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ABSTRACT

Deep learning has emerged as the new paradigm in modeling complex physical
dynamical systems. Nevertheless, data-driven methods learn patterns by optimizing
statistical metrics, tend to overlook the adherence to physical laws. Previous work
have attempted to incorporate physical constraints into neural networks, but they
often face limitations due to lack of flexibility or optimization challenges. In this
paper, we propose a novel framework, Physics-aware Self-Alignment (P-ALIGN),
to enhance the physical consistency of dynamical systems modeling. P-ALIGN
enables dynamical system models to provides physics-aware rewards, which makes
self-alignment of dynamical system models possible. Comprehensive experiments
show that P-ALIGN not only gave an average statistical skill score boost of more
than 32% for ten backbones on five datasets, but also significantly enhances physics-
aware metrics. All of our source codes will be released via GitHub.

1 INTRODUCTION

Dynamical systems provides a mathematical framework for analyzing how systems evolve over time,
which is particularly important in fields such as fluid mechanics, climatology and meteorology. It
describes the temporal evolution of a system’s state using differential equations for continuous systems
or difference equations for discrete systems (Birkhoff, 1927; Anosov et al., 1988; Meiss, 2007; Galor,
2007). However, solving these equations analytically is often not feasible for complex systems,
leading to a reliance on numerical methods (Stuart & Humphries, 1998; Dellnitz & Junge, 2002;
Guckenheimer, 2002; Hubbard & West, 2012). While numerical approaches such as finite difference
methods, finite element methods or Runge-Kutta methods can provide approximate solutions (Lisitsa
et al., 2012; Thomas, 2013; De La Cruz et al., 2013), they tend to be computationally expensive,
especially for high-dimensional systems or long time spans (Houska et al., 2012; Benner et al., 2015;
Yu & Wang, 2024).

Data-driven approaches to dynamical systems modeling have gained significant attention as a way
to overcome some of the limitations of traditional numerical methods (Pfaff et al., 2021; Gao et al.,
2022b; Pathak et al., 2022; Bi et al., 2023; Wu et al., 2024a). These approaches leverage large datasets
and deep learning to model the underlying dynamics directly from observed data, bypassing the
need for explicit analytical forms of the governing equations (Yu & Wang, 2024). By capturing
complex behaviors through data, these methods offer a promising alternative for modeling high-
dimensional, nonlinear, or chaotic systems where traditional approaches struggle (Noé et al., 2020;
Wang et al., 2020; Kochkov et al., 2021). Nevertheless, data-driven methods often build models by
optimizing statistical metrics, which can lack the physical consistency that traditional methods based
on first-principles offer (Han et al., 2020; Karniadakis et al., 2021; Pathak et al., 2022). Without
explicitly incorporating physical constraints, deep learning models may produce predictions that,
while statistically accurate, are physically implausible or violate fundamental physical laws (Pathak
et al., 2022; Bi et al., 2023; Wu et al., 2024b). This limitation is especially problematic when
extrapolating beyond the range of the training data, where the model may generate behavior that
contradicts well-established physical principles (Willard et al., 2020; Wang et al., 2021).

Recent research explored various methods to introduce physical constraints to the data-driven ap-
proach to enhance the physical consistency of the prediction. Some methods (Raissi et al., 2019;
Li et al., 2021; Hansen et al., 2023) incorporate physical equations as part of the training process to
ensure adherence to physical laws, but optimization challenges, especially with complex constraints,
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often lead to suboptimal results (Krishnapriyan et al., 2021). Some other methods integrates physics-
inspired components into neural networks (Greydanus et al., 2019; Cranmer et al., 2020), but this
approach requires clearly defining physical rules and developing custom architectures, limiting its
flexibility to different task and backbone network. More recent models (Gao et al., 2023) employ
a physics-informed energy function to guide the sampling process, but the need for an additional
network to align the physical constraints increases the overall complexity of training.

(a). Self-Alignment in Large Language Models (b). Self-Alignment in Dynamical System Modeling

Physical	Dynamic	System	Model

Top-1 Top-2Top-3

1.	Self-Discovery

...

2. Physics-Aware	
Curation

3. Alignment

＋ ＋

Augmented	
Data Dt

Mt

Mt
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Figure 1: The figure shows two self-improvement frameworks: Figure (a) illustrates the self-alignment
of large language models (Li et al., 2023), while Figure (b) presents the self-alignment in physical
dynamic system modeling, which draws inspiration from the LLM’s self-alignment in Figure (a).
Both achieve self-improvement and capability enhancement through iterative self-discovery, self-
filtering, and self-updating.

In this paper, inspired by the self- alignment in large language models, as shown in Figure 1, we
introduce Physics-aware Self-Alignment (P-ALIGN), a novel self-alignment framework designed to
enhance the physical consistency of dynamical system models. P-ALIGN aims to enable dynamical
system models with two key capabilities simultaneously: (1) Prediction: accurately forecasting
future states based on the current state. (2) Curation: generating and evaluating multiple potential
future states with high physical consistency to expand and improve the training dataset. With
these capabilities, dynamic system models can train themselves iteratively. Our theoretical analysis
demonstrates that P-ALIGN can improve the performance of the model by reducing the upper bound of
the generalization error of the model. Our experiments demonstrate that P-ALIGN boost performance
in a wide range of dynamic system modeling tasks.

