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ABSTRACT

Deep neural networks are powerful function approximators and have successfully
been employed for the parameterization of value functions in deep reinforcement
learning. Neural value approximation is a powerful paradigm for model-free con-
trol but it can often result in instability and divergence, especially when combined
with off-policy learning and bootstrapping. Recent works have revealed connec-
tions between the unstable behavior of neural value approximation and the gener-
alization properties of the value network/critic. Motivated by this, we propose a
simple and computationally efficient unsupervised pretraining method to be per-
formed before neural value learning. The method learns initializations of the critic
parameters that correspond to Neural Tangent Kernels with desirable generaliza-
tion structures. We demonstrate the merits of our approach by combining it with
the Soft Actor-Critic algorithm and testing its performance on the continuous con-
trol environments of the DeepMind Control Suite. Our approach results in consid-
erable improvements in reward accumulation, sample efficiency and stability for
the majority of the domain environments. Furthermore, the use of the proposed
pretraining enables us to retain the performance gains when changing the in be-
tween layers activation function of the critic architecture. Finally, we demonstrate
that our proposed pretraining results in performance improvements in pixel-based
tasks from the DeepMind Control Suite, where the critic employs a Convolutional
neural network as a backbone feature extractor.

1 INTRODUCTION
A crucial question that arises during the designing of Reinforcement Learning (RL) algorithms is
how to estimate the sum of rewards that the agent is expected to collect, over the long run, by
performing a particular action at a given state. This is the value of the respective state-action pair.
Temporal difference methods (Sutton, 1988) comprise a paradigm for such a goal. They connect
the value of a state-action pair with immediate rewards and value estimates of subsequent pairs,
sidestepping the need for extensive agent rollouts. Estimating the value function becomes extremely
challenging in control problems where the state-action space is large or continuous and, therefore,
storing the value estimates on a lookup table is not a viable option. A popular approach is to use a
deep neural network to parameterize the value function (Tesauro et al., 1995). The combination of
deep neural networks and temporal difference learning gives birth to neural value approximation.

In neural value approximation, a deep neural network is trained to map each state-action pair of a
Markov Decision Process (MDP) to its expected value under the optimal policy. The quality of the
value estimates significantly affects the performance of the algorithm. This can be easily inferred by
the fact that the control policy is designed so as to select the action (at each state) that corresponds
to the highest value according to the value approximator (Mnih et al., 2015; Lillicrap et al., 2015).

Despite the empirical success of deep neural networks, they often cause instability and divergence.
This problematic behavior is more prominent when combined with off-policy learning and boot-
strapping, a mingling also known as the deadly triad (Sutton & Barto, 2018). A plethora of algo-
rithmic modifications have been proposed to mitigate divergence. Some of them include the use of
delayed copies of the value network for the bootstrapping target (Mnih et al., 2015), ensembling
(Van Hasselt et al., 2016; Fujimoto et al., 2018) and n-step returns (Hessel et al., 2018).

Recent results in theoretical deep learning model the evolution of deep neural networks in regression
tasks, under gradient descent dynamics, as kernel regression using a gram matrix. The gram matrix is
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called the Neural Tangent Kernel (NTK) (Jacot et al., 2018). Every element of the NTK corresponds
to the inner product of two gradient vectors of the network. The NTK motivated efforts towards
connecting the divergence in value approximation with the generalization properties of the critic.

In Achiam et al. (2019), the authors make the assumption that if the first order approximation of
the deep value update is a contraction in the sup norm then learning should be stable. Operating
under this presupposition, they prove sufficient conditions of the value NTK for convergence in
off-policy value-based RL. The conditions imply that value networks with aggressive generalization
(NTK with large off-diagonal elements) are prone to cause divergence. Subsequently, the authors
in Yang et al. (2022); Brellmann et al. (2021), inspired by recent improvements in graphics (Tancik
et al., 2020; Sitzmann et al., 2020), proposed to preprocess the state-action vector with a Fourier
kernel before passing it through the critic. For many benchmark environments and when the critic
is feedforward with rectified linear activations, the Fourier preprocessing transforms the value NTK
into a stationary kernel with a strong diagonal and smaller off-diagonal elements. The resulting critic
provides increase in stability and speed of convergence. The authors in Kumar et al. (2020) report a
phenomenon where the rank of the learned representations of the critic drops steeply during training
in value-based deep RL with bootstrapping. This rank collapse corresponds to an increase in aliasing
of the value estimation across states. The critic generalizes more and performance deteriorates.

