
EfficientQAT: Efficient Quantization-Aware Training for Large Language
Models

Anonymous ACL submission

Abstract

Large language models (LLMs) are crucial in001
modern natural language processing and artifi-002
cial intelligence. However, they face challenges003
in managing their significant memory require-004
ments. Although quantization-aware training005
(QAT) offers a solution by reducing memory006
consumption through low-bit representations007
with minimal accuracy loss, it is impractical008
due to substantial training resources. To ad-009
dress this, we propose Efficient Quantization-010
Aware Training (EfficientQAT), a more feasi-011
ble QAT algorithm. EfficientQAT involves two012
consecutive phases: Block-wise training of all013
parameters (Block-AP) and end-to-end train-014
ing of quantization parameters (E2E-QP). To015
the best of our knowledge, Block-AP is the016
first method to enable direct training of all pa-017
rameters in a block-wise manner, reducing ac-018
curacy loss in low-bit scenarios by enhancing019
the solution space during optimization. E2E-020
QP then trains only the quantization parame-021
ters (step sizes) end-to-end, further improving022
the performance of quantized models by con-023
sidering interactions among all sub-modules.024
Extensive experiments demonstrate that Effi-025
cientQAT outperforms previous quantization026
methods across a range of models, including027
base LLMs, instruction-tuned LLMs, and mul-028
timodal LLMs, with scales from 7B to 70B029
parameters at various quantization bits. For030
instance, EfficientQAT obtains a 2-bit Llama-2-031
70B model on a single A100-80GB GPU in 41032
hours, with less than 3 points accuracy degra-033
dation compared to the full precision (69.48 vs.034
72.41).035

1 Introduction036

Recent advancements in large language models037

(LLMs) (Touvron et al., 2023; Bubeck et al., 2023;038

Chiang et al., 2023; Xu et al., 2023a; Ying et al.,039

2024) have demonstrated impressive capabilities in040

diverse language tasks such as reasoning (Clark041

et al., 2018, 2019; Zellers et al., 2019), cogni-042

7B 13B 70B
Llama-2

50

55

60

65

70

Av
g.

 A
cc

ur
ac

y

AutoRound
OmniQ
DB-LLM
EfficientQAT (ours)

AutoRound
OmniQ
DB-LLM
EfficientQAT (ours)

(a) 2-bit quantization comparisons

4 3 2
Bits

27.5
30.0
32.5
35.0
37.5
40.0

Av
g.

 M
M

LU
 A

cc
ur

ac
y

EfficientQAT (ours)
QA-LoRA
IR-QLoRA
PEQA
QLoRA w/ GPTQ

(b) Q-PEFT comparisons
Figure 1: (a) EfficientQAT significantly surpasses ex-
isting uniform quantization methods, and is either su-
perior to or comparable with vector quantization tech-
niques. (b) EfficientQAT markedly outperforms existing
Q-PEFT methods.

