhin249

et al. (2020): 1) Natural Questions (NQ) is col-250

lected with Google search queries (Kwiatkowski251

et al., 2019); 2) TriviaQA (TQA) is a QA collec-252

tion scraped from the Web (Joshi et al., 2017).253

Retrieval Models 1) BM25 is a sparse term-254

based retrieval model based on TF-IDF (Robertson255

et al., 1994). 2) Dense Passage Retriever (DPR)256

is a dense retrieval model with a dual-encoder of257

query-document pairs (Karpukhin et al., 2020). 3)258

DPR with Query Augmentation (DPR w/ QA)259

augments pairs with query generation for the doc-260

ument, adopting (Liang et al., 2020; Mao et al.,261

2021a). 4) DPR with Document Augmentation262

(DPR w/ DA) augments pairs by replacing words263

in the document (Ma, 2019). 5) DPR with Ax-264

iomatic Regularization (DPR w/ AR) regularizes265

the retrieval model to satisfy certain axioms (Ros-266

set et al., 2019). 6) DAR is ours with interpolation267

and perturbation of document representations.268

Implementation Details For all models, we set269

the training epoch as 25 and batch size as 32. We270

use in-batch negative sampling as our negative sam-271

pling strategy without hard negative samples. Also,272

we retrieve 100 passages per question.273

4.2 Results274

In this subsection, we show the overall performance275

of our DAR, and then give detailed analyses.276

Overall Results As Table 1 shows, DAR outper-277

forms dense retrieval baselines on all datasets on278

the DPR framework. Note that DAR contributes279

to more accurate retrieval performance, since the280

smaller K gives higher performance improvements.281

Furthermore, Figure 3 shows that, with our method,282

the retrieval performance on unlabeled documents 283

– not seen during training – together with the la- 284

beled ones is improved, where performance gains 285

on unlabeled are remarkable. To see the robustness 286

of DAR on other retrievers, we further evaluate 287

our model on the recent ANCE framework (See 288

Appendix A for setups). As Table 2 shows, we 289

observe that the performance improvement is more 290

dominant on MRR when given a smaller number of 291

training queries (low-resource settings), thus DAR 292

effectively augments document representations. 293

Effectiveness of Interpolation & Perturbation 294

Table 4 shows that each of the interpolation and 295

stochastic perturbation positively contributes to the 296

performance. In particular, when both of them are 297

simultaneously applied, the performance is much 298

improved, which demonstrates that these two tech- 299

niques are in a complementary relationship. 300

Batch Size We test DAR with varying numbers 301

of batch sizes. Figure 4 indicates that our DAR 302

consistently improves the retrieval performance. 303

Note that the smaller the batch size, the bigger 304

the performance gap. Also, the batch size 16 of 305

DAR outperforms the batch size 32 of the baseline, 306

which highlights that DAR effectively augments 307

document representations within a small batch. 308

Reader Performance To see whether accurately 309

retrieved documents lead to better QA performance, 310

we experiment with the same extractive reader from 311

DPR without additional re-training. Figure 5 illus- 312

trates the effectiveness of our method on passage 313

reading. Our reader performance can be further en- 314

hanced with advanced reading schemes (Mao et al., 315

2021a; Qu et al., 2021; Mao et al., 2021b). 316

5 Conclusion 317

We presented a novel method of augmenting doc- 318

ument representations focusing on dense retrieval 319

models, which require an extensive amount of la- 320

beled query-document pairs for training. Specif- 321

ically, we augment documents by interpolating 322

and perturbing their embeddings with mixup and 323

dropout masks. The experimental results and anal- 324

yses on two benchmark datasets demonstrate that 325

DAR remarkably improves retrieval performances. 326
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Train Val Test
Natural Question (NQ) 58,880 6,515 3,610
TriviaQA (TQA) 60,413 6,760 11,313
MS MARCO, # Query: 10K 6,591 6,980 -
MS MARCO, # Query: 50K 32,927 6,980 -

Table 5: Statistics for training, validation, and test sets on
the NQ, TQA, and randomly sampled MS MARCO datasets.
Note that, for MS MARCO, we only sample the number of
training query-document pairs except for the validation set.

