
Published as a conference paper at ICLR 2024

OMNI: OPEN-ENDEDNESS VIA MODELS OF HUMAN
NOTIONS OF INTERESTINGNESS

Jenny Zhang1,2 Joel Lehman3 Kenneth Stanley4 Jeff Clune1,2,5
1Department of Computer Science, University of British Columbia 2Vector Institute
3Stochastic Labs 4Maven 5Canada CIFAR AI Chair

ABSTRACT

Open-ended algorithms aim to learn new, interesting behaviors forever. That
requires a vast environment search space, but there are thus infinitely many possible
tasks. Even after filtering for tasks the current agent can learn (i.e., learning
progress), countless learnable yet uninteresting tasks remain (e.g., minor variations
of previously learned tasks). An Achilles Heel of open-endedness research is
the inability to quantify (and thus prioritize) tasks that are not just learnable, but
also interesting (e.g., worthwhile and novel). We propose solving this problem by
Open-endedness via Models of human Notions of Interestingness (OMNI). The
insight is that we can utilize foundation models (FMs) as a model of interestingness
(MoI), because they already internalize human concepts of interestingness from
training on vast amounts of human-generated data, where humans naturally write
about what they find interesting or boring. We show that FM-based MoIs improve
open-ended learning by focusing on tasks that are both learnable and interesting,
outperforming baselines based on uniform task sampling or learning progress
alone. This approach has the potential to dramatically advance the ability to
intelligently select which tasks to focus on next (i.e., auto-curricula), and could be
seen as AI selecting its own next task to learn, facilitating self-improving AI and
AI-Generating Algorithms.1

1 INTRODUCTION

Provided that the real, significant challenges of AI safety and existential risk can be solved (Critch
& Krueger, 2020; Bostrom, 2002; Turchin & Denkenberger, 2020; Ecoffet et al., 2020), there are
tremendous gains to be had by creating more powerful AI or even AGI. A great hope for AI is that
one day it can produce breakthroughs that fundamentally improve the human condition. These so-far
uniquely human advancements and discoveries are the hallmark of civilization, from the invention
of the wheel, to farming, vaccines, computers, and even rock and roll. Perhaps someday, AI could
achieve such major breakthroughs automatically. What does AI need to possess to discover such new
paradigms, as only humans have until now?

Much discussed in open-endedness research (Stanley et al., 2023), the ephemeral fuel behind civi-
lization’s prodigious output is the human intuition for interestingness. Drawing upon eons of human
experience, we can sense potential even when we don’t precisely know where it leads. Conventional
Reinforcement Learning (RL) tools (e.g., intrinsic motivation (Aubret et al., 2019; Pathak et al., 2017;
Osband et al., 2018; Colas et al., 2022; Oudeyer et al., 2007) and learning progress (Kanitscheider
et al., 2021; Matiisen et al., 2019; Portelas et al., 2020; Graves et al., 2017; Kovač et al., 2022;
Baranes & Oudeyer, 2013)) are so far only shadows of what such a human sense could do. However,
with the rise of foundation models (FMs) (Bommasani et al., 2021), such as large language models
(Radford et al., 2018), an intriguing prospect has arisen – trained on vast troves of human experience,
perhaps FMs have the potential to grapple for the first time with the critical question of what is
actually interesting to explore.

Open-ended learning algorithms, which could leverage such a notion of interestingness, seek to create
AI agents that, like humans, continuously learn a variety of different skills within a vast, complex,

1We recommend the version on arXiv (https://arxiv.org/abs/2306.01711), which is slightly
longer and thus able to explain things more clearly and more fully discuss the implications of this work. Project
website: https://www.jennyzhangzt.com/omni/.

1

https://arxiv.org/abs/2306.01711
https://www.jennyzhangzt.com/omni/

Published as a conference paper at ICLR 2024

ever-changing environment. The challenge addressed by interestingness is that, in such environments,
there are an infinite number of possible tasks, requiring some method to choose which tasks to try
to learn next at every point in training. Handcrafting curricula for training agents in open-ended
environments can be extremely challenging due to the sheer number of tasks and the need to adapt
to the agent’s skill level and learning progress. In pursuit of an algorithm that is applicable in any
domain and enables perpetual learning, handcrafting curricula proves to be an impractical solution.
Learning progress methods are a type of auto-curriculum approach that estimates which tasks are at
appropriate difficulty levels for the agent to learn from (Kanitscheider et al., 2021; Matiisen et al.,
2019; Portelas et al., 2020; Graves et al., 2017; Kovač et al., 2022; Baranes & Oudeyer, 2013).
However, such methods can be distracted by learnable yet uninteresting tasks. For example, an
agent could be bogged down indefinitely with rearranging silverware in slightly new configurations,
hindering it from trying other interesting tasks. Even after filtering for tasks that the current agent
can learn, countless learnable yet uninteresting tasks may persist (e.g., slight variations of previously
learned tasks). A key challenge in open-endedness research is the inability to quantify and thus focus
on tasks that are not only learnable but also interesting. There have been many attempts to quantify
interestingness, but, as we detail in Section 2, such simple, hand-crafted formulas consistently fall
short of truly capturing the essence of interestingness, creating crippling pathologies. This paper
proposes a different path forward.

To borrow from Newton, modern AI sees further by standing on the shoulders of giant human datasets.
Training on vast amounts of human-generated data has proven powerful in many cases, such as
text generation (e.g., GPT-3 (Brown et al., 2020)), image generation (e.g., DALL-E (Ramesh et al.,
2021)), and representation learning (e.g., CLIP (Radford et al., 2021)). We propose Open-endedness
via Models of human Notions of Interestingness (OMNI). OMNI leverages the power of FMs that
have already been trained on extensive human-generated data and have an inherent understanding of
human notions of interestingness (Brown et al., 2020; OpenAI, 2023). OMNI utilizes FMs as a model
of interestingness (MoI) to focus on tasks that are: (1) learnable, at appropriate difficulty levels for
the agents to learn from, and (2) interesting, roughly meaning worthwhile to learn and sufficiently
novel. The concepts of “interestingness”, “worthwhile”, and “novelty” are challenging to explicitly
define, let alone quantify, which is precisely what OMNI addresses. Humans can intuitively assess
these qualities despite their elusive and abstract nature, echoing Justice Potter Stewart’s sentiment of
“I know it when I see it” (Stewart, 1964). The goal of OMNI is to emulate this human capacity for
nuanced interestingness judgement in open-ended learning. We evaluate OMNI on three challenging
domains, Crafter (Hafner, 2021) (a 2D version of Minecraft), BabyAI (Chevalier-Boisvert et al.,
2018) (a 2D grid world for grounded language learning), and AI2-THOR (Kolve et al., 2017) (a 3D
photo-realistic embodied robotics environment). OMNI outperforms baselines based on uniform task
sampling or learning progress alone. Overall, OMNI has the potential to significantly enhance the
ability of AI to intelligently select which tasks to concentrate on next for endless learning and marks
a step towards self-improving AI and AI-Generating Algorithms (Clune, 2019).

2 RELATED WORK

2.1 AUTO-CURRICULUM LEARNING

Training neural networks with a curriculum has been extensively studied (Bengio et al., 2009).
Auto-curriculum learning has emerged as a promising research area in RL (Kanitscheider et al.,
2021; Matiisen et al., 2019; Portelas et al., 2020; Graves et al., 2017; Kovač et al., 2022; Baranes
& Oudeyer, 2013; Lehman & Stanley, 2011a; Eysenbach et al., 2018; Wang et al., 2019; 2020;
Akkaya et al., 2019; Florensa et al., 2018; Zhang et al., 2020; Campero et al., 2020; OpenAI et al.,
2021; Dennis et al., 2020; Gur et al., 2021; Jiang et al., 2021; Dharna et al., 2022), with approaches
based on success probabilities and reward thresholds (Wang et al., 2019; 2020; Akkaya et al., 2019;
Campero et al., 2020; Tan et al., 2023), regret (Dennis et al., 2020; Gur et al., 2021; Jiang et al.,
2021), or learning progress (Kanitscheider et al., 2021; Matiisen et al., 2019; Portelas et al., 2020;
Graves et al., 2017; Kovač et al., 2022; Baranes & Oudeyer, 2013). Static threshold-based approaches
provide a straightforward method for curriculum design. These approaches involve setting fixed
criteria for tasks based on their difficulty or complexity. An agent progresses to the subsequent
task in a predefined order only after mastering a simpler one. To handcraft an effective curriculum,
one would have to understand the relative difficulty of each task and identify tasks of suitable
difficulty corresponding to each phase of the agent’s learning trajectory. Doing this in a vast task
space is extremely difficult or even impossible. Regret-based methods compute per-task regret by

2

Published as a conference paper at ICLR 2024

taking the difference between the maximum known return and the average return over multiple
rollouts. Regret-based methods typically select tasks with high regret, under the assumption that
these tasks still offer substantial learning opportunities (Dennis et al., 2020; Gur et al., 2021; Jiang
et al., 2021). However, in stochastic environments, this approach may favor more stochastic and
less learnable tasks instead of less stochastic and more learnable ones (Kanitscheider et al., 2021).
Learning-progress-based curricula have the potential to mitigate these issues by monitoring the
agent’s progress and adapting the task selection accordingly (Kanitscheider et al., 2021; Matiisen
et al., 2019; Portelas et al., 2020; Graves et al., 2017; Kovač et al., 2022; Baranes & Oudeyer,
2013). Kanitscheider et al. (2021) demonstrated that learning progress can be measured reliably
and that learning-progress-based curricula can be applied to hard RL problems at scale. Our work
extends the learning-progress-based curriculum proposed by Kanitscheider et al. (2021). A notable
limitation of existing auto-curricula approaches is their inability to distinguish between interesting
and uninteresting tasks. Despite filtering for learnable tasks, open-ended environments may still
contain infinite learnable but uninteresting tasks. This paper proposes a novel method for identifying
and filtering interesting tasks and integrates it with a learning-progress-based auto-curriculum.

2.2 ATTEMPTS TO QUANTIFY INTERESTINGNESS

Many prior research papers have tried to encourage a predefined metric of novelty, diversity, explo-
ration, or open-endedness, but doing so requires quantifying these ineffable qualities. The problem
is that optimizing these quantitative measures often leads to undesirable or pathological outcomes,
resulting in an output that conforms to the defined metrics, rather than achieving the intended goal
(Aubret et al., 2019; Pathak et al., 2017; Osband et al., 2018; Colas et al., 2022; Oudeyer et al.,
2007; Etcheverry et al., 2020; Lehman & Stanley, 2011a; Mouret, 2011; Mouret & Clune, 2015;
Lehman & Stanley, 2011b; Eysenbach et al., 2018; Bellemare et al., 2016; Ecoffet et al., 2019; 2021;
Mendonca et al., 2023; Lehman & Stanley, 2012; Lehman et al., 2020; Nguyen et al., 2015; Auerbach
& Bongard, 2010; Zhou et al., 2023; Cai et al., 2023). As Goodhart’s law posits, “when a measure
becomes a target, it ceases to be a good measure” (Strathern, 1997). For example, an agent might
exploit a novelty measure by generating many superficially different but ultimately trivial solutions,
thus undermining the goal of discovering genuinely interesting outcomes (Lehman & Stanley, 2011a).
Similarly, based on how intrinsic motivation is measured, an agent could be biased towards certain
types of solutions, leading to a narrow exploration of the problem space rather than developing diverse
and valuable insights and innovations (Aubret et al., 2019). Attempting to manually specify a criteria
for what constitutes an interesting learning challenge is unlikely to yield satisfactory results. Instead,
this paper proposes harnessing FMs to model ineffable human notions of interestingness, gleaned
from large text corpora of existing human-generated data (e.g. training on the Internet).

2.3 PRE-TRAINED FOUNDATION MODELS IN OPEN-ENDEDNESS

Large language models have recently shown a remarkable ability to capture rich knowledge on an
extensive array of subjects from large-scale text corpora. They achieve impressive performance
across a wide range of natural language processing tasks (Brown et al., 2020; OpenAI, 2023; Kenton
& Toutanova, 2019; Liu et al., 2019; Min et al., 2021; Li et al., 2022; Colas et al., 2023) and display
profound understanding of complex concepts such as physics. Consequently, they are utilized in
many robotics domains (Huang et al., 2022b;a; Ahn et al., 2022; Yang et al., 2023; Lynch & Sermanet,
2020; Sharma et al., 2021; Kant et al., 2022; Kwon et al., 2023; Du et al., 2023; Driess et al.,
2023). There has been growing interest in using them for task selection or generation. Some studies
have investigated the application of FMs in breaking down high-level instructions into a sequence
of sub-goals, which can be executed by an agent in a zero-shot manner (Huang et al., 2022b;a;
Ahn et al., 2022; Yang et al., 2023; Colas et al., 2023; Zhu et al., 2023) or used to train modular
sub-policies (Lynch & Sermanet, 2020; Sharma et al., 2021). Kant et al. (2022) queries FMs for
zero-shot commonsense priors and apply them to a planning task. Other studies have utilized FMs to
estimate success rates for a given task or desired behavior (Kwon et al., 2023; Du et al., 2023; Colas
et al., 2023; Wang et al., 2023a;b). Moreover, FMs have been employed to generate or explain tasks,
enabling structured exploration in various environments (Du et al., 2023; Colas et al., 2023; Wang
et al., 2023a;b; Yuan et al., 2023). OMNI differs from Du et al. (2023) by considering an agent’s past
successes and employing FMs’ commonsense knowledge for adaptive task selection. Unlike Wang
et al. (2023a), which employs a code API generated by FMs, OMNI promotes direct action learning
via environment interaction, demanding potentially higher computational resources but bypassing
the need for and, critically, limitations of, domain-specific code APIs. While Colas et al. (2023) use

3

Published as a conference paper at ICLR 2024

deterministic environments and binary reward signals for trajectory success, OMNI adopts a more
nuanced approach in stochastic settings, recognizing that agents often improve over time and may not
always achieve consistent success rates.

3 METHODS

3.1 PROBLEM FORMULATION

We train task-conditioned agents, and formulate the RL problem as a partially observed Markov
decision process (Kaelbling et al., 1998) defined by a tuple (S,A, T ,R,O,Ω, γ). Observations
o ∈ Ω depend on the new environment states s ∈ S and actions taken a ∈ A via O(o|s, a). The
task which the agent is conditioned on is part of the environment state s. T (s′|s, a) describes the
dynamics of the environment. R(s, a) is the environment’s reward function. γ is a discount factor.
OMNI focuses on generating learnable and interesting tasks to condition the RL agent on.

3.2 LEARNING PROGRESS CURRICULUM

The task pool in open-ended environments can be very large and diverse, making it challenging for
an agent to learn effectively through uniform sampling. Most randomly sampled tasks are likely to be
impossible (or at least currently too hard for the agent to learn). To automatically identify tasks at the
frontier of the agent’s capabilities, we extend the learning-progress-based curriculum (without the
dynamic exploration bonus) from Kanitscheider et al. (2021).

The curriculum predominantly samples tasks with high learning progress, defined as an agent’s
recent change in task success probability. During training, the agent is periodically evaluated, and a
recent success probability estimate precent is calculated by applying an exponential moving average
(EMA) to the evaluated task success rates. precent is smoothed with a second, identical EMA to
obtain a slower-to-change reflection pgradual of the success probability. Since tasks with low success
probabilities are more likely to be novel and are harder to learn because the agent observes fewer
successes, precent and pgradual are reweighted to magnify the learning progress in tasks with low
success probabilities and reduce the learning progress in tasks with high success probabilities. This
reweighting also compensates for the temporal delay caused by the EMA (Figure 4). Bidirectional
learning progress, the absolute difference between the reweighted precent and pgradual, is used to
also focus learning on tasks where performance is degrading due to forgetting. Sampling of training
tasks is biased towards those that score the highest on this bidirectional learning progress measure.
We propose an extension to the approach from Kanitscheider et al. (2021), normalizing the task
success rates with the success rates achieved by a random action policy (Appendix A).