tive processing (Fu et al., 2023; Xu et al., 2023a), 043

and agent-based applications (Qin et al., 2023a,b). 044

However, these models are characterized by their 045

extensive parameters, which pose significant chal- 046

lenges for memory footprint and bandwidth (Kim 047

et al., 2023b; Xu et al., 2024a). 048

Quantization-aware training (QAT) is a highly 049

effective quantization technique that minimizes 050

quantization errors by incorporating quantization 051

constraints during training. For example, BitNet 052

b1.58 (Ma et al., 2024) can achieve nearly loss- 053

less ternary quantization. The precision of QAT is 054

due to two main factors: 1) Fully trainable param- 055

eters allow for enough optimized space for gradi- 056

ent descent optimization; 2) End-to-end training 057

accounts for interactions among all sub-modules 058

in the models. Despite its performance benefits, 059

1

QAT demands significant training resources, such060

as time and GPUs, as well as extensive training061

data. For instance, BitNet b1.58 requires retrain-062

ing LLMs from scratch using the entire pre-trained063

dataset. Therefore, this approach is impractical for064

extremely large models and has only been verified065

on 3B models with 100B training tokens.066

In optimizing quantization for LLMs, current067

methods emphasize either fine-grained reconstruc-068

tion or reducing trainable parameters. While these069

approaches improve efficiency, they significantly070

degrade accuracy in low-bit scenarios. Mainstream071

post-training quantization (PTQ) methods (Lin072

et al., 2023; Frantar et al., 2022; Shao et al., 2023)073

focus on block-wise reconstruction (Li et al., 2021).074

They also restrict the optimization space to allevi-075

ate overfitting risk by only training rounding pa-076

rameters (Nagel et al., 2020; Cheng et al., 2023),077

clipping thresholds (Shao et al., 2023), or step sizes078

(Esser et al., 2019; Ding et al., 2023). However,079

these methods not only limit optimizable param-080

eters but also overlook cross-block interactions,081

leading to notable accuracy degeneration in low-082

bit scenarios, as shown in Figure 1a. Conversely,083

quantized parameter-efficient fine-tuning (Q-PEFT)084

methods (Dettmers et al., 2023a; Kim et al., 2023a)085

reduce training costs by freezing quantized param-086

eters and only training a few continuous floats. For087

example, PEQA (Kim et al., 2023a) and QA-LoRA088

(Xu et al., 2023b) focus on training continuous089

quantization parameters. Despite this, their per-090

formance remains poor, as depicted in Figure 1b,091

because the severe performance loss in low-bit sce-092

narios (2-bit and 3-bit) cannot be fully recovered093

with limited trainable parameters.094

To address these challenges, we introduce095

a novel quantization-aware training framework096

called EfficientQAT. This framework combines097

the advantages of fully trainable parameters and098

end-to-end training, similar to native QAT (Ma099

et al., 2024), while maintaining the training effi-100

ciency of PTQ (Cheng et al., 2023; Shao et al.,101

2023) and Q-PEFT (Xu et al., 2023b). Efficien-102

tQAT introduces block-wise training of all parame-103

ters (Block-AP) to enhance the optimizable space104

and mitigate quantization accuracy loss. Block-105

AP sequentially trains all parameters, including106

original full-precision weights and quantization pa-107

rameters (step sizes and zero points), within each108

transformer block. Several works have been de-109

veloped based on block-wise reconstruction. How-110

ever, previous approaches focus on designing addi-111

tional trainable parameters, such as clipping thresh- 112

olds for OmniQuant (Shao et al., 2023), weight 113

rounding for AutoRound (Cheng et al., 2023) and 114

BRECQ (Li et al., 2021), or LoRA (Hu et al., 2021) 115

parameters for CBQ (Ding et al., 2023). Our Block- 116

AP is the first to directly train all parameters dur- 117

ing block-wise reconstruction, achieving superior 118

performance compared to previous methods (see 119

Table 5). Block-AP successfully demonstrates that 120

complex trainable parameter design is unnecessary 121

for effective block-wise reconstruction in LLMs 122

quantization. Furthermore, we introduce end-to- 123

end training of quantization parameters (E2E-QP) 124

to account for inter-block interactions. E2E-QP 125

keeps the quantized weights fixed and trains only 126

the quantization parameters (step sizes) end-to-end. 127

Thanks to the integration of the proposed Block- 128

AP and E2E-QP, EfficientQAT characterizes it- 129

self as a fast-converging, memory-efficient, and 130

high-performing quantization technique. For in- 131

stance, EfficientQAT can obtain a 2-bit Llama-2- 132

70B model on a single A100-80GB GPU in just 133

41 hours, with less than 3 points accuracy degrada- 134

tion on 5 zero-shot common-sense tasks compared 135

to its full-precision counterpart (69.48 vs. 72.41). 136

We also evaluate EfficientQAT across scenarios in- 137

volving model compression and instruction-tuning. 138

In model compression, as illustrated in Figure 1a, 139

EfficientQAT significantly outperforms existing 140

uniform quantization methods by approximately 141

5 points on accuracy in the challenging 2-bit quan- 142

tization setting. In terms of instruction tuning, 143

as shown in Figure 1b, EfficientQAT consistently 144

outperforms existing Q-PEFT methods, including 145

QLoRA (Dettmers et al., 2023a), QA-LoRA (Xu 146

et al., 2023b), and PEQA (Kim et al., 2023a). For 147

instance, EfficientQAT surpasses PEQA (Kim et al., 148

2023a) with 4.5 points MMLU accuracy when fine- 149

tuning with Alpaca dataset. 150

2 Related Works 151

Post-Training Quantization of LLMs. PTQ is a 152

pivotal technique for accelerating and deploying 153

