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Abstract

Large Language Models (LLMs) have demonstrated impressive capabilities in gen-1

erating diverse and contextually rich text. However, concerns regarding copyright2

infringement arise as LLMs may inadvertently produce copyrighted material. In3

this paper, we first investigate the effectiveness of watermarking LLMs as a deter-4

rent against the generation of copyrighted texts. Through theoretical analysis and5

empirical evaluation, we demonstrate that incorporating watermarks into LLMs6

significantly reduces the likelihood of generating copyrighted content, thereby7

addressing a critical concern in the deployment of LLMs. However, we also find8

that watermarking can have unintended consequences on Membership Inference9

Attacks (MIAs), which aim to discern whether a sample was part of the pretraining10

dataset and may be used to detect copyright violations. Surprisingly, we find that11

watermarking adversely affects the success rate of MIAs, complicating the task12

of detecting copyrighted text in the pretraining dataset. These results reveal the13

complex interplay between different regulatory measures, which may impact each14

other in unforeseen ways. Finally, we propose an adaptive technique to improve15

the success rate of a recent MIA under watermarking. Our findings underscore the16

importance of developing adaptive methods to study critical problems in LLMs17

with potential legal implications.18

1 Introduction19

In recent years, Large Language Models (LLMs) have pushed the frontiers of natural language20

processing by facilitating sophisticated tasks like text generation, translation, and summarization.21

With their impressive performance, LLMs are increasingly integrated into various applications,22

including virtual assistants, chatbots, content generation, and education. However, the widespread23

usage of LLMs brings forth serious concerns regarding potential copyright infringements. Addressing24

these challenges is critical for the ethical and legal deployment of LLMs.25

Copyright infringement involves unauthorized usage of copyrighted content, which violates the26

intellectual property rights of copyright owners, potentially undermining content creators’ ability to27

fund their work, and affecting the diversity of creative outputs in society. Additionally, violators can28

face legal consequences, including lawsuits and financial penalties. For LLMs, copyright infringement29

can occur through (1) generation of copyrighted content during deployment and (2) illegal usage30

of copyrighted works during training. Ensuring the absence of copyrighted content in the vast31

training datasets of LLMs is challenging. Moreover, legal debates around generative AI copyright32

infringement vary by region, complicating compliance further.33
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Figure 1: Illustration of the effect of LLM watermarking on generation of copyrighted content. We
observe that watermarking can make it more than 1020 times less likely for Llama-30B to generate
copyrighted content.

Current lawsuits against AI companies for unauthorized use of copyrighted content (e.g., Andersen v.34

Stability AI Ltd, NYT v. OpenAI) highlight the urgent need for methods to address these challenges.35

In this paper, we focus on studying the effects of watermarking LLMs on two critical issues: (1)36

preventing the generation of copyrighted content, and (2) detecting copyrighted content in training37

data. We show that watermarking can significantly impact both the generation of copyrighted text38

and the detection of copyrighted content in training data.39

Firstly, we observe that current LLM output watermarking techniques can significantly reduce the40

probability of LLMs generating copyrighted content, by tens of orders of magnitude. Our empirical41

results focus on two recent watermarking methods: UMD [20] and Unigram-Watermark [43]. Both42

methods split the vocabulary into two sets (green and red) and bias the model towards selecting43

tokens from the green set by altering the logits distribution, thereby embedding a detectable signal.44

We provide both empirical and theoretical results to support our findings.45

Secondly, we demonstrate that watermarking techniques can decrease the success rate of Membership46

Inference Attacks (MIAs), which aim to detect whether a piece of copyrighted text was part of47

the training dataset. Since MIAs exploit the model’s output, their performance can suffer under48

watermarking due to changes in the probability distribution of output tokens. Our comprehensive49

empirical study, including 5 recent MIAs and 5 LLMs, shows that the AUC of detection methods can50

be reduced by up to 16% in the presence of watermarks.51

Finally, we propose an adaptive method designed to enhance the success rate of a recent MIA [31] in52

detecting copyright violations under watermarking. This method applies a correction to the model’s53

output to account for the perturbations introduced by watermarks. By incorporating knowledge about54

the watermarking scheme, we improve the detection performance for pretraining data, counteracting55

the obfuscation caused by watermarking. Our contribution underscores the importance of continuously56

developing adaptive attack methodologies to keep pace with advances in defense mechanisms.57

The rest of the paper is organized as follows. We formally introduce the problems that we study58

in Section 2 and present the first two contributions of empirical results in Sections 3 and 4. We59

discuss prior work on LLM watermarking, copyright, memorization, and membership inference in60

the appendix. Additional experiments, the theoretical results, the adaptive version of the Min-K%61

Prob membership inference attack, and a discussion on the limitations of our work are included in the62

appendix, too. In Section 5, we provide concluding remarks.63

2 Setup and Notations64

2.1 Definitions65

Let D be a training dataset, C be all the copyrighted texts, and CD be all the copyrighted texts that66

are part of D. We give definitions for the following setups.67

68

Verbatim Memorization of Copyrighted Content. For a fixed k ∈ N, Carlini et al. [8]69

defines a string s as being memorized by a model if s is extractable with a prompt p of length k70

using greedy decoding and the concatenation p⊕ s ∈ D. We adopt a similar definition for verbatim71

memorization of copyrighted content but employ a continuous metric to measure it. Specifically, we72

measure verbatim memorization of a text c ∈ C using the perplexity of the model on the copyrighted73

text cp when given the prefix p as a prompt (where cp represents the text c after removing its prefix p).74

Note that for cp = c
(1)
p ⊕ c

(2)
p ⊕ · · · ⊕ c

(n)
p we compute the perplexity using the following formula75

perplexity(cp|p) =
(∏n

i=1 P(c
(i)
p |p ⊕ c

(0)
p ⊕ c

(1)
p ⊕ · · · ⊕ c

(i−1)
p

)− 1
n , where c

(0)
p is the empty76

string. In our experiments, p is either an empty string or the first 10, 20, or 100 tokens of c. Lower77
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perplexity thereby indicate higher levels of memorization.78

79

MIAs for Copyrighted Training Data Detection. MIAs are privacy attacks aiming to de-80

tect whether a sample was part of the training set. We define an MIA for copyrighted data as a81

binary classifier A(·), which ideally outputs A(x) = 1,∀x ∈ CD and A(x) = 0,∀x ∈ C − CD. In82

practice, A(·) is defined by thresholding a metric (e.g., perplexity), i.e., A(x) = 1,∀x such that83

perplexity(x) < t and 0, otherwise. Since the threshold t needs to be set, prior work [31] uses84