3.3 MODELING WHAT HUMANS FIND INTERESTING

An LP curriculum can be distracted by endless variations of uninteresting tasks. To address this
challenge, a Model of Interestingness (MoI) selects interesting tasks that offer substantial learning
value. Humans often intuitively know what might be useful for learning new skills or achieving goals
much later (Stanley & Lehman, 2015). This is evident in children playing to unknowingly acquire
skills, or scientists exploring new areas to uncover unexpected and beneficial knowledge for future
endeavors. This paper presents two (of many possible) instances of the OMNI principle: one in
finite task spaces (Section 3.3), and one in an infinite task space (Section 5.1). This section describes
OMNI the former, first outlining the process of using an FM to determine which tasks are interesting,
and then describing how the interestingness predictions are utilized to obtain task sampling weights.

Determining Interesting Tasks. This paper capitalizes on the capabilities of autoregressive FMs
to emulate human notions of interestingness. FMs are pretrained on vast and diverse text corpora,
enabling them to amass a significant amount of world knowledge. We prompt the FM in a few-shot
manner by providing it with examples of choosing which tasks are interesting. It takes into account
the agent’s existing proficiency on a given set of tasks and suggests what humans would typically find
interesting to learn next. Davinci GPT-3 (Brown et al., 2020) was utilized for the Crafter experiments
because it was the state-of-the-art language model available when the experiments were run. GPT-4
(OpenAI, 2023) was used for the BabyAI experiments, which were conducted later. Appendices B
and C show the full prompts.

Sampling Weights. OMNI aims to improve open-ended learning by focusing on tasks that are
both learnable and interesting (Figure H). The full OMNI algorithm is summarized in Algorithm 1.
Task sampling rates are first assigned based on the LP curriculum, with higher rates for tasks with

4

Published as a conference paper at ICLR 2024

higher learning progress (Section 3.2). Then, an FM-based MoI predicts which tasks are interesting
(Appendix I). Boring tasks have their sampling weights reduced by multiplying by 0.001. Finally,
task sampling rates are normalized to probabilities that sum to 1.

4 EXPERIMENTS IN A FINITE TASK SPACE

Ball

Agent

Key

Box

Locked
Door
Unlocked
Door
Open
Door

Collect Wood Collect Stone

Collect CoalCollect Iron

Collect Diamond

Place Table

Make Stone Sword

Place Stone

Place Furnace

Make Wood Sword

Make Wood Pickaxe

Make Stone Pickaxe

Make Iron Sword Make Iron Pickaxe

Collect Drink

Figure 1: Crafter and BabyAI environments. (Left) Agent view in a procedurally generated
Crafter world, showing terrain types, resources, and the agent’s inventory. (Middle) The 15 tasks
considered interesting for Crafter analyses. Arrows indicate which tasks in the technology tree
must be completed, often multiple times, along the way to perform more challenging tasks. (Right)
Bird’s-eye view of a randomly generated BabyAI environment, showing different object types, colors,
locations, and states. The agent is the red triangle and its view (sometimes occluded) is highlighted
in light grey. In this example, the agent starts from the bottom right room, and is tasked to “go to a
red ball”. To succeed, the agent must open the green door (sometimes locked) to reach the red ball.

4.1 CRAFTER ENVIRONMENT

We evaluate OMNI on Crafter (Hafner, 2021), a 2D version of Minecraft that enables collecting and
creating a set of artifacts organized along a technology tree. This means that certain tasks need to be
completed, often multiple times, as prerequisites for other more challenging tasks (Figure 1). Agents
receive RGB pixel observations (64 x 64 resolution) of a 9 x 9 grid area surrounding their position
within a 64 x 64 grid landscape that varies with each episode, offering a complex and engaging testing
ground. The agent is provided a target task (represented with a bag-of-words encoding) as part of its
observation and rewarded +1 upon successful completion of the conditioned task. We modify the
game to focus on gathering and crafting skills by eliminating the survival component. This removes
the need for the agent to learn and continually apply survival tactics against enemies or for food
gathering. The “sleep” and “place plant” actions are important for survival in the original game
and have been omitted due to their reduced relevance in our modified context, which excludes the
survival aspect. The original game consists of 22 tasks, of which, the 15 tasks unrelated to survival
are selected and considered interesting.

To investigate our hypothesis that focusing on interesting tasks with high learning progress will
improve performance, we dilute the 15 interesting tasks with 90 “boring” tasks and 1023 “extremely
challenging” tasks that serve as potential distractors for learning-progress-based approaches. Boring
tasks are generated as numerical repeats of interesting tasks, e.g., “collect N wood” where N ∈ [2, 10],
analogous to how minor numerical variations of real-world tasks are less interesting than tasks that
differ qualitatively. See Appendix K for the full list of boring tasks. Extremely challenging tasks
represent tasks that are too difficult for the agent to complete at its current state of learning, serving
as tasks that uniform sampling will waste time on, but that learning-progress-based methods should
successfully ignore. The agent is assumed to always fail at these extremely challenging tasks and
hence is always assigned a success rate of 0 for them. By analogy, consider the futility of attempting
to cook a 5-course meal before learning the basic skill of cutting a vegetable.

4.2 BABYAI ENVIRONMENT

We also evaluate OMNI on BabyAI (Chevalier-Boisvert et al., 2018), a readily available benchmark
domain characterized by its partially observable 2D grid world environment (Figure 1). We test on the
MiniBossLevel. While BossLevel is the most challenging level in BabyAI, we choose MiniBossLevel
as it has the same features as BossLevel but with a smaller room and lower probability of locked
rooms, speeding up training. For each episode, the room layout and item configuration are randomly
generated (using off-the-shelf configurations from Chevalier-Boisvert et al. (2018)). The grid world

5

Published as a conference paper at ICLR 2024

can have objects in six colors (red, green, blue, purple, yellow, grey), and of four types (key, ball,
box, door). The agent is randomly spawned at a location in the 9 x 9 grid world, containing four
3 x 3 rooms. The agent’s observation includes one-hot encodings of each of the 7 x 7 grid cells in
front of the agent (observations are set to a special symbol if occluded), and a description of the task
in natural language (embedded with a look-up table and GRU, see Appendix M for more details).
The agent receives a reward, proportional to the number of steps it took to finish, only when it has
successfully completed the given task. While the Baby Language grammar (Chevalier-Boisvert et al.,
2018) is limited to sequential tasks with a maximum of 2 instructions, we expanded this by permitting
tasks with up to 5 instructions, resulting in 1364 unique tasks. Each task is a sequence of instructions
(GoTo, PickUp, OpenDoor, PutNextTo), linked by the ordering constraint then. Object placements are
randomized each episode. Tasks with the same sequence of instructions but different object instances
are considered the same when sampling (e.g., “go to a blue ball” and “go to a red key” are considered
the same task “go to <object>”).

4.3 RESULTS

training steps

A
ve

ra
ge

 T
as

k
Su

cc
es

s
R

at
es

N
o

. o
f

Ta
sk

s
w

it
h

Su

cc
es

s
R

at
es

 >
 0

.2

― OMNI: LP + MoI

― LP

― Uniform

Uniform LP OMNI: LP + MoI

10075502501007550250 1007550250

training steps (million)

Figure 2: Results in Crafter. (Left) Conditional success probabilities of all tasks in Crafter. Tasks
are organized from simple to complex based on the prerequisite tasks that must be accomplished
before completing the target task. Task names (left of each row) are readable in a digital format with
zoom. (Right) Performance in Crafter on all tasks. While OMNI biases training towards interesting
tasks, it achieves higher average task success rates and learns more tasks than uniform sampling or
choosing tasks based on learning progress alone, even across all tasks.

Both Crafter and BabyAI RL agents are trained with PPO (Schulman et al., 2017), a standard RL
algorithm. Policy details and hyperparameters for the Crafter and BabyAI settings are in Appendices L
and M. We compare the performance of agents trained with: (1) Uniform sampling, (2) Learning
Progress (LP) only, and (3) OMNI: Learning Progress with additional filtering by a Model of
Interestingness (OMNI: LP + MoI). Uniform sampling, the control, samples all tasks with equal
probabilities. Uniform sampling is the most naive and samples tasks that are too easy or too difficult
for the agent most of the time. LP samples tasks based on the calculated learning progress weights
(Section 3.2), but is distracted by the many boring tasks. OMNI: LP + MoI focuses on the subset of
tasks with high learning progress that are also interesting (Section 3.3). All experiments are run for
100 million time steps and are repeated 10 times with different random seeds. Each experiment takes
about 33 hrs for Crafter and 60 hrs for BabyAI on a 24GB NVIDIA A10 GPU with 30 virtual CPUs.

We evaluate our methods with two metrics: (1) the average task success rate, and (2) the number of
tasks with success rates exceeding a predetermined threshold α. This study sets α = 0.2, consistent
with the selections made in related literature (Kanitscheider et al., 2021; Team et al., 2023). The first
metric reflects the agent’s average performance across all tasks, while the second metric captures the
extent to which the agent is a generalist that has decent competency on many different tasks. These
metrics are calculated on the full task set (Figures 2 and 7). Metrics calculated on interesting tasks
only are shown in Appendix O. All confidence intervals given are 95% median bootstrap confidence
intervals obtained by resampling 1000 times. Confidence intervals are reported with the following

6

Published as a conference paper at ICLR 2024

notation: stat (CI: lower – upper) where stat is the median across runs. Shaded areas in graphs
also indicate the 95% median bootstrap confidence interval obtained by resampling 1000 times.

Uniform Sampling. As expected, the results with uniform sampling are poor. Worse, the agents
did not improve over time as most tasks sampled are too difficult or too easy for the agent and
successes are extremely sparse (Figures 2 and 7). The agent is considered to have learned a task if its
conditional success probability on that task is at least 0.2. In Crafter, the agent learns 4 (CI: 4 – 6)
tasks (interesting or boring) and only 3 (CI: 2 – 3) interesting tasks. The agent achieves an average
task success rate of 0.030 (CI: 0.026 – 0.033) on interesting and boring tasks, and 0.103 (CI: 0.087 –
0.120) on interesting tasks only. In BabyAI, the agent learns only 1 (CI: 0 – 1) task and achieves an
average task success rate of 4.7e-3 (CI: 4.6e-3 – 5.0e-3) on all tasks.

Learning Progress Curriculum. By focusing on tasks with suitable difficulty, the agent learns to
do a lot more tasks with higher success rates than uniform sampling. In Crafter, the agent learns 55
(CI: 54 – 56) tasks (interesting or boring) and 9 (CI: 9 – 11) interesting tasks. The agent achieves
an average task success rate of 0.42 (CI: 0.41 – 0.43) on interesting and boring tasks, and 0.52 (CI:
0.50 – 0.56) on interesting tasks only. In BabyAI, the agent learns 4 (CI: 4 – 6) tasks and achieves an
average task success rate of 5.9e-3 (CI: 5.5e-3 – 6.2e-3) on all tasks. Across all metrics and in both
domains, the differences in performance between LP and Uniform at 25%, 50%, 75%, and 100% of
the way through training are statistically significant (all p < 1e-3, Mann Whitney U test), showing
that LP significantly outperforms uniform sampling (Figures 2 and 7). LP samples tasks that are
at the frontier of the agent’s capabilities (Figures 2, 7, 8, 14). When a task’s conditional success
probability changes, LP focuses more on it. Hence, there will be more rollouts where the task is the
given goal and thus more positive examples from which the agent can learn to solve the conditioned
task. However, LP is distracted by boring tasks (Figures 8 and 14). When the conditional success
probabilities of boring tasks change, LP allocates higher sampling weights to them even though they
are similar to other sampled tasks and might not expand the agent’s range of skills.

OMNI: Learning Progress + a Model of Interestingness. To automatically select and focus on
interesting tasks, an FM is prompted in a few-shot manner to predict which tasks are interesting. By
combining LP with an MoI, OMNI focuses on the subset of high learning progress tasks that are
interesting. In Crafter, the agent learns 82 (CI: 80 – 87) tasks (interesting or boring) and 14 (CI: 14 –
14) interesting tasks. The agent achieves an average task success rate of 0.56 (CI: 0.54 – 0.58) on
interesting and boring tasks, and 0.78 (CI: 0.76 – 0.80) on interesting tasks only. In BabyAI, the agent
learns 8 (CI: 7 – 10) tasks and achieves an average task success rate of 7.5e-3 (CI: 7.3e-3 – 7.7e-3) on
all tasks. Across all metrics and in both domains, the differences in performance between OMNI
and LP at 25%, 50%, 75%, and 100% of the way through training are statistically significant (all p <
1e-3, Mann Whitney U test), showing that OMNI significantly outperforms an LP-only curriculum
(Figures 2 and 7). OMNI is not distracted by uninteresting yet learnable tasks, and focuses on the
interesting tasks only (Figures 8 and 14). The trained agent not only achieves higher average task
success rates, but also learns more challenging tasks faster (Figures 2 and 7).

We thus know OMNI performs better than LP alone, but how good is it at predicting interesting tasks?
To address this, we created an oracle for the MoI, termed the Oracle Model of Interestingness (OMoI).
Impressively, the performance of the FM-based MoI is nearly on par with the oracle, suggesting that
OMNI is highly effective in identifying interesting tasks for the agent to learn on (Appendix P).

5 EXPERIMENTS IN AN INFINITE TASK SPACE

In truly open-ended settings, there are an infinite number of possible tasks. This section demonstrates
OMNI in such a setting. Essential to training an agent capable of handling any task in such an open-
ended learning framework is the development of a universal reward function, which can evaluate if
any task has been completed or not. This section proposes an instantiation of OMNI that solves that
problem by not only having FMs propose new, interesting tasks, but also by having the FM generate
the code for a reward function that determines to what extent each proposed task has been performed.

5.1 METHODS

In an infinite task space, it is impossible to evaluate every possible task to determine the agent’s
learning progress. Hence, instead of using a predefined set of tasks, we use a pretrained autoregressive
FM, GPT-4 (OpenAI, 2023), to generate learnable and interesting tasks throughout training. The LP
curriculum then produces task sampling rates over this growing task set (Section 3.2). We input tasks

7

Published as a conference paper at ICLR 2024

that the agent can do well and tasks that the agent cannot do yet, then prompt GPT-4 in a zero-shot
manner to suggest the next learnable and interesting tasks. Tasks done well are those completed with
success rates greater than a predefined threshold (0.6 in AI2-THOR experiments). We also ask GPT-4
to output a sequence of environment states (in code format) that can be used to check whether or not
the task has been successfully completed during training and evaluation. Appendix D shows the full
prompt and Appendix E shows an example output.

There are existing approaches that use FMs to generate code as reward functions (Kwon et al., 2023;
Wang et al., 2023a; Yu et al., 2023). This version of OMNI integrates the generation of the task and
the code requirements for task completion into a single output. This integrated approach ensures
that every generated task comes with a comprehensive definition of what constitutes its completion
(in code format). This approach can work for any domain in which one can run code to make
queries about the underlying state. We apply OMNI to a complex, embodied robotics kitchen domain,
AI2-THOR (Kolve et al., 2017), and show that OMNI is not only able to continuously generate
learnable and interesting tasks, but also learns more tasks over time than controls.