LLMs. Quantization approaches generally fall into 154

two categories: weight-only quantization (Fran- 155

tar et al., 2022; Dettmers et al., 2023b; Lee et al., 156

2023a; Kim et al., 2023b) and weight-activation 157

quantization (Xiao et al., 2023; Liu et al., 2023c; 158

Wei et al., 2022, 2023; Yuan et al., 2023; Zhao 159

et al., 2023; Ashkboos et al., 2023; Li et al., 2023a; 160

Ashkboos et al., 2024). Weight-only quantization 161

2

focuses on compressing weights into low-bit for-162

mats, reducing memory demands and enhancing163

the efficiency of memory-bounded computations164

in LLMs (Lin et al., 2024; Yuan et al., 2024). Con-165

versely, weight-activation quantization compresses166

both weights and activations, thus further decreas-167

ing the overhead associated with matrix multipli-168

cations (Lin et al., 2024). Recent advancements in169

weight-only quantization include the introduction170

of vector quantization methods by QUIP#(Tseng171

et al., 2024) and AQLM(Egiazarian et al., 2024).172

These methods have shown promising performance173

but also introduce significant overhead (Gong et al.,174

2024). Our research continues to explore uniform175

quantization, which is preferred for its compatibil-176

ity with hardware implementations.177

Quantization-Aware Training of LLMs. QAT178

can enhance the performance of quantized models179

beyond what PTQ offers. However, QAT has been180

less explored in LLMs due to the significant train-181

ing costs involved. Studies such as LLM-QAT (Liu182

et al., 2023e) and BitDistiller (Du et al., 2024)183

investigate the application of knowledge distilla-184

tion within QAT contexts. Techniques like Bit-185

Net b1.58 (Ma et al., 2024) and OneBit (Xu et al.,186

2024b) employ QAT to achieve extreme binary or187

ternary quantization levels. Although BitNet b1.58188

demonstrates near-lossless performance on models189

up to 3 billion parameters and 100 billion training190

tokens with ternary quantization, its applicability191

to larger models or datasets remains uncertain due192

to prohibitive training expenses.193

Quantized Parameter-Efficient Fine-Tuning194

of LLMs. Techniques like QLoRA (Dettmers et al.,195

2023a), INT2.1 (Chai et al., 2023), LQ-LoRA (Guo196

et al., 2023), and LoftQ (Li et al., 2023b) quantize197

model parameters to low-bit representations fol-198

lowed by the addition of LoRA (Hu et al., 2021)199

modules for fine-tuning. However, these methods200

require merging the LoRA modules into quantized201

weights, resulting in the model reverting to the202

FP16 format. Addressing this issue, QA-LoRA (Xu203

et al., 2023b) redesigns the LoRA module to merge204

seamlessly into the zero points. The approach most205

similar to ours is PEQA (Kim et al., 2023a), which206

uses a round-to-nearest (RTN) method for low-bit207

quantization and fine-tunes step sizes for task adap-208

tation. However, PEQA experiences significant209

performance degradation due to limited trainable210

parameters, which hinders recovery from quantiza-211

tion information loss.212

3 EfficientQAT 213

3.1 Method Overview 214

In this section, we introduce EfficientQAT, a novel 215

quantization-aware training framework for LLMs 216

that enhances memory efficiency. As illustrated in 217

Figure 2, traditional QAT approaches train the full- 218

precision weights W and quantization parameters 219

s (step sizes) and z (zero points) simultaneously 220

in an end-to-end manner, which significantly in- 221

creases the memory requirements due to the large 222

number of parameters involved. To address this 223

issue, EfficientQAT adopts a two-stage strategy: 224

block-wise training of all parameters (Block-AP) 225

and end-to-end training of quantization parame- 226

ters (E2E-QP). In the Block-AP phase, model pa- 227

rameters and quantization parameters are trained 228

block-by-block using reconstruction loss, which 229

not only allows for precise calibration with full 230

training but also reduces memory consumption (Li 231

et al., 2021; Shao et al., 2023) by block-wise train- 232

ing. Following this, the E2E-QP phase fixes the 233

quantized weights and trains the step sizes exclu- 234

sively on target datasets, thus achieving inter-block 235

interaction in a memory-efficient way. Details on 236

Block-AP and E2E-QP are further described in 237

Sections 3.2 and 3.3, respectively. 238

3.2 Block-Wise Training of All Parameters 239

In this section, we introduce the Block-Wise Train- 240

ing of All Parameters (Block-AP) approach, de- 241

signed to efficiently provide an effective initializa- 242

tion for following end-to-end training. 243

Quantization and Dequantization. Specifi- 244

cally, Block-AP begins with a standard uniform 245

quantization method: 246

Wint = clamp(⌊W
s
⌉+ z, 0, 2N − 1), (1) 247

where ⌊·⌉ represents the rounding operation. N 248

is the target bit number. Wint and W denote the 249

quantized integer and full-precision weights, re- 250

spectively. s is the scaling factor and z is the zero 251

point. In the forward propagation, the quantized 252

weights are converted back to full precision as fol- 253

lows: 254

Ŵ = (Wint − z) · s. (2) 255

Here, Ŵ refers to the dequantized weights used in 256

the forward computation. The processes of quanti- 257

zation (Eq.(1)) and dequantization (Eq.(2)) are inte- 258

grated within the computation graph and can be op- 259

3

W W𝑖𝑛𝑡
෡𝑊quant dequant

𝑠 z

QAT

End-to-End Training

EfficientQAT

𝑊 W𝑖𝑛𝑡 ෡𝑊quant dequant

Block-wise Training

W𝑖𝑛𝑡
෡𝑊dequant

End-to-End Training

+

Block 1 Block 2 Block n…Model Model

𝑠 z 𝑠 z 𝑠 z 𝑠 z

Figure 2: The overall pipeline of naive QAT and proposed EfficientQAT. EfficientQAT introduces two novel
processes: Block-wise Training of All Parameters (Block-AP) and End-to-End Training of Quantization Parameters
(E2E-QP).