2 RELATED WORK

Data-Driven Dynamical System Modeling: In the scientific computing field, data-driven physical dy-
namical system modeling has become an innovative tool. It provides accuracy and insight for solving
complex problems in dynamic systems (Reichstein et al., 2019; Wang et al., 2023). This approach
allows researchers to deeply understand and model natural phenomena (Long et al., 2018; Chen et al.,
2018; Kiani Shahvandi et al., 2022; Höge et al., 2022; Mehta et al., 2021). Applications range from
the long-term effects of climate change to the simulation of high-speed fluid dynamics (Pathak et al.,
2022; Bi et al., 2022; Li et al., 2020; Xiong et al., 2023). For example, FNO demonstrates excellent
performance in processing complex partial differential equations (Li et al., 2020); LSM is effective in
data compression and feature extraction (Wu et al., 2023); PINN combines deep learning and physics
principles to effectively solve the challenges of traditional numerical methods (Karniadakis et al.,
2021); and DeepONet learns universal operators for complex systems and effectively predicts system
behaviors (Lu et al., 2021), among other fields.

Self-Alignment: Self-Alignment derived from research on large language models, which focuses
on enabling models to autonomously improve by generating and evaluating their own data, thereby
reducing the need for external supervision (Li et al., 2023; Guo et al., 2024; Liang et al., 2024a).
The standard approach (Xu et al., 2023; Sun et al., 2024b; Wang et al., 2024a) involves writing a
set of prompts based on specific principles, guiding the model to assess the quality of its generated
output (Sun et al., 2024b; Lu et al., 2024), and then using these assessments to fine-tune the model
itself. Other methods have attempted to train reward models for judgment (Gulcehre et al., 2023; Sun
et al., 2024a) or leverage instruction-tuned models to aid in generating synthetic datasets (Yuan et al.,
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Figure 2: The P-ALIGN framework optimizes dynamic system models and aligns them with physical
principles through four steps: Self-Discovery, Physics-Aware-Curation, Data Augmentation, and
Alignment. This process enhances the model’s physical consistency and predictive accuracy.

2024; Liang et al., 2024b). However, dynamic system models lack the capacity to generate multiple
responses and evaluate them, making it challenging to generalize the self-alignment approach.

3 PRELIMINARIES

Dynamical System Modeling: A typical dynamical system contains multiple variables with spatio-
temporal relationships (Anosov et al., 1988; Meiss, 2007; Yu & Wang, 2024). It is described by
equations associated with unknown functions and their derivatives as a k-th order system of partial
differential equation:

F(Dkx(s), Dk−1x(s), . . . , Dx(s), x(s), s) = 0 (1)

where s ∈ the domain S and x means the state of the system. When the governing equation F is
known, we can solve them by some numerical schemes with high-cost computation. Even more often
F is unknown, which makes the numerical schemes completely infeasible.

Data-driven modeling of dynamical systems encourages end-to-end prediction, thereby skipping
expensive numerical integration. Specifically, dynamical system models learn to build a probabilistic
model P(Y|X ; θ), which maps a sequence of past values to future values:

M : {X1,X2, . . . ,XT } → {Y1,Y2, . . . ,YT }, (2)

where Yt = Xt+△t. Xt is the input features and the Yt is the outputs, T stands for forecasting
horizon and △t is the time lag.

4 METHODOLOGY

4.1 FRAMEWORK OVERVIEW

As shown in Figure 2, P-ALIGN explores the latent space of dynamical system models and produces
augmented training data with more physical consistency, followed by self-alignment across multiple
iterations. Specifically, P-ALIGN performed the following three steps in one iteration: (1) Self-
Discovery, which identify approximate representative samples from the continuous space in which the
current hidden state resides. (2) Physics-Aware-Curation, which find new samples with more physical
consistency.(3) Data Augmentation add the augmented samples to training data. (4) Alignment,
which use the argument data to train models themselves.

Through these four steps, P-ALIGN enables dynamical system models to achieve self-alignment.
Indeed, we construct a reward strategy here: Self-Discovery generates candidate responses, which
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are then evaluated by Physics-Aware-Curation to ensure the physical consistency of the data. Our
self-alignment is accomplished by iterative training. For each iteration, a new model Mt is produced,
where Mt is trained on the augmented data Dt−1, generated by the previous model Mt−1.

4.2 PHYSICS-AWARE SELF-CURATION

Encoder: We first model the features of dynamical system into a embedding space with an encoder,
which computes latent vectors from raw observation data in historical inputs. Specifically. the encoder
Eϕ takes high-dimensional features of physical systems Xt ∈ RC×H×W and maps it to the latent
representation Zt ∈ Rn×D through a series of transformations, where n is the number of tokens and
D is the dimension of each token. This transformation process can be described as:

Zt = Eϕ(Xt) = {zt1 , zt2 , . . . , ztn} (3)

where each token ztn ∈ RD corresponds to D-dimensional state of local features. As a general
method, P-ALIGN can employ any popular backbone networks as the encoder Eϕ, such as vision
transformer (Dosovitskiy et al., 2021), Earthfarseer (Wu et al., 2024a), SimVP (Tan et al., 2022),
FNO (Li et al., 2020), or CNO (Raonic et al., 2024).