5.2 AI2-THOR ENVIRONMENT

training steps

― OMNI (interesting tasks added)
― LP (random tasks added)

― Uniform

N
o

. o
f

Ta
sk

s
w

it
h

 S
u

cc
es

s
R

at
es

 >
 0

.6

Performance on AI2-THOR domain

Go to an apple Identify a visible knife

See and pick up a spoon

Open a drawer

Pick up a fork

See and pick up a wine bottle

Slice the apple with the knife

Pick up a visible knife

See and open a cabinet

See and pick up a potato

See a coffee machine

Open a microwave

Pick up the egg

See a pan

See and pick up a dish sponge

Fill the cup with water from the faucet

Turn on the coffee machine

Eg
o

ce
n

tr
ic

 V
ie

w
B

ir
d

’s
 E

ye
 V

ie
w

Figure 3: AI2-THOR environment and results. (Left) Agent’s egocentric view and bird’s-eye view
in an AI2-THOR kitchen environment. (Right) OMNI learns more tasks than the Learning Progress
and Uniform sampling baselines. Example tasks learned by OMNI are shown in gray boxes.

AI2-THOR (Kolve et al., 2017) is an embodied 3D domain characterized by its near photo-realistic
environment (Figure 3). We train our methods on an AI2-THOR kitchen floorplan. The environ-
ment contains many objects commonly found in a real kitchen, such as food (e.g., apple, bread),
appliances (e.g., coffee machine, microwave), and tools (e.g., mug, pan). The agent has 13 discrete
actions: MoveAhead, RotateRight, RotateLeft, LookUp, LookDown, Pickup, Put,
Open, Close, ToggleOn, ToggleOff, Slice, and FillWithLiquid. We simplify the
action mechanics that require a target object as an argument (e.g., the Pickup action, which re-
quires a target object like Cup). Rather than force the agent to specify one of an infinite number
of possible objects, instead, if the object mentioned in the current task is visible and requires the
action to be applied to it to complete the task, it is automatically designated as the target object. If
not, the target defaults to the visible object nearest to the agent. The agent’s observation includes
300 x 300 RGB pixel observations of a 90°field of view, and a description of the task in natural
language (embedded with a look-up table and GRU, Appendix N). The agent receives a +1 reward,
with a small penalty of 0.001 for each time step, when it has successfully completed the given
task. A task can be described in natural language or by a sequence of environment states. For
the agent to complete a given task, it needs to sequentially achieve a list of environment states
(specified in code). For example, if the task is “Pick up an apple, then put it down”, the correspond-
ing code format could be [[obj_attributes("Apple", "isPickedUp": True)],
[obj_attributes("Apple", "isPickedUp": False)]], whereby the agent has to
achieve the first environment state where the apple is picked up, then achieve the second environment
state where the apple is not picked up. The task space is infinite, as there is no restriction on the
number of attributes to check for in each environment state, or the length of environment states to be
achieved sequentially when specifying each task.

8

Published as a conference paper at ICLR 2024

The complexity and variability of tasks and interactions in AI2-THOR are significant, yet represent
only a fraction of the possibilities of a Darwin Complete environment generator, meaning one that
can create any possible learning environment Clune (2019). By demonstrating OMNI in this infinite
AI2-THOR task space, we mark a step towards that ultimate, lofty goal of generating learnable and
interesting tasks in a search space that includes any conceivable environment.

5.3 RESULTS

AI2-THOR RL agents are trained with PPO (Schulman et al., 2017), a standard RL algorithm. Policy
details and hyperparameters are in Appendix N. We compare the performance of agents trained with:
(1) Uniform sampling (Appendix J.1), (2) LP, the Learning Progress curriculum over a growing task
set where random tasks are added (Appendix J.2), and (3) OMNI, which is the Learning Progress
curriculum applied over a growing task set where interesting and learnable tasks suggested by the
FM are added (Section 5.1). Uniform sampling, the control, uniformly samples any task within the
task space. Uniform sampling is naive and samples tasks that are too difficult for the agent most of
the time, hurting learning (before even factoring in whether the tasks are worth learning). LP samples
tasks based on the calculated learning progress weights (Section 3.2), but most tasks added to the
task set are too difficult. OMNI automatically generates learnable and interesting tasks for the agent
to learn on. All experiments are run for 1 million time steps and are repeated 10 times with different
random seeds. Each experiment takes ∼24 hrs on a 24GB NVIDIA A10 GPU with 30 virtual CPUs.

In this vast landscape of infinite potential tasks, it is impossible to evaluate on every conceivable task.
Hence, each method is only evaluated on tasks that have ever been sampled before. We measure our
methods by the number of tasks completed at a success rate greater than a predetermined threshold
(here, 0.6). All confidence intervals are 95% median bootstrap confidence intervals obtained by
resampling 1000 times. Confidence intervals are reported with the following notation: stat (CI:
lower – upper) where stat is the median across runs. Shaded areas in graphs also indicate the 95%
median bootstrap confidence interval obtained by resampling 1000 times.

Uniform Sampling. As expected, the results with uniform sampling are poor. The agent trained
with Uniform sampling learns 0 (CI: 0 – 2) tasks (defined here and other treatments as a conditional
success probability of at least 0.6).

Learning Progress Baseline. Although the LP curriculum allows the agent to focus on the learnable
tasks within the task set, because the tasks added to the task set are often too difficult, the agent does
not learn many tasks either. The agent trained with LP learns 2 (CI: 0 – 3) tasks.

OMNI. To automatically generate and learn interesting tasks, an FM is prompted in a zero-shot
manner to suggest the next new learnable and interesting tasks, augmenting the task set for the agent
to train on. The agent trained with OMNI learns 13 (CI: 11 – 17) tasks. The difference in performance
between OMNI and both baselines (Uniform sampling and LP baseline) at 25%, 50%, 75%, and
100% of the way through training are statistically significant (all p < 1e-3, Mann Whitney U test),
showing that OMNI significantly outperforms both Uniform sampling and the LP baseline (Figure 3).

6 DISCUSSION, FUTURE WORK, AND CONCLUSION

In conclusion, our work demonstrates the potential of using an MoI to significantly enhance auto-
curricula and the quest for open-ended learning algorithms by intelligently focusing on learnable and
interesting tasks. OMNI addresses the Achilles Heel of open-ended systems, which lies in defining
and quantifying interestingness, as previous attempts have resulted in pathologies when optimizing
against such definitions and quantifications. OMNI mitigates this problem by leveraging human
notions of interestingness to guide AI systems. There are numerous ways to implement the principles
of this new paradigm, and exploring different versions presents an exciting avenue for future research
(Appendix U). The generality and applicability of OMNI to other open-ended domains with vast task
spaces further underscores its significance. In the long run, it hints at a synergy between FMs and
open-endedness that simultaneously addresses looming challenges for both: how will FMs ultimately
rise to the level of creativity seen in the best of human innovation, and how will open-endedness
overcome the trap of diverging into a vast space of uninspiring mediocrity? By playing off each
other’s strengths, FMs can perhaps someday become essential engines of open-ended discovery and
begin to participate in the creative dance that has defined civilization since its inception.

9

Published as a conference paper at ICLR 2024

ACKNOWLEDGMENTS

This work was supported by the Vector Institute, the Canada CIFAR AI Chairs program, a grant from
Schmidt Futures, an NSERC Discovery Grant, and a generous donation from Rafael Cosman. We
also thank Andrew Dai, Cédric Colas, and members in our lab at the University of British Columbia,
namely Aaron Dharna, Ben Norman, and Shengran Hu, for insightful discussions and feedback.

REFERENCES

Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David, Chelsea
Finn, Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, et al. Do as i can, not as i say:
Grounding language in robotic affordances. arXiv preprint arXiv:2204.01691, 2022.

Ilge Akkaya, Marcin Andrychowicz, Maciek Chociej, Mateusz Litwin, Bob McGrew, Arthur Petron,
Alex Paino, Matthias Plappert, Glenn Powell, Raphael Ribas, et al. Solving rubik’s cube with a
robot hand. arXiv preprint arXiv:1910.07113, 2019.

Mihael Ankerst, Markus M Breunig, Hans-Peter Kriegel, and Jörg Sander. OPTICS: Ordering points
to identify the clustering structure. ACM Sigmod record, 28(2):49–60, 1999.

Arthur Aubret, Laetitia Matignon, and Salima Hassas. A survey on intrinsic motivation in reinforce-
ment learning. arXiv preprint arXiv:1908.06976, 2019.

Joshua E Auerbach and Josh C Bongard. Evolving CPPNs to grow three-dimensional physical
structures. In Proceedings of the 12th annual conference on Genetic and evolutionary computation,
pp. 627–634, 2010.

Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones,
Anna Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, et al. Constitutional AI:
Harmlessness from AI feedback. arXiv preprint arXiv:2212.08073, 2022.

Adrien Baranes and Pierre-Yves Oudeyer. Active learning of inverse models with intrinsically
motivated goal exploration in robots. Robotics and Autonomous Systems, 61(1):49–73, 2013.

Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Remi Munos.
Unifying count-based exploration and intrinsic motivation. Advances in neural information
processing systems, 29, 2016.

Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In
Proceedings of the 26th annual international conference on machine learning, pp. 41–48, 2009.

Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx,
Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. On the opportuni-
ties and risks of foundation models. arXiv preprint arXiv:2108.07258, 2021.

Nick Bostrom. Existential risks: Analyzing human extinction scenarios and related hazards. Journal
of Evolution and technology, 9, 2002.

Herbie Bradley, Andrew Dai, Hannah Teufel, Jenny Zhang, Koen Oostermeijer, Marco Bellagente,
Jeff Clune, Kenneth Stanley, Grégory Schott, and Joel Lehman. Quality-Diversity through AI
Feedback. arXiv preprint arXiv:2310.13032, 2023.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Shaofei Cai, Zihao Wang, Xiaojian Ma, Anji Liu, and Yitao Liang. Open-world multi-task control
through goal-aware representation learning and adaptive horizon prediction. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13734–13744, 2023.

Andres Campero, Roberta Raileanu, Heinrich Küttler, Joshua B Tenenbaum, Tim Rocktäschel, and
Edward Grefenstette. Learning with amigo: Adversarially motivated intrinsic goals. arXiv preprint
arXiv:2006.12122, 2020.

10

Published as a conference paper at ICLR 2024

Maxime Chevalier-Boisvert, Dzmitry Bahdanau, Salem Lahlou, Lucas Willems, Chitwan Saharia,
Thien Huu Nguyen, and Yoshua Bengio. Babyai: A platform to study the sample efficiency of
grounded language learning. arXiv preprint arXiv:1810.08272, 2018.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences. Advances in neural information processing
systems, 30, 2017.

Jeff Clune. AI-GAs: AI-generating algorithms, an alternate paradigm for producing general artificial
intelligence. arXiv preprint arXiv:1905.10985, 2019.

Cédric Colas, Tristan Karch, Olivier Sigaud, and Pierre-Yves Oudeyer. Autotelic agents with
intrinsically motivated goal-conditioned reinforcement learning: a short survey. Journal of
Artificial Intelligence Research, 74:1159–1199, 2022.

Cédric Colas, Laetitia Teodorescu, Pierre-Yves Oudeyer, Xingdi Yuan, and Marc-Alexandre Côté.
Augmenting Autotelic Agents with Large Language Models. arXiv preprint arXiv:2305.12487,
2023.

Andrew Critch and David Krueger. AI research considerations for human existential safety
(ARCHES). arXiv preprint arXiv:2006.04948, 2020.

Michael Dennis, Natasha Jaques, Eugene Vinitsky, Alexandre Bayen, Stuart Russell, Andrew Critch,
and Sergey Levine. Emergent complexity and zero-shot transfer via unsupervised environment
design. Advances in neural information processing systems, 33:13049–13061, 2020.

Rahul Dey and Fathi M Salem. Gate-variants of gated recurrent unit (GRU) neural networks. In 2017
IEEE 60th international midwest symposium on circuits and systems (MWSCAS), pp. 1597–1600.
IEEE, 2017.

Aaron Dharna, Amy K Hoover, Julian Togelius, and Lisa Soros. Transfer dynamics in emergent
evolutionary curricula. IEEE Transactions on Games, 2022.

Li Ding, Jenny Zhang, Jeff Clune, Lee Spector, and Joel Lehman. Quality Diversity through Human
Feedback. arXiv preprint arXiv:2310.12103, 2023.

Danny Driess, Fei Xia, Mehdi SM Sajjadi, Corey Lynch, Aakanksha Chowdhery, Brian Ichter, Ayzaan
Wahid, Jonathan Tompson, Quan Vuong, Tianhe Yu, et al. Palm-e: An embodied multimodal
language model. arXiv preprint arXiv:2303.03378, 2023.

Yuqing Du, Olivia Watkins, Zihan Wang, Cédric Colas, Trevor Darrell, Pieter Abbeel, Abhishek
Gupta, and Jacob Andreas. Guiding Pretraining in Reinforcement Learning with Large Language
Models. arXiv preprint arXiv:2302.06692, 2023.

Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O Stanley, and Jeff Clune. Go-explore: a new
approach for hard-exploration problems. arXiv preprint arXiv:1901.10995, 2019.

Adrien Ecoffet, Jeff Clune, and Joel Lehman. Open Questions in Creating Safe Open-ended AI:
Tensions Between Control and Creativity. In ALIFE 2020: The 2020 Conference on Artificial Life,
pp. 27–35. MIT Press, 2020.

Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O Stanley, and Jeff Clune. First return, then
explore. Nature, 590(7847):580–586, 2021.

Mayalen Etcheverry, Clément Moulin-Frier, and Pierre-Yves Oudeyer. Hierarchically organized
latent modules for exploratory search in morphogenetic systems. Advances in Neural Information
Processing Systems, 33:4846–4859, 2020.

Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diversity is all you need:
Learning skills without a reward function. arXiv preprint arXiv:1802.06070, 2018.

Carlos Florensa, David Held, Xinyang Geng, and Pieter Abbeel. Automatic goal generation for
reinforcement learning agents. In International conference on machine learning, pp. 1515–1528.
PMLR, 2018.

11

Published as a conference paper at ICLR 2024

Alex Graves, Marc G Bellemare, Jacob Menick, Remi Munos, and Koray Kavukcuoglu. Automated
curriculum learning for neural networks. In international conference on machine learning, pp.
1311–1320. PMLR, 2017.

Izzeddin Gur, Natasha Jaques, Kevin Malta, Manoj Tiwari, Honglak Lee, and Aleksandra Faust. Ad-
versarial environment generation for learning to navigate the web. arXiv preprint arXiv:2103.01991,
2021.

Danijar Hafner. Benchmarking the spectrum of agent capabilities. arXiv preprint arXiv:2109.06780,
2021.

Wenlong Huang, Pieter Abbeel, Deepak Pathak, and Igor Mordatch. Language models as zero-shot
planners: Extracting actionable knowledge for embodied agents. In International Conference on
Machine Learning, pp. 9118–9147. PMLR, 2022a.

Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan, Jacky Liang, Pete Florence, Andy Zeng, Jonathan
Tompson, Igor Mordatch, Yevgen Chebotar, et al. Inner monologue: Embodied reasoning through
planning with language models. arXiv preprint arXiv:2207.05608, 2022b.

David Yu-Tung Hui, Maxime Chevalier-Boisvert, Dzmitry Bahdanau, and Yoshua Bengio. BabyAI
1.1. arXiv preprint arXiv:2007.12770, 2020.

Minqi Jiang, Edward Grefenstette, and Tim Rocktäschel. Prioritized level replay. In International
Conference on Machine Learning, pp. 4940–4950. PMLR, 2021.

Leslie Pack Kaelbling, Michael L Littman, and Anthony R Cassandra. Planning and acting in partially
observable stochastic domains. Artificial intelligence, 101(1-2):99–134, 1998.

Ingmar Kanitscheider, Joost Huizinga, David Farhi, William Hebgen Guss, Brandon Houghton,
Raul Sampedro, Peter Zhokhov, Bowen Baker, Adrien Ecoffet, Jie Tang, et al. Multi-task cur-
riculum learning in a complex, visual, hard-exploration domain: Minecraft. arXiv preprint
arXiv:2106.14876, 2021.