timized through gradient descent in a quantization-260

aware manner.261

Blcok-wise Quantization-aware Training. Tra-262

ditional QAT methods (Ma et al., 2024; Esser et al.,263

2019; Liu et al., 2023e) train the entire network264

using Eq.(1) and Eq.(2) in an end-to-end fashion,265

which typically requires substantial computational266

resources and extensive data to prevent overfitting.267

Here we aim to enhance the training efficiency of268

QAT. Previous studies, such as BRECQ (Li et al.,269

2021), have demonstrated that block-wise train-270

ing achieves faster convergence and requires less271

training time, data, and memory than end-to-end272

training given a pre-trained model. Following the273

methodologies in BRECQ (Li et al., 2021) and Om-274

niQuant (Shao et al., 2023), Block-AP sequentially275

conducts quantization-aware training within one276

transformer block before moving on to the next277

under a block-wise reconstruction framework.278

Full Training of Model Weights and Quantiza-279

tion Parameters. Unlike previous methods which280

optimize several quantization parameters such as281

rounding parameters (Nagel et al., 2020; Cheng282

et al., 2023; Lee et al., 2023b), clipping parame-283

ters (Shao et al., 2023), and step sizes (Esser et al.,284

2019; Ding et al., 2023), Block-AP behaves like285

QAT, training all inherent parameters from Eq.(1)286

and Eq.(2), including scaling factor s, zero point z,287

and model weights W.288

In our Block-AP approach, a straightforward289

full-training regimen outperforms existing partial-290

training variants (Nagel et al., 2020; Li et al., 2021;291

Ding et al., 2023) with intricate designs. Tradi-292

tional training methods involving rounding param-293

eters (Nagel et al., 2020; Li et al., 2021; Ding294

et al., 2023) serve as regularization techniques,295

constraining the update range of integral weights296

to (−1,+1) to mitigate overfitting. However, this297

approach limits the solution space, potentially hin- 298

dering the final performance of quantized models. 299

Our empirical findings demonstrate the superiority 300

of full training within our Block-AP over existing 301

partial-training variants (Nagel et al., 2020; Li et al., 302

2021; Ding et al., 2023), as shown in Table 5. 303

Following block-wise training, we obtain the 304

quantized model which includes quantized weights 305

Wq, step sizes s, and zero points z for each quanti- 306

zation group. The weights Wq and zero points z 307

are stored in a low-bit format, while step sizes s are 308

stored in FP16. Note that s and z are shared within 309

their respective quantization groups and constitute 310

only a small fraction of the model’s parameters, 311

approximately 1.6% for a group size of 64. More- 312

over, the model’s memory footprint is substantially 313

reduced by transitioning from full-precision 16-bit 314

weights to 2/3/4-bit quantized weights. 315

3.3 End-to-End Training of Quantization 316

Parameters 317

We further introduce the End-to-End Training of 318

Quantization Parameters (E2E-QP), aimed at effi- 319

ciently training the entire quantized model on target 320

datasets. 321

End-to-End Training of step sizes. Unlike tra- 322

ditional Quantization-Aware Training (QAT) meth- 323

ods (Liu et al., 2023e; Ma et al., 2024) that train 324

full-precision weights, E2E-QP begins with Wq 325

initialized via Block-AP and focuses solely on the 326

training of quantization parameters (s and z). Our 327

findings indicate that training s, z, or both yields 328

similar performance (see Table 6 for details). How- 329

ever, since training z involves converting it from 330

a low-bits format to full-precision, we typically 331

train only s by default unless specified otherwise 332

to avoid additional memory overhead. 333

Additionally, within E2E-QP, there is no quanti- 334

4

zation process as per Equation (1); only the dequan-335

tization process occurs as described in Equation (2).336

Thus, the gradient of the trainable parameter s is337

computed as ∂ŵ
∂s = wq − z.338

Overall, the memory usage for training in E2E-339

QP is drastically reduced due to the reduced train-340

able parameter count. Detailed memory footprints341

for various model sizes and bits under E2E-QP are342

listed in Table 7. For instance, the Llama-2-70B343

model can complete 2-bit QAT through E2E-QP344

using only 34.2GB of memory. Equipped with E2E-345

QP, EfficientQAT is adaptable to different scenarios346

by simply changing the training datasets, which in-347

cludes applications such as continual pre-training348

and instruction-tuning (Taori et al., 2023).349

4 Experiments350

This section presents extensive experiments to ver-351

ify our proposed EfficientQAT. Secition 4.1 and352

Sec 4.2 present the comparisons with quantiza-353

tion methods and Q-PEFT methods respectively.354

Section 4.4 details the training cost and inference355

speed-up of the proposed EfficientQAT. Section 4.3356

presents the comprehensive ablation studies of the357

proposed EfficientQAT.358

4.1 EfficientQAT for LLMs Quantization359

Training. We conduct experiments on the Llama-2360

and Llama-3 models. For Block-AP, we use 4096361

samples from RedPajama (Computer, 2023) with a362

context length of 2048. We train each block with363

batch size as 2 and epochs as 2, setting the learning364

rate of quantization parameters as 1 × 10−4, and365

the learning rate of weights as 2× 10−5 for 2-bit366

and 1 × 10−5 for 3/4-bits. For E2E-QP, we also367

employ 4096 samples from RedPajama (Computer,368

2023) but with a context length of 4096. We train369

the entire model with batch size as 32 and epoch as370

1, and set the learning rate of step size as 2× 10−5371

for 2-bit and 1× 10−5 for 3-bits.372

Baseline. We compare our results with quan-373

tization methods with uniform quantization such374

as GPTQ (Frantar et al., 2022), AWQ (Lin et al.,375

2023), OmniQ (Shao et al., 2023), ApiQ (Liao and376

Monz, 2024) and AutoRound (Cheng et al., 2023),377

BitDistiller (Du et al., 2024), and DB-LLM (Chen378

et al., 2024).379

Accuracy results. We evaluate the zero-shot380

accuracy on five common-sense reasoning tasks381

using the v0.4.2 lm-evaluation-harness1. These382

1https://github.com/EleutherAI/lm-evaluation-harness

tasks include WinoGrande (Sakaguchi et al., 2021), 383

PIQA (Bisk et al., 2020), HellaSwag (Zellers et al., 384

2019), Arc-Easy (Clark et al., 2018), and Arc- 385

Challenge (Clark et al., 2018). Table 1 shows 386

that the proposed EfficientQAT significantly out- 387

performs previous methods across the Llama-2 and 388

Llama-3 model families, as well as in both 2-bit 389

and 3-bit quantization settings. The performance 390

gains are particularly notable in extremely low-bit 391

quantization, such as 2-bit. For instance, Efficien- 392

tQAT achieves a +3.26% accuracy improvement 393

over AWQ in w3g128 quantization with Llama-3- 394

8B. Moreover, EfficientQAT surpasses DB-LLM 395

by +9.02% accuracy in w2g64 quantization. 396

Perplexity results. We also evaluate perplexity 397

on Wikitext2 and C4 using a 2048 context length, 398

following prior studies (Frantar et al., 2022; Shao 399

et al., 2023). The results align with the accuracy 400

comparison, as EfficientQAT consistently achieves 401

lower perplexity across the Llama-2 and Llama-3 402

model families in both 2-bit and 3-bit quantiza- 403

tion. Notably, the benefits are more pronounced 404

in Llama-3 models, which face greater challenges 405

in quantization (Huang et al., 2024). For example, 406

EfficientQAT reduces perplexity by 0.37 and 4.19 407

points compared to DB-LLM in Llama-2-7B and 408

Llama-3-8B, respectively. 409

4.2 EfficientQAT for Instruction Tuning 410

Training and Evaluation. Following existing 411

works (Xu et al., 2023b; Qin et al., 2024), we train 412

Llama-1 models on the Alpaca dataset (Taori et al., 413

2023) and assess their performance by measuring 414

average 5-shot MMLU (Hendrycks et al., 2020) 415

accuracy works (Xu et al., 2023b; Qin et al., 2024). 416

The training hyperparameters are identical to those 417

described in Section 4.1, except we replace the Red- 418

Pajama dataset (Computer, 2023) with Alpaca. In 419

line with QLoRA’s methodology (Dettmers et al., 420

2023a), we adjust the source context length to 384 421

and the target context length to 128, training for 422

10,000 steps with a batch size of 16. 423

Baseline. We benchmark EfficientQAT 424

against several leading methods, including 425

QLoRA (Dettmers et al., 2023a), QA-LoRA (Xu 426

et al., 2023b), PEQA (Kim et al., 2023a), and 427

IR-QLoRA (Qin et al., 2024), across quantiza- 428

tion setting of 2, 3, and 4 bits. Consistent with 429

QA-LoRA (Xu et al., 2023b), we also employ 430

GPTQ (Frantar et al., 2022) to quantize the fine- 431

tuned QLoRA models into a low-bit format without 432

FP16 LoRA for equitable comparison. 433

5

Table 1: Llama 2 & 3 average zero-shot accuracy on 5 common-sense reasoning tasks (↑). "-" indicates the result is
unreachable in the public papers.