AUC (Area Under the ROC Curve) as an evaluation metric which is independent of t. Note that we85

employ the same metric in our experiments.86

87

LLM Watermarking. Watermarking LLMs consists of introducing signals during its train-88

ing or inference that are difficult to detect by humans without the knowledge of a watermark key89

but can be detected using an algorithm if the key is known. We focus our paper on recent methods90

that employ logits distribution changes as a way of inserting watermark signals during the decoding91

process [20, 43].92

2.2 MIAs93

Current MIAs for detecting training data rely on thresholding various heuristics that capture94

differences in output probabilities for each token between data included in the training set and data95

that was not. Below, we present an overview of these heuristics.96

97

Perplexity. This metric distinguishes between data used to train the model (members) and98

data that was not (non-members), as members are generally expected to have lower perplexity.99

100

Smaller Ref, Lowercase and Zlib [6]. Smaller Ref is defined as the ratio of the log-perplexity of101

the target LLM on a sample to the log-perplexity of a smaller reference LLM on the same sample.102

Lowercase represents the ratio of the log-perplexity of the target LLM on the original sample to the103

log-perplexity of the LLM on the lowercase version of the sample. Zlib is defined as the ratio of the104

log-perplexity of the target LLM on a sample to the zlib entropy of the same sample.105

106

Min-K% Prob [31]. This heuristic computes the average of the minimum K% token prob-107

abilities outputted by the LLM on the sample. Note that this method requires tuning K, so in all our108

experiments we chose the best result over K% ∈ {5%, 10%, 20%, 30%, 40%, 50%, 60%}.109

2.3 LLM Watermarking Methods110

UMD [20] splits the vocabulary into two sets (green and red) and biases the model towards the green111

tokens by altering the logit distribution. The hash of the previous token’s ID serves as a seed for a112

pseudo-random number generator used to split the vocabulary into these two groups. For a “hard”113

watermark, the model is forced not to sample from the red list at all. For a “soft” watermark, a114

positive bias δ is added to the logits of the green tokens before sampling. We focus our empirical115

evaluation on “soft” watermarks as they are more suitable for LLM deployment due to their smaller116

impact on the quality of the generated text.117

118

Unigram-Watermark [43] employs a similar approach of splitting the vocabulary into two119

sets and biasing the model towards one of the two sets. However, the split remains consistent120

throughout the generation. This choice is made to provide a provable improvement against121

paraphrasing attacks [21].122

3 Watermarking LLMs Prevents Copyrighted Text Generation123

In this section, we study the effect of LLM watermarking techniques on verbatim memorization. We124

discuss the their implications for preventing copyrighted text generation.125

Datasets. We consider 4 versions of the WikiMIA benchmark [31] with 32, 64, 128, and 256 words126

in each sample and only consider the samples that were very likely part of the training set of all the127

models we consider (labeled as 1 in Shi et al. [31]). We consider these subsets as a proxy for text that128

was used in the training set, and the model may be prone to verbatim memorization. From now on,129
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Figure 2: We study how the watermark strength (under the UMD scheme) affects the average and the
minimum perplexity of training samples from WikiMIA-32, as well as the quality of generated text.

we refer to this subset as the “training samples” or “training texts”. Similarly, we consider BookMIA130

dataset [31], which contains samples from copyrighted books.131

Metric. We measure the relative increase in perplexity on the generation of training samples by the132

watermarked model compared to the original model. We report the increase in both the minimum and133

average perplexity over the training samples. Note that a large increase in perplexity corresponds to134

a large decrease in the probability of generating that specific sample, as shown later in this section.135

When computing the perplexity, we prompt the model with an empty string, the first 10, and the first136

20 tokens of the targeted training sample, respectively. In the BookMIA dataset, we designate the137

initial 100 tokens as the prompt. This is because each BookMIA sample contains 512 words, which138

is larger than the sample size in WikiMIA.139

Models. We conduct our empirical evaluation on 5 recent LLMs: Llama-30B [37], GPT-NeoX-20B140

[4], Llama-13B [37], Pythia-2.8B [3] and OPT-2.7B [42].141

3.1 Empirical Evaluation142

Llama-30B Llama-13B

P. Min. Avg. Min. Avg.

0 3.3 31.2 4.9 34.3
UMD 10 2.8 28.7 3.5 31.9

20 2.4 30.1 3.5 33.4

0 4.1 34.1 5.0 36.6
Unigram 10 3.0 31.7 4.0 34.3

20 2.4 31.5 3.4 34.0

Table 1: Measuring the reduction in verbatim
memorization of training texts on WikiMIA-32.
We report the relative increase in both the min-
imum and average perplexity between the wa-
termarked and unwatermarked models, where
larger values correspond to less memorization.
Note that “P.” stands for “prompt length”.

In Table 1, we show the increase in perplexity on the143

training samples when the model is watermarked144

relative to the unwatermarked model. We observe145

that for Llama-30B, Unigram-Watermark induces a146

relative increase of 4.1 in the minimum and 34.1 in147

the average perplexity. Note that a relative increase148

of 4.1 in perplexity for a sample makes it more than149

4.3 × 1022 times less likely to be generated. This150

is based on a sample with only 32 tokens, which151

is likely a lower bound since the number of tokens152

is typically larger than the number of words. We153

observe consistent results over several models and154

prompt lengths. For all experiments, unless other-155

wise specified, we use a fixed strength parameter156

δ = 10 for watermark methods and a fixed per-157

centage of 50% green tokens. All the results are158

averaged over 5 runs with different seeds for the159

watermark methods. We include additional results160

on WikiMIA-64, WikiMIA-128 and WikiMIA-256161

in Tables 6, 7 and 8, respectively, in the appendix.162

We observe that our findings are consistent across models and splits of WikiMIA. Finally, we include163

the complete version of Table 1 in the appendix (Table 5), which shows results for additional models164

and random logit perturbations with the same strength as the watermarking methods. Overall, the165

additional results are consistent with our previous findings.166

In Figure 2, as well as Figure 3 from the appendix, we study the influence of the strength of the167

watermark δ on the relative increase in both the minimum and average perplexity on the WikiMIA-32168

training samples. In this experiment, we also consider a baseline of generating text freely to study the169

impact of watermarks on the quality of text relative to the impact on training samples’ generation170
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(here, perplexity is computed by an unwatermarked model). All the results are averaged over 5 runs171

with different seeds for the watermark methods. In the case of free generation, we generate 100172

samples for 5 different watermarking seeds and average the results. The length of the generated173

samples is up to 42 tokens, which is approximately 32 words in the benchmark (on a token-to-word174

ratio of 4 : 3). The results show an exponential increase in the perplexity of the training175

samples with the increase in watermark strength, while the generation quality is affected at a176

slower rate. This suggests that even if there is a trade-off between protecting the generation of text177

memorized verbatim and generating high-quality text, finding a suitable watermark strength for178

each particular application is possible.179

Llama-30B Llama-13B

P. Min. Avg. Min. Avg.

0 1.5 33.7 2.4 41.2
UMD 10 1.5 33.6 2.3 41.0

20 1.4 33.5 2.3 40.8
100 1.3 32.9 1.9 40.3

0 1.6 36.4 2.4 44.5
Unigram 10 1.6 36.3 2.4 44.3

20 1.5 36.1 2.3 44.2
100 1.4 35.5 1.8 43.6

Table 2: Measuring the reduction in verbatim
memorization of training texts on BookMIA.
We report the relative increase in both the min-
imum and average perplexity between the wa-
termarked and unwatermarked models, where
larger values correspond to less memorization.
Note that “P.” stands for “prompt length”.