Self-Discovery: After mapping the high-dimensional feature Xt to latent representation via the
encoder Eϕ, our goal is to identify representative sample that approximate Zt. However, discovery
within a high-dimensional continuous space is challenging due to its density. In P-ALIGN, we
proposed Self-Discovery mechanism. anchor the representative points in a low-dimensional embedded
space to represent local features of current state, inspired by latent space traversal (Chalumeau et al.,
2023; Adolphs et al., 2022) and vector quantization (Van Den Oord et al., 2017). Specifically, we
assumes that a d–dimensional (d < D) embedding space of dynamical system models can be divided
into N sub-regions, which can be formulated as E = {E1, E2, . . . , EN}. For each sub-region EK ,
there exists a feature vector ek ∈ Rd capable of representing an approximation of vectors within EK ,
which can be defined as:

∀x ∈ Ek, ek = f(x), where k = argmin
j

∥x− ej∥2 (4)

We refer to these representative vectors as anchors. Consequently, the continuous embedding space E
can be approximated by a discrete set of anchors {ek}:

E ≈ {ek}Nk=1 (5)

where N is the number of sub-regions. In this formulation, the discovery of continuous space
is transformed into the task of discrete vector search. We then align the current state Zt to the
d-dimensional embedding space:

Z ′
t = σ (W · Zt + b) = {z′t1 , z

′
t2 , . . . , z

′
tn} (6)

where Z ′
t ∈ Rn×d and z′ti ∈ Rd. W and b are the projection matrix and bias, σ is the activation

function. Then we use the set of anchors {ek} to approximate it:

f(z′ti) = ek, where k = argmin
j

∥z′ti − ej∥2 (7)

Z ′
t ≈ {ek1

, ek2
, . . . , ekn

} (8)

For the d-dimensional representation z′ti of each local feature, we select the anchor ek with the
smallest Euclidean distance to approximate it during training and inference, as shown in Equation
6. However, we do not restrict this selection to only the nearest ek when updating the train dataset;
instead, we expand the search space to yield a more diverse set of potential samples. This extension
is based on our observation that the embedding space cannot be accurately modeled, resulting in
similar statistical metrics for the top-K nearest anchors. The search space expansion can be defined
as follows:

f(z′ti) → {ek1
i
, ek2

i
, . . . , ekK

i
}, where {k1i , k2i , . . . , kKi } = top-Kj∥z′ti − ej∥2 (9)

the m-th candidate states can be represented as:

Zm
t = {ekm

1
, ekm

2
, . . . , ekm

n
} where m ∈ {1, 2, . . . ,K} (10)
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thus, we include K candidate states at each time step t:

Z ′
t → {Z1

t ,Z2
t , . . . ,ZK

t } (11)

For each candidate latent state Zm
t , we feed it into the decoder Dφ to recover the original features,

which can be describe as:
Ym
t = Dφ(Zm

t ) (12)

where the Ym
t ∈ RC×H×W , as same as Xt. We obtain K candidate samples Ym

t for each Xt:

Xt → {Y1
t ,Y2

t , . . . ,YK
t } (13)

Physics-Aware-Curation: Self-Discovery mechanism actively discover multiple representative sam-
ples that are similar to the current state in a low-dimensional continuous latent space, and then we
proposed the Physics-Aware-Curation mechanism to gather spatio-temporal sequence with highest
physical consistency. Specifically, we model the temporal features of the dynamical system into the
search process, which is similar to the beam search during the decoding of language models. At the
first time step t = 1, we initialize the set of candidate sequences Bt

B1 = {Y(1)
1 ,Y(2)

1 , . . . ,Y(M)
1 } (14)

where Y(i)
1 represents the i-th candidate with the top-M physical consistency scores. The scores

is calculated by the physics-aware reward r(θ), which can be physical metrics such us divergence
of the velocity field (Tuckerman, 1989), energy spectrum (Gutzwiller, 1970) or turbulence kinetic
energy (Nagata et al., 2013), etc. At each time step t, the candidate sequence (Y1,Y2, . . . ,Yt−1) is
expanded by calculating the cumulative reward for each possible extension:

R(Y1,Y2, . . . ,Yt) = R(Y1,Y2, . . . ,Yt−1) + r(Yt|Y1,Y2, . . . ,Yt−1) (15)

After computing the cumulative rewards for all candidates, we select the top-M sequences:

Bt = Top-M
(
R(Y(i)

1 ,Y(i)
2 , . . . ,Y(i)

t )
)

(16)

where R(Y(i)
1 , . . . ,Y(i)

t ) is the cumulative reward for each sequence. This process continues until
the maximum time step T is reached. The final output sequence Y∗ is the one with the highest
cumulative reward:

Y∗ = arg max
Y∈BT

R(Y) (17)

4.3 ITERATIVE SELF-ALIGNMENT

P-ALIGN will iteratively generate a series of models during training, where next model Mt+1 is
trained on the augmented data Dt produced by Mt and seed data D. The update formula is

Mt+1 = argmin
θt

L(Mt(X ∪ Xt), (Y ∪ Yt)) (18)

Specifically, for t = 0, we train the first model M1 using the seed dataset D:

M1 = argmin
θ0

L(M0(X ),Y) (19)

The set of anchors {ek} is jointly optimized during the training process, which can be describe as:

L = λ ·MSE(Y∗
t − Yt) + β∥Z ′

t − sg[e]∥22 + γ∥sg[Z ′
t]− e∥22. (20)

where sg() is the stop gradient operator, which works a marker during network forward propagation
and blocks gradient calculation during back propagation. We then use Physics-Aware Self-Discovery
for Mt to expand the dataset Dt+1 and the detailed progress of our P-ALIGN can be found in
Algorithm 1.