Yash Kant, Arun Ramachandran, Sriram Yenamandra, Igor Gilitschenski, Dhruv Batra, Andrew Szot,
and Harsh Agrawal. Housekeep: Tidying virtual households using commonsense reasoning. In
Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022,
Proceedings, Part XXXIX, pp. 355–373. Springer, 2022.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott
Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of naacL-HLT, volume 1,
pp. 2, 2019.

Eric Kolve, Roozbeh Mottaghi, Winson Han, Eli VanderBilt, Luca Weihs, Alvaro Herrasti, Matt
Deitke, Kiana Ehsani, Daniel Gordon, Yuke Zhu, et al. AI2-thor: An interactive 3d environment
for visual AI. arXiv preprint arXiv:1712.05474, 2017.

Grgur Kovač, Adrien Laversanne-Finot, and Pierre-Yves Oudeyer. Grimgep: learning progress for
robust goal sampling in visual deep reinforcement learning. IEEE Transactions on Cognitive and
Developmental Systems, 99:1–1, 2022.

Minae Kwon, Sang Michael Xie, Kalesha Bullard, and Dorsa Sadigh. Reward design with language
models. arXiv preprint arXiv:2303.00001, 2023.

Joel Lehman and Kenneth O Stanley. Abandoning objectives: Evolution through the search for
novelty alone. Evolutionary computation, 19(2):189–223, 2011a.

Joel Lehman and Kenneth O Stanley. Evolving a diversity of virtual creatures through novelty search
and local competition. In Proceedings of the 13th annual conference on Genetic and evolutionary
computation, pp. 211–218, 2011b.

12

Published as a conference paper at ICLR 2024

Joel Lehman and Kenneth O Stanley. Beyond open-endedness: Quantifying impressiveness. In
ALIFE 2012: The Thirteenth International Conference on the Synthesis and Simulation of Living
Systems, pp. 75–82. MIT Press, 2012.

Joel Lehman, Jeff Clune, Dusan Misevic, Christoph Adami, Lee Altenberg, Julie Beaulieu, Peter J
Bentley, Samuel Bernard, Guillaume Beslon, David M Bryson, et al. The surprising creativity of
digital evolution: A collection of anecdotes from the evolutionary computation and artificial life
research communities. Artificial life, 26(2):274–306, 2020.

Xiang Lorraine Li, Adhiguna Kuncoro, Jordan Hoffmann, Cyprien de Masson d’Autume, Phil
Blunsom, and Aida Nematzadeh. A systematic investigation of commonsense knowledge in
large language models. In Proceedings of the 2022 Conference on Empirical Methods in Natural
Language Processing, pp. 11838–11855, 2022.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

Corey Lynch and Pierre Sermanet. Language conditioned imitation learning over unstructured data.
arXiv preprint arXiv:2005.07648, 2020.

Tambet Matiisen, Avital Oliver, Taco Cohen, and John Schulman. Teacher–student curriculum
learning. IEEE transactions on neural networks and learning systems, 31(9):3732–3740, 2019.

Russell Mendonca, Shikhar Bahl, and Deepak Pathak. Alan: Autonomously exploring robotic agents
in the real world. arXiv preprint arXiv:2302.06604, 2023.

Bonan Min, Hayley Ross, Elior Sulem, Amir Pouran Ben Veyseh, Thien Huu Nguyen, Oscar Sainz,
Eneko Agirre, Ilana Heinz, and Dan Roth. Recent advances in natural language processing via
large pre-trained language models: A survey. arXiv preprint arXiv:2111.01243, 2021.

Jean-Baptiste Mouret. Novelty-based multiobjectivization. In New Horizons in Evolutionary Robotics:
Extended Contributions from the 2009 EvoDeRob Workshop, pp. 139–154. Springer, 2011.

Jean-Baptiste Mouret and Jeff Clune. Illuminating search spaces by mapping elites. arXiv preprint
arXiv:1504.04909, 2015.

Anh Mai Nguyen, Jason Yosinski, and Jeff Clune. Innovation engines: Automated creativity and
improved stochastic optimization via deep learning. In Proceedings of the 2015 annual conference
on genetic and evolutionary computation, pp. 959–966, 2015.

OpenAI. GPT-4 Technical Report. ArXiv, abs/2303.08774, 2023.

OpenAI OpenAI, Matthias Plappert, Raul Sampedro, Tao Xu, Ilge Akkaya, Vineet Kosaraju, Peter
Welinder, Ruben D’Sa, Arthur Petron, Henrique P d O Pinto, et al. Asymmetric self-play for
automatic goal discovery in robotic manipulation. arXiv preprint arXiv:2101.04882, 2021.

Ian Osband, John Aslanides, and Albin Cassirer. Randomized prior functions for deep reinforcement
learning. Advances in Neural Information Processing Systems, 31, 2018.

Pierre-Yves Oudeyer, Frdric Kaplan, and Verena V Hafner. Intrinsic motivation systems for au-
tonomous mental development. IEEE transactions on evolutionary computation, 11(2):265–286,
2007.

Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration
by self-supervised prediction. In International conference on machine learning, pp. 2778–2787.
PMLR, 2017.

Ethan Perez, Florian Strub, Harm De Vries, Vincent Dumoulin, and Aaron Courville. Film: Visual
reasoning with a general conditioning layer. In Proceedings of the AAAI conference on artificial
intelligence, volume 32, 2018.

Rémy Portelas, Cédric Colas, Katja Hofmann, and Pierre-Yves Oudeyer. Teacher algorithms for
curriculum learning of deep rl in continuously parameterized environments. In Conference on
Robot Learning, pp. 835–853. PMLR, 2020.

13

Published as a conference paper at ICLR 2024

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language
understanding by generative pre-training. OpenAI, 2018.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PMLR, 2021.

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen,
and Ilya Sutskever. Zero-shot text-to-image generation. In International Conference on Machine
Learning, pp. 8821–8831. PMLR, 2021.

Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-networks.
arXiv preprint arXiv:1908.10084, 2019.

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-dimensional
continuous control using generalized advantage estimation. arXiv preprint arXiv:1506.02438,
2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Pratyusha Sharma, Antonio Torralba, and Jacob Andreas. Skill induction and planning with latent
language. arXiv preprint arXiv:2110.01517, 2021.

Kenneth O. Stanley and Joel Lehman. Why Greatness Cannot Be Planned: The Myth of the Objective.
Springer Publishing Company, Incorporated, 2015. ISBN 3319155237.

Kenneth O. Stanley, Joel Lehman, and Lisa Soros. Open-endedness: The Last Grand
Challenge You’ve Never Heard Of. https://www.oreilly.com/radar/
open-endedness-the-last-grand-challenge-youve-never-heard-of/,
May 2023. Accessed: 2023-05-15.

Potter Stewart. Jacobellis v. Ohio, 378 U.S. 184. United States Supreme Court, 1964.

Marilyn Strathern. ‘Improving ratings’: audit in the British University system. European review, 5
(3):305–321, 1997.

Daniel Chee Hian Tan, Jenny Zhang, Zhibin Li, et al. Perceptive Locomotion with Controllable Pace
and Natural Gait Transitions Over Uneven Terrains. arXiv preprint arXiv:2301.10894, 2023.

Adaptive Agent Team, Jakob Bauer, Kate Baumli, Satinder Baveja, Feryal Behbahani, Avishkar
Bhoopchand, Nathalie Bradley-Schmieg, Michael Chang, Natalie Clay, Adrian Collister, et al.
Human-Timescale Adaptation in an Open-Ended Task Space. arXiv preprint arXiv:2301.07608,
2023.

Alexey Turchin and David Denkenberger. Classification of global catastrophic risks connected with
artificial intelligence. AI & Society, 35(1):147–163, 2020.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and
Anima Anandkumar. Voyager: An open-ended embodied agent with large language models. arXiv
preprint arXiv:2305.16291, 2023a.

Rui Wang, Joel Lehman, Jeff Clune, and Kenneth O Stanley. Paired open-ended trailblazer (poet):
Endlessly generating increasingly complex and diverse learning environments and their solutions.
arXiv preprint arXiv:1901.01753, 2019.

Rui Wang, Joel Lehman, Aditya Rawal, Jiale Zhi, Yulun Li, Jeffrey Clune, and Kenneth Stanley.
Enhanced poet: Open-ended reinforcement learning through unbounded invention of learning
challenges and their solutions. In International Conference on Machine Learning, pp. 9940–9951.
PMLR, 2020.

Zihao Wang, Shaofei Cai, Anji Liu, Xiaojian Ma, and Yitao Liang. Describe, explain, plan and select:
Interactive planning with large language models enables open-world multi-task agents. arXiv
preprint arXiv:2302.01560, 2023b.

14

https://www.oreilly.com/radar/open-endedness-the-last-grand-challenge-youve-never-heard-of/
https://www.oreilly.com/radar/open-endedness-the-last-grand-challenge-youve-never-heard-of/

Published as a conference paper at ICLR 2024

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
Neural Information Processing Systems, 35:24824–24837, 2022.

Sherry Yang, Ofir Nachum, Yilun Du, Jason Wei, Pieter Abbeel, and Dale Schuurmans. Foun-
dation models for decision making: Problems, methods, and opportunities. arXiv preprint
arXiv:2303.04129, 2023.

Wenhao Yu, Nimrod Gileadi, Chuyuan Fu, Sean Kirmani, Kuang-Huei Lee, Montse Gonzalez Arenas,
Hao-Tien Lewis Chiang, Tom Erez, Leonard Hasenclever, Jan Humplik, et al. Language to Rewards
for Robotic Skill Synthesis. arXiv preprint arXiv:2306.08647, 2023.

Haoqi Yuan, Chi Zhang, Hongcheng Wang, Feiyang Xie, Penglin Cai, Hao Dong, and Zongqing
Lu. Plan4mc: Skill reinforcement learning and planning for open-world minecraft tasks. arXiv
preprint arXiv:2303.16563, 2023.

Yunzhi Zhang, Pieter Abbeel, and Lerrel Pinto. Automatic curriculum learning through value
disagreement. Advances in Neural Information Processing Systems, 33:7648–7659, 2020.

Bohan Zhou, Ke Li, Jiechuan Jiang, and Zongqing Lu. Learning from Visual Observation via Offline
Pretrained State-to-Go Transformer. arXiv preprint arXiv:2306.12860, 2023.

Xizhou Zhu, Yuntao Chen, Hao Tian, Chenxin Tao, Weijie Su, Chenyu Yang, Gao Huang, Bin
Li, Lewei Lu, Xiaogang Wang, et al. Ghost in the Minecraft: Generally Capable Agents for
Open-World Enviroments via Large Language Models with Text-based Knowledge and Memory.
arXiv preprint arXiv:2305.17144, 2023.

15

Published as a conference paper at ICLR 2024

A LEARNING PROGRESS CURRICULUM DETAILS

The reweighting mechanism magnifies differences in low probabilities, putting additional focus on
tasks that have high learning progress and low success rates. However, it causes a bias against tasks
with initially high success rates achieved by chance even though the agent has not yet learned them.
We do not remove the reweighting mechanism since it remains useful in the later stages of training.
Instead, we propose an extension to the approach from Kanitscheider et al. (2021), normalizing the
task success rates with the success rates achieved by a random action policy. Normalizing the success
rates reduces the bias against tasks with initially high success rates, increasing their sample frequency
during the early stages of the learning progress curriculum.

For each task, we calculate the task success rate trdn achieved by a random action policy. At
fixed evaluation intervals during training, the evaluated task success rate teval of the RL policy is
normalized as such:

tnorm =
teval − trdn
1− trdn

The above is our contributed extension to the learning progress method in Kanitscheider et al. (2021).
tnorm is smoothed with an EMA function to obtain precent (Figure 4, green). precent is smoothed with
a second identical EMA function to obtain pgradual (Figure 4, brown). The exponential smoothing
constant applied in all experiments is 0.1. The bidirectional learning progress measure is given by
LP = |f(precent − f(pgradual)| (Figure 4, blue), where f is the reweighting function:

f(p) =
(1− pθ)p

p+ pθ(1− 2p)

with parameter pθ = 0.1.

We employ a sampling function to transform the measure of learning progress into task sampling
weights, focusing mostly on tasks with the largest learning progress. The steps are as follows:

• Z-score the reweighted learning progress (subtract mean and divide by standard deviation).

• Apply a sigmoid to the result.

• Normalize resulting weights to sampling probabilities.

Time

0

1

Pr
ob

ab
ilit

y

Measured probability
precent

pgradual

Learning progress
Reweighted learning progress

Figure 4: The process of determining an agent’s learning progress on a task from its measured success
probability on that task in an example fictional problem.

16

Published as a conference paper at ICLR 2024

A.1 LEARNING PROGRESS CURRICULUM ABLATION

The learning progress curriculum without the proposed extension (Section 3.2) of normalizing the
task success rates to a random action baseline is labelled as LP-no-norm. In light of limited compute,
we limit ourselves to the Crafter domain and experiments are run for 30 million time steps (vs. 100
million in the main experiments) and are repeated 10 times (same as the main experiments) with
different random seeds. The LP curriculum achieves higher average task success rates and learns
more tasks with the proposed normalization extension (Figure 5). Across all metrics and in both
domains, the differences in performance between LP and LP-no-norm at 50%, 75%, and 100% of the
way through training are statistically significant (all p < 0.05, Mann Whitney U test).

training steps training steps

Average Task Success Rates No. of Tasks with Success Rates > 0.2

va
lu

e ― LP

― LP-no-norm

Figure 5: Performance of learning progress curriculum in Crafter with and without the proposed
normalization extension. Average task success rates and number of tasks with success rates more
than 0.2 for learning progress curriculum with and without the proposed normalization extension
across training steps. Metrics are calculated on all tasks. LP performs better with the proposed
normalization extension.

B CRAFTER PROMPT

We give GPT-3 three examples as part of the prompt:

You are a player in a game. You want to learn as many different
skills as possible. You can do this task well: collect wood.
Suggest whether the given tasks are interesting: collect drink,
collect wood, make stone sword, make wood pickaxe, place furnace.
collect drink: True
collect 2 drink: True
collect 3 drink: True
collect wood: False
collect 2 wood: False
collect 3 wood: False
make stone sword: True
make 2 stone sword: True
make 3 stone sword: True
make wood pickaxe: True
make 2 wood pickaxe: True
make 3 wood pickaxe: True
place furnace: True
place 2 furnace: True
place 3 furnace: True

You are a player in a game. You want to learn as many different
skills as possible. You can do this task well: make 2 iron
pickaxe.
Suggest whether the given tasks are interesting: collect coal,

17

Published as a conference paper at ICLR 2024

collect iron, make iron pickaxe, make iron sword, place table.
collect coal: True
collect 2 coal: True
collect 3 coal: True
collect iron: True
collect 2 iron: True
collect 3 iron: True
make iron pickaxe: False
make 2 iron pickaxe: False
make 3 iron pickaxe: False
make iron sword: True
make 2 iron sword: True
make 3 iron sword: True
place table: True
place 2 table: True
place 3 table: True

You are a player in a game. You want to learn as many different
skills as possible. You can do this task well: place 3 stone.
Suggest whether the given tasks are interesting: collect diamond,
collect stone, make stone pickaxe, make wood sword, place stone.
collect diamond: True
collect 2 diamond: True
collect 3 diamond: True
collect stone: True
collect 2 stone: True
collect 3 stone: True
make stone pickaxe: True
make 2 stone pickaxe: True
make 3 stone pickaxe: True
make wood sword: True
make 2 wood sword: True
make 3 wood sword: True
place stone: False
place 2 stone: False
place 3 stone: False

Given the set of tasks that the agent can do relatively well and the set of tasks that needs to be
determined as interesting or not, the additional prompt is:

You are a player in a game. You want to learn as many different
skills as possible. You can do these tasks well: <tasks done
well>.
Suggest whether the given tasks are interesting: <tasks to be
determined>.