Takeaways. Watermarking significantly increases180

the perplexity of generating training texts, reducing181

verbatim memorization likelihood. This is achieved182

with only a moderate impact on the overall qual-183

ity of generated text. This suggests that watermark184

strength can be effectively tailored to balance verba-185

tim memorization and text quality for specific appli-186

cations. Finally, we believe that our findings directly187

extend to the generation of copyrighted text verba-188

tim, as this constitutes a form of verbatim memo-189

rization of the training data. Since copyrighted texts190

are not expected to be distributed significantly dif-191

ferently from the rest of the training data, the prob-192

ability of generating copyrighted materials under193

watermarking is also likely to decrease. To confirm,194

we run similar experiments on a dataset containing195

copyrighted data (BookMIA) and include the results196

in the Table 2. Additionally, we consider finetun-197

ing Llama-7B [37] on BookMIA while controlling198

memorization by duplicating training samples. De-199

tailed information about this experiment is provided200

in the appendix. Finally, we extend our results to approximate memorization, which we define and201

discuss in the appendix.202

4 Impact of Watermarking on Pretraining Data Detection203

Datasets. We revisit the WikiMIA benchmark as discussed in the previous section. We consider the204

full datasets, rather than the subset of samples that were part of the training for models we study.205

Additionally, we consider the BookMIA benchmark, which contains copyrighted texts.206

Metrics. We follow the prior work [31, 13] and report the AUC and AUC drop to study the detection207

performance of the MIAs. Note that this metric has the advantage of not having to tune the threshold208

for the detection classifier.209

Models. We conduct experiments on the same LLMs as in the previous section. Additionally, for the210

Smaller Ref method that requires a smaller reference model along with the target LLM, we consider211

Llama-7B, Neo-125M, Pythia-70M, and OPT-350M as references.212

4.1 Empirical evaluation213

In Table 4, we show the AUC for the unwatermarked and watermarked models using the UMD scheme,214

as well as the drop between the two. We observe that watermarking reduces the AUC (drop shown in215

bold in the table) by up to 14.2% across 4 detection methods and 5 LLMs. All the experiments on216

watermarked models are run with 5 different seeds and we report the mean and standard deviation217

of the results. We also report the AUC drop, which is computed by the difference between the218

AUC for the unwatermarked model and the mean AUC over the 5 runs for the watermarked model.219

Additionally, while the experiments from Table 4 are conducted on WikiMIA-256, we observe similar220

trends for WikiMIA-32, WikiMIA-64, and WikiMIA-128 in the appendix. We also study the impact221

of the watermark’s strength on the AUC drop for Llama-30B in Figure 4 (from the appendix) and for222
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Table 4: AUC of each MIA for the unwatermarked (top of each cell), watermarked models (middle of
each cell), and the drop between the two (bottom of each cell) on WikiMIA-256 using UMD scheme.

Llama-30B NeoX-20B Llama-13B Pythia-2.8B OPT-2.7B

72.0% 71.3% 71.2% 67.8% 60.5%
PPL 70.6 ± 1.9% 64.7 ± 2.3% 70.0 ± 2.6% 64.4 ± 1.9% 54.9 ± 2.2%

1.4% 6.6% 1.2% 3.4% 5.6%

68.1% 68.2% 65.5% 62.9% 58.9%
Lowercase 63.8 ± 4.5% 55.4 ± 5.5% 61.6 ± 3.8% 58.7 ± 3.2% 49.7 ± 2.9%

4.3% 14.2% 3.9% 4.2% 9.2%

72.7% 73.2% 73.1% 69.2% 62.7%
Zlib 72.0 ± 1.6% 66.6 ± 2.0% 71.6 ± 2.3% 66.1 ± 1.2% 58.1 ± 1.8%

0.7% 6.6% 1.5% 3.1% 4.6%

71.8% 78.0% 72.9% 71.0% 65.5%
Min-K% Prob 70.5 ± 1.8% 76.2 ± 2.1% 70.4 ± 3.2% 69.5 ± 1.6% 63.1 ± 3.4%

1.3% 1.8% 2.5% 1.5% 2.4%

the other models in Figure 5 (from the appendix). Note that we considered WikiMIA-256 for these223

experiments. We observe that higher watermark strengths generally induce larger AUC drops.224

Llama-30B Llama-13B

85.4% 68.2%
PPL 84.7± 1.4% 67.6± 2.5%

0.7% 0.6%

87.9% 77.6%
Lowercase 80.9± 3.1% 67.2± 4.0%

7.0% 10.4%

82.5% 62.5%
Zlib 77.8± 1.2% 57.1± 2.0%

4.7% 5.4%

85.1% 70.2%
Min-K% Prob 85.0± 1.0% 68.5± 0.1%

0.1% 1.7%

Table 3: AUC of each MIA for the unwatermarked
(top of each cell), watermarked models (middle of
each cell), and the drop between the two (bottom
of each cell) on BookMIA using UMD scheme.

In addition to the 4 detection methods, we also225

consider Smaller Ref attack, which we include226

in Table 12 of the appendix. We consider dif-227

ferent variations, including an unwatermarked228

reference model and a watermarked one with a229

similar strength but a different seed or with both230

strength and seed changed in comparison to the231

watermarked target model. The baseline is an232

unwatermarked model with an unwatermarked233

reference model. We observe the AUC drops in234

all scenarios (up to 16.4%), which is consistent235

with our previous findings.236

We also experiment with several percentages237

of green tokens for a fixed watermark strength238

of δ = 10. We show the results in Table 13239

of the appendix. We observe that for all mod-240

els, in at least 80% of the cases all of the at-241

tacks’ AUCs are negatively affected (positive242

drop value), suggesting that, in general, find-243

ing a watermarking scheme that reduces the244

success rates of the current MIAs is not a dif-245

ficult task. Note that the experiments are run246

on WikiMIA for UMD scheme and the results are averaged over 5 watermark seeds.247

Takeaways. Watermarking can significantly reduce the success of membership inference attacks248

(MIAs), with AUC drops up to 16.4%. By varying the percentage of green tokens as well as the249

watermark’s strength, we observe that watermarking schemes can be easily tuned to negatively impact250

the detection success rates of MIAs. Finally, we conduct experiments on the BookMIA dataset and251

observe results consistent with our previous findings. These results are included in Table 3.252

5 Conclusion and Discussion253

Watermarking LLMs has unintended consequences on methods towards copyright protection. Our254

experiments demonstrate that while watermarking may be a promising solution to prevent copyrighted255

text generation, watermarking also complicates membership inference attacks that may be employed256

to detect copyright abuses. Watermarking can be a double-edged sword for copyright regulators since257

it promotes compliance during generation time, while making training time copyright violations258

harder to detect. We hope our work further the discussion around watermarking and copyright issues259

for LLMs.260
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A Appendix383

A.1 Additional experiments on verbatim memorization on WikiMIA384

Table 5: Measuring the reduction in verbatim memorization of training texts on WikiMIA-32. We
report the relative increase in both the minimum and average perplexity between the watermarked and
unwatermarked models, where larger values correspond to less memorization. Note that “P.” stands
for “prompt length”.