Consistent stability in neural value approximation is predicated upon the ability to make explicit
trade-offs between generalization and bias for the corresponding NTK. The NTK depends on the
architecture class, the state-action vector space and the weights vector at initialization (Narkhede
et al., 2022). Therefore, there is the need for designing principled methods that properly ”condi-
tion” the value NTK for a wide range of MDPs and network architectures. Indeed, in this paper,
we propose an architecture-agnostic unsupervised pretraining method that makes use of no reward
signals and imposes a controllable generalization structure on the value NTK at initialization. We
pretrain the critic on apriori collected transitions, by maximizing an objective that acts as a surrogate
to the difference between the diagonal and off-diagonal elements of the value NTK. The objective
uses an approximation of the network’s gradient, based on function evaluations, to circumvent the
computation of Hessian vector products. Subsequently, we use the pretrained value network as the
critic initialization of the Soft Actor-Critic (SAC) algorithm (Haarnoja et al., 2018). We compare
the training performance of the pretrained version against a standard implementation of the SAC,
the critic of which corresponds to the version of the critic before the pretraining.

The pretraining provides consistent improvements in stability and convergence speed for all the
environments of the DeepMind Control Suite (DMC) (Tassa et al., 2018). It achieves about 50%
training speedup on the ”Quadruped-walk” environment and about 25% increase in average reward
accumulation on the ”Quadruped-run”. Both environments have the largest state-action dimension
among the DMC tasks. Furthermore, by using the proposed pretraining, we are able to solve all the
DMC environments with proprioceptive states using a feedforward critic with hyperbolic Tangent
activations. This is not the case when the the critic is randomly initialized. Finally, our pretraining
scheme provides improvements in stability and reward performance for pixel-based tasks of the
DMC, where the critic contains Convolutional layers.
2 BACKGROUND
RL studies the problem where an agent interacts with the environment in a sequence of states, actions
and rewards giving birth to a Markov Decision Process (MDP) defined as a tuple ⟨S,A,R, P, p, γ⟩.
S is the state space,A is the action space,R : S×A→ R is the reward function and P : S×A→ S
is the transition function (depends on the environment dynamics). p(s) is the distribution of the
initial state and γ ∈ (0, 1) is the discount factor that quantifies how ”far-sighted” the agent is. The
goal of RL is to learn a mapping from states to actions, namely a policy, π(a|s) so as to maximize
the expected discounted sum of rewards J = E

[∑∞
t=0 γ

tR(st, at)
]
.

The state-action value function Qπ is defined as the expected discounted sum of rewards starting
from a state-action pair and following the policy π thereafter.

Qπ(s, a) = E
[ ∞∑
t=0

γtR(st, at)|(s0, a0) = (s, a)
]

(1)

The optimal value function Q∗(s, a) is the fixed point of the Bellman backup operator:

B∗Q(s, a) = Es′∼P

[
R(s, a) + γmax

a′
Q(s′, a′)

]
(2)
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In off-policy RL, one assumes the existence of an Experience Replay MemoryD (Mnih et al., 2015)
that contains experiences sampled from the MDP (D = {s, a, s′, r}Ni=1). The optimal value function
is parameterized as a neural network with parameter vector θ (Qθ). The estimation of the optimal
value function is conducted by minibatch gradient descent with the following update rule.

θ′ = θ + 2ηE(s,a,s′,r)∼D

[(
B∗Qθ(s, a)−Qθ(s, a)

)
∇θQθ(s, a)

]
(3)

The parameter η is the learning rate. It is common practice to use an additional network, typically
called as the target network, with parameters ψ, for calculating the bootstrapping target. The param-
eter vector ψ slowly tracks the parameter vector θ. We employ a slight abuse of formalism and we
use the terms ”value network” and ”critic” interchangeably, for the rest of the paper. In addition, we
use the term ”value function” to refer to the function that depends both on the action and the state
(Equation 1) and not the function where the actions are marginalized out (Schaul et al., 2015).
2.1 DIVERGENCE AND THE VALUE NEURAL TANGENT KERNEL

Let us assume that we sample one experience (s, a, s′, r) from the Experience Replay D and update
the parameters θ of the value network using the update rule in Equation 3. Subsequently, we get
a new parameter vector θ′. Assuming a small η, we examine the updated Qθ′ on state-action pair
(s̄, ā) by the first order Taylor expansion around θ, as proposed by Achiam et al. (2019).

Qθ′(s̄, ā) ≈ Qθ(s̄, ā) + ηE(s,a)∼P

[
Kθ(s̄, ā; s, a)

(
B∗Qθ(s, a)−Qθ(s, a)

)]
(4)

In the above expression, Kθ(s̄, ā; s, a) = ∇θQθ(s̄, ā)
TQθ(s, a) is the corresponding element of

the value NTK (the Neural Tangent Kernel of the value network). The quantity Kθ(s̄, ā; s, a) cor-
responds to the inner product between the gradient vectors of the respective state-action pairs and
constitutes a measure of the generalization of the value approximator. In essence, the higher the
magnitude ofKθ(s̄, ā; s, a), the more the update using (s, a) affects the value estimate of (s̄, ā).