In the few-shot examples, we do not include all possible tasks in <tasks to be determined>
to reduce token usage. While each example sets different tasks for <tasks to be
determined>, during inference, all tasks needing classification as interesting or not (Section 3.3)
are inputted as <tasks to be determined> without any additional filtering.

GPT-3 predicts whether each task in <tasks to be determined> is interesting or not with
True/ False, following the format in the few-shot examples. In our experience, GPT-3 nearly
always conforms to the requested output format. However, in the rare cases that GPT-3 deviates from
the expected output format, the responses are regenerated. For tasks where GPT-3 did not provide an
answer, we modify the <tasks to be determined> input to include only the tasks lacking
responses, and then regenerate these responses.

We access GPT-3 through OpenAI’s APIs, opting for the Davinci model in our experiments, which
costs $0.02 per 1000 tokens when these experiments were run. Caching significantly reduces the

18

Published as a conference paper at ICLR 2024

number of API queries. We extensively cache GPT-3 prompts and responses and consistently reuse
this cache across multiple runs.

C BABYAI PROMPT

Full system prompt to GPT-4:

You are a helpful assistant that tells an AI agent the next
tasks to do in this 2D grid environment. The ultimate goal that
it would like your help with is to learn as many interestingly
different skills as possible, meaning a wide diversity of
different skills that would help it be ready to solve new skills
someone might ask it to perform, or to transfer what it has
learned in this environment to other environments.

The grid world has objects in six distinct colors - "red",
"green", "blue", "purple", "yellow", and "grey" - and of four
types - "key", "ball", "box", and "door". Each task is a sequence
of instructions, connected using "then", specifying the order of
instructions to follow. Instructions include interactions like
going to objects, picking up items, opening doors (which requires
the appropriately colored key if the door is locked), and putting
objects next to another. Object placements are randomized.

I will give you the following information:
Tasks the agent currently do well: ...
Predict which of these tasks are interesting: ...

You must follow the following criteria:
1) You should act as a mentor and guide the AI agent to the next
most interesting tasks.
2) Interesting tasks are roughly those that are sufficiently
different from the ones that it can already do, and should be
novel, diverse and at least worth learning.

You should only respond in the format as described below:
RESPONSE FORMAT:
Reasoning: Based on the information given, do reasoning about why
each task is interesting or not.
Predictions: The list of predictions. For each line, put the
task, then a colon, then True for interesting or False for boring.

Here are some example responses:
Tasks the agent currently do well: "open some door", "go to some
object"
Predict which of these tasks are interesting: "pick up some
object", "put some object next to some other object", "go to some
object, then put some object next to some other object", "go to
some object, then go to some object", "go to some object, then
open some door", "open some door, then go to some object"
Reasoning: Tasks that are recombinations of "go to some object"
or "open some door" are not interesting. The tasks that introduce
something different from the tasks done well are "pick up some
object", "put some object next to some other object", and "go
to some object, then put some object next to some other object",
having a new actions of picking up an object, or putting an object
next to another.
Predictions:
"pick up some object": True

19

Published as a conference paper at ICLR 2024

"put some object next to some other object": True
"go to some object, then put some object next to some other
object": True
"go to some object, then go to some object": False
"go to some object, then open some door": False
"open some door, then go to some object": False

Tasks the agent currently do well: "go to some object, then open
some door", "go to some object", "pick up some object"
Predict which of these tasks are interesting: "pick up some
object", "go to some object, then open some door, then open some
door", "pick up some object, then put some object next to some
other object, then put some object next to some other object",
"put some object next to some other object, then go to some
object, then put some object next to some other object, then open
some door, then open some door"
Reasoning: Tasks that are recombinations of "go to some object,
then open some door", "go to some object", or "pick up some
object" are not interesting. The tasks that introduce something
different from the tasks done well are "pick up some object, then
put some object next to some other object, then put some object
next to some other object" and "put some object next to some other
object, then go to some object, then put some object next to some
other object, then open some door, then open some door", having a
new action of putting some object next to another.
Predictions:
"pick up some object": False
"go to some object, then open some door, then open some door":
False
"pick up some object, then put some object next to some other
object, then put some object next to some other object": True
"put some object next to some other object, then go to some
object, then put some object next to some other object, then open
some door, then open some door": True

Tasks the agent currently do well: "go to some object", "put some
object next to some other object", "pick up some object"
Predict which of these tasks are interesting: "pick up some
object, then go to some object", "go to some object, then open
some door, then open some door", "pick up some object, then put
some object next to some other object, then put some object next
to some other object", "open some door, then put some object next
to some other object, then go to some object, then put some object
next to some other object, then open some door", "go to some
object, then pick up some object, then pick up some object, then
put some object next to some other object, then go to some object"
Reasoning: Tasks that are recombinations of "go to some object",
"put some object next to some other object", or "pick up some
object" are not interesting. The only tasks that introduce
something different from the tasks done well are "go to some
object, then open some door, then open some door" and "open some
door, then put some object next to some other object, then go to
some object, then put some object next to some other object, then
open some door", having a new action of opening a door.
Predictions:
"pick up some object, then go to some object": False
"go to some object, then open some door, then open some door":
True
"pick up some object, then put some object next to some other

20

Published as a conference paper at ICLR 2024

object, then put some object next to some other object": False
"open some door, then put some object next to some other object,
then go to some object, then put some object next to some other
object, then open some door": True
"go to some object, then pick up some object, then pick up some
object, then put some object next to some other object, then go to
some object": False

We access GPT-4 through OpenAI’s APIs, which costs $0.03 per 1000 tokens when these experiments
were run. Caching significantly reduces the number of API queries. We extensively cache GPT-4
prompts and responses and consistently reuse this cache across multiple runs.

D AI2-THOR PROMPT - GENERATE TASKS

No in-prompt examples were provided because our testings found that they were not needed. Full
system prompt to GPT-4:

You are a helpful assistant that tells an AI agent the next tasks
to do in an embodied kitchen environment. The ultimate goal that
it would like your help with is to learn as many interestingly
different tasks as possible.

The agent has 13 discrete actions: move ahead, rotate right,
rotate left, look up, look down, pick up object, put object,
open object, close object, toggle object on, toggle object off,
slice object, and fill object with liquid. The agent is in a
kitchen with fixed object placements and configuration. The
only objects in the kitchen are: "Apple", "Bowl", "Bread",
"ButterKnife", "Cabinet", "CoffeeMachine", "CounterTop",
"Cup", "DishSponge", "Drawer", "Egg", "Faucet", "Floor",
"Fork", "Fridge", "GarbageCan", "HousePlant", "Kettle",
"Knife", "Lettuce", "LightSwitch", "Microwave", "Mug", "Pan",
"PaperTowelRoll", "PepperShaker", "Plate", "Pot", "Potato",
"SaltShaker", "SideTable", "Sink", "SinkBasin", "SoapBottle",
"Spatula", "Spoon", "Stool", "StoveBurner", "StoveKnob",
"Toaster", "Tomato", "Window", "WineBottle". Objects are of
varying distance to the agent’s starting position.

A task is described as a sequence of environment states that need
to be achieved:
[env_state1, env_state2, ...]
Each environment state is described by the object states in the
room:
[obj_attributes(object_name1, requirement_dict1),
obj_attributes(object_name2, requirement_dict2), ...]
Objects not explicitly specified in the environment state do not
affect whether the task has been deemed completed or not. Each
object has these attributes: "visible", "isToggled", "isBroken",
"isFilledWithLiquid", "isDirty", "isCooked", "temperature",
"isSliced", "isOpen", "isPickedUp", "receptacleObjects". All
attributes are either True/False, except for "temperature" which
is Hot/Cold/RoomTemp, and "receptacleObjects" which is a list of
objects that the receptacle contains.

I will give you the following information:
Tasks the agent currently does well: ...
Tasks the agent cannot do yet: ...

You must follow the following criteria:

21

Published as a conference paper at ICLR 2024

1. You should act as a mentor and guide the AI agent to the next
most learnable and interesting tasks.
2. Learnable tasks are those that are not too difficult or easy
for the current agent.
3. Interesting tasks are roughly those that are sufficiently
different from the ones that the agent can already do, novel,
diverse and at least worth learning.
4. Do not suggest tasks that are already given as tasks that the
agent currently does well, or tasks that the agent cannot do yet.

You should only respond in the format as described below:
RESPONSE FORMAT:
Reasoning: Based on the information given, do reasoning about
what the next learnable and interesting tasks are.
Next tasks in natural language: Suggest 3 learnable and
interesting tasks that the agent should learn next.
Next tasks as sequence of environment states: Translate the
suggested natural language tasks into the code format as given
above.

We access GPT-4 through OpenAI’s APIs, which costs $0.03 per 1000 tokens when these experiments
were run.

E AI2-THOR PROMPT EXAMPLE - GENERATE TASKS

This section presents an example of GPT-4 generating the next learnable and interesting tasks based
on what tasks the agent can or cannot already do. If the input to GPT-4, in addition to the system
prompt in Appendix D, is:

Tasks the agent currently does well:
- [[obj_attributes("Apple", "visible": True)]]
- [[obj_attributes("Knife", "visible": True)]]
- [[obj_attributes("Potato", "visible": True)]]
Tasks the agent cannot do yet:
- [[obj_attributes("Bread", "visible": True)]]
- [[obj_attributes("Apple", "visible": True, "isPickedUp": True)]]
- [[obj_attributes("Fridge", "visible": True)],[obj_attributes("Fridge", "isOpen": True)]]
- [[obj_attributes("Plate", "visible": True)]]

First, GPT-4 will output a reason about what the next learnable and interesting tasks are, inspired by
Wei et al. (2022). Here is a GPT-4-produced example:

Reasoning: The agent is currently able to identify and locate certain objects in the kitchen environ-
ment, such as an apple, a knife, and a potato. However, it struggles with tasks that involve interaction
with objects, such as picking up an apple or opening the fridge. It also seems to have difficulty
recognizing certain objects, like bread and a plate. Given these abilities and limitations, the next
tasks should involve simple interactions with objects that the agent can already recognize, as well as
recognition of new objects that are not too similar to the ones it struggles with.

Then, GPT-4 will suggest 3 learnable and interesting tasks that the agent should learn next:

Next tasks in natural language:
1. Slice the potato with the knife.
2. Pick up the knife.
3. Recognize and locate the coffee machine.

And finally, GPT-4 will translate the suggested natural language tasks into a sequence of environment
states in code format, that can be used to check whether a task has been completed or not.

22

Published as a conference paper at ICLR 2024

Next tasks as sequence of environment states:
1. [[obj_attributes("Potato", "visible": True)], [obj_attributes("Knife", "visible": True)],
[obj_attributes("Potato", "isSliced": True)]]
2. [[obj_attributes("Knife", "visible": True)], [obj_attributes("Knife", "isPickedUp": True)]]
3. [[obj_attributes("CoffeeMachine", "visible": True)]]

F AI2-THOR PROMPT - TRANSLATE CODE TO NATURAL LANGUAGE

No in-prompt examples were provided because our testings found that they were not needed. Full
system prompt to GPT-4:

You are a helpful assistant that relabels the tasks from the given
code format to natural language descriptions. The tasks are set
in an embodied kitchen environment.

The agent has 13 discrete actions: move ahead, rotate right,
rotate left, look up, look down, pick up object, put object,
open object, close object, toggle object on, toggle object off,
slice object, and fill object with liquid. The agent is in a
kitchen with fixed object placements and configuration. The
only objects in the kitchen are: "Apple", "Bowl", "Bread",
"ButterKnife", "Cabinet", "CoffeeMachine", "CounterTop",
"Cup", "DishSponge", "Drawer", "Egg", "Faucet", "Floor",
"Fork", "Fridge", "GarbageCan", "HousePlant", "Kettle",
"Knife", "Lettuce", "LightSwitch", "Microwave", "Mug", "Pan",
"PaperTowelRoll", "PepperShaker", "Plate", "Pot", "Potato",
"SaltShaker", "SideTable", "Sink", "SinkBasin", "SoapBottle",
"Spatula", "Spoon", "Stool", "StoveBurner", "StoveKnob",
"Toaster", "Tomato", "Window", "WineBottle". Objects are of
varying distance to the agent’s starting position.

A task is described as a sequence of environment states that need
to be achieved:
[env_state1, env_state2, ...]
Each environment state is described by the object states in the
room:
[obj_attributes(object_name1, requirement_dict1),
obj_attributes(object_name2, requirement_dict2), ...]
Objects not explicitly specified in the environment state do not
affect whether the task has been deemed completed or not. Each
object has these attributes: "visible", "isToggled", "isBroken",
"isFilledWithLiquid", "isDirty", "isCooked", "temperature",
"isSliced", "isOpen", "isPickedUp", "receptacleObjects". All
attributes are either True/False, except for "temperature" which
is Hot/Cold/RoomTemp, and "receptacleObjects" which is a list of
objects that the receptacle contains.

I will give you the following information:
Tasks in code format: ...

You should only respond in the format as described below:
RESPONSE FORMAT:
Tasks in natural language: Translate the tasks from the given
code format to natural language descriptions.

23

Published as a conference paper at ICLR 2024

G AI2-THOR PROMPT EXAMPLE - TRANSLATE CODE TO NATURAL
LANGUAGE

If the randomly generated tasks in code format fed into GPT-4 are:

Tasks in code format:
1. [[obj_attributes("SideTable", "receptacleObjects": "Apple"),obj_attributes("ButterKnife",
"isPickedUp": False)]]
2. [[obj_attributes("Egg", "isPickedUp": True, "isBroken": True)],[obj_attributes("Sink",
"receptacleObjects": "Potato"),obj_attributes("Bread", "isSliced": True)]]
3. [[obj_attributes("ButterKnife", "isPickedUp": True),obj_attributes("SoapBottle", "isPickedUp":
False)],[obj_attributes("SideTable", "receptacleObjects": "ButterKnife"),obj_attributes("Fork",
"isPickedUp": False)],[obj_attributes("Pot", "receptacleObjects":
"Spatula"),obj_attributes("Microwave", "receptacleObjects": "Knife")]]

Then GPT-4 will translate the tasks to natural language:

Tasks in natural language:
1. Put an apple on the side table and put down the butterknife.
2. Pick up and break an egg. Then, put a potato in the sink and slice the bread.
3. Pick up the butterknife and put down the soap bottle. Then, put the butterknife on the side table
and put down the fork. After that, put a spatula in the pot and a knife in the microwave.

H OMNI ALGORITHM

Algorithm 1 OMNI Algorithm
Define task set T , batch size B, evaluation frequency N
Define EMA constant β, learning progress reweighting function f
Initialize policy π
Initialize task sampling distribution D ← Uniform(T)
Initialize update counter u← 0
Calculate task success rates by a random action policy prdn for each task in T
while u < max_updates do

Initialize rollout set R← ∅
while |R| < B do

Sample task t ∼ D ▷ Sample tasks based on distribution D
Perform rollout on task t using policy π
Add rollout to set R

end while
Update policy π using rollouts in R ▷ Use any RL algorithm
u← u+ 1
if u mod N = 0 then

praw ← Evaluate policy π on all tasks in T
for t ∈ T do

pnorm(t)← (praw(t)− prdn(t))/(1− prdn(t)) ▷ Normalize task success rates
precent(t)← pnorm(t)× β + precent(t)× (1− β)
pgradual(t)← precent(t)× β + pgradual(t)× (1− β)
plp(t)← |f(precent(t))− f(pgradual(t)))| ▷ Calculate learning progress

end for
Tint, Tbor ←

Partition T into interesting or boring
using an FM based on praw

▷ An example in Appendix I

for t ∈ T do
pmoi(t)← if t ∈ Tint then 1 else 0.001 ▷ Reweight based on interestingness

end for
D ← plp ⊙ pmoi ▷ Update task sampling distribution

end if
end while

24

Published as a conference paper at ICLR 2024

Ta
sk

 s
am

p
le

r Environment

RL Agent

Action

Learning Progress
Which tasks are not too easy or

difficult for the agent to learn from?