Llama-30B NeoX-20B Llama-13B Pythia-2.8B OPT-2.7B

P. Min. Avg. Min. Avg. Min. Avg. Min. Avg. Min. Avg.

0 3.3 31.2 3.7 52.1 4.9 34.3 11.4 61.3 10.4 64.5
UMD 10 2.8 28.7 2.2 52.1 3.5 31.9 8.8 63.7 8.3 67.7

20 2.4 30.1 1.8 66.0 3.5 33.4 5.0 74.0 7.0 84.4

0 4.1 34.1 4.4 54.1 5.0 36.6 14.3 74.5 11.5 66.1
Unigram 10 3.0 31.7 2.8 52.5 4.0 34.3 11.8 73.6 9.8 70.2

20 2.4 31.5 2.0 56.4 3.4 34.0 6.6 79.1 5.8 81.4

0 4.0 34.3 4.9 51.1 5.5 34.7 8.0 62.3 7.4 60.6
Random 10 2.6 31.4 3.1 51.4 3.6 31.7 5.5 62.9 6.3 64.0

20 2.1 31.8 1.2 59.3 2.8 32.9 4.7 78.6 3.9 73.7

Table 6: Measuring the reduction in verbatim memorization of training texts on WikiMIA-64. We
report the relative increase in both the minimum and average perplexity between the watermarked and
unwatermarked models, where larger values correspond to less memorization. Note that “P.” stands
for “prompt length”.

Llama-30B NeoX-20B Llama-13B Pythia-2.8B OPT-2.7B

P. Min. Avg. Min. Avg. Min. Avg. Min. Avg. Min. Avg.

0 4.9 27.6 4.2 42.8 6.7 30.5 15.2 50.4 14.9 51.7
UMD 10 4.3 26.2 3.7 41.3 6.1 29.1 15.6 49.2 14.4 51.4

20 3.9 26.4 3.6 43.1 5.8 29.3 14.0 50.3 12.5 52.7

0 5.0 28.1 4.3 45.3 6.7 30.9 17.6 62.3 16.0 53.7
Unigram 10 3.8 26.9 3.4 43.6 5.3 29.7 16.2 60.6 17.1 53.0

20 3.2 26.9 3.1 44.2 4.4 29.7 13.6 60.9 11.7 53.6

Table 7: Measuring the reduction in verbatim memorization of training texts on WikiMIA-128. We
report the relative increase in both the minimum and average perplexity between the watermarked and
unwatermarked models, where larger values correspond to less memorization. Note that “P.” stands
for “prompt length”.

Llama-30B NeoX-20B Llama-13B Pythia-2.8B OPT-2.7B

P. Min. Avg. Min. Avg. Min. Avg. Min. Avg. Min. Avg.

0 5.7 25.3 4.6 39.5 7.6 28.0 23.1 45.3 18.6 48.1
UMD 10 5.3 24.4 4.3 38.9 7.2 27.1 23.6 44.7 19.1 47.6

20 5.2 24.5 4.3 39.3 6.8 27.2 23.0 44.7 17.5 47.8

0 4.5 25.6 5.9 42.9 6.4 28.2 17.6 54.9 19.6 50.0
Unigram 10 3.9 25.0 5.3 42.0 5.7 27.6 15.8 53.6 18.7 49.9

20 3.6 25.2 5.1 42.1 5.3 27.7 15.1 53.6 18.0 49.9
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Table 8: Measuring the reduction in verbatim memorization of training texts on WikiMIA-256. We
report the relative increase in both the minimum and average perplexity between the watermarked and
unwatermarked models, where larger values correspond to less memorization. Note that “P.” stands
for “prompt length”.

Llama-30B NeoX-20B Llama-13B Pythia-2.8B OPT-2.7B

P. Min. Avg. Min. Avg. Min. Avg. Min. Avg. Min. Avg.

0 7.5 23.9 15.4 37.8 13.0 26.3 31.2 45.4 27.3 46.3
UMD 10 7.3 23.4 15.5 37.6 12.5 25.8 30.9 45.2 27.5 46.0

20 7.2 23.5 16.1 37.6 12.6 25.9 30.4 45.0 27.6 46.2

0 7.4 24.4 21.0 42.4 13.9 26.8 36.9 54.3 28.8 46.3
Unigram 10 7.1 24.1 21.2 41.9 13.7 26.5 35.4 53.7 28.2 46.0

20 6.7 24.2 21.5 41.8 13.7 26.5 34.6 53.4 29.3 45.9

Figure 3: We study how the watermark strength (under the Unigram scheme) affects the average and
the minimum perplexity of training samples from WikiMIA-32, as well as the quality of generated
text.

A.2 Additional experiments on pretraining data detection on WikiMIA385

Table 9: AUC of each MIA for the unwatermarked (top of each cell), watermarked models (middle of
each cell) and the drop between the two (bottom of each cell) on WikiMIA-128 using UMD scheme.

Llama-30B NeoX-20B Llama-13B Pythia-2.8B OPT-2.7B

70.3% 70.6% 67.7% 62.8% 60.0%
PPL 66.3± 2.2% 63.6± 2.4% 63.4± 2.6% 61.4± 2.3% 55.1± 1.6%

4.0% 7.0% 4.3% 1.4% 4.9%
59.1% 68.0% 60.6% 59.4% 57.1%

Lowercase 55.9± 2.9% 58.2± 3.4% 55.1± 3.0% 55.7± 1.6% 49.2± 4.5%
3.2% 9.2% 5.5% 3.7% 7.9%
71.8% 72.3% 69.6% 64.9% 62.3%

Zlib 68.6± 2.3% 66.3± 2.1% 65.8± 2.7% 63.9± 1.9% 58.9± 1.3%
3.2% 6.0% 3.8% 1.0% 3.4%
73.8% 76.4% 71.5% 66.8% 64.3%

Min-K% Prob 70.0± 1.5% 72.8± 2.3% 68.9± 2.2% 64.8± 1.4% 59.2± 2.4%
3.8% 3.6% 2.6% 2.0% 5.1%
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Table 10: AUC of each MIA for the unwatermarked (top of each cell), watermarked models (middle
of each cell) and the drop between the two (bottom of each cell) on WikiMIA-64 using UMD scheme.