A Experimental Setups524

Datasets To evaluate the performance of retrieval525

models, we need two types of datasets: 1) a set526

of documents to retrieve, and 2) pairs of a query527

and a relevant document, having an answer for528

the query. We first explain the dataset that we529

used for the DPR framework (Karpukhin et al.,530

2020), and then describe the dataset for the ANCE531

framework (Xiong et al., 2021).532

For documents to retrieve, we use the Wikipedia533

snapshot from December 20, 2018, which con-534

tains 21,015,324 passages consisting of 100 to-535

kens, and follow the dataset processing procedure536

of Karpukhin et al. (2020) for the DPR frame-537

work. For open-domain QA datasets, we use Natu-538

ral Question (NQ) (Kwiatkowski et al., 2019) and539

Trivia QA (TQA) (Joshi et al., 2017), following the540

dataset processing procedure of Karpukhin et al.541

(2020). We report the statistics of the training, vali-542

dation, and test sets on NQ and TQA in Table 5.543

To see the performance gain of our DAR on other544

dense retrieval models, we evaluate DAR on the545

ANCE framework (Xiong et al., 2021), which is546

one of the recent dense retrieval models. ANCE is547

evaluated on the MS MARCO dataset, thus we use548

MS MARCO for training and testing our model.549

Note that training ANCE with the full MS MARCO550

dataset requires 225 GPU hours even after exclud-551

ing the excessive BM25 pre-training and inference552

steps. Thus we randomly sample the MS MARCO553

dataset to train the model under the academic bud-554

gets. Specifically, the subset of our MS MARCO555

passage dataset contains 500,000 passages. Also,556

we randomly divide the training queries into two557

subsets: one for 10,000 training queries and the558

other for 50,000 training queries. Then we align559

the sampled training queries to the query-document560

pairs in the MS MARCO dataset. On the other561

hand, we do not modify the validation set (dev set)562

of query-document pairs for testing. We summa-563

rize the statistics of the dataset in Table 5. Note564

that since the test set of MS MARCO is not pub-565

licly open, we evaluate the dense retrievers with566

the validation set, following Xiong et al. (2021). 567

Metrics Here, we explain the evaluation metrics 568

for retrievers in detail. Specifically, given an in- 569

put query, we measure the ranks of the correctly 570

retrieved documents for the DPR framework with 571

the following metrics: 572

1) Top-K Accuracy (T-K): It measures whether 573

an answer of the given query is included in the 574

retrieved top-k documents. 575

2) Mean Reciprocal Rank (MRR): It com- 576

putes the rank of the first correct document for 577

the given query among the top-100 retrieved docu- 578

ments, and then computes the average of the recip- 579

rocal ranks for all queries. 580

3) Mean Average Precision (MAP): It com- 581

putes the mean of the average precision scores for 582

all queries, where precision scores are calculated 583

by the ranks of the correctly retrieved documents 584

among top-100 ranked documents. 585

Next, we explain the evaluation metric for the 586

reader, which identifies the answer from retrieved 587

documents. 588

1) Exact Match (EM): It measures whether the 589

reader exactly predicts one of the reference answers 590

for each question. 591

Note that, for the ANCE framework, we follow 592

the evaluation metrics, namely MRR@10 and Re- 593

call@1k, in the original paper (Xiong et al., 2021). 594

Experimental Implementation Details For 595

dense retrieval models based on the DPR frame- 596

work, we follow the dual-encoder structure of 597

query and document by using the publicly available 598

code from DPR1 (Karpukhin et al., 2020). For 599

all experiments, we set the batch size as 32, and 600

train models on a single GeForce RTX 3090 GPU 601

having 24GB memory. Note that, in contrast to 602

the best reported setting of DPR which requires 603

industrial-level resources of 8 V100 GPUs (8 × 604

32GB = 256GB) for training with a batch size of 605

128, we use a batch size of 32 to train the model 606

under academic budgets. We optimize the model 607

parameters of all dense retrieval models with the 608

Adam optimizer (Kingma and Ba, 2015) having a 609

learning rate of 2e-05. We train the models for 25 610

epochs, following the analysis2 that the training 611

phases converge after 25 epochs. 612

For the retrievers based on the ANCE frame- 613

work, we refer to the implementation from 614

1https://github.com/facebookresearch/DPR
2See footnote 1.
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ANCE3 (Xiong et al., 2021). In order to directly615