Dt+1 = Dt ∪ {X ,Yi | Yi = Y∗ or R(Yi) ≥ τ} (21)

Here, τ represents a predefined threshold used as a decision criterion. Different scenarios use different
selection methods. For example, in extreme event detection (Veillette et al., 2020), we consider an
event extreme if its score exceeds 0.65, making τ = 0.65 our selection target.

5
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Algorithm 1 P-ALIGN Framework for Dynamical System Modeling

Require: Initial model M0, dataset D = {(Xi,Yi)}Ni=1, max iterations T
Ensure: Enhanced model MT

1: Train Initial Model
2: Train initial model M0 on dataset D
3: for t = 1, 2, . . . , T do
4: Step 1: Self-Discovery
5: Extract latent representation Zt using encoder Eϕ

6: Obtain candidate states {Z1
t , . . . ,ZK

t } using anchor vectors
7: Step 2: Physics-Aware Curation
8: for each candidate Zm

t do
9: Decode to obtain predicted feature Ym

t = Dφ(Zm
t )

10: Calculate physics-aware reward r(Ym
t )

11: end for
12: Select candidate Y∗

t with the highest reward
13: Step 3: Dataset Augmentation
14: Update dataset: Dt = Dt−1 ∪ {(Xt,Y∗

t )}
15: Step 4: Model Alignment
16: Train model Mt on augmented dataset Dt

17: end for
18: return Enhanced model MT =0

4.4 THEORETICAL ANALYSIS

In this section, we rigorously prove how selecting high-quality samples enhances model performance
from the perspective of Statistical Learning Theory, using the concepts of risk minimization and the
upper bound of generalization error.

Given a training dataset D = {(Xi,Yi)}Ni=1, where Xi ∈ X and Yi ∈ Y . The hypothesis space of
the model is H, and the model is parameterized by θ. The loss function is ℓ(f(Xi; θ),Yi).

We define the Empirical Risk as:

R̂(θ) =
1

N

N∑
i=1

ℓ(f(Xi; θ),Yi) (22)

The Expected Risk is defined as:

R(θ) = E(X ,Y)∼P [ℓ(f(X ; θ),Y)] (23)

where P represents the underlying data distribution.

Generalization Error is defined as:

ϵgen(θ) = R(θ)− R̂(θ) (24)

According to Statistical Learning Theory, the upper bound of the generalization error can be estimated
using measures of the hypothesis space complexity, such as VC dimension or Rademacher complexity.

In the P-ALIGN method, we select high-quality samples using a physical consistency reward function
r(Yi), forming a new training set D′ = {(Xi,Yi)}N

′

i=1, where N ′ ≤ N . Let the hypothesis space
after selection be H′. We propose the following theorem:

Theorem 1 (Generalization Error Upper Bound Reduction Theorem). Assume the loss function
ℓ(f(X ; θ),Y) satisfies 0 ≤ ℓ ≤ M and is L-Lipschitz continuous. Let RN (H) and RN ′(H′) be the
empirical Rademacher complexities of hypothesis spaces H and H′, respectively, and let δ ∈ (0, 1).
Then for any θ ∈ Θ, with probability at least 1− δ:

R(θ) ≤ R̂(θ) + 2RN (H) + 3M

√
log(2/δ)

2N
(25)

6
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For the filtered hypothesis space H′:

R′(θ) ≤ R̂′(θ) + 2RN ′(H′) + 3M

√
log(2/δ)

2N ′ (26)

Moreover, since H′ ⊆ H and RN ′(H′) ≤ RN (H):

R′(θ)− R̂′(θ) ≤ R(θ)− R̂(θ) (27)

Thus, selecting high-quality samples reduces the upper bound of the generalization error.

Through the above theorem, we have proven that selecting high-quality samples helps reduce the
upper bound of the model’s generalization error. This is because:

• Reduction in Hypothesis Space Complexity: The filtered hypothesis space H′ is smaller and less
complex, leading to a decrease in the empirical Rademacher complexity RN ′(H′).
• Improvement in Data Quality: High-quality samples enable the empirical risk R̂′(θ) to more
accurately estimate the expected risk R′(θ).
• Reduction in Generalization Error Upper Bound: Combining the above points, the upper bound of
the model’s generalization error is reduced, enhancing the model’s performance.

Therefore, from the perspective of Statistical Learning Theory, the P-ALIGN method theoretically
proves that it can enhance model performance by selecting high-quality samples and introducing
physical consistency constraints. Then, we have the following theorem with the proof in Appendix A.