Llama-30B NeoX-20B Llama-13B Pythia-2.8B OPT-2.7B

66.1% 66.6% 63.6% 58.4% 55.1%
PPL 60.7± 3.4% 60.1± 3.2% 58.0± 3.7% 58.7± 1.7% 52.2± 2.1%

5.4% 6.5% 5.6% -0.3% 2.9%
61.8% 66.4% 62.0% 57.7% 56.6%

Lowercase 54.8± 1.7% 56.8± 3.8% 53.8± 1.1% 54.5± 1.0% 51.4± 3.1%
7.0% 9.6% 8.2% 3.2% 5.2%
67.4% 68.1% 65.3% 60.5% 57.7%

Zlib 62.4± 3.3% 62.0± 2.6% 59.9± 3.6% 60.9± 1.8% 55.5± 1.5%
5.0% 6.1% 4.9% 5.4% 2.2%
68.4% 72.8% 65.9% 61.2% 58.0%

Min-K% Prob 64.4± 2.9% 67.7± 3.3% 62.8± 3.4% 59.8± 0.7% 55.3± 2.3%
4.0% 5.1% 3.1% 1.4% 2.7%

Table 11: AUC of each MIA for the unwatermarked (top of each cell), watermarked models (middle
of each cell) and the drop between the two (bottom of each cell) on WikiMIA-32 using UMD scheme.

Llama-30B NeoX-20B Llama-13B Pythia-2.8B OPT-2.7B

69.4% 69.0% 67.5% 61.3% 58.2%
PPL 63.6± 5.2% 62.7± 3.5% 61.4± 5.7% 60.8± 2.3% 55.2± 2.1%

5.5% 6.3% 6.1% 0.5% 3.0%
64.1% 68.2% 63.9% 60.9% 59.2%

Lowercase 54.9± 1.8% 59.4± 4.8% 54.2± 1.8% 55.5± 1.6% 52.1± 3.9%
9.2% 8.8% 9.7% 0.6% 2.8%
69.8% 69.2% 67.8% 62.1% 59.4%

Zlib 64.4± 4.7% 63.2± 2.8% 62.3± 5.1% 61.5± 1.9% 56.6± 1.6%
5.4% 6.0% 5.5% 0.6% 2.8%
70.1% 72.1% 67.9% 61.8% 59.2%

Min-K% Prob 66.2± 4.2% 67.1± 4.2% 64.5± 4.1% 61.0± 1.5% 55.8± 2.3%
3.9% 5.0% 3.4% 0.8% 3.4%

Table 12: Results for Smaller Ref attack on WikiMIA-256. The first two rows represent the pair
of target and smaller reference model, “No model w.” row represents the baseline AUC of a
unwatermarked target LLM and unwatermarked reference model, the other three “double rows”
correspond to different variations of the reference model and each cell contains the AUC followed by
the AUC drop in comparison to the baseline.

Llama-30B NeoX-20B Llama-13B Pythia-2.8B OPT-2.7B

Llama-7B Neo-125M Llama-7B Pythia-70M OPT-350M

No model w. 74.7% 70.2% 70.5% 63.6% 64.4%

Ref. not w. 69.7± 3.3% 61.0± 1.8% 66.3± 4.6% 61.6± 2.0% 53.2± 3.4%
5.0% 9.2% 4.2% 2.0% 11.2%

Ref. diff. seed 61.7± 4.4% 55.5± 3.4% 54.1± 4.4% 58.3± 2.4% 51.3± 4.3%
13.0% 15.0% 16.4% 5.3% 13.1%

Ref. diff. str. 73.7± 2.6% 61.0± 3.2% 68.8± 4.8% 62.5± 1.2% 57.3± 3.6%
1.0% 9.2% 1.7% 1.1% 7.1%

12



Figure 4: AUC drop due to watermarking for each MIA when varying the strength of the watermark.

Figure 5: AUC drop due to watermarking for each MIA when varying the strength of the watermark.
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Table 13: We show the AUC drop when we vary the percentage of green tokens between 30% and
70%. We bold the scenarios when a specific percentage value induces AUC drops for all the attacks.

0.3 0.4 0.5 0.6 0.7

PPL 0.71 -0.10 1.40 2.14 1.65
Llama-30B Lowercase 0.27 2.60 4.24 2.45 3.15

Zlib 0.58 -0.18 0.66 1.10 0.52
Min-K% Prob 1.38 0.03 1.28 1.64 1.45

PPL 5.56 5.65 6.64 6.92 4.96
NeoX-20B Lowercase 9.84 11.12 12.79 11.94 9.78

Zlib 6.68 5.94 6.54 6.51 4.71
Min-K% Prob 0.45 0.88 1.83 1.26 3.84

PPL 0.19 -0.86 1.22 1.84 1.39
Llama-13B Lowercase 0.49 2.45 3.93 1.54 1.65

Zlib 1.31 0.28 1.51 2.00 1.29
Min-K% Prob 2.81 1.21 2.45 2.70 2.78

PPL 4.65 4.49 3.39 4.42 3.66
Pythia-2.8B Lowercase 4.91 6.23 4.18 5.33 7.22

Zlib 5.37 3.97 3.07 3.17 2.20
Min-K% Prob 1.10 1.21 1.44 3.42 4.71

PPL 5.45 5.39 5.55 5.18 5.76
OPT-2.7B Lowercase 7.71 9.91 9.23 9.83 7.28

Zlib 3.35 4.12 4.57 4.17 4.11
Min-K% Prob 2.30 2.07 2.40 3.90 5.00
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A.3 Additional experiments on BookMIA386

In this section, we conduct experiments using models finetuned on a subset of BookMIA, which387

we refer to as BookMIA-2. To build BookMIA-2, we first select only the samples that were not388

part of the training set of any model that we consider (labeled as 0 by [31]). Then, we randomly389

select half of them as finetuning data (referred to as seen samples) and keep the other half as unseen390

samples. Note that for BookMIA-2, there would not be a distribution difference between the seen391

and unseen samples [12]. We also consider duplicating a sample from the training set of BookMIA-2392

to have more fine-grained control over the memorization of that sample. We use Llama-7B in all the393

experiments from this section.394

395

Verbatim Memorization. We study verbatim memorization on BookMIA-2 by measuring396

the relative increase in perplexity on the generation of the duplicated sample by the watermarked397

model compared to the original model, as well as the ratio between the probability of generating the398

duplicated sample by the original model to the watermarked model, which we refer to as probability399

reduction factor. We run each experiment with 20 seeds and report the average perplexity and the400

minimum probability reduction factor. We consider both the UMD and Unigram watermarking401

methods with several strengths (2, 5, and 10) and prompt the model with an empty string, as well as402

with the first 10, 20, and 100 words from the training sample. Additionally, we consider several403

duplication factors (the number of times one randomly chosen target sample appears in the dataset):404

1, 10, 20, and 50. We show the results in Table 14. We observe that even in high memorization cases405

(duplication factor of 50), as long as the watermark is strong enough, the probability of generating406

the memorized sample decreases by almost 200 orders of magnitude, making it very unlikely to be407

generated.408

Table 14: Average relative increase in perplexity and minimum probability reduction factor for
generating the memorized target sample from BookMIA-2. Note that “S.”, “P.”, and “D.” stand for
watermark method’s strength, prompt length, and duplication factor, respectively.