Method Bits Group 2-7 2-13 2-70 3-8 3-70

FP16 16 - 64.86 67.81 72.41 68.58 75.33

RTN 3 128 62.06 65.77 70.83 58.72 65.29
GPTQ 3 128 62.48 66.18 71.47 60.58 71.28
AWQ 3 128 62.82 66.14 71.41 64.82 73.65

OmniQ 3 128 62.42 66.18 71.07 64.09 71.90
AutoRound 3 128 63.72 66.68 71.24 - -

EfficientQAT 3 128 64.02 67.28 71.76 67.35 73.96

OmniQ 2 128 46.98 53.56 54.87 52.66 60.06
AutoRound 2 128 54.50 60.72 67.70 - -

EfficientQAT 2 128 59.50 63.88 68.93 59.37 67.57
DB-LLM 2 64 56.93 61.61 68.01 51.74 -

EfficientQAT 2 64 60.14 64.48 69.48 60.76 67.89

Table 2: Llama 2 & 3 Wikitext2 and C4 perplexity (↓), context length 2048. "-" indicates the result is unreachable in
the public papers.

Wikitext 2 C4

Method Bits Group 2-7 2-13 2-70 3-8 3-70 2-7 2-13 2-70 3-8 3-70

FP16 16 - 5.47 4.88 3.32 6.14 2.85 6.97 6.47 5.52 8.88 6.73

GPTQ 3 128 6.29 5.42 3.85 9.58 5.25 7.89 7.00 5.85 11.66 8.64
AWQ 3 128 6.24 5.32 3.74 8.16 4.69 7.84 6.94 5.81 11.49 7.91

OmniQ 3 128 6.03 5.28 3.78 8.27 4.99 7.75 6.98 5.85 11.66 7.97
BitDistiller 3 128 5.97 - - - - - - - - -

EfficientQAT 3 128 5.81 5.12 3.61 7.09 4.21 7.34 6.73 5.71 10.06 7.46

OmniQ 2 128 11.06 8.26 6.55 18.50 16.79 15.02 11.05 8.52 22.46 15.06
ApiQ 2 128 8.25 6.71 - - - 12.04 9.13 - - -

BitDistiller 2 128 8.08 - - - - - - - - -
EfficientQAT 2 128 7.19 6.08 4.61 9.80 6.38 8.79 7.75 6.48 13.22 9.53

ApiQ 2 64 7.59 6.44 - - - 10.56 8.92 - - -
CBQ 2 64 8.01 - - - - 11.30 - - - -

DB-LLM 2 64 7.23 6.19 4.64 13.60 - 9.62 8.38 6.77 19.20 -
EfficientQAT 2 64 6.86 5.96 4.52 9.41 6.07 8.50 7.59 6.38 12.77 9.23

Results. Both Table 3 and Figure 1b indicate that434

EfficientQAT significantly outperforms existing Q-435

PEFT methods. For instance, in channel-wise quan-436

tization (group size of -1), EfficientQAT achieves437

more than 3% higher accuracy than PEQA (Kim438

et al., 2023a). In the 2-bit quantization scenario,439

the superiority of EfficientQAT is even more pro-440

nounced, surpassing QA-LoRA (Xu et al., 2023b)441

by 5.1% and 4.0% in 7B and 13B models, respec-442

tively, and outperforming PEQA by 4.5% and 8.7%443

in the same models. Moreover, Table 3 also demon-444

strates that EfficientQAT outperforms both QA-445

LoRA and QLoRA with GPTQ in smaller model 446

memory footprint (larger group size). 447

4.3 Ablation Analysis 448

The EfficientQAT algorithm is comprised of two 449

main components: Block-AP and E2E-QP. This 450

section evaluates the effectiveness, trainable pa- 451

rameters, and training sample requirements of each 452

component. We present the average perplexity for 453

WikiText2 and C4 datasets, and the average accu- 454

racy for five zero-shot reasoning tasks, similar to 455

Table 1. 456

6

Table 3: Llama-1 average MMLU accuracy (5-shot)
about instruction-tuning on Alpaca dataset.

Method Bits Group 7B 13B

- 16 - 34.6 46.3

PEQA 4 -1 35.8 45.0
EfficientQAT 4 -1 38.8 48.2

QLoRA 4+16 - 38.4 48.4
QLoRA w/GPTQ 4 32 36.0 48.0

QA-LoRA 4 32 39.4 49.2
PEQA 4 64 39.4 47.4

IR-QLoRA 4 64 40.8 49.3
EfficientQAT 4 64 41.2 49.5

QLoRA w/ GPTQ 3 32 34.0 46.1
QA-LoRA 3 32 37.4 47.3
IR-QLoRA 3 64 38.4 -

PEQA 3 64 38.5 46.3
EfficientQAT 3 64 40.0 48.2

QLoRA w/ GPTQ 2 32 25.8 30.9
QA-LoRA 2 32 27.5 36.9
IR-QLoRA 2 64 27.8 -

PEQA 2 64 28.1 32.2
EfficientQAT 2 64 32.6 40.9

Effectiveness of each component. As indicated457

in Table 4, both the Block-AP and E2E-QP com-458

ponents significantly enhance performance, with459

their combination yielding the best results. Notably,460

Block-AP outperforms E2E-QP, aligning with find-461

ings from BRECQ (Li et al., 2021).462

Trainable parameters of Block-AP. Block-AP463

trains all parameters, including original weights464

and quantization parameters. Previous methods465

have introduced various training strategies to mit-466

igate overfitting, such as trained rounding (Nagel467

et al., 2020; Cheng et al., 2023), clipping thresh-468

olds (Shao et al., 2023), and step sizes (Esser et al.,469

2019; Ding et al., 2023). We compare Block-AP470

with these methods by modifying only the train-471

able parameters of Block-AP. As shown in Table 5,472

Block-AP (training s, z, W) performs best with an473

acceptable training cost. Additionally, the memory474

footprint of directly training W is even smaller475

than that of training the rounding operation, which476

requires an additional copy of rounding parameters.477

Trainable parameters of E2E-QP. We further478

examine the trainable parameters within E2E-QP.479

Table 6 shows that training s, z, or both yields sim-480

ilar performance. However, given that converting z481

from an original low-bit representation to a train-482

able FP16 format increases the average bit count,483

we opt to train only s by default.484

Samples number of Block-AP. We assess the485

number of training samples for Block-AP, noting486

that E2E-QP trains all parameters, which may lead487

Table 4: Effectiveness of each component on Llama-2-
7B w2g64 quantization.