5 EXPERIMENTS

In this section, we verify the effectiveness of our proposed method, P-ALIGN. We design four
research questions (RQs) to comprehensively evaluate the performance of P-ALIGN: RQ1: Does
P-ALIGN effectively improve model performance and applicability? RQ2: How does the P-ALIGN
perform in sparse scenarios? RQ3: How does P-ALIGN compare to other enhancement methods?
RQ4: Is P-ALIGN effective for extreme events? Through these questions, we aim to comprehensively
assess the applicability of our method.

5.1 EXPERIMENTAL SETTINGS

Backbone. To evaluate the generalizability of P-ALIGN, we conduct experiments using multiple
model frameworks, including classic models like ConvLSTM (Shi et al., 2015), PredRNN-V2 (Wang
et al., 2022), Vision Transformer (ViT) (Dosovitskiy et al., 2020), and MAU (Chang et al., 2021),
as well as the efficiency-oriented SimVP (Gao et al., 2022a), and recent models such as MmvP
(Zhong et al., 2023) and Earthfarsser (Wu et al., 2024a). Additionally, we include FNO and U-Net
for analysis in sparse scenarios, and compare different plugins using CPAE (Takamoto et al., 2023),
NUWA (Wang et al., 2024b), PURE (Hao Wu, 2024), and MixUP (Zhang et al., 2018). We use mean
absolute error (MAE), mean squared error (MSE), and structural similarity index measure (SSIM) as
evaluation metrics. Further details are available in the Appendix C.

Benchmarks. We use Weatherbench (Rasp et al., 2020), TaxiBJ+ (Wu et al., 2024a), SEVIR (Veillette
et al., 2020), DRS (Chen et al., 2022), and FireSys (Chen et al., 2022) as datasets for our evaluation.
Specifically, Weatherbench represents meteorological systems, TaxiBJ represents traffic dynamics,
SEVIR represents extreme events, DRS represents physical control systems, and FireSys represents
combustion dynamics.

5.2 EVALUATING THE EFFICACY OF P-ALIGN (RQ1)

In dynamic system prediction tasks, incorporating physical priors can significantly enhance the gener-
alization ability and physical consistency of deep learning models. The proposed P-ALIGN method
introduces a physical alignment mechanism that effectively improves model performance, especially
on complex spatiotemporal datasets. To evaluate the effectiveness of this method, experiments were
conducted across multiple datasets and models, with the main observations summarized below.

7
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Table 1: This table presents the results (five runs) comparing the use of the P-ALIGN concept (P-ALIGN)
versus not using it (Ori) across various datasets. All MAE and MSE values are multiplied by 100. Blue and Red
backgrounds indicate percentage improvement (reduction) in MAE and MSE, respectively.

Backbone
(10 → 10)

TaxiBJ+ WeatherBench SEVIR DRS FireSys

Ori P-ALIGN Ori P-ALIGN Ori P-ALIGN Ori P-ALIGN Ori P-ALIGN

ViT
MAE 16.59 14.54 19.22 17.16 18.69 17.56 13.59 7.52 17.32 15.97
MSE 11.40 8.89 21.67 19.05 9.93 9.16 6.21 1.41 23.40 21.06
∆ 10.7% ↑ 12.1% ↑ 7.8% ↑ 9.2% ↑ 6.1% ↑ 7.7% ↑ 44.7% ↑ 77.3% ↑ 7.8% ↑ 10.1% ↑

Earthfarsser
MAE 14.57 12.75 14.14 12.32 15.23 14.47 2.03 1.44 17.15 16.29
MSE 9.94 7.83 10.10 8.42 6.75 6.01 4.09 2.24 23.37 21.94
∆ 12.9% ↑ 16.6% ↑ 12.6% ↑ 16.4% ↑ 5.0% ↑ 10.9% ↑ 29.1% ↑ 37.8% ↑ 5.1% ↑ 6.1% ↑

Mmvp
MAE 17.41 16.17 18.37 16.32 20.67 17.21 15.05 11.02 19.37 18.16
MSE 14.22 12.29 16.39 13.24 8.45 7.26 4.11 2.32 26.09 24.97
∆ 11.2% ↑ 19.2% ↑ 10.0% ↑ 18.1% ↑ 16.7% ↑ 14.1% ↑ 26.8% ↑ 43.6% ↑ 6.2% ↑ 4.3% ↑

ConvLSTM
MAE 18.22 16.21 13.66 11.78 20.51 18.41 5.43 3.89 22.22 10.08
MSE 16.79 14.67 16.42 14.79 12.12 11.41 0.64 0.31 28.64 26.44
∆ 13.8% ↑ 9.9% ↑ 15.3% ↑ 10.0% ↑ 10.2% ↑ 5.9% ↑ 28.3% ↑ 51.6% ↑ 9.6% ↑ 7.6% ↑

PredRNN-V2
MAE 14.18 13.05 16.04 13.58 17.94 16.26 8.76 7.98 18.26 16.14
MSE 9.60 7.89 12.87 10.99 8.54 7.73 4.37 4.18 24.71 23.12
∆ 15.3% ↑ 14.6% ↑ 11.6% ↑ 14.6% ↑ 9.3% ↑ 9.4% ↑ 8.9% ↑ 4.3% ↑ 11.6% ↑ 6.5% ↑