We briefly follow the analysis by Achiam et al. (2019). Assuming an MDP withN state-action pairs
{(si, ai)}Ni=1, then the value NTK, Kθ = K, is an N ×N symmetric matrix where :

• Kθ (i, j) = Kij = Kθ (j, i) = Kji = ∇θQθ (si, ai)
T ∇θQθ(sj , aj)

• Kθ(i, i) = Kii = ∥∇θQθ(si, ai)∥2

After updating the parameters θ with all N experiences, the state-action pair values before and after
the update are related by:

Qθ′ ≈ Qθ + ηKθDρ

(
B∗Qθ −Qθ

)
, (5)

where Dρ is the diagonal matrix with entries ρi = ρi(si, ai) given by the distribution of state-action
pairs induced by the content of the Experience Replay.

Assuming that the first order approximation of the deep value update being a contraction in the
supremum norm suffices for convergence in neural value learning, the following theorem can be
proven.

Theorem 1 (Achiam et al., 2019) Let indices i, j refer to state-action pairs. Suppose that K, ρ,
γ < 1, η satisfy the following conditions:

∀i, 2ηKiiρi ≤ 1, (6)

∀i, (1 + γ)
∑
j ̸=i

∥Kij∥ρj ≤ (1− γ)Kiiρi. (7)

Then the neural value update operator is a contraction in the supremum norm, with its fixed point
being the optimal value function Q∗.

The off-diagonal elements of the value NTK determine the generalization of the value approximator.
For a given MDP, a value network that corresponds to a value NTK with large off-diagonal elements
in comparison to the elements of the main diagonal generalizes relatively aggressively.

Let us examine Theorem 1. Assuming that ρi > 0 everywhere and the discount factor γ is large
(typically it is chosen to be 0.99), the theorem implies the following. To achieve stability and con-
vergence when learning the value function with a neural network (off-policy), the underlying value
NTK needs to have off-diagonal elements with small magnitude in comparison to the magnitude of
the elements of the main diagonal. Therefore, for every state-action pair i, it is required that:

∀j ̸= i, ∥∇θQθ(si, ai)
T∇θQθ(sj , aj)∥ ≪ ∥∇θQθ(si, ai)∥2 (8)
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3 UNSUPERVISED PRETRAINING OF THE VALUE NETWORK

Inequality 8 is the main motivation for the unsupervised pretraining method proposed in the current
work. The key idea is to pretrain the value network in order to force inequality 8 for the state-action
pairs of the MDP of interest. The goal is to ensure that condition 8 holds strong at the beginning of
training and, by doing that, to enable stability thereafter (Chizat & Bach).

We assume the availability of an Experience Replay D which is filled with transitions (D =
{si, ai, s′i, a′i, ri}Ni=1). The (si, ai) is the current state-action of the transition and (s′i, a

′
i) is the

subsequent pair. The natural pretraining regimen to propose is the following.

We set a number of pretraining epochs. At each update step, we sample a minibatch of experiences
from the Experience Replay and maximize the following objective with gradient ascent on θ:

Jp(θ) = E(s,a,s′,a′)∼D

[
a∥∇θQθ(s, a)∥2 − b∥∇θQθ(s, a)

T∇θQθ(s
′, a′)∥

]
(9)

The parameters a, b are positive scalars. By maximizing Jp(θ) we incentivize the search over the
network’s parameter space in order to find areas where the gradient vectors of different state-action
pairs are almost orthogonal to each other and the gradient norms are relatively large. The reward is
absent from the objective, hence the unsupervised aspect of the method (Hastie et al., 2009).

There is an intrinsic trade-off between generalization and stability in neural value approximation.
On one hand, the off-diagonal elements of the NTK need to have small magnitude, relative to the
diagonal elements, for stable convergence. On the other hand, the off-diagonal elements control
the amount of generalization during value approximation. Therefore, even though a value NTK
with a strong diagonal is desirable for convergence, we would like to avoid forcing the off-diagonal
elements to be (almost) zero. In the case of (almost) zero off-diagonal elements, the critic is in mem-
orization mode and acts like a lookup table. This degenerate case defeats the purpose of function
approximation and the critic is unable to reason (interpolate) for the value of unseen pairs.