measure the performance gain of the dense retrieval616

models based on ANCE from using our DAR, we617

use the pre-trained RoBERTa without warming up618

with the BM25 negatives. We train all the dense619

retrieval models for 50,000 steps with a single620

GeForce RTX 3090 GPU having 24GB memory,621

and simultaneously generate the ANN index with622

another GeForce RTX 3090 GPU, following Xiong623

et al. (2021). Following the standard implementa-624

tion setting, we set the training batch size as 8, and625

optimize the model with the LAMB optimizer (You626

et al., 2020) with a learning rate of 1e-6.627

Architectural Implementation Details For our628

augmentation methods, we use both interpolation629

and perturbation schemes of document represen-630

tations obtained from the document encoder ED631

in equation 1. Specifically, given a positive query-632

document pair (q,d+), we first perturb the docu-633

ment representation d+ with dropout masks sam-634

pled from a Bernoulli distribution, which gener-635

ates n number of perturbed document representa-636

tions
{
d+
i

}i=n
i=1

. Then, we augment them to gen-637

erate n number of positive query-document pairs638 {
(q,d+

i )
}i=n
i=1

, which we use in equation 2. We639

search the number of perturbations n in the range640

from 3 to 9, and set the probability of the Bernoulli641

distribution as 0.1.642

Instead of only using positive or negative pairs,643

we further augment query-document pairs hav-644

ing intermediate similarities with mixup. Specifi-645

cally, we interpolate the representations between646

the perturbed-positive document d+
i and the neg-647

ative document d− for the given query q, with648

λ ∈ [0, 1] in equation 3 sampled from a uniform649

distribution. Note that, given a positive pair of a650

query and a document, we consider the other docu-651

ments except for the positive document in the batch652

as the negative documents. In other words, if we653

set the batch size as 32, then we could generate 31654

interpolated document representations from 1 posi-655

tive pair and 31 negative pairs. To jointly train the656

interpolation scheme with the original objective,657

we add the loss obtained from interpolation to the658

loss in equation 2.659

3https://github.com/microsoft/ANCE

MRR MAP T-100 T-1
DPR+HN 53.40 33.38 84.82 43.21
DAR+HN (Ours) 54.18 33.71 85.35 44.18

Table 6: Retrieval results with hard negatives (HN) from
BM25 on the NQ dataset for the DPR framework.

B Additional Experimental Results 660

B.1 Negative Sampling 661

One of the recent progresses in dense retrieval 662

methods is to effectively sample negative query- 663

document pairs over the whole combinations of 664

queries and documents in a corpus. The most 665

simple yet efficient negative sampling method is 666

to sample negative pairs within the batch, where 667

the documents in the batch except for the posi- 668

tive document for a given query are considered as 669

the negative samples for the query. We use this 670

in-batch negative sampling scheme (Chen et al., 671

2020b; Karpukhin et al., 2020) in equation 2. How- 672

ever, we could further use the sophisticated nega- 673

tive sampling schemes with the expense of com- 674

puting resources. To mention a few, Karpukhin 675

et al. (2020) proposed to use BM25 (Robertson and 676

Zaragoza, 2009) to select the hard negative samples 677

that have the highest similarity score for the posi- 678

tive document but cannot answer the given query. 679

Also, Xiong et al. (2021) proposed to use learnable 680

dense retrieval models to construct global negative 681

samples from the entire corpus. 682

In our augmentation methods, we do not modify 683

the negative log-likelihood loss for negative sam- 684

ples in equation 2. Therefore, our method could 685

sample the negative pairs from any particular sam- 686

pling schemes: (q, d−) ∈ τ−. Thus, the negative 687

sampling approaches are orthogonal to our DAR, 688

from which the performance of DAR could be fur- 689

ther improved by advanced sampling techniques. 690

To see the effectiveness of our DAR coupled with 691

a sophisticated negative sampling scheme, we com- 692

pare DAR with the hard negative sampling strategy 693

from BM25 (Karpukhin et al., 2020) against the 694

baseline DPR with the same sampling strategy in 695

Table 6. The results in Table 6 show that DAR with 696

hard negative sampling outperforms the baseline 697

method. The results demonstrate that the perfor- 698

mance of dense retrieval models could be further 699

strengthened with a combination of our augmen- 700

tation methods and advanced negative sampling 701

techniques. Also, in all our experiments of the 702

ANCE framework, we already use the strategy of 703

negative sampling in Xiong et al. (2021), where we 704

observe the clear performance improvement of our 705
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Memory (MiB) Time (Min.) Relative Time
DPR 22,071 19 1.00
DPR w/ QA 22,071 41 2.16
DPR w/ DA 22,071 38 2.00
DPR w/ AR 38,986 29 1.53
DAR (Ours) 22,071 21 1.11

Table 7: Maximum memory usage and time for training a
DPR model per epoch.