Block-AP E2E-QP Avg. PPL Avg. Acc.

% % 453.49 40.69
✓ % 8.53 58.99
% ✓ 9.33 55.71
✓ ✓ 7.68 60.14

Table 5: W2g64 Llama-2-7B performance with different
trainable parameters in the block-wise training (w/o
E2E-QP). “#” indicates trainable parameters count in a
block.

Param. # Memory Avg. PPL Avg. Acc.

clipping 6.3M 6.4GB 11.28 53.20
s,z 6.3M 6.4GB 10.26 55.20

round 202.4M 8.6GB 15.50 45.32
s,z,round 208.7M 9.3GB 9.17 57.14
s,z,W 208.7M 8.5GB 8.53 58.99

Table 6: Llama-2-7B w2g64 quantization with different
trainable parameters for E2E-QP (w/ Block-AP).

Param. Avg. Bits Avg. PPL Avg. Accuracy

s 2.28 7.68 60.14
z 2.50 7.69 60.08
s, z 2.50 7.68 60.18

to overfitting. To address this, we introduce an ad- 488

ditional 64 unseen samples from ReadPajama to 489

evaluate the overfitting issue. We adjust the train- 490

ing epochs to ensure a similar total training time, 491

allowing for fair comparisons across different sam- 492

ple sizes. As illustrated in Figure 3, increasing the 493

number of training samples significantly reduces 494

the gap between training loss and validation loss 495

from 1.07 to 0.06. This reduction corresponds to an 496

increase in the average accuracy for zero-shot tasks 497

from 57.14% to 58.99%. Consequently, we set the 498

default number of training samples for E2E-QP 499

at 4096, as this maintains a minimal gap between 500

training and validation losses. 501

Samples number of E2E-QP. In the E2E-QP, 502

we train the model for 1 epoch to avoid over-fitting. 503

Our examination of the training sample sizes for 504

E2E-QP, detailed in Table 8, reveals that average 505

perplexity consistently improves as sample sizes 506

increase from 128 to 32,674. However, there is no 507

significant improvement in average accuracy be- 508

yond 4096 samples. Therefore, we set the training 509

7

Table 7: The detailed training time and training memory of EfficientQAT across different model size and quantization
bits on a single A100-80GB GPU.

Llama-2 Block-AP E2E-QP

Time Memory Time Memory (4-/3-/2-bits) Total Time

7B 3.3h 8.5GB ∼1.5h 7.0/6.4/5.6GB 4.8h
13B 5.6h 10.3GB ∼2.9h 11.7/10.6/9.1GB 8.5h
70B 26.6h 29.9GB ∼14.3h 48.4/42.0/34.2GB 40.9h

128 256 512 1024 2048 4096
Number of Samples

0.50

0.75

1.00

1.25

1.50

M
SE

 L
os

s

Training Loss
Validation Loss

57.5

58.0

58.5

59.0

Av
g.

 A
cc

ur
ac

y
(%

)Avg. Accuracy (%)

Figure 3: Illustration of training loss, validation loss and
average accuracy of w2g64 Llama-2-7b with different
training samples size for Block-AP (w/o E2E-QP).

sample size for E2E-QP at 4096 by default to bal-510

ance efficiency and performance. Nonetheless, it511

is possible to further enhance the performance of512

EfficientQAT by increasing the sample size.513

4.4 Efficiency of EfficientQAT514

Training Efficiency Table 7 illustrates the required515

memory and time for training Lllama-2 models516

using EfficientQAT. The results indicate that the517

model completes training rapidly, taking 4.8 hours518

for the 7B model and 40.9 hours for the 70B model.519

we further compare the training time with other520

QAT methods, including BitDistiller, and DB-LLM.521

As shown in Table 9, the training time of Efficien-522

tQAT is significantly lower than that of existing523

methods. For example, the tuning time of Efficien-524

tQAT is only 50% of DB-LLM. Additionally, for525

quantizing a 70B model, the full process of Efficien-526

tQAT can be completed on a single A100-80GB527

GPU. However, other methods require at least 4528

A100-80GB GPUs to quantize a model of this size.529

Therefore, EfficientQAT is both a time-efficient530

and memory-efficient QAT method.531

Inference Efficiency Due to the leverage of stan-532

dard uniform quantization, the quantized models of533

EfficientQAT can also achieve speedup through a534

lot of toolboxes, such as MLC-LLM (team, 2023),535

AWQ (Lin et al., 2023), and BitBLAS (Wang et al.,536

2024), T-MAC (Wei et al., 2024), Marlin (Frantar537

et al., 2024), etc. For example, Table 10 shows that538

Table 8: Llama-2-7B w2g64 quantization performance
with different sample numbers for E2E-QP (w/ Block-
AP).

Samples Avg. PPL Avg. Accuracy

128 8.09 59.03
512 7.88 59.81

2048 7.75 60.13
4096 7.68 60.14
8192 7.63 60.19
32764 7.50 60.31

INT2 quantization of EfficientQAT can enhance 539

the forward-pass speed by approximately 2.9x to 540

4.4x through BitBLAS (Wang et al., 2024). 541

Table 9: Comparisons of training time with existing
methods in Llama-2-70B.