MAU
MAE 23.28 20.96 17.72 15.99 25.07 24.14 11.84 9.97 20.67 18.65
MSE 20.46 16.60 18.11 16.00 15.43 14.34 5.28 4.66 30.89 28.91
∆ 9.8% ↑ 11.7% ↑ 5.9% ↑ 11.7% ↑ 3.7% ↑ 7.1% ↑ 15.8% ↑ 11.8% ↑ 9.8% ↑ 6.4% ↑

SimVP
MAE 15.91 13.45 13.93 11.76 15.48 14.63 2.12 1.57 17.01 15.79
MSE 10.96 8.21 9.88 7.96 6.82 6.21 9.54 5.03 23.34 22.11
∆ 15.6% ↑ 19.5% ↑ 11.4% ↑ 15.3% ↑ 5.5% ↑ 8.9% ↑ 25.9% ↑ 47.3% ↑ 8.4% ↑ 5.3% ↑

Ground-Truth Earthfarseer+P-ALIGN Earthfarseer ViT

Figure 3: Comparison of predicted results across different models and a radar chart showing the
percentage improvements (∆%) in MAE and MSE for various models. The left panel displays
qualitative predictions for Ground-Truth, Earthfarseer+P-ALIGN, Earthfarseer, and ViT, while the
right panel provides a radar chart illustrating the performance improvements in MAE and MSE.

Obs.1 Significant Improvement with P-ALIGN: Introducing the P-ALIGN method led to significant
improvements in all models across various datasets. This is clearly reflected in the main table
comparing MAE and MSE: for example, the MAE of the ViT model on the WeatherBench dataset
dropped from 19.22 to 17.16, and MSE from 21.67 to 19.05. Similar improvements were observed in
other models as well. As shown in in Figure 3, the radar chart further illustrates this, showing marked
percentage improvements in MAE and MSE for each model when using P-ALIGN, particularly
with models like Earthfarseer and Mmvp, which showed substantial gains across multiple datasets.

(a). Ground-Truth (b). Earthfarseer+P-ALIGN (c). Earthfarseer

Figure 4: Latent space visualization comparison.

Obs.2 Preservation of Physical Con-
sistency: As shown in in Figure 3,
we find our method not only improves
prediction accuracy but also main-
tains physical consistency. This is ev-
ident in the visualized energy spec-
trum comparison in the second row,
which serves as an important indicator
of physical consistency. The energy
spectrum of Earthfarseer+P-ALIGN is
closest to the Ground-Truth, demonstrating that the P-ALIGN effectively aligns model predictions
with actual physical laws, enhancing the overall physical plausibility and consistency.

Obs.3 Improvement in Spatial Structure Capture: As shown in in Figure 3, the visualizations
of the prediction results reveal that Earthfarseer+P-ALIGN significantly outperforms other models
in capturing spatial structures, being much closer to the Ground-Truth, especially in areas with
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Table 2: Performance comparison between models with and without P-ALIGN under different sparsity
levels for both in-t (equal prediction length and input length) and out-t (prediction length significantly
greater than input length) scenarios. The results show mean squared error (MSE) for both U-Net and
FNO models, with the improvements highlighted when P-ALIGN is applied.

SPARSITY TEST→ s = 5% s = 25% s = 50% s = 75%

TRAIN ↓ IN-T OUT-T IN-T OUT-T IN-T OUT-T IN-T OUT-T

s = 75%

U-NET 0.2134 0.2431 0.2717 0.3344 0.3088 0.3516 0.2617 0.3984
+ P-ALIGN 0.1865 0.2136 0.2401 0.3010 0.2759 0.3252 0.2298 0.3539

FNO 0.0758 0.1015 0.1052 0.1461 0.1284 0.2157 0.2439 0.2869
+ P-ALIGN 0.0585 0.0777 0.0802 0.1113 0.0940 0.1677 0.1821 0.2260

Sparsity (5% ~ 75%) FNO + P-ALIGN FNO U-NetGround-Truth

Figure 5: Visualization of model predictions under different sparsity levels (from 5% to 75%). The
comparison includes the ground truth, sparse inputs, and predictions from FNO + P-ALIGN, FNO,
and U-Net. The results show that FNO + P-ALIGN better approximates the ground truth, especially
under high sparsity conditions, effectively capturing key physical features.

complex structures, such as high-energy regions and fine details. This indicates that P-ALIGN not
only enhances numerical accuracy but also improves the capture of spatial patterns and structures,
making the model’s predictions more visually accurate and natural.

Obs.4 Interpretability analysis of latent space search paths: As shown in Figure 4, the Earthfarseer
model with P-ALIGN generates representations in the latent space that are closer to the ground truth,
indicating that P-ALIGN effectively selects optimal representations through self-discovery and
physical consistency filtering along the search path in the latent space. The search path in the figure
shows that the Earthfarseer + P-ALIGN model gradually moves toward a physically plausible region,
making the final representation more accurate and enhancing both physical consistency and model
interpretability.