The phenomenon where critics go into undergeneralizing modes was empirically studied in Bengio
et al. (2020). The authors compute a quantity, throughout temporal difference learning, that they
coin as interference. Interference is an estimate to the value of the off-diagonal NTK elements.
They report cases where this amount gets very small and the critic simply memorizes.

Choosing the values of the parameters a, b gives us implicit control over the trade-off between
generalization and stability. The ”optimal” coefficient values depend on the dynamics, the state-
action vector space and the critic architecture. We investigate the effect of a and b in Section 4.6.

3.1 A SURROGATE TO THE PRETRAINING OBJECTIVE BASED ON FUNCTION EVALUATIONS

The maximization of the pretraining objective (Equation 9) requires computing Hessian vector prod-
ucts at every update step. For environments with high-dimensional state-action spaces, the critic
typically has a large number of parameters. Therefore, the Hessian computation induces significant
overhead. We propose a different formulation to overcome the computational bottleneck.

The computationally efficient proposition invokes a zeroth order approximation of the gradient of
the critic’s output with respect to the parameters. The approximation pertains to the use of func-
tion evaluations. In particular, let us assume the value network Qθ(s, a) and µ > 0 a smoothing
parameter. Then the µ-smooth value network (critic) can be defined as follows:

Qµ
θ (s, a) := EU∼N (0,I) [Qθ+µU (s, a)] (10)

The use of the µ parameter enables us to obtain an unbiased estimate of the gradient of the µ-smooth
critic, with respect to the parameters, using only two evaluations. We present the following lemma
(modification of similar lemmas in Nesterov & Spokoiny (2017); Kalogerias & Powell (2022))

Lemma 2 (Nesterov & Spokoiny, 2017; Kalogerias & Powell, 2022) For every µ > 0, the µ-smooth
critic surrogate Qµ

θ is differentiable with respect to the parameter vector and the gradient can be
represented as:

∇θQ
µ
θ (s, a) = EU∼N (0,I)

[Qθ+µU (s, a)−Qθ(s, a)

µ
U
]

4



Under review as a conference paper at ICLR 2023

We can safely assume that, for small enough µ, the true gradient of the critic with respect to the
parameters can be approximated by the zeroth order gradient of the µ-smooth critic:

∇θQθ(s, a) ≈ EU∼N (0,I)

[Qθ+µU (s, a)−Qθ(s, a)

µ
U
]

(11)

Motivated by the above zeroth order approximation of the gradient we formulate a surrogate to the
original unsupervised pretraining objective (Equation 9) as follows.

JSUR(θ; a, b, µ, U) = E(s,a,s′,a′)∼D

[
a∥

≈∇θQθ(s,a)︷ ︸︸ ︷
Qθ+µU (s, a)−Qθ(s, a)

µ
U∥2

− b∥Qθ+µU (s
′, a′)−Qθ(s

′, a′)

µ
UTU

Qθ+µU (s, a)−Qθ(s, a)

µ︸ ︷︷ ︸
≈∇θQθ(s′,a′)T∇θQθ(s,a)

∥
]

(12)

The parameters µ, a and b are fixed. The pretraining is depicted in Algorithm 1.

For the experiments of the paper we stick to the sampling of one U per batch. There can be imple-
mentations that involve the sampling of multiple i.i.d Ui and averaging for every batch update. Such
implementations trade pretraining time for gradient approximation accuracy.

An interesting alternative is to fill the Experience Replay with transitions from expert demonstrations
and apply the proposed pretraining scheme either in the context of deep RL or in the context of
Imitation learning (Li et al., 2017; Torabi et al., 2019). This direction is left for future work.

Algorithm 1 Unsupervised Pretraining

1: Fill Experience Replay D with N transitions from a random policy D = {si, ai, s′i, a′i}Ni=1
2: Initialize θ
3: Set µ (smoothing), λ (learning rate), a and b (coefficients of the objective terms)
4: for each epoch do
5: for each update step do
6: Sample a batch of transitions from D
7: U ∼ N (0, I)
8: θ ← θ + λ∇θJSUR(θ; a,b, µ, U)
9: end for

10: end for

4 EXPERIMENTS

4.1 DEEPMIND CONTROL SUITE

We test our pretraining scheme on the continuous control tasks from the DeepMind Control Suite
(DMC) (Tassa et al., 2018). For every experiment, we first collect experiences by running a ran-
dom policy for 100 episodes. Subsequently, we independently train two critic networks for 100
epochs with our proposed pretraining (Algorithm 1). An important nuance is that we pretrain with
vanilla stochastic gradient descent (torch.optim.SGD). In our early experiments, we found it to be
more stable than other popular optimizers such as Adam (Kingma & Ba, 2014). Finally, we use
the pretrained networks as the double critic initialization of the SAC. We benchmark the training
performance of the above described scheme against the direct training of the SAC algorithm with a
non-pretrained double critic. We use the SAC implementation by Yarats & Kostrikov (2020), which,
to the best of our knowledge, constitutes the current state-of-the-art for the DMC.