Method One A100-80GB? GPU hours (h)

LLM-QAT % 900
BitDistiller % 64
DB-LLM % 82

EfficientQAT ✓ 41

5 Conclusion 542

In this study, we introduce EfficientQAT, a novel 543

method that completes QAT with improved effi- 544

ciency in both memory usage and training time. 545

Through comprehensive testing, EfficientQAT 546

proves superior to existing PTQ, QAT, and Q-PEFT 547

methods in terms of versatility and performance 548

across various models and quantization levels. Ad- 549

ditionally, EfficientQAT leverages a standard uni- 550

form quantization, which simplifies deployment 551

using popular toolboxes. We anticipate that Effi- 552

cientQAT will stimulate further research and im- 553

prove the compression of Large Language Models 554

(LLMs), making them more efficient and widely 555

accessible. 556

8

6 Limitation557

EfficientQAT achieves impressive results in low-558

bit quantization scenarios, but there remains a per-559

formance gap compared to full-precision (FP16)560

models, particularly in 2-bit settings. Reducing561

this gap without sacrificing efficiency remains a562

challenge. Additionally, the method depends on563

the availability of high-quality and diverse datasets,564

requiring 4096 samples for effective training in565

both the Block-AP and E2E-QP phases. The per-566

formance of the quantized models can vary signifi-567

cantly based on the size and distribution of the train-568

ing data. This reliance may limit its effectiveness569

in data-scarce or domain-specific applications.570

References571

Saleh Ashkboos, Ilia Markov, Elias Frantar, Tingxuan572
Zhong, Xincheng Wang, Jie Ren, Torsten Hoefler,573
and Dan Alistarh. 2023. Towards end-to-end 4-bit574
inference on generative large language models. arXiv575
preprint arXiv:2310.09259.576

Saleh Ashkboos, Amirkeivan Mohtashami, Maximil-577
ian L Croci, Bo Li, Martin Jaggi, Dan Alistarh,578
Torsten Hoefler, and James Hensman. 2024. Quarot:579
Outlier-free 4-bit inference in rotated llms. arXiv580
preprint arXiv:2404.00456.581

Yoshua Bengio, Nicholas Léonard, and Aaron C.582
Courville. 2013. Estimating or propagating gradients583
through stochastic neurons for conditional computa-584
tion. ArXiv, abs/1308.3432.585

Yash Bhalgat, Jinwon Lee, Markus Nagel, Tijmen586
Blankevoort, and Nojun Kwak. 2020. Lsq+: Improv-587
ing low-bit quantization through learnable offsets and588
better initialization. 2020 IEEE/CVF Conference on589
Computer Vision and Pattern Recognition Workshops590
(CVPRW), pages 2978–2985.591

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi,592
et al. 2020. Piqa: Reasoning about physical com-593
monsense in natural language. In Proceedings of594
the AAAI conference on artificial intelligence, pages595
7432–7439.596

Sébastien Bubeck, Varun Chandrasekaran, Ronen El-597
dan, Johannes Gehrke, Eric Horvitz, Ece Kamar,598
Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lund-599
berg, et al. 2023. Sparks of artificial general intelli-600
gence: Early experiments with gpt-4. arXiv preprint601
arXiv:2303.12712.602

Yuji Chai, John Gkountouras, Glenn G Ko, David603
Brooks, and Gu-Yeon Wei. 2023. Int2. 1: Towards604
fine-tunable quantized large language models with605
error correction through low-rank adaptation. arXiv606
preprint arXiv:2306.08162.607

Hong Chen, Chengtao Lv, Liang Ding, Haotong Qin, 608
Xiabin Zhou, Yifu Ding, Xuebo Liu, Min Zhang, 609
Jinyang Guo, Xianglong Liu, et al. 2024. Db-llm: 610
Accurate dual-binarization for efficient llms. arXiv 611
preprint arXiv:2402.11960. 612

Wenhua Cheng, Weiwei Zhang, Haihao Shen, Yiyang 613
Cai, Xin He, and Kaokao Lv. 2023. Optimize weight 614
rounding via signed gradient descent for the quanti- 615
zation of llms. arXiv preprint arXiv:2309.05516. 616

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, 617
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan 618
Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion 619
Stoica, and Eric P. Xing. 2023. Vicuna: An open- 620
source chatbot impressing gpt-4 with 90%* chatgpt 621
quality. 622

Christopher Clark, Kenton Lee, Ming-Wei Chang, 623
Tom Kwiatkowski, Michael Collins, and Kristina 624
Toutanova. 2019. Boolq: Exploring the surprising 625
difficulty of natural yes/no questions. arXiv preprint 626
arXiv:1905.10044. 627

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, 628
Ashish Sabharwal, Carissa Schoenick, and Oyvind 629
Tafjord. 2018. Think you have solved question an- 630
swering? try arc, the ai2 reasoning challenge. arXiv 631
preprint arXiv:1803.05457. 632

Together Computer. 2023. Redpajama: an open dataset 633
for training large language models. 634

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and 635
Luke Zettlemoyer. 2023a. Qlora: Efficient finetuning 636
of quantized llms. arXiv preprint arXiv:2305.14314. 637

Tim Dettmers, Ruslan Svirschevski, Vage Egiazarian, 638
Denis Kuznedelev, Elias Frantar, Saleh Ashkboos, 639
Alexander Borzunov, Torsten Hoefler, and Dan Al- 640
istarh. 2023b. Spqr: A sparse-quantized representa- 641
tion for near-lossless llm weight compression. arXiv 642
preprint arXiv:2306.03078. 643

Xin Ding, Xiaoyu Liu, Yun Zhang, Zhijun Tu, Wei Li, 644
Jie Hu, Hanting Chen, Yehui Tang, Zhiwei Xiong, 645
Baoqun Yin, et al. 2023. Cbq: Cross-block quan- 646
tization for large language models. arXiv preprint 647
arXiv:2312.07950. 648

Dayou Du, Yijia Zhang, Shijie Cao, Jiaqi Guo, Ting Cao, 649
Xiaowen Chu, and Ningyi Xu. 2024. Bitdistiller: 650
Unleashing the potential of sub-4-bit llms via self- 651
distillation. arXiv preprint arXiv:2402.10631. 652

Vage Egiazarian, Andrei Panferov, Denis Kuznedelev, 653
Elias Frantar, Artem Babenko, and Dan Alistarh. 654
2024. Extreme compression of large language 655
models via additive quantization. arXiv preprint 656
arXiv:2401.06118. 657

Steven K Esser, Jeffrey L McKinstry, Deepika Bablani, 658
Rathinakumar Appuswamy, and Dharmendra S 659
Modha. 2019. Learned step size quantization. arXiv 660
preprint arXiv:1902.08153. 661