Model of Interestingness
Which tasks are interesting?

Tasks
success rates

Next tasks to train
on (interesting
and learnable)

Observations
Reward

+
Typ

ical R
L train

in
g

Figure 6: Overview of OMNI. OMNI enables open-ended learning in vast environment search
spaces by ensuring that tasks trained on not only have high learning progress, but are also interesting
(harnessing large AI models to make such a heretofore impossible judgement).

I PARTITIONING ALL TASKS INTO INTERESTING OR BORING

The MoI partitions all tasks as either “interesting” or “boring” based on their success rates and the
FM’s assessment of their relation to tasks already classified as “interesting” (Algorithm 2). Since the
raw evaluation of task success rates can be noisy, the task success rates referenced in this section are
smoothed with an exponential moving average function. Algorithm 2 iteratively selects the task with
the highest success rate not yet categorized, adds it to the “interesting” set (Step 3), prompts the FM to
identify boring tasks from the remaining tasks in relation to the “interesting” set (Step 4), and updates
the “boring” set (Step 5), repeating until all tasks are categorized. In Step 3, the rationale for adding
the task with the highest success rate, that is not yet categorized, to the “interesting” set is twofold:
first, the FM considers this task to be sufficiently distinct from those already in the “interesting” set,
otherwise, it would have already been considered “boring” in Step 4; second, its relatively higher
success rate indicates that it aligns closer to the agent’s current skill level.

To illustrate in Crafter, assume that the “collect wood” task has the highest success rate. It is added
to the “interesting” set (Step 3). “collect wood” is interestingly different from all tasks currently
declared as “interesting” because there are no tasks in that set yet. This is an initialization step for the
algorithm. Then the FM deems “collect 2..10 wood” tasks as boring (Step 4). Now, when repeating
Step 3, the algorithm will add the next task with the highest success rate and not yet categorized, e.g.,
“place table”, to the “interesting” set, whereas without the filter in Step 4, “collect 2 wood” might
have been selected as interesting instead.

Algorithm 2 Mechanism to partition the task set into interesting and boring sets.
1: Sort the tasks based on the evaluated task success rates.
2: Create two empty sets, one to track the interesting tasks and one to track the boring tasks.
3: Identify the task with highest success rate and not in any of the sets. Add it to the interesting set.
4: Prompt the FM to determine if any of the remaining tasks are boring, contexted on the current set

of interesting tasks. Tasks in the interesting set are input as tasks that the agent can do well, and
tasks yet to be categorized are asked to be predicted as interesting or not in the FM prompt.

5: Update the boring set with tasks that the FM has determined as boring.
6: Repeat steps 3 - 5 until all tasks are in either set.

J BASELINES IN AN INFINITE TASK SPACE

J.1 UNIFORM SAMPLING BASELINE

In an infinite task space, it is not trivial how one can uniformly sample any task in natural language
while still ensuring that the task is not totally nonsense (e.g., "fish chicken pick up rainbow"). In the
AI2-THOR domain, we sample random tasks by first generating random environment states in code
format. We limit the maximum sequence of environment states for each task to be 10. Furthermore, we
filter out tasks with unachievable environment states. For example, if the environment state requires
that obj_attributes("Fridge", "isPickedUp": True), we check if the Fridge

25

Published as a conference paper at ICLR 2024

is pickupable. Since a Fridge is not pickupable, we resample another random environment
state as part of the task. After randomly generating tasks in code format, a pretrained autoregressive
FM, GPT-4, translates the tasks from code to natural language descriptions. Appendix F shows the
full prompt and Appendix G shows an example output.

J.2 LEARNING PROGRESS BASELINE

For completeness, we introduce an LP baseline. Instead of adding learnable and interesting tasks
suggested by the FM (as in OMNI), we add to the task set uniformly sampled tasks. These are
generated in the same way as done in the uniform sampling baseline (Section J.1). The LP curriculum
then produces task sampling rates over this growing task set for the RL agent to train on (Section 3.2).
The frequency at which new tasks are added to the task set is the same for OMNI and this LP baseline.

K CRAFTER BORING TASKS

The 90 boring tasks in the main Crafter experiments are:

• collect N drink, where N ∈ [2, 10]

• collect N wood, where N ∈ [2, 10]

• collect N coal, where N ∈ [2, 10]

• collect N stone, where N ∈ [2, 10]

• collect N iron, where N ∈ [2, 10]

• collect N diamond, where N ∈ [2, 10]

• place N table, where N ∈ [2, 5]

• place N furnace, where N ∈ [2, 5]

• place N stone, where N ∈ [2, 5]

• make N wood pickaxe, where N ∈ [2, 5]

• make N wood sword, where N ∈ [2, 5]

• make N stone pickaxe, where N ∈ [2, 5]

• make N stone sword, where N ∈ [2, 5]

• make N iron pickaxe, where N ∈ [2, 5]

• make N iron sword, where N ∈ [2, 5]

L CRAFTER POLICY AND OPTIMIZATION DETAILS

The model architecture is similar to those in previous learning progress works (Kanitscheider et al.,
2021). The RGB inputs are passed through a 2-layer convolution network with ReLU activations.
The RGB convnet is followed by a fully connected layer of size 256. The visual embeddings are
concatenated with the task encoding before being passed into an LSTM cell of size 256. The network
output is given by a 2-layer linear action head for the policy and a 2-layer linear layer for the value
function. Both have Tanh activation functions. Optimization is performed with Proximal Policy
Optimization (Schulman et al., 2017) and General Advantage Estimation (Schulman et al., 2015).

Parameter Value
Discount factor 0.99
Learning rate 1e-4

PPO clip threshold 0.2
GAE lambda 0.95

Entropy coefficient 0.01
Batch size 2048

Epochs 4
Max episode length 1500

26

Published as a conference paper at ICLR 2024

M BABYAI POLICY AND OPTIMIZATION DETAILS

The model architecture is similar to those in previous works done on BabyAI (Chevalier-Boisvert
et al., 2018). The symbolic grid cell observations are passed through a 3-layer convolution network
with ReLU activations. The natural language task is encoded with a GRU (Dey & Salem, 2017). The
grid cell embeddings and the task embeddings are jointly processed through a convolutional network
with two batch-normalized FiLM (Perez et al., 2018) layers, then through an LSTM cell of size 128.
The network output is given by a 2-layer linear action head for the policy and a 2-layer linear layer
for the value function. Both have Tanh activation functions. Optimization is performed with Proximal
Policy Optimization (Schulman et al., 2017) and General Advantage Estimation (Schulman et al.,
2015).

Parameter Value
Discount factor 0.99
Learning rate 1e-4

PPO clip threshold 0.2
GAE lambda 0.95

Entropy coefficient 0.01
Batch size 2048

Epochs 4
Max episode length depends on task difficulty

100 - 1000

N AI2-THOR POLICY AND OPTIMIZATION DETAILS

The model architecture is similar to that used for BabyAI experiments (Appendix M). The RGB pixel
observations are passed through a 3-layer convolution network with ReLU activations. The natural
language task is encoded with a GRU (Dey & Salem, 2017). The grid cell embeddings and the task
embeddings are jointly processed through a convolutional network with two batch-normalized FiLM
(Perez et al., 2018) layers, then through an LSTM cell of size 128. The network output is given by a
2-layer linear action head for the policy and a 2-layer linear layer for the value function. Both have
Tanh activation functions. Optimization is performed with Proximal Policy Optimization (Schulman
et al., 2017) and General Advantage Estimation (Schulman et al., 2015).

Parameter Value
Discount factor 0.99
Learning rate 1e-4

PPO clip threshold 0.2
GAE lambda 0.95

Entropy coefficient 0.01
Batch size 2048

Epochs 4
Max episode length depends on task difficulty

200 × the number of environment states
to be achieved sequentially

O SUPPLEMENTARY METRICS AND PLOTS

The metrics and plots in this section complement the results shown in Section 4.3. Figure 8 shows
the task sample rates of all tasks in Crafter across different methods. To better see how different
methods perform on interesting tasks in Crafter, Figure 9 offers the same metrics as Figures 2 and 7
but calculated on the subset of interesting tasks only. Figures 10 and 11 are subsets of Figures 2 and
8 respectively, zoomed into the set of interesting tasks only. Figure 7 and Figure 14 show the task
success rates and task sample rates of all tasks in BabyAI across different methods. Figure 12 shows
the average task success rates achieved in BabyAI on tasks with instruction lengths two or less, a

27

Published as a conference paper at ICLR 2024

small subset of the entire task space. This subset contains the type of tasks more likely to be learned
within our allowable compute budget. To the best of our knowledge, BabyAI papers that learn tasks
of more complexity require expert demonstration to do so, learning via behavioral cloning rather than
via RL (Chevalier-Boisvert et al., 2018; Hui et al., 2020).

10075502501007550250 1007550250

training steps (million)

Uniform LP OMNI: LP + MoI

< 5 ×10-2

> 5 ×10-1Tasks with 1 instruction
Tasks with 2 instructions

Tasks with 3 instructions

Tasks with 4 instructions

Tasks with 5 instructions

training steps

A
ve

ra
ge

 T
as

k
Su

cc
es

s
R

at
es

N
o

. o
f

Ta
sk

s
w

it
h

Su

cc
es

s
R

at
es

 >
 0

.2

― OMNI: LP + MoI

― LP

― Uniform

Figure 7: Results in BabyAI. (Left) Conditional success probabilities of a subset of tasks in BabyAI.
These plots only show tasks with a success rate of at least 0.05 by any method at any timestep.
Tasks are organized from simple to complex based on the instruction length. (Right) Performance in
BabyAI on all tasks. The average task success rate scale for BabyAI is low because it is averaged over
the entire task set, which includes many tasks that are difficult to learn. This captures in microcosm
the real world, where there can be infinitely many difficult or even impossible tasks. OMNI achieves
much higher average task success rates and learns more tasks than uniform sampling or choosing
tasks based on learning progress alone.

Uniform LP OMNI: LP + MoI

10075502501007550250 1007550250

training steps (million)

Figure 8: Sampling probabilities for all tasks in Crafter. Tasks are ordered as in Figure 2. Uniform
sampling per task is barely visible in the heatmap. LP accurately tracks and samples tasks whose
success probabilities change the most. OMNI samples tasks with high learning progress, but narrows
its focus to only the interesting ones within that set.

28

Published as a conference paper at ICLR 2024

training steps training steps

Average Task Success Rates No. of Tasks with Success Rates > 0.2

va
lu

e ― OMNI: LP + MoI

― LP

― Uniform

Figure 9: Performance in Crafter on interesting tasks only. Average task success rates and the
number of tasks with success rates more than 0.2 for each method across training steps. OMNI
achieves much higher average task success rates and learns more interesting tasks than uniform
sampling or choosing tasks based on learning progress alone.

10075502501007550250 1007550250

training steps (million)

Uniform LP OMNI: LP + MoI

Figure 10: Conditional success probabilities of interesting tasks only in Crafter. This figure is
a zoomed in subset of Figure 2. OMNI achieves higher task success rates on interesting tasks than
uniform sampling or choosing tasks based on learning progress alone.

10075502501007550250 1007550250

training steps (million)

Uniform LP OMNI: LP + MoI

Figure 11: Sampling probabilities for interesting tasks only in Crafter. This figure is a zoomed in
subset of Figure 8. OMNI exhibits more intense sampling of interesting tasks than uniform sampling
or choosing tasks based on learning progress alone.

29

Published as a conference paper at ICLR 2024

― OMNI: LP + MoI
― LP
― Uniform

training steps

A
ve

ra
ge

 T
as

k
Su

cc
es

s
R

at
es

Figure 12: Performance in BabyAI on tasks with instruction lengths two or less. OMNI achieves
much higher average task success rates, close to 16%, and learns more tasks than LP or Uniform
sampling. See text above in this section for why this is a useful subset to plot. For performance on
the entire (much harder) task set, see Figure 7.

10075502501007550250 1007550250

training steps (million)

Uniform LP OMNI: LP + MoI
Tasks with 1 instruction

Tasks with 2 instructions
Tasks with 3 instructions

Tasks with 4 instructions

Tasks with 5 instructions

Figure 13: Conditional success probabilities of all tasks in BabyAI. Tasks are organized from
simple to complex based on the instruction length. Most tasks are very difficult for the agent to learn
on, hence having low success rates. This mirrors the challenges in the real world where there can
countless difficult or infeasible tasks. Nevertheless, OMNI achieves higher task success rates than
uniform sampling or choosing tasks based on learning progress alone.

30

Published as a conference paper at ICLR 2024

10075502501007550250 1007550250

training steps (million)

Uniform LP OMNI: LP + MoI
Tasks with 1 instruction

Tasks with 2 instructions
Tasks with 3 instructions

Tasks with 4 instructions

Tasks with 5 instructions

Figure 14: Sampling probabilities for all tasks in BabyAI. Tasks are ordered as in Figure 7.
Uniform sampling per task is barely visible in the heatmap. LP accurately tracks and samples tasks
whose success probabilities change the most. OMNI samples tasks with high learning progress, but
narrows its focus to only the interesting ones within that set.

P ORACLE MODEL OF INTERESTINGNESS

The Oracle Model of Interestingness (OMoI) is a hand-designed model that assigns sampling weights
of 1.0 to interesting tasks and 0.001 to boring tasks. In Crafter, interesting tasks are considered to be
the set of 15 tasks shown in Figure 1, and all other tasks are considered boring. In BabyAI, interesting
tasks are those with single instructions. Single-instruction tasks are the foundational building blocks
that should be learned first, so we consider those interesting in the OMoI. In theory, a more skilled
agent would eventually move beyond them to two or more instruction tasks, but in our experiments,
our agents do not even learn this first set (despite substantial compute budgets; BabyAI is a very
hard RL task environment if one does not take the shortcut of providing solution demonstrations and
doing imitation learning (Chevalier-Boisvert et al., 2018)), meaning that these tasks are uninteresting
for them to be focusing on. The OMoI functions as an oracle that accurately discerns which tasks
humans would typically find interesting for the agent to learn the most skills in this environment.
Although we were able to design an oracle MoI in these domains, constructing such models in more
complex domains will not always be feasible, nor would it scale well given the human labor required.

Across all metrics and in both domains, most of the differences in performance between OMNI and
the oracle at 25%, 50%, 75%, and 100% of the way through training are not statistically significant
(all but one p > 0.05, Mann Whitney U test). OMNI’s performance is comparable to that of the oracle
(Figures 15 and 17). OMNI and the oracle achieve similar task success rates for each task and induce
similar patterns in task sample rates (Figures 16 and 18). This suggests that FMs can capture key
aspects of what humans typically find interesting.

31

Published as a conference paper at ICLR 2024

Average Task Success Rates No. of Tasks with Success Rates > 0.2

In
te

re
st

in
g

an
d

 B
o

ri
n

g
ta

sk
s

In
te

re
st

in
g

ta
sk

s
o

n
ly

― Oracle: LP + OMoI

― OMNI: LP + MoI

― LP

― Uniform

training steps training steps

Figure 15: Performance in Crafter on all tasks. Average task success rates and the number of tasks
with success rates more than 0.2 for each method across training steps. This figure is the same as
Figures 2 and 7, with an additional oracle method added for comparison. OMNI achieves comparable
performance to the oracle, with no statistically significant difference.