The first set of experiments is depicted in Figure 1. Each critic is a Multilayer Perceptron (MLP)
with Rectified Linear (ReLU) activations between layers, abbreviated as ReLU MLP. The architec-
ture follows the one used by Yarats & Kostrikov (2020) (3 latent layers, 1024 neurons each). The
unsupervised pretraining of the critic improves the overall stability, convergence and reward accu-
mulation of the algorithm for all the environments. The impact of the pretraining is more profound
when it comes to the environments with the largest, in terms of dimension, state-action space. In par-
ticular, for the ”Quadruped-walk” environment, the pretraining scheme provides about 50% speedup
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in terms of sample efficiency. When it comes to the ”Quadruped-run” environment, the pretrained
version of the SAC performs about 25% better than the non-pretrained version in terms of average
reward. The pretraining of the critic improves the stability between seeds for all the environments.

We provide the pretraining hyperparameters (a, b and µ) for every environment in the Appendix
A.1. The learning curves for each environment (Figure 1) correspond to the average performance
over 15 different seeds. We investigate the effect of different hyperparameter values in Section 4.6.
In general, we found that choosing µ = 0.0001, a = 1 and b = 1 generalizes well across the DMC
environments (see Figure 6)
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Figure 1: Learning curves for DMC environments. For every environment, the subfigure depicts the
learning curve for the direct training of the SAC and the curve corresponding to the SAC with the
critic that has been pretrained with Algorithm 1. The environments are ordered by increasing input
dimension (left to right). The critic is a ReLU MLP. The pretraining part is not included in the plots.

4.2 CHANGING THE ACTIVATIONS OF THE CRITIC FROM RELU TO TANH

Figure 2 presents a set of experiments similar to those of the previous subsection. The only differ-
ence is that the activations between the layers of the value network are replaced with the hyperbolic
Tangent function (Tanh). This might seem as an insignificant change, but its effect is substantial.
Based on the work by Tancik et al. (2020), MLPs with Tanh activations, abbreviated as Tanh MLPs,
generally correspond to NTKs with larger off-diagonal elements in comparison to ReLU MLPs.
Therefore, it is expected that using Tanh MLP for the critic will cause performance deterioration for
some environments. Indeed, if we consider the direct training of the SAC algorithm, without the un-
supervised pretraining of the critic, the Tanh MLP performs noticeably worse than the ReLU MLP
on the majority of the domain environments. On the other hand, the Tanh MLP critic, after being
pretrained, performs on par with the pretrained ReLU MLP critic. For the case of the ”Quadruped-
run”, the version of the SAC with the pretrained Tanh MLP critic performs better than the rest of the
variations (Figure 12 in the Appendix for the direct comparison).

A notable case is that of the ”Humanoid-run” environment. The version that employs a pretrained
critic with Tanh activations performs reasonably well (Note that the current state-of-the-art perfor-
mance for the ”Humanoid-run” is approximately 130 per episode (Yang et al., 2022)). On the other
hand, the SAC with a non-pretrained Tanh MLP critic cannot practically solve the environment.
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Figure 2: The figure depicts the same set of experiments as Figure 1, but with Tanh MLP critic.

4.3 PIXEL-BASED DMC TASKS

0 100 200 300 400 500
Episodes

0

50

100

150

200

250

Re
wa

rd
s

Ball-in-cup-catch

pretraining (ours)
no pretraining

0 100 200 300 400 500
Episodes

0

25

50

75

100

125

150

Re
wa

rd
s

Walker-walk

pretraining (ours)
no pretraining

0 100 200 300 400 500
Episodes

0

50

100

150

200

250

300

350

Re
wa

rd
s

Finger-spin

pretraining (ours)
no pretraining

0 100 200 300 400 500
Episodes

0

50

100

150

200

250

Re
wa

rd
s

Cartpole-swingup

pretraining (ours)
no pretraining

Figure 3: Comparison of the proposed pretraining with a SAC baseline (Yarats et al., 2021) for
pixel-based tasks of the DMC. Each curve corresponds to an average over 5 seeds. The pretraining
part is not included in the plots.
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We test the performance of the proposed pretraining approach on a sample of the DMC tasks where
the state is comprised by raw image frames. The results are depicted in Figure 3. We combine our
pretraining with the pixel SAC implementation by Yarats et al. (2021), where the critic combines
two different architecture classes: first a Convolutional Neural Network (CNN) and then a ReLU
MLP, both connected sequentially. As can be extracted by Figure 3, our proposed pretraining pro-
vides considerable increase in performance for all depicted tasks. We employ the same pretraining
hyperparameter values for all pixel-based environments (µ = 0.0001, a, b = 1).
4.4 VISUALIZING THE VALUE NTK BEFORE AND AFTER THE PRETRAINING