5.3 EFFECTIVENESS OF P-ALIGN WITH SPARSE DATA (RQ2)

In this section, we focus on the effectiveness of in scenarios with limited data. Specifically, using
SWE as an example, we select models Unet and FNO and apply random masking at four levels: 5%,
25%, 50%, and 75%. We compare the model performance with and without P-ALIGN. The specific
results are shown in the tables and figures. We have two key observations as follows:

Obs.1 Quantitative Analysis: Table 2 shows that adding P-ALIGN significantly improves the
performance of both FNO and U-Net models under high sparsity conditions. For example, when
s = 75%, the Out-t error of FNO drops from 0.2869 to 0.2260, a reduction of about 21.2%. Similarly,
the Out-t error of U-Net decreases from 0.3984 to 0.3539, a reduction of 11.2%. These results indicate
that P-ALIGN effectively enhances the model’s generalization ability in highly sparse scenarios.

Obs.2 Qualitative Analysis: As shown in Figure 5, the visualization shows that FNO + P-ALIGN
produces predictions closer to the ground truth under different sparsity levels, especially when the
sparsity reaches 75%. Compared to FNO and U-Net without P-ALIGN, the P-ALIGN-enhanced
model better restores key details of the physical field. This suggests that P-ALIGN improves physical
consistency, allowing the model to generate reasonable predictions even with sparse input data.

5.4 COMPARATIVE PERFORMANCE ANALYSIS WITH OTHER PLUG-IN METHODS (RQ3)

To comprehensively evaluate our method, we compare it with several other plug-in methods. First, we
select CPAE, which integrates physical prior parameters. Next, we use NUWA, a data augmentation
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method based on causal analysis. Then, we choose PURE, a plug-in incorporating the concept
of prompts. Finally, we select the traditional data augmentation method, MixUP. We conduct
experiments on the WeatherBench dataset using SimVP as the backbone model. The specific results
are shown in Table 3, and we have the following observations.

Table 3: Comparison of Re-
sults Based on the Weather-
Bench Benchmark.

METHODS MSE SSIM

CPAE 11.23 0.7546
NUWA 9.23 0.8211
PURE 8.44 0.8456

MIXUP 21.98 0.5988
P-ALIGN 7.96 0.9011

Traget

+P-ALIGN

Earthfarseer

Figure 6: Visualization of Prediction Results for Extreme Precipi-
tation Using the SEVIR Dataset.

Obs.1 P-ALIGN outperforms all other plug-in methods: In terms of MSE and SSIM, P-ALIGN
achieved the best performance on the WeatherBench dataset, with an MSE of 7.96 and an SSIM of
0.9011. This is significantly better than other plug-in methods like PURE and NUWA, indicating that
P-ALIGN effectively reduces prediction error and enhances spatial structural consistency. Particularly
for SSIM, a metric for evaluating the visual quality of physical fields, P-ALIGN outperformed other
methods by a large margin, demonstrating its advantage in preserving both the detail features and
overall quality of predicted images.

5.5 EFFECTIVENESS OF P-ALIGN IN EXTREME EVENT PREDICTION (RQ4)

On the SEVIR dataset, we design evaluation experiments for extreme events by removing initial con-
ditions to test the model’s generalization ability and prediction performance in extreme precipitation
scenarios. The results are shown in the Figure 6, we have two key observations as follows:

Obs.1 +P-ALIGN Enhances Prediction of Extreme Precipitation Events: +P-ALIGN significantly
improves prediction accuracy for extreme precipitation events on the SEVIR dataset. The visual
results show that +P-ALIGN predictions align more closely with the target, especially in areas with
the highest precipitation, matching the spatial distribution and intensity well. This demonstrates that
+P-ALIGN enhances the model’s ability to capture and simulate extreme events under challenging
conditions.

Obs.2 Enhanced Physical Consistency: Even without initial conditions, +P-ALIGN effectively
captures the main features of extreme events, showing better robustness and adherence to physical
laws than the original Earthfarseer model. The analysis of physical consistency indicators, such
as the energy spectrum, suggests that +P-ALIGN not only improves numerical accuracy but also
significantly enhances physical consistency, making the model’s predictions more reliable under
extreme conditions.

6 CONCLUSION

This paper presents P-ALIGN, a physics self-alignment framework designed to enhance physical
consistency in dynamical system modeling. P-ALIGN enables effective exploration and self-alignment
of hidden states through self-discovery and physics-aware optimization. It improves prediction
performance across multiple complex spatiotemporal datasets. Experimental results show that P-
ALIGN achieves over 32% improvement in statistical skill scores compared to the original models,
and it enhances physical consistency, especially in extreme event prediction. Overall, P-ALIGN
provides a flexible and efficient solution for applying deep learning to dynamical systems.

ETHICS STATEMENT

We acknowledge that all co-authors of this work have read and committed to adhering to the ICLR
Code of Ethics.
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A PROOFS OF THEOREM 1

Proof. First, according to the definition of Rademacher complexity, the empirical Rademacher
complexity is:

RN (H) = Eσ

[
sup
h∈H

1

N

N∑
i=1

σih(Xi)

]
(28)

where σi are independent Rademacher random variables taking values ±1.