D = 1 D = 10 D = 20 D = 50

S. P. PPL. Prob. PPL. Prob. PPL. Prob. PPL. Prob.

0 0.32 3.1 × 1070 0.28 2.9 × 1045 0.17 1.1 × 1019 0.007 4.4 × 100

2 10 0.32 1.9 × 1069 0.28 1.2 × 1044 0.17 1.3 × 1018 0.005 5.1 × 100

20 0.32 1.7 × 1067 0.28 2.9 × 1042 0.17 4.8 × 1017 0.005 5.0 × 100

100 0.32 3.7 × 1057 0.28 1.6 × 1034 0.16 3.3 × 1010 0.005 4.2 × 100

0 2.93 1.1 × 10366 2.58 1.8 × 10261 1.53 1.6 × 10122 0.10 1.8 × 1018

UMD 5 10 2.92 7.6 × 10360 2.56 6.9 × 10257 1.51 8.9 × 1099 0.09 1.1 × 1016

20 2.91 1.2 × 10354 2.55 2.6 × 10254 1.50 3.0 × 1098 0.09 4.3 × 1015

100 2.89 4.9 × 10313 2.53 4.2 × 10213 1.45 6.0 × 1071 0.09 6.7 × 1013

0 38.6 3.2 × 101028 33.0 6.7 × 10883 18.6 1.9 × 10508 1.86 7.1 × 10245

10 10 38.5 1.1 × 101006 32.8 9.2 × 10869 18.4 2.5 × 10495 1.78 4.7 × 10226

20 38.4 2.4 × 10982 32.7 3.7 × 10851 18.2 3.8 × 10482 1.76 4.6 × 10223

100 38.0 2.8 × 10860 32.3 6.6 × 10731 17.7 1.0 × 10388 1.70 3.8 × 10199

0 0.32 5.2 × 1063 0.29 6.8 × 1059 0.17 1.2 × 1014 0.008 2.9 × 100

2 10 0.32 4.7 × 1062 0.29 3.6 × 1058 0.17 4.8 × 1014 0.005 5.9 × 100

20 0.32 7.9 × 1061 0.29 9.8 × 1056 0.17 3.1 × 1014 0.005 5.8 × 100

100 0.31 1.2 × 1050 0.28 5.2 × 1046 0.16 2.7 × 107 0.005 5.1 × 100

0 2.88 3.4 × 10304 2.56 1.2 × 10290 1.53 1.1 × 1079 0.11 2.2 × 1022

Unigram 5 10 2.87 1.6 × 10300 2.56 1.9 × 10286 1.52 8.6 × 1077 0.10 5.9 × 1016

20 2.87 8.2 × 10295 2.55 3.1 × 10282 1.50 6.2 × 1076 0.09 4.6 × 1016

100 2.82 2.5 × 10261 2.50 6.6 × 10239 1.45 1.0 × 1047 0.09 4.1 × 1014

0 37.6 2.4 × 10834 32.3 2.2 × 10811 18.5 1.8 × 10425 1.87 2.6 × 10268

10 10 37.7 3.5 × 10824 32.3 7.1 × 10799 18.3 1.3 × 10419 1.80 5.7 × 10251

20 37.6 4.9 × 10812 32.2 2.3 × 10788 18.1 6.1 × 10405 1.78 1.3 × 10248

100 36.9 2.4 × 10707 31.5 9.5 × 10684 17.4 1.5 × 10323 1.72 1.0 × 10212

Approximate Memorization. Informally, we consider a training sample approximately memorized409

by a model if, given its prefix, it is possible to generate a completion that is similar enough to the410

ground truth completion. In our experiments, we consider Normalized Edit Similarity (referred to411

as edit similarity from now on) and BLEU score as similarity measures, as in [17]. Note that we412

consider both word-level and token-level variants for the BLEU score. The range for each metric413

is between 0 and 1, where values close to 1 represent similar texts. In all experiments, since all414
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the samples are 512 words long, we consider the first 256 words as the prefix and the last 256415

words as the ground truth completion. We show the results in Figure 6 averaged over 20 runs with416

different seeds. Note that the duplication factor (shown on x-axis) represents the number of times417

the target copyrighted text is duplicated. We observe that for high levels of memorization, a strong418

watermark significantly reduces the similarity between the generated completion and the ground truth419

(copyrighted) one.420

421

MIA. We also study the effect of the watermark on the effectiveness of MIAs for copy-422

righted training data detection (on BookMIA-2, without duplicated samples). We show the results in423

Table 15 and observe that watermarking negatively affects MIAs’ success rate, which is consistent424

with our previous findings (from Section 4). Finally, we also run our adaptive method from Section C425

and observe an improvement of 0.9% over Min-K% Prob.

Figure 6: Edit similarity (top), word-level BLEU score (middle), and token-level BLEU score (bottom)
between the generated completion and the ground truth when considering different watermark
strengths on BookMIA-2.

426

A.4 Computing Infrastructure427

All of our experiments were run on either three Nvidia RTX A6000 or four Nvidia RTX A5000 GPUs,428

using 128 GB of memory. We used the Transformers library (version 4.35.2) and PyTorch (version429

2.1.0).430
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Table 15: AUC of each MIA for the unwatermarked (top of each cell), watermarked models (middle of
each cell), and the drop between the two (bottom of each cell) on BookMIA-2 (without any duplicated
samples) using the UMD scheme with a strength of 10. We average the results over 5 runs with
different seeds.