0 5 10 15

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

0 5 10 15

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Figure 4: NTK of ReLU MLP critic
for the same batch of state-action
pairs before (left) and after (right)
the pretraining

The intuition behind the proposed unsupervised pretraining
method is, given the architecture of the critic and transitions
from the MDP, to ”condition” the NTK to adhere to inequal-
ity 8 that derives, under mild assumptions, from the theoret-
ical result in Achiam et al. (2019). The pretraining process
searches through the parameter space to find an initial param-
eter vector for the critic that corresponds to a NTK that has a
strong diagonal and relatively smaller off-diagonal elements.

In order to validate that the pretraining does find
suitable initializations, we visualize the NTK
of the value network before and after the pre-
training for a ReLU MLP (Figure 4) and a Tanh MLP critic (Figure 5). All
NTKs of Figures 4 and 5 are computed on the same batch of state-action pairs.
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Figure 5: NTK of Tanh MLP critic
for the same batch of state-action
pairs before (left) and after (right)
the pretraining

Two things to be stressed regarding Figures 4 and 5. First
of all, the NTK after the pretraining adheres to the condition
outlined in 8 for both classes of activation functions of the
feedforward critic. It corresponds to a kernel with strong di-
agonal and small off-diagonal elements. Second, the NTK of
the Tanh MLP generalizes more aggressively than the NTK of
the ReLU MLP (both of them without being pretrained with
the proposed unsupervised scheme), which explains the over-
all inferior performance of the Tanh MLP on the majority of
environments. This comes to a complete agreement with the
theoretical result by Achiam et al. (2019) described in Theo-
rem 1, and the differences between ReLU and Tanh MLPs, in terms of their corresponding NTKs,
described in Tancik et al. (2020); Yang et al. (2022).

The NTKs of our visualizations were computed with the repository by Engel et al. (2022).
4.5 COMPARING WITH THE FOURIER FEATURES

The proposed pretraining approach strives to impose a particular structure on the NTK of the critic.
The same incentive underlies the proposed works in Yang et al. (2022); Brellmann et al. (2021),
where the authors employ a learnable Fourier feature kernel on the state-action vector before passing
it through the value network. It is natural to compare our proposed pretraining with the Fourier
features proposition for the environments of the DMC. We provide the comparison of our proposed
approach with the method by Yang et al. (2022) in Figure 6.
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Figure 6: Comparison of the proposed pretraining against the approach by Yang et al. (2022). Every
curve corresponds to the average over 6 seeds. The pretraining part is not included in the plots.

The proposed pretraining behaves comparably to the Fourier preprocessing for the depicted environ-
ments. The notable cases are the “Quadruped-run”, where the Fourier approach performs noticeably
better than the pretraining, and the “Hopper-hop” where the proposed pretraining performs signif-
icantly better than the Fourier preprocessing. The approach by Yang et al. (2022) introduces one
hyperparameter which is the variance of the Normal distribution that the elements of the Fourier
kernel are sampled from at initialization. For the experiments of Figure 6, we employ the variance
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that was proposed by Yang et al. (2022) for the Fourier preprocessing approach at each environ-
ment. For our proposed pretraining, we employ the same hyperparameters for each environment
(µ = 0.0001, a = 1 and b = 1).

The methods by Yang et al. (2022); Brellmann et al. (2021) are admittedly a powerful paradigm for
improving value learning when the critic is a ReLU MLP. Even though the Fourier preprocessing
introduces only one additional hyperparameter, in contrast to the 3 hyperparameters introduced by
the proposed pretraining, we observe that it is generally safer to tune the pretraining method. This
conjecture is grounded in the following observation. The performance of the pretraining exhibits
some variability in terms of the hyperparameter values (see Subsection 4.6) but it is very rare that it
will cause catastrophic divergence. This is not always the case for the Fourier preprocessing, where
small deviations from the optimal variance can result in reward collapse due to noisy value estimates.
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Figure 7: SAC with Fourier
preprocessing with and
without the pretraining.
The pretraining part is not
included in the plots.