OMNI: LP + MoI Oracle: LP + OMoI

10075502501007550250

training steps (million)

OMNI: LP + MoI Oracle: LP + OMoI

1007550250100755025

training steps (million)

Task success rates Task sampling rates

Figure 16: (Left) Conditional success probabilities and (Right) Sampling probabilities of all
tasks for OMNI and the oracle in Crafter. Tasks are ordered as in Figure 2. OMNI focuses on
interesting tasks with high learning progress and achieves comparable task success rates to the oracle.

32

Published as a conference paper at ICLR 2024

Average Task Success Rates No. of Tasks with Success Rates > 0.2

va
lu

e

training steps training steps

― Oracle: LP + OMoI

― OMNI: LP + MoI

― LP

― Uniform

Figure 17: Performance in BabyAI on all tasks. Average task success rates and the number of tasks
with success rates more than 0.2 for each method across training steps. This figure is the same as
Figures 2 and 7, with an additional oracle method added for comparison. OMNI achieves comparable
performance to the oracle, with almost no statistically significant difference.

10075502501007550250

training steps (million)

OMNI: LP + MoI
Tasks with 1 instruction

Tasks with 2 instructions
Tasks with 3 instructions

Tasks with 4 instructions

Tasks with 5 instructions

Oracle: LP + OMoI

10075502501007550250

training steps (million)

OMNI: LP + MoI Oracle: LP + OMoI

Task success rates Task sampling rates

Figure 18: (Left) Conditional success probabilities and (Right) Sampling probabilities of all
tasks for OMNI and the oracle in BabyAI. Tasks are ordered as in Figure 7. OMNI focuses on
interesting tasks with high learning progress and achieves comparable task success rates to the oracle.

33

Published as a conference paper at ICLR 2024

Q USING COMPOUNDS AS BORING TASKS IN CRAFTER

Average Task Success Rates No. of Tasks with Success Rates > 0.2
In

te
re

st
in

g
an

d
 B

o
ri

n
g

ta
sk

s
In

te
re

st
in

g
ta

sk
s

o
n

ly

― Oracle: LP + OMoI

― OMNI: LP + MoI

― LP

― Uniform

training steps training steps

Figure 19: Performance in Crafter on all tasks, including compound tasks. Average task success
rates and the number of tasks with success rates more than 0.2 for each method across training steps.
Compound and repetitive tasks are those considered boring. OMNI achieves much higher average
task success rates and learns more tasks than LP or Uniform, close to that of the oracle.

In this Crafter setup, compound and repetitive tasks are those considered boring. In addition to the
repetitive boring tasks (Appendix K), compound tasks are generated by combining any two of the
15 interesting tasks (Figure 1). Hence, there is a total of 15 interesting tasks, 195 boring tasks, and
1023 extremely challenging tasks. In light of limited compute, experiments in this setting are run for
30 million time steps (vs. 100 million in the main experiments) and are repeated 10 times (same as
the main experiments) with different random seeds. We compare the performance of agents trained
with: (1) Uniform sampling, (2) Learning Progress (LP) only, (3) OMNI: Learning Progress with
additional filtering by a Model of Interestingness (OMNI: LP + MoI), and (4) the oracle: Learning
Progress with additional filtering by an Oracle Model of Interestingness (Oracle: LP + OMoI). The
high-level summary of the results from these experiments is that they are qualitatively similar to
when boring tasks are repetitive tasks only (Section 4.3).

Uniform sampling. The results with uniform sampling are poor (Figure 19). The agent learns 6
(CI: 3 – 6) tasks (interesting or boring) and 3 (CI: 2 – 3) interesting tasks, achieving an average task
success rate of 0.019 (CI: 0.017 – 0.021) on interesting and boring tasks, and 0.097 (CI: 0.082 –
0.105) on interesting tasks only.

Learning Progress Curriculum. The agent learns 67 (CI: 65 – 69) tasks (interesting or boring)
and 9 (CI: 8 – 9) interesting tasks, achieving an average task success rate of 0.19 (CI: 0.19 – 0.20)
on interesting and boring tasks, and 0.40 (CI: 0.38 – 0.42) on interesting tasks only. Across all
metrics, the differences between LP and Uniform at 25%, 50%, 75%, and 100% of the way through
training are statistically significant (all p < 1e-3, Mann Whitney U test), showing that LP significantly
outperforms uniform sampling (Figure 19). LP accurately tracks and samples tasks with high learning
progress but is distracted by the many boring tasks (Figure 21).

OMNI: Learning Progress + a Model of Interestingness. The agent learns 96 (CI: 93 – 99) tasks
(interesting or boring) and 11 (CI: 11 – 11) interesting tasks, achieving an average task success rate
of 0.29 (CI: 0.28 – 0.30) on interesting and boring tasks, and 0.59 (CI: 0.56 – 0.60) on interesting

34

Published as a conference paper at ICLR 2024

tasks only. Across all metrics, the differences between OMNI and LP at 25%, 50%, 75%, and 100%
of the way through training are statistically significant (all p < 1e-3, Mann Whitney U test), showing
that OMNI significantly outperforms LP (Figure 19). Since OMNI focuses on interesting tasks with
high learning progress (Figure 21), the agent achieves higher average task success rates and learns
more challenging tasks faster (Figure 20).

Oracle: Learning Progress + an Oracle Model of Interestingness. The agent learns 101 (CI: 97 –
105) tasks (interesting or boring) and 11 (CI: 11 – 11) interesting tasks, achieving an average task
success rate of 0.30 (CI: 0.29 – 0.31) on interesting and boring tasks, and 0.62 (CI: 0.61 – 0.63) on
interesting tasks only. The differences between the oracle and OMNI at 25%, 50%, 75%, and 100%
of the way through training are sometimes statistically significant (some p < 0.05, Mann Whitney U
test), showing that OMNI does not always achieve comparable performance to the oracle (Figure 19).
However, OMNI emulates similar task success rates (Figure 20) and task sample rates as the oracle
(Figure 21). Having OMNI approach the performance benchmark set by the oracle is already an
indicator of success.

30100

training steps (million)
20 30100 20 30100 20 30100 20

Uniform LP OMNI: LP + MoI Oracle: LP + OMoI

Figure 20: Conditional success probabilities of all tasks, including compound tasks, in Crafter.
Agents are trained with compound and repetitive tasks as boring tasks. Tasks are ordered as in
Figure 2, with additional compound tasks at the bottom. OMNI achieves higher task success rates
than LP and Uniform in a wide range of tasks, comparable to that of the oracle.

35

Published as a conference paper at ICLR 2024

30100

training steps (million)
20 30100 20 30100 20 30100 20

Uniform LP OMNI: LP + MoI Oracle: LP + OMoI

Figure 21: Sampling probabilities for all tasks, including compound tasks, in Crafter. Agents
are trained with compound and repetitive tasks as boring tasks. Tasks are ordered as in Figure 20.
LP accurately tracks, and thus samples, tasks whose success probabilities change the most. OMNI
narrows its focus to only the interesting ones within the set of high learning progress tasks.

R USING SYNONYMS AS BORING TASKS IN CRAFTER

Original Verb Synonyms

collect

gather
harvest
procure
acquire
amass

make

craft
acquire
build

construct
create

place

put
deploy
install

putdown
position

Table 1: Synonyms used to generate boring tasks in the Crafter environment

In this Crafter setup, synonymous and repetitive tasks are those considered boring. In addition to the
repetitive boring tasks (Appendix K), synonymous tasks are those with different task representations
(i.e., synonymous descriptions of tasks like “collect wood” and “gather wood”) but the same success
conditions. In this setting, the OMoI regards the 15 tasks shown in Figure 1 and their synonyms as
interesting. The repetitive tasks and their synonyms are also regarded as boring. Therefore, the OMoI

36

Published as a conference paper at ICLR 2024

― Oracle: LP + OMoI

― OMNI: LP + MoI-updated

― OMNI: LP + MoI

― LP

― Uniform

Average Task Success Rates No. of Tasks with Success Rates > 0.2

In
te

re
st

in
g

an
d

 B
o

ri
n

g
ta

sk
s

In
te

re
st

in
g

ta
sk

s
o

n
ly

training steps training steps

Figure 22: Performance in Crafter on all tasks, including synonymous tasks. Average task success
rates and the number of tasks with success rates more than 0.2 for each method across training steps.
Agents are trained with synonymous and repetitive tasks as boring tasks. OMNI: LP + MoI-updated
achieves much higher average task success rates and learns more tasks than LP, Uniform, or LP +
MoI, comparable to the oracle.

identifies 90 interesting tasks, 540 boring tasks, and 1023 extremely challenging tasks. The same
classification is utilized for subsequent analysis. In light of limited compute, experiments in this
setting are run for 30 million time steps (vs. 100 million in the main experiments) and are repeated
10 times (same as the main experiments) with different random seeds. We compare the performance
of agents trained with: (1) Uniform sampling, (2) Learning Progress (LP) only, (3) OMNI: Learning
Progress with additional filtering by a Model of Interestingness (OMNI: LP + MoI), and (4) the
oracle: Learning Progress with additional filtering by an Oracle Model of Interestingness (Oracle:
LP + OMoI). The high-level summary from these experiments is that, when furnished with adequate
information about the agent, OMNI delivers qualitatively similar results to when boring tasks are
repetitive tasks only (Section 4.3), or compound and repetitive tasks (Section Q).

Uniform sampling. The results with uniform sampling are poor (Figure 22). The agent learns 80
(CI: 77 – 82) tasks (interesting or boring) and 20 (CI: 19 – 21) interesting tasks, achieving an average
task success rate of 0.080 (CI: 0.070 – 0.088) on interesting and boring tasks, and 0.14 (CI: 0.13 –
0.14) on interesting tasks only.

Learning Progress Curriculum. The agent learns 302 (CI: 287 – 306) tasks (interesting or boring)
and 53 (CI: 52 – 54) interesting tasks, achieving an average task success rate of 0.32 (CI: 0.31 –
0.33) on interesting and boring tasks, and 0.43 (CI: 0.42 – 0.44) on interesting tasks only. Across all
metrics, the differences between LP and Uniform at 25%, 50%, 75%, and 100% of the way through
training are statistically significant (all p < 1e-2, Mann Whitney U test), showing that LP significantly
outperforms uniform sampling (Figure 22).

OMNI: Learning Progress + a Model of Interestingness. The agent learns 307 (CI: 296 – 318)
tasks (interesting or boring) and 66 (CI: 66 – 66) interesting tasks, achieving an average task success
rate of 0.31 (CI: 0.28 – 0.33) on interesting and boring tasks, and 0.56 (CI: 0.52 – 0.57) on interesting
tasks only. On the interesting tasks only, the differences between OMNI and LP at 25%, 50%, 75%,
and 100% of the way through training are statistically significant (all p < 1e-2, Mann Whitney U test),
showing that OMNI significantly outperforms LP (Figure 22). However, on all tasks (interesting and
boring), the differences between OMNI and LP at 25%, 50%, 75%, and 100% of the way through
training are not always statistically significant (not all p < 0.05, Mann Whitney U test), showing that

37

Published as a conference paper at ICLR 2024

OMNI does not outperform LP on all metrics (Figure 22). We further investigate this by comparing
OMNI with the oracle. In the subsequent paragraphs, we introduce a minor modification to OMNI,
which then significantly outperforms LP (as occurred in the previous experimental settings).

Oracle: Learning Progress + an Oracle Model of Interestingness. The agent learns 389 (CI: 380 –
393) tasks (interesting or boring) and 66 (CI: 66 – 67) interesting tasks, achieving an average task
success rate of 0.42 (CI: 0.41 – 0.43) on interesting and boring tasks, and 0.62 (CI: 0.61 – 0.62)
on interesting tasks only. On all tasks (interesting and boring), the differences between the oracle
and OMNI: LP + MoI at 25%, 50%, 75%, and 100% of the way through training are statistically
significant (all p < 1e-3, Mann Whitney U test), showing that the oracle significantly outperforms
OMNI: LP + MoI on the set of all tasks (Figure 22). This difference in performance can be attributed
to the different interestingness notions held by the OMoI vs. the MoI. The current FM-based MoI
in OMNI regards all synonymous tasks as boring, even if they are not repetitive tasks. This is
because the FM-based MoI assumes that the RL agent already has a language prior and that sampling
synonymous tasks would not enable the agent to learn more skills. In other words, the FM-based MoI
incorrectly assumes that the RL agent knows how to do the task “gather wood” if it knows how to do
the task “collect wood”, not understanding that the RL agent has not yet learned that these two tasks
are actually the same thing. Recall that the RL agent in our setup does not have a language prior yet,
because the tasks are encoded as a bag-of-words instead of a using a pre-trained natural language
encoder (which is likely to encode “gather wood” and “collect wood” closer in the embedding space
than other non-synonymous tasks).

OMNI: Learning Progress + an updated Model of Interestingness We update the prompt input to
GPT-3, adding information that the agent currently lacks a language prior and perceives synonymous
tasks as completely different (Figure 23). The MoI with updated prompt is labelled as MoI-updated.
The MoI-updated now predicts that synonymous tasks are still interesting. The agent trained with
OMNI: LP + MoI-updated learns 393 (CI: 376 – 397) tasks (interesting or boring) and 66 (CI: 66 – 67)
interesting tasks, achieving an average task success rate of 0.43 (CI: 0.41 – 0.45) on interesting and
boring tasks, and 0.62 (CI: 0.61 – 0.63) on interesting tasks only. Across all metrics, the differences
in performance between OMNI: LP + MoI-updated and the oracle at 25%, 50%, 75%, and 100% of
the way through training are not statistically significant (all p > 0.05, Mann Whitney U test). This
shows that OMNI: LP + MoI-updated’s performance is comparable to that of the oracle (Figure 22).
OMNI: LP + MoI-updated and the oracle achieve similar task success rates for each task (Figure 25),
and induce similar patterns in task sample rates (Figure 26).

These experiments demonstrate that OMNI can be effectively utilized across a range of task settings
when provided with sufficient information. Initially, the MoI was not aware that the RL agent lacked
a language prior, which led it to categorize synonymous tasks as boring. However, by supplementing
the prompt with additional information about the agent (i.e., its lack of a language prior), OMNI was
able to recognize synonymous tasks as interesting, thereby accelerating the agent’s learning.

An alternative approach could involve providing the MoI with more information about the agent’s
performance, so that it can analyze the data, identify and adapt to the agent’s inherent limitations (e.g.,
the absence of a language prior). FMs can potentially automatically analyze the task success rates and
update their predictions of what is interesting without human intervention. Preliminary investigations
with both GPT-3 and GPT-4 have shown promising results. These models generated plausible analyses
of the differences in task success rates between synonymous tasks, and adjusted their predictions of
what is interesting based on these analyses (Figures 24 and 27). These observations imply that FMs
may already have the capacity to analyze data autonomously and adapt their outputs accordingly.

38

Published as a conference paper at ICLR 2024

― Prompt

― Update to prompt

― Generated output

Figure 23: GPT-3 output (Left) from original prompt (synonymous tasks are determined as not
interesting) and (Right) after updating prompt (synonymous tasks are determined as interesting).
GPT-3 can adapt its prediction of what tasks are interesting to the prompt update.

― Prompt

― Generated output

Figure 24: GPT-3 output (Left) before analysis (synonymous tasks are deemed not interesting),
(Middle) analysis of task success rates (success rates of synonymous tasks are different), and (Right)
after analysis (synonymous tasks are deemed interesting). GPT-3 generated a plausible analysis for
the agent’s achieved task success rates, and automatically updated its interestingness predictions.

39

Published as a conference paper at ICLR 2024

Figure 25: Conditional success probabilities of all tasks, including synonymous tasks, in Crafter.
Agents are trained with synonymous and repetitive tasks as boring tasks. Tasks are organized based
on the prerequisite tasks that must be accomplished in order to complete the target task. Task names
(left of each row) are readable in a digital format with zoom. OMNI: LP + MoI-updated achieves
higher task success rates than LP and Uniform in a wide range of tasks, comparable to that of the
oracle.