Llama-7B (fine-tuned)

58.5± 0.0%
PPL 56.6± 0.0%

1.9%
59.8± 0.1%

Lowercase 52.9± 0.3%
6.9%

59.7± 0.0%
Zlib 56.1± 0.1%

3.6%
58.5± 0.0%

Min-K% Prob 57.1± 0.2%
1.4%

A.5 Limitations & Future Work431

Our work considers only decoding time watermarking techniques, future work may benefit from432

studying other types of watermarking methods. Our proposed method for improving MIAs’ success433

rate on watermarked models makes strong assumptions on the watermarking scheme, which may434

not always be satisfied despite empirical improvements in our experiments. Our observations on435

the deterioration of MIAs’ success suggests that for copyright violation auditing, an unwatermarked436

model or the watermarking scheme may be needed. We encourage the community to further refine437

adaptive methods to ensure robust copyright protection and data privacy, and consider the interactions438

of different methods on downstream legal concerns.439

B Related work440

Watermarks for LLMs. Language model watermarking techniques embed identifiable markers441

into output text to detect AI-generated content. Recent strategies incorporate watermarks during442

the decoding phase of language models [43, 20]. Aaronson [1] develops the Gumbel watermark,443

which employs traceable pseudo-random sampling for generating subsequent tokens. Kirchenbauer444

et al. [20] splits the vocabulary into red and green lists according to preceding tokens, biasing the445

generation towards green tokens. Zhao et al. [43] employs a fixed grouping strategy to develop446

a robust watermark with theoretical guarantees. Liu et al. [24] proposes to generate watermark447

logits based on the preceding tokens’ semantics rather than their token IDs to boost the robustness.448

Kuditipudi et al. [22] and Christ et al. [10] explore watermark methods that do not change the output449

textual distribution.450

451

Copyright. Copyright protection in the age of AI has gained importance, as discussed452

by Ren et al. [28]. Vyas et al. [38] addresses content protection through near access-freeness (NAF)453

and developed learning algorithms for generative models to ensure compliance under NAF conditions.454

Prior works focus on training algorithms to prevent copyrighted text generation [38, 11], whereas455

our work emphasizes lightweight, inference-time algorithms. Other works have studied copyright456

in machine learning from a legal perspective. Hacohen et al. [15] utilizes a generative model to457

determine the generic characteristics of works to aid in defining the scope of copyright. Elkin-Koren458

et al. [14] demonstrates that copying does not necessarily constitute copyright infringement and459

argues that existing detection methods may detract from the foundational purposes of copyright law.460

461

Memorization. One cause of copyright issues is that machine learning models may memo-462

rize training data. Prior studies have observed that LLMs can memorize private information in463

training data, such as phone numbers and addresses [19, 5, 6, 23], leading to significant privacy464
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and security concerns. To measure memorization, Carlini et al. [6] proposes eidetic memorization,465

defining a string as memorized if it was present in the training data and it can be reproduced by a466

prompt. This definition, along with variations like exact and perfect memorization, has been widely467

adopted in subsequent studies [36, 18]. Carlini et al. [8] quantitatively measures memorization in468

LLMs as the fraction of extractable training data and finds that memorization significantly grows as469

model size scales and training examples are duplicated. To minimize memorization, Lee et al. [23]470

and Kandpal et al. [18] propose deduplicating training data, which also improves accuracy. Hans et al.471

[16] proposes the Goldfish Loss as a training-time defense against verbatim memorization. Ippolito472

et al. [17] proposes an inference time defense that perfectly prevents all verbatim memorization.473

However, it cannot prevent the leakage of training data due to the existence of many “style-transfer”474

prompts, suggesting it is a challenging open problem. Unlike the methods that we are studying in475

this paper, Ippolito et al. [17] requires access to a complete set of copyrighted texts that the model476

was trained on. Memorization in the image domain has also been studied from various angles477

[33, 34, 9, 39].478

479

Membership Inference. As a proxy for measuring memorization, membership inference480

attacks (MIAs) predict whether or not a particular example was used to train the model [32, 40, 2].481

Most membership inference attacks rely only on the model’s loss since the model is more likely to482

overfit an example if it is in the training data [29]. Carlini et al. [7] trains shadow models to predict483

whether an example is from the training data. In the NLP domain, many works have focused on484

masked language models [26] and fine-tuning data detection [35, 30]. Recently, Shi et al. [31] studies485

pretraining data inference and introduced a detection method based on the hypothesis that unseen486

examples are likely to contain outlier words with low probabilities under the LLM. Zhang et al. [41]487

approaches pretraining data detection by measuring how sharply peaked the likelihood is around488

the inputs. Duarte et al. [13] proposes detecting copyrighted content in training data by probing the489

LLM with multiple-choice questions, whose options include both verbatim text and their paraphrases.490

Other methods include testing perplexity differences [25] and providing provable guarantees of test491

set contamination without access to pretraining data or model weights [27].492

C Improving Detection Performance with Adaptive Min-K% Prob493

This section demonstrates how an informed, adaptive attacker can improve the success rate of a recent494

MIA, Min-K% Prob. Our main idea is that an attacker with knowledge of the watermarking technique495

(including green-red token lists and watermark’s strength δ) can readjust token probabilities. This496

is possible even without additional information about the logit distribution, relying solely on the497

probability of each token from the target sample given the preceding tokens. Our approach relies on498

two key assumptions. First, knowledge of the watermarking scheme, which aligns with assumptions499

made in prior work on public watermark detection [20]. Second, access to the probability of each500

token in a sample, given the previous tokens—an assumption also made by the Min-K% Prob method501

[31].502

503

Our method described in Algorithm 1 is based on the observation that if the denominator504

of softmax function (i.e.,
∑

i e
zi , where zi is the logit for the i-th vocabulary) does not vary505

significantly when generating samples with the watermarked model (and similarly for the506

unwatermarked model), then we can readjust the probabilities of the green tokens by “removing” the507

bias δ. More precisely, assuming the approximation for the denominator of softmax is good, then508

the probability for each token ti in an unwatermarked model will be around eLi

c , where Li is the509

logit corresponding to the token ti and c is a constant. However, for a watermarked model, if the510

token ti is green, then the probability would be approximated by eLi+δ

d , where d is again a constant,511

while in the case ti is red the probability will be around eLi

d . To compensate for the bias introduced512

by watermarking, we divide the probability of green tokens by eδ and this way we end up with513

probabilities that are just a scaled (by c
d ) version of the probabilities from the unwatermarked model.514

The scaling factor will not affect the orders between the samples when computing the average of the515

minimum K% log-probabilities as long as the tested sentences are approximately the same length,516

which is an assumption made by Shi et al. [31] as well.517

Despite the strong assumption we assumed regarding the approximation of the denominator,518

empirical results show that our method effectively improves the success rate of Min-K% under519
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watermarking. We show results in Table 16. We observe that our method improves over the baseline520

in 95% of the cases, and the increase is as high as 4.8% (averaged over 5 runs).521

522

Takeaways. We demonstrate that an adaptive attacker can leverage the knowledge of a523

watermarking scheme to increase the success rate of a recent MIA, Min-K% Prob.524

Table 16: We show the AUC of Min-%K Prob (referred as “Not adapt.”) and our method (referred
as “Adapt.”) when using UMD watermarking scheme. We highlight the cases when our method
improves over the baseline.