An interesting finding pertains to the joint employment of the Fourier
features preprocessing and the proposed unsupervised pretraining.
In particular, we noticed that the employment of the proposed pre-
training can stabilize the training performance of the SAC for cer-
tain DMC environments where the Fourier features exhibit instabil-
ity. We provide the training performance of the SAC with Fourier
preprocessing on the “Hopper-hop” environment, with and without
the proposed pretraining, in Figure 7. As can be extracted by the
aforementioned Figure, the SAC with the Fourier preprocessing be-
haves unstably. Even though there are cases where it achieves very
high reward, there are seeds where the SAC performance collapses
during training. The employment of the proposed pretraining, on top
of the Fourier features preprocessing, stabilizes training.

4.6 CHOOSING THE COEFFICIENTS FOR THE UNSUPERVISED
PRETRAINING OBJECTIVE

The values of the parameters a and b in the pretraining objective (12) correlate with performance.
We provide the performance of SAC for the two DMC environments with the largest input di-
mension, when the critic is pretrained with 3 different values of the a

b ratio, in Figure 8. For
each environment, we use the same set of Experiences, the same µ, the same number of pre-
training epochs and the same initial (before the pretraining) parameter vector for the critic for
all the pretraining experiments. The only parameter that changes is the ratio of the coefficients.
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Figure 8: Learning curves for the 2 largest (in
terms of state-action dimension) environments of
the DMC. For each environment, the subfigure
demonstrates the performance of the SAC for 3
different sets of values for the coefficients a and
b. Each curve corresponds to the average over 6
seeds. Variance is omitted to avoid clutter.

The discrepancy between the performances of
the SAC for the different coefficient ratios in
the pretraining objective clearly indicates the
overall importance of the critic initialization.

If we fix all the pretraining parameters and hy-
perparameters (Experience Replay content, pa-
rameters µ and λ, number of pretraining epochs
and initial critic parameter vector), then the a

b
ratio influences the properties of the resulting
NTK. In general, the smaller the ratio a

b the
stronger the NTK diagonal in comparison to
the off-diagonal elements after the pretraining.
This can be extrapolated by Figure 9 where the
NTK for a = 1 and b = 100 is clearly sparser than the one for a = 100 and b = 1. We should note
that the performance of the proposed method does not vary as much for different coefficient ratios
on the rest of the environments of the DMC (except for the Quadruped environments). The trade-off
between generalization and bias is governed by the relation between diagonal and off-diagonal ele-
ments of the NTK and is particular to each environment (dynamics and underlying value function).
That is why, for the ”Quadruped-walk”, best performance is exhibited for a = 1 and b = 1 in
contrast to the ”Quadruped-run” where best performance corresponds to pretraining with a = 1 and
b = 100 (Figure 8). This hints that the ”Quadruped-walk” demands ”less” critic generalization than
the ”Quadruped-run”.
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A reasonable proposition would be to collapse the contribution of the 2 coefficients (a and b) into 1
( a

b or b
a ). We refer the reader to Appendix A.3 for the relevant discussion.
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Figure 9: The value NTK for the same batch of state-action pairs (from the ”Quadruped-run” envi-
ronment) before the unsupervised pretraining (left), after the unsupervised pretraining with a = 100
and b = 1 (mid) and after the unsupervised pretraining with a = 1 and b = 100 (right).

5 RELATED WORK

Recent works have shed light on the connections between the instability in neural value learning
and the generalization properties of the value network. Our work builds on the theoretical analysis
by Achiam et al. (2019). We propose an unsupervised pretraining method which finds critic ini-
tializations that correspond to NTKs with strong diagonals and small off-diagonal elements. There
is a connection between our proposed approach and the works in Yang et al. (2022); Brellmann
et al. (2021) where the authors propose the preprocessing of the input of the critic with a Fourier
transformation that makes the resulting NTK stationary. The distinction is that our proposed method
supersedes, to a certain degree, the architecture class of the critic and the vector space of the MDP,
but requires more computing budget because of the pretraining aspect.

In Kumar et al. (2020), the authors reveal that the rank of the learned representations of the value
network reduces significantly during temporal difference learning with bootstrapping. This results
in feature aliasing (aggressive generalization) and divergence. To avoid the rank drop, they propose
a regularization term that pertains to the difference between the largest and smallest singular value
of the feature transformation. Our proposed work targets the issue of aggressive generalization
explicitly by conditioning the NTK of the value network. Nonetheless, the effects of our proposed
pretraining on the representation aspect of neural value learning are to be examined.