Since H′ ⊆ H, for any N ′ ≤ N , we have:

RN ′(H′) ≤ RN (H) (29)

because the number of selected samples is reduced, and the hypothesis space becomes smaller.

According to the Rademacher complexity generalization error bound theorem in Statistical Learning
Theory, for a loss function ℓ satisfying 0 ≤ ℓ ≤ M , with probability at least 1− δ:

R(θ) ≤ R̂(θ) + 2RN (H) + 3M

√
log(2/δ)

2N
(30)

Similarly, for the filtered dataset:

R′(θ) ≤ R̂′(θ) + 2RN ′(H′) + 3M

√
log(2/δ)

2N ′ (31)

Since RN ′(H′) ≤ RN (H) and N ′ ≤ N , we have:

2RN ′(H′) + 3M

√
log(2/δ)

2N ′ ≤ 2RN (H) + 3M

√
log(2/δ)

2N
(32)

Since N ′ ≤ N ,
√

1
N ′ ≥

√
1
N , but the improvement in data quality allows the empirical risk R̂′(θ) to

better approximate the expected risk R′(θ), offsetting the effect of the reduced sample size.

Thus, we have:

R′(θ)− R̂′(θ) ≤ R(θ)− R̂(θ) (33)

This indicates that the upper bound of the model’s generalization error is reduced after selecting
high-quality samples.
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B OVERVIEW OF EVALUATED MODELS

Here, we provide an overview of each model used to evaluate the generalizability of our proposed
method.

ConvLSTM: ConvLSTM combines convolutional neural networks (CNN) and long short-term
memory (LSTM) networks. It processes spatiotemporal data by maintaining spatial information
using convolutional layers and capturing temporal dependencies through LSTM units. ConvLSTM
performs well for tasks such as weather forecasting, traffic prediction, and video analysis, effectively
preserving both spatial and temporal features (Shi et al., 2015).

PredRNN-V2: PredRNN-V2 is a recurrent neural network designed for spatiotemporal predictive
learning. It uses dual memory cells to extract and retain spatial and temporal features separately,
improving the model’s ability to capture both short-term dynamics and long-term temporal depen-
dencies. PredRNN-V2 incorporates a curriculum learning strategy to learn from context, making it
suitable for video prediction and weather forecasting tasks (Wang et al., 2022).

Vision Transformer (ViT): ViT uses a pure Transformer architecture for image classification. It
divides an input image into patches and processes them like a sequence, similar to natural language
processing tasks. Unlike convolutional networks, ViT relies on self-attention to learn features,
allowing it to achieve excellent performance on large datasets with fewer computational resources
(Dosovitskiy et al., 2020).

Motion-Aware Unit (MAU): MAU is a module that specifically captures motion information. It
enhances the performance of recurrent neural networks in video prediction tasks by integrating a
motion-aware mechanism that focuses on capturing dynamic features (Chang et al., 2021).

SimVP: SimVP is an efficient video prediction model that does not use complex architectures
like RNN, LSTM, or Transformer. Instead, it uses CNNs to perform video prediction, enabling
parallel processing and reducing computational complexity while maintaining the ability to learn
spatiotemporal features effectively (Gao et al., 2022a).

Multi-Modal Video Prediction (MmvP): MmvP integrates multiple data modalities, such as vision
and text, to improve video prediction accuracy and robustness. It uses different fusion methods to
effectively combine features from various modalities, making it useful in complex scenarios involving
diverse data sources (Zhong et al., 2023).

Earthfarsser: Earthfarsser focuses on environmental data prediction and analysis. It is specifically
designed for Earth science applications and performs well with data that contains both spatial and
temporal characteristics. It is suitable for tasks like climate forecasting and disaster assessment (Wu
et al., 2024a).

C METRICS

In our research, we evaluate the performance of our models using Mean Squared Error (MSE),
Mean Absolute Error (MAE), and Structural Similarity Index Measure (SSIM). These metrics, where
applicable, are expressed in decibels (dB). Their definitions are as follows:

MEAN SQUARED ERROR (MSE)

Mean Squared Error (MSE) quantifies the average squared difference between estimated values and
actual values, reflecting the magnitude of errors. It is defined as:

MSE =
1

N

N∑
i=1

(Yi − Ŷi)
2 (34)

where Yi represents the actual value, Ŷi is the predicted value, and N is the number of observations.

MEAN ABSOLUTE ERROR (MAE)

Mean Absolute Error (MAE) measures the average magnitude of errors in a set of predictions,
ignoring their direction. It represents the mean of the absolute differences between the predicted and
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actual values:

MAE =
1

N

N∑
i=1

∣∣∣Yi − Ŷi

∣∣∣ (35)

where Yi represents the actual value, Ŷi is the predicted value, and N is the number of observations.

STRUCTURAL SIMILARITY INDEX MEASURE (SSIM)

The Structural Similarity Index Measure (SSIM) assesses the similarity between two images, con-
sidering luminance, contrast, and structure. The SSIM index ranges from -1 to 1, where 1 indicates
perfect similarity. It is calculated as follows:

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(36)

where µx and µy are the means of x and y, σ2
x and σ2

y are their variances, σxy is the covariance
between x and y, and C1, C2 are constants used to stabilize the division when the denominator is
small.
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