Llama-30B NeoX-20B Llama-13B Pythia-2.8B OPT-2.7B

WikiMIA Not adapt. 66.2% 67.1% 64.5% 61.0% 55.7%
32 Adapt. 68.5% 71.3% 66.3% 61.0% 59.1%

WikiMIA Not adapt. 64.4% 67.7% 62.8% 59.8% 55.3%
64 Adapt. 67.3% 72.0% 64.9% 60.6% 57.4%

WikiMIA Not adapt. 70.0% 73.0% 68.9% 64.8% 59.2%
128 Adapt. 73.1% 75.9% 71.0% 66.4% 64.0%

WikiMIA Not adapt. 70.5% 76.2% 70.4% 69.5% 63.1%
256 Adapt. 71.3% 78.2% 72.4% 70.7% 66.2%

Algorithm 1: Adaptive Min-K% Prob
Require : Tokenized target sample t = t1 ⊕ t2 ⊕ ...⊕ tn, access to the probability of the target

(watermarked) LLM f to generate ti given the i− 1 previous tokens and t0 (empty
string) f(ti|t0 ⊕ t1 ⊕ ...⊕ ti−1) (similar assumption as Min-K% Prob algorithm), K,
we assume we know the watermarking scheme (e.g., for public watermark detection
purposes), i.e. we know the green and red lists as well as δ.

Output : Adjusted average of the minimum K% token probabilities when generating
t1 ⊕ t2 ⊕ ...⊕ tn

adj_prob← {} ▷ The set of adjusted probabilities
for i ∈ 1, 2, . . . , n do

pf (ti)← f(ti|t0 ⊕ t1 ⊕ ...⊕ ti−1)
if ti is green then

adj_prob← adj_prob ∪{pf (ti)
eδ
}

else
adj_prob← adj_prob ∪{pf (ti)}

end
end
k = floor(n ·K%) ▷ Find the number of token probabilities to keep
adj_k_prob← min_k(adj_prob) ▷ Select the minimum k probabilities
return mean(log(adj_k_prob) ) ▷ Return the mean of the minimum k
log-probabilities

D Theoretical analysis525

Notations and assumptions. We assume that the set of all copyrighted texts CD that were part of the526

training data has m elements {s1, s2, ..., sm}. Also, we assume that each copyrighted text has a fixed527

length n, and they are independent from each other.528

Theorem 1 For an LLM watermarked using a “hard” UMD scheme with a percentage of γ green529

tokens, then the probability of generating a copyrighted text is lower than m · γn.530

Proof. Given one sample s = t1 ⊕ t2 ⊕ ... ⊕ tn ∈ CD. For a “hard” watermarking scheme, the531

probability P (s) of generating s is smaller than the probability of each token ti to be on a green list.532

So, P (s) < γn. The probability of not generating any sj ∈ CD is P (¬s1 ∧ ¬s2 ∧ ... ∧ ¬sm) =533
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∏
i=1,m(1− P (si)) > (1− γn)m > 1−mγn. Note that we used Bernoulli’s inequality at the end.534

So, the probability of generating at least one copyrighted text is lower than 1 − (1 −m · γn) and535

hence lower than m · γn.536

Example. Let’s consider a “hard” UMD watermarking scheme with γ = 0.5. Let’s assume each537

copyrighted text is 100 tokens, the model was trained on a dataset containing 109 copyrighted texts.538

The probability to generate a copyrighted text is < 109 · 0.5100 = 109

2100 = 10003

102410 < 10003

100010 =539

1000−7 = 10−21 and hence very low.540

Theorem 2 Let f be a LLM and fW its watermarked version with a “soft” UMD scheme and let541

ϵ ∈ (0, 1
4 ). Let s = t1 ⊕ t2 ⊕ ... ⊕ tn ∈ CD be a copyrighted sample. We consider γ = 0.5. We542

denote the output of the softmax layer of f for generating the token ti as ai

di+ai
and in the case of543

fW , we denote it by ai·eδ
b
′
i+c

′
i·eδ+ai·eδ

(if ti is on the green list) and ai

b
′′
i +c

′′
i ·eδ+ai

(if ti is on the red list),544

where ai is the exponential of the logit value corresponding to the token ti and b
′

i, b
′′

i and c
′

i, c
′′

i are545

the sum of the exponentials of the logits corresponding to other tokens that are on the red list and546

green list, respectively. We assume that x
ai

< M = 1−4ϵ
1+4ϵ , for all x ∈ {di, b

′

i, b
′′

i , c
′

i, c
′′

i } which would547

restrict f to be relatively confident in its predictions for each token ti. Then, we can always find a548

δ (strength) for the watermarking scheme such that the probability of generating s is reduced by at549

least (1 + 2ϵ
2ϵ+1 )

n times in comparison to the case of the unwatermarked model.550

Proof. First, we observe that the probability of generating the token ti by the unwatermarked model551

is ai

di+ai
= 1

di
ai

+1
> 1

M+1 = 1/2 + 2ϵ.552

We observe that since there is a finite number of x
ai

′s and they are all positive, then it exist553

a lower bound for x
ai

(let’s denote it by m > 0). Since γ = 0.5, the probability of ti be-554

ing a green token is 1
2 and hence the probability of the watermarked model to generate ti is555

1
2

ai·eδ
b
′
i+c

′
i·eδ+ai·eδ

+ 1
2

ai

b
′′
i +c

′′
i ·eδ+ai

< 1
2 + 1

2
ai

b
′′
i +c

′′
i ·eδ+ai

= 1
2 + 1

2
1

b
′′
i
ai

+
c
′′
i
ai

·eδ+1

≤ 1
2 + 1

2
1

m·(eδ+1)+1
.556

We pick δ > log
( 1−2ϵ(m+1)

2ϵm

)
and we observe that 1

2 + 1
2

1
m·(eδ+1)+1

< 1
2 + 1

2
1

m·( 1−2ϵ(m+1)
2ϵm +1)+1

=557

1
2 + 1

2
1

m·( 1−2ϵ
2ϵm )+1

= 1
2 + ϵ.558

So, by combining the two observations above, we conclude that the probability of generating ti is559

reduced by at least
1
2+2ϵ
1
2+ϵ

= 1 + 2ϵ
2ϵ+1 times. Therefore, since there are n tokens in s, the probability560

of generating s is reduced by at least (1 + 2ϵ
2ϵ+1 )

n times.561

Observation. Since the probability is reduced by at least (1 + 2ϵ
2ϵ+1 )

n times in Theorem 2 then the562

probability of generating s is lower than ( 2ϵ+1
4ϵ+1 )

n (as the maximum probability of generating with the563

unwatermarked model is 1). Hence, as in Theorem 1, we observe that the probability of generating a564

copyrighted text is lower than m · ( 2ϵ+1
4ϵ+1 )

n.565

Takeaways. Our theoretical analysis demonstrates that watermarking significantly reduces the566

probability of generating copyrighted text verbatim. For both a “hard” and “soft” UMD scheme, the567

upper bound for the likelihood of producing copyrighted content decreases exponentially with the568

length of the copyrighted texts.569
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