DAR based on ANCE in Table 2.706

B.2 Efficiency707

As described in the Efficiency paragraph of Sec-708

tion 3, compared to the existing query augmen-709

tation methods (Liang et al., 2020; Ma et al.,710

2021; Qu et al., 2021), document augmentation711

method (Ma, 2019), and word replacement method712

for regularization (Rosset et al., 2019), our method713

of augmenting document representations with inter-714

polation and perturbation in a dense representation715

space is highly efficient. This is because, unlike the716

baselines above, we do not explicitly generate or re-717

place a query or document text; but rather we only718

manipulate the representations of documents. This719

scheme greatly saves the time for training, since720

additional forwarding of the generated or replaced721

query-document pairs into the language model is722

not required for our data augmentation methods.723

To empirically validate the efficiency of our724

methods against the baselines, we report the mem-725

ory usage and time for training a retrieval model per726

epoch in Table 7. In case of memory efficiency, all727

the compared dense retrieval models using data aug-728

mentation methods, including ours, use the same729

amount of maximum GPU memory. This shows730

that the overhead of memory usage comes from op-731

erations in the large-size language model, such as732

BERT (Devlin et al., 2019), not from manipulating733

the obtained document representations to augment734

the query-document pairs. Technically speaking,735

there are no additional parameters to augment doc-736

ument representations; thus our interpolation and737

perturbation methods do not increase the memory738

usage. On the other hand, DPR w/ AR excessively739

increases the memory usage, since it requires an740

extra forwarding process to the language model to741

represent the additional word-replaced sentences742

for regularization, instead of using the already ob-743

tained dense representations like ours.744

We also report the training time for dense re-745

trieval models in Table 7. Note that, for the explicit746

augmentation method based models, such as DPR747

w/ QA and DPR w/ DA, we exclude the extra time748

for training a generation model and generating a749

query or document for the given text. Also, we750

T-5 T-20 T-100
DPR (Karpukhin et al., 2020) 52.1 70.8 82.1
DPR (Ours) 53.2 71.6 82.7

Table 8: Comparison of the DPR models’ top-k accuracy be-
tween the reported and reproduced scores. Best performance
is highlighted in bold.

additionally generate the same number of query- 751

document pairs in the training set, where the total 752

amount of training data-points for DPR w/ QA 753

and DPR w/ DA baselines are twice larger than 754

the original dataset. Unlike these explicit query 755

or document generation baselines, we perturb the 756

document n times, but also interpolate the repre- 757

sentations of positive and negative documents. As 758

shown in Table 7, our DAR is about doubly more 759

efficient than the explicit text augmentation meth- 760

ods, since DPR w/ QA and DPR w/ DA explicitly 761

augment query-document pairs instead of using the 762

obtained dense representations like ours. Also, our 763

DAR takes a little more time to augment document 764

representations than the base DPR model, while 765

significantly improving retrieval performances as 766

shown in Table 1. Even compared to the term 767

replacement based regularization model (DPR w/ 768

AR), our DAR shows noticeable efficiency, since 769

an additional embedding process of the document 770

after the word replacement on it requires another 771

forwarding step besides the original forwarding 772

step. 773

B.3 Reproduction of DPR 774

We strictly set the batch size as 32 for training 775

all the dense retrievers using the DPR framework; 776

therefore the retrieval performances are different 777

from the originally reported ones in Karpukhin 778

et al. (2020) that use a batch size of 128. However, 779

while we use the available code from the DPR pa- 780

per, one may wonder if our reproduction result is 781

accurate. Therefore, since Karpukhin et al. (2020) 782

provided the retrieval performances of the DPR 783

with different batch sizes (e.g., a batch size of 32), 784

evaluated on the development (validation) set of 785

the NQ dataset, we compare the Top-K accuracy 786

between the reported scores and our reproduced 787

scores. Table 8 shows that our reproduced Top-K 788

accuracy scores with three different Ks (e.g., Top- 789

5, Top-20, and Top-100) are indeed similar to the 790

reported ones, with ours even higher, thus showing 791

that our reproductions are accurate. 792
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