6 DISCUSSION
The purpose of the paper is to introduce a pretraining method that conditions the NTK of the critic
to adhere to sufficient conditions for convergence of value approximation. The pretraining scheme
is unsupervised (no use of rewards or labels of any kind) and is computationally efficient because it
employs a zeroth order approximation of the gradient vector of the value network to circumvent the
compution of Hessian vector products. The pretraining finds initializations of the critic network that
correspond to NTKs with a strong diagonal and relatively small off-diagonal elements. It constitutes
a principled way of network initialization in contrast to classical views that consider the initial
parameters as samples from a probabilistic distribution (He et al., 2015; Kumar, 2017).

There has been an emergence of unsupervised representation learning for RL (Seo et al., 2022; Finn
et al., 2016; Stooke et al., 2021; Schwarzer et al., 2021; Gupta et al., 2018; Jaderberg et al., 2016).
Typically, the underlying motivation behind the merging of RL and unsupervised learning is to
extract rich feature representations that capture the factors of variation in data and can be reused for
a plethora of downstream tasks. Instead, the current work is a testament towards a different direction
that is not necessarily orthogonal to the mainstream one. The objective is to employ unsupervised
learning methods so as to imprint desirable generalization and bias properties on the value network
in terms of its evolution under gradient descent dynamics. That is the reason why the proposed
pretraining scheme operates directly on the properties of the resulting NTK of the value network.
We believe that both directions (extracting powerful representations and facilitating the evolution
under gradient descent) can be simultaneously progressed towards and connections between the two
can be uncovered in the future.
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A APPENDIX

A.1 HYPERPARAMETERS

In the current subsection, we list the hyperparameters for the unsupervised pretraining for all the
environments of the DMC. One thing to be noted is that the pretraining provides improvements for a
range of values close to the ones that are reported in this subsection. The provided values correspond
to the experiments of Figures 1 and 2. They do not apply for Figures 3 and 6.

Pretraining hyperparameters
Environment Observation space Action space µ a b λ
Acrobot-swingup Box(6,) Box(1,) 1e-6 1 1 1e-6
Finger-turn-hard Box(12,) Box(2,) 1e-6 1 1 1e-6
Hopper-hop Box(15,) Box(4,) 1e-6 1 1 1e-6
Cheetah-run Box(17,) Box(6,) 1e-5 1 10 1e-6
Walker-run Box(24,) Box(6,) 1e-5 1 10 1e-6
Humanoid-run Box(67,) Box(21,) 1e-5 1 1 1e-6
Quadruped-walk Box(78,) Box(12,) 1e-4 1 1 1e-6
Quadruped-run Box(78,) Box(78,) 1e-4 1 10 1e-6

A.2 EXTRA EXPERIMENTS

In the current subsection, we provide some additional plots for the performance of SAC with and
without the proposed pretraining both for the ReLU MLP and the Tanh MLP case (Figures 10 and
11).
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Figure 10: Learning curves for the some of the DMC environments. For every environment, the
subfigure depicts the learning curve (15 seeds) that corresponds to the direct training of the SAC
and the curve (15 seeds) corresponding to the SAC with the critic that has been pretrained with
Algorithm 1. The environments are ordered by increasing input dimension (left to right). The critic
is a ReLU MLP. The pretraining part is not included in the plots.
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Figure 11: Learning curves for the continuous control environments of the DMC. For every envi-
ronment, the subfigure depicts the learning curve (15 seeds) that corresponds to the direct training
of the SAC and the curve corresponding to the SAC with the critic that has been pretrained with
Algorithm 1. The environments are ordered by increasing input dimension (left to right). The critic
is a Tanh MLP. The pretraining part is not included in the plots.

We also provide direct comparison for all feedforward variations (ReLU MLP and Tanh MLP, with
and without pretraining) on the 4 largest, in terms of input dimension, environments on the DMC
(Figure 12)
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Figure 12: Learning curves for 4 DMC environments. There are 4 curves for each environment. One
that corresponds to the performance of the ReLU MLP critic with pretraining (midnight blue), one
to the performance of the ReLU MLP critic without the pretraining (orange), one to the performance
of the Tanh MLP critic with pretraining (blue) and one to the Tanh MLP critic without pretraining
(yellow). Each curve is the average over 15 seeds and the variance is omitted to avoid clutter. The
pretraining part is not included in the plots.

A.3 DISCUSSION FOR THE 2 COEFFICIENTS OF THE PRETRAINING OBJECTIVE

A reasonable proposition would be to collapse the contribution of the 2 coefficients (a and b) of
Equation 12 into 1 ( a

b or b
a ). The reason that we stick with the 2 distinct coefficients is that, when µ,

λ and number of pretraining epochs are fixed, there is a chance that the optimal NTK can correspond
to early stopping of the pretraining. In cases like that, it is the magnitude of the coefficients that
matters as well as the ratio. The ratio contributes to the scaling of the learning rate.
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