40

Published as a conference paper at ICLR 2024

Figure 26: Sampling probabilities for all tasks, including synonymous tasks, in Crafter. Agents
are trained with synonymous and repetitive tasks as boring tasks. Tasks are ordered as in Figure 25.
LP accurately tracks, and thus samples, tasks whose success probabilities change the most. OMNI:
LP + MoI-updated focuses on interesting tasks with high learning progress, similar to that of the
oracle.

41

Published as a conference paper at ICLR 2024

Figure 27: GPT-4 output (Left) before analysis (synonymous tasks are deemed not interesting),
(Middle) analysis of task success rates (success rates of synonymous tasks are different), and (Right)
after analysis (synonymous tasks are deemed interesting). The darker shaded area is the input prompt,
the lighter shaded area is the generated output. GPT-4 generated a plausible analysis for the agent’s
achieved task success rates, and automatically updated its interestingness predictions.

S EXPERIMENTS IN CRAFTER WITH SURVIVAL COMPONENTS

training steps

A
ve

ra
ge

 T
as

k
Su

cc
es

s
R

at
es

N
o

. o
f

Ta
sk

s
w

it
h

Su

cc
es

s
R

at
es

 >
 0

.2

― OMNI: LP + MoI

― LP

― Uniform

Uniform LP OMNI: LP + MoI

3020100

training steps (million)
3020100 3020100

Figure 28: Results in Crafter with survival components. (Left) Conditional success probabilities of
all tasks in Crafter with survival components. Tasks are ordered as in Figure 2. (Right) Performance
in Crafter with survival components on all tasks. OMNI achieves much higher average task success
rates and learns more tasks than Learning Progress or Uniform sampling.

The default experiments removed the survival requirements of Crafter, because they require off-topic,
off-task skills (e.g., fighting monsters and gathering food just to successfully make a wood pickaxe.
Requiring these skills could add noise (e.g., an agent might be able to obtain a wood pickaxe were it
not for getting unlucky gathering food or in a monster fight). However, one might prefer experiments
in the unmodified game, and in this harder, albeit more noisy, setting. To evaluate whether the
same results will hold in this more challenging Crafter setting of when survival requirements and
components are present, we run Uniform sampling, LP and OMNI in the original Crafter environment
setting without any modifications. Due to limited compute, the experiments are run for 30 million

42

Published as a conference paper at ICLR 2024

time steps (vs. 100 million in the main experiments) and are repeated 3 times (vs. 10 times in the
main experiments) with different random seeds. Across all metrics, the differences in performance
between OMNI and LP, and the differences in performance between LP and Uniform, at 25%, 50%,
75%, and 100% of the way through training are statistically significant (all p < 0.05, Mann Whitney
U test). Even in the more challenging Crafter setup where survival components are retained, OMNI
outperforms LP and Uniform sampling (Figure 28).

T SENTENCE EMBEDDINGS AS INTERESTINGNESS METRIC

Previous attempts to quantify interestingness (e.g., intrinsic motivation, novelty search, diversity)
(Section 2) often rely on pre-specified definitions of what counts as interestingly different. To
show where pathologies might happen with predefined metrics of interestingness, we introduce an
alternative MoI which relies on predefined heuristics based on sentence embeddings to quantify
interestingness. In this alternative, embedding-based MoI (eMoI), interestingness is determined by the
distances between sentence embeddings of task descriptions. Each task description is encoded with a
commonly used pretrained sentence-embedding model, all-mpnet-base-v2 (Reimers & Gurevych,
2019). Subsequently, an unsupervised clustering algorithm, OPTICS (Ankerst et al., 1999), categorize
the tasks into clusters based on their embeddings. Task embeddings that are considered outliers are
assigned to separate clusters that only contains themselves. In the spirit of Novelty Search (Lehman &
Stanley, 2011a), this control seeks tasks that are new and different, clustering already explored tasks,
and selects new tasks that do not fall into existing clusters. A similar mechanism as Algorithm 2
then partitions all tasks into interesting or boring, whereby instead of asking an autoregressive FM
to predict which of the remaining tasks are boring, tasks in the same clusters are considered boring.
This method is referred to as OMNI-embed: LP + EMoI.

We run two sets of experiments in the Crafter environment, one using repetitive tasks as boring tasks
(same as the main experiments), another using repetitive and compound tasks as boring tasks (same as
the experiments in Appendix Q). In light of limited compute, the experiments are run for 30 million
time steps (vs. 100 million in the main experiments) and are repeated 10 times (same as the main
experiments) with different random seeds. The results (presented next) show that using a pretrained
sentence-embedding model as an MoI might suffice in distinguishing tasks with unique descriptions,
but falls short in scenarios requiring more reasoning about the tasks, which is not captured within the
pretrained embedding space.

When using repetitive tasks as boring tasks, across all metrics, the differences in performance
between OMNI and OMNI-embed at 25%, 50%, 75%, and 100% of the way through training are
not statistically significant (all p > 0.05, Mann Whitney U test). OMNI-embed’s performance is
comparable to that of OMNI using an autoregressive FM as MoI (Figure 29). OMNI and OMNI-
embed achieve similar task success rates for each task, and induce similar patterns in task sample
rates (Figure 30). This suggests that sentence-embedding models can potentially capture similar
aspects of interestingness as autoregressive FMs in simple cases (but see the next paragraph where
this method fails).

When using repetitive and compound tasks as boring tasks, across all metrics, the differences in
performance between OMNI and OMNI-embed at 25%, 50%, 75%, and 100% of the way through
training are statistically significant (all p < 0.05, Mann Whitney U test). OMNI using an autoregressive
FM as MoI significantly outperforms OMNI-embed (Figure 31). While sentence-level embeddings
may already capture a lot about task descriptions, they may not be as good as autoregressive FMs
at analyzing new tasks in the context of all tasks that the agent currently performs well and poorly.
For example, a sentence-level model might know that “collect wood then stone” is a different task
than either “collect wood” or “collect stone”, but such a model may not realize that in the context of
learning, if an agent can already collect wood and stone, performing both is not a very new, interesting
task with high expected learning progress vs. moving on to practicing entirely new skills. A sentence
embedding model may thus overestimate the novelty of “collect wood and stone” vs. “collect coal”,
since the former is a compound, longer sentence, and the latter is grammatically more similar to
“collect wood” (Figure 32).

43

Published as a conference paper at ICLR 2024

Average Task Success Rates No. of Tasks with Success Rates > 0.2

In
te

re
st

in
g

an
d

 B
o

ri
n

g
ta

sk
s

In
te

re
st

in
g

ta
sk

s
o

n
ly

― OMNI: LP + MoI
― OMNI-embed: LP + EMoI

― LP

― Uniform

training steps training steps

Figure 29: Performance in Crafter on all tasks, with the only tasks considered boring being
repetitive tasks. Average task success rates and the number of tasks with success rates more than
0.2 for each method across training steps. This figure is the same as Figures 2, with an additional
OMNI-embed method added for comparison. OMNI-embed achieves comparable performance to
OMNI, with no statistically significant difference.

OMNI: LP + MoI OMNI-embed: LP + EMoI

training steps (million)
3020100 3020100

OMNI: LP + MoI OMNI-embed: LP + EMoI

training steps (million)
302010 3020100

Task success rates Task sampling rates

Figure 30: (Left) Conditional success probabilities and (Right) sampling probabilities of all
tasks for OMNI and OMNI-embed in Crafter. Tasks are ordered as in Figure 2. OMNI-embed
focuses on interesting tasks with high learning progress and achieves comparable task success rates
to OMNI.

44

Published as a conference paper at ICLR 2024

Average Task Success Rates No. of Tasks with Success Rates > 0.2

In
te

re
st

in
g

an
d

 B
o

ri
n

g
ta

sk
s

In
te

re
st

in
g

ta
sk

s
o

n
ly

― OMNI: LP + MoI
― OMNI-embed: LP + EMoI

― LP

― Uniform

training steps training steps

Figure 31: Performance in Crafter on all tasks, with the tasks considered boring being repetitive
and compound tasks. Average task success rates and the number of tasks with success rates more
than 0.2 for each method across training steps. Compound and repetitive tasks are those considered
boring. OMNI achieves much higher average task success rates and learns more tasks than OMNI-
embed.

training steps (million)
30100 20 30100 20

OMNI: LP + MoI OMNI-embed: LP + EMoI OMNI: LP + MoI OMNI-embed: LP + EMoI

30100 20 30100 20

Task success rates Task sampling rates

Figure 32: (Left) Conditional success probabilities and (Right) sampling probabilities of all
tasks, including compound tasks, for OMNI and OMNI-embed in Crafter. Tasks are ordered as
in Figure 20. OMNI better identifies interesting tasks and hence achieves higher task success rates
than OMNI-embed.

45

Published as a conference paper at ICLR 2024

U FUTURE WORK DIRECTIONS

This study explores the vision of using human notions of interestingness to accelerate open-ended
learning, an approach we term Open-endedness via Modeling human Notions of Interestingness
(OMNI). OMNI has several advantages over other methods by leveraging human concepts of in-
terestingness to guide task selection in open-ended learning (Section 4.3). In this first version, we
estimate learning progress through statistical methods and utilize a Model of Interestingness (MoI)
based on human data distilled into FMs. A different version of OMNI could have the FM judge both
learning progress and interestingness by giving it a history of task selection and task performance.
That could allow for a more flexible notion of learning progress, as it can potentially recognize not
just success or failure, but also important stepping stones and patterns leading to a solution, echoing
the complexity of human learning progression. Consider an agent learning object manipulation,
eventually progressing to more complex tasks like peeling an egg. Despite prolonged lack of reward,
the task may not be “too difficult” as statistical learning progress might suggest. Given the agent’s
proven ability to handle intricate items, it may be primed for egg peeling, simply requiring more
attempts. Preliminary results suggest that FMs can successfully integrate these aspects (Appendix V).
Notably, as FMs continue to advance (Kaplan et al., 2020), all versions of OMNI are expected
to improve correspondingly. Ultimately, OMNI offers a general recipe for accelerated learning in
open-ended environments with potentially infinite tasks, and steers open-ended learning towards
meaningful and interesting progress, instead of meandering aimlessly amidst endless possibilities.

Looking ahead, there are several promising avenues for future work. One possibility is to incorporate
multi-modal models, such as vision-language models and other modalities into the MoI. This could
give the MoI richer representations and a better comprehension of the agent’s capabilities, facilitating
a more accurate assessment of the agent’s learning progress and task diversity. For example, a vision-
language MoI might see that the agent is making progress on or very close to solving a task for which
it is getting no reward, such as peeling an egg. Another idea is to allow the MoI to autonomously
analyze quantitative performance measures, make its own assessment of learning progress, and
incorporate that into its notion of interestingness. Our preliminary investigations indicate that FMs,
such as GPT-3 and GPT-4, can automatically analyze numerical results and adjust their understanding
of interestingness (Figures 24 and 27).

Critically, by Goodhart’s law, we expect that any model will have pathologies uncovered once it is
a target metric being optimized against. For instance, fine-tuning a task generator to produce tasks
that the MoI finds interesting might eventually result in the MoI not being a good indicator of what
is interesting. Hence, refining and updating the MoI with additional human feedback could lead to
more effective learning systems, an algorithm within the OMNI paradigm we call Open-Endedness
with Human Feedback (OEHF). Similar to Reinforcement Learning with Human Feedback (RLHF)
(Christiano et al., 2017), the objective is to train a model that can effectively capture an ineffable
property that, although challenging to quantitatively measure, is readily identifiable upon observation
(e.g., a backflip for RLHF, or whether a task is interesting for OEHF). One version would be to build
upon the insights of this paper and start with a model already well-versed with human concepts of
interestingness (via unsupervised pre-training on internet-scale human data), and further fine-tune
that MoI with additional human evaluation of its output (as often as necessary). Such fine-tuning can
help minimize suboptimal interestingness judgements, enhance the MoI’s understanding of skills not
initially present in its zero-shot repertoire, or tailor the MoI to a specific domain.

V INTEGRATING MORE ASPECTS OF INTERESTINGNESS INTO FMS

For future research, we plan to explore the potential of leveraging FMs to address multiple aspects
of interestingness, including learning progress. By examining these aspects individually or in a
combined manner, we aim to develop more robust and adaptive models that can efficiently cater to
a wide range of tasks and applications. Preliminary evidence suggests that FMs, such as GPT-4,
possess the capacity to integrate multiple aspects of interestingness (Figure 33). Further investigation
and experimentation in this direction could lead to the development of AI models that exhibit a
more sophisticated approach to learning by effectively capturing and integrating various aspects of
interestingness.

46

Published as a conference paper at ICLR 2024

Figure 33: (Left) Few-shot examples part of first prompt input to GPT-4. (Middle) GPT-4’s prediction
of learnable and interesting tasks. (Right) GPT-4 explanation of how interesting and learnable tasks
are chosen. The darker shaded area is the input prompt, the lighter shaded area is the generated output.
By providing GPT-4 with a few examples of what learnable and interesting tasks are, the model can
synthesize these concepts and consistently generate a set of tasks that meet the desired criteria.

W TENSIONS BETWEEN OPEN-ENDEDNESS AND SAFETY

Open-ended algorithms have tremendous potential to unlock unbounded creativity and catalyze
scientific discoveries, including advancing AI research (Nguyen et al., 2015; Clune, 2019; Stanley
et al., 2023). However, this uncharted expanse also harbors unique safety challenges, as the inherently
unpredictable nature of such algorithms can lead to outcomes misaligned with human values and
expectations (Ecoffet et al., 2020; Clune, 2019). Recognizing this, it remains an open research
question how to explore and take advantage of such algorithms in a safe, value-aligned way. One
method could be to use human feedback to update the model of interestingness, similar to methods
used in RLHF (Christiano et al., 2017; Ding et al., 2023). Another method could be to use AI
feedback to update the model of interestingness (Bai et al., 2022; Bradley et al., 2023), minimizing
the chance of selecting potentially dangerous tasks. Further research is required to understand the
degree to which such methods will work, and to invent new, better methods, so that we can shepherd
open-ended algorithms towards beneficial and secure applications, safeguarding against unintended
consequences while embracing their transformative potential.

47

	Introduction
	Related Work
	Auto-Curriculum Learning
	Attempts to Quantify Interestingness
	Pre-trained Foundation Models in Open-Endedness

	Methods
	Problem Formulation
	Learning Progress Curriculum
	Modeling what Humans Find Interesting

	Experiments in a Finite Task Space
	Crafter Environment
	BabyAI Environment
	Results

	Experiments in an Infinite Task Space
	Methods
	AI2-THOR Environment
	Results

	Discussion, Future Work, and Conclusion
	Learning Progress Curriculum Details
	Learning Progress Curriculum Ablation

	Crafter Prompt
	BabyAI Prompt
	AI2-THOR Prompt - Generate tasks
	AI2-THOR Prompt Example - Generate tasks
	AI2-THOR Prompt - Translate code to natural language
	AI2-THOR Prompt Example - Translate code to natural language
	OMNI Algorithm
	Partitioning all tasks into Interesting or Boring
	Baselines in an Infinite Task Space
	Uniform Sampling Baseline
	Learning Progress Baseline

	Crafter Boring Tasks
	Crafter Policy and Optimization details
	BabyAI Policy and Optimization details
	AI2-THOR Policy and Optimization details
	Supplementary Metrics and Plots
	Oracle Model of Interestingness
	Using Compounds as Boring Tasks in Crafter
	Using Synonyms as Boring Tasks in Crafter
	Experiments in Crafter with Survival Components
	Sentence Embeddings as Interestingness Metric
	Future Work Directions
	Integrating More Aspects of Interestingness into FMs
	Tensions between Open-Endedness and Safety