9

https://api.semanticscholar.org/CorpusID:18406556
https://api.semanticscholar.org/CorpusID:18406556
https://api.semanticscholar.org/CorpusID:18406556
https://api.semanticscholar.org/CorpusID:18406556
https://api.semanticscholar.org/CorpusID:18406556
https://api.semanticscholar.org/CorpusID:216036085
https://api.semanticscholar.org/CorpusID:216036085
https://api.semanticscholar.org/CorpusID:216036085
https://api.semanticscholar.org/CorpusID:216036085
https://api.semanticscholar.org/CorpusID:216036085
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://github.com/togethercomputer/RedPajama-Data
https://github.com/togethercomputer/RedPajama-Data
https://github.com/togethercomputer/RedPajama-Data

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and662
Dan Alistarh. 2022. Gptq: Accurate post-training663
quantization for generative pre-trained transformers.664
arXiv preprint arXiv:2210.17323.665

Elias Frantar, Roberto L Castro, Jiale Chen, Torsten666
Hoefler, and Dan Alistarh. 2024. Marlin: Mixed-667
precision auto-regressive parallel inference on large668
language models. arXiv preprint arXiv:2408.11743.669

Chaoyou Fu, Peixian Chen, Yunhang Shen, Yulei Qin,670
Mengdan Zhang, Xu Lin, Zhenyu Qiu, Wei Lin, Jin-671
rui Yang, Xiawu Zheng, Ke Li, Xing Sun, and Ron-672
grong Ji. 2023. Mme: A comprehensive evaluation673
benchmark for multimodal large language models.674
ArXiv, abs/2306.13394.675

Ruihao Gong, Yang Yong, Shiqiao Gu, Yushi Huang,676
Yunchen Zhang, Xianglong Liu, and Dacheng Tao.677
2024. Llm-qbench: A benchmark towards the best678
practice for post-training quantization of large lan-679
guage models. arXiv preprint arXiv:2405.06001.680

Han Guo, Philip Greengard, Eric P Xing, and Yoon Kim.681
2023. Lq-lora: Low-rank plus quantized matrix de-682
composition for efficient language model finetuning.683
arXiv preprint arXiv:2311.12023.684

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,685
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.686
2020. Measuring massive multitask language under-687
standing. arXiv preprint arXiv:2009.03300.688

J. Edward Hu, Yelong Shen, Phillip Wallis, Zeyuan689
Allen-Zhu, Yuanzhi Li, Shean Wang, and Weizhu690
Chen. 2021. Lora: Low-rank adaptation of large691
language models. ArXiv, abs/2106.09685.692

Wei Huang, Xudong Ma, Haotong Qin, Xingyu Zheng,693
Chengtao Lv, Hong Chen, Jie Luo, Xiaojuan Qi, Xi-694
anglong Liu, and Michele Magno. 2024. How good695
are low-bit quantized llama3 models? an empirical696
study. arXiv preprint arXiv:2404.14047.697

Jeonghoon Kim, Jung Hyun Lee, Sungdong Kim, Joon-698
suk Park, Kang Min Yoo, Se Jung Kwon, and Dong-699
soo Lee. 2023a. Memory-efficient fine-tuning of700
compressed large language models via sub-4-bit inte-701
ger quantization. arXiv preprint arXiv:2305.14152.702

Sehoon Kim, Coleman Hooper, Amir Gholami, Zhen703
Dong, Xiuyu Li, Sheng Shen, Michael W Ma-704
honey, and Kurt Keutzer. 2023b. Squeezellm:705
Dense-and-sparse quantization. arXiv preprint706
arXiv:2306.07629.707

Changhun Lee, Jungyu Jin, Taesu Kim, Hyungjun708
Kim, and Eunhyeok Park. 2023a. Owq: Lessons709
learned from activation outliers for weight quanti-710
zation in large language models. arXiv preprint711
arXiv:2306.02272.712

Jung Hyun Lee, Jeonghoon Kim, Se Jung Kwon, and713
Dongsoo Lee. 2023b. Flexround: Learnable round-714
ing based on element-wise division for post-training715
quantization. In International Conference on Ma-716
chine Learning, pages 18913–18939. PMLR.717

Qingyuan Li, Ran Meng, Yiduo Li, Bo Zhang, Liang Li, 718
Yifan Lu, Xiangxiang Chu, Yerui Sun, and Yuchen 719
Xie. 2023a. A speed odyssey for deployable quanti- 720
zation of llms. arXiv preprint arXiv:2311.09550. 721

Yixiao Li, Yifan Yu, Chen Liang, Pengcheng He, Nikos 722
Karampatziakis, Weizhu Chen, and Tuo Zhao. 2023b. 723
Loftq: Lora-fine-tuning-aware quantization for large 724
language models. arXiv preprint arXiv:2310.08659. 725

Yuhang Li, Ruihao Gong, Xu Tan, Yang Yang, Peng 726
Hu, Qi Zhang, Fengwei Yu, Wei Wang, and Shi 727
Gu. 2021. Brecq: Pushing the limit of post-training 728
quantization by block reconstruction. arXiv preprint 729
arXiv:2102.05426. 730

Baohao Liao and Christof Monz. 2024. Apiq: Finetun- 731
ing of 2-bit quantized large language model. arXiv 732
preprint arXiv:2402.05147. 733

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, 734
Xingyu Dang, and Song Han. 2023. Awq: Activation- 735
aware weight quantization for llm compression and 736
acceleration. arXiv preprint arXiv:2306.00978. 737

Yujun Lin, Haotian Tang, Shang Yang, Zhekai Zhang, 738
Guangxuan Xiao, Chuang Gan, and Song Han. 739
2024. Qserve: W4a8kv4 quantization and system 740
co-design for efficient llm serving. arXiv preprint 741
arXiv:2405.04532. 742

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae 743
Lee. 2023a. Improved baselines with visual instruc- 744
tion tuning. arXiv preprint arXiv:2310.03744. 745

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae 746
Lee. 2023b. Visual instruction tuning. arXiv preprint 747
arXiv:2304.08485. 748

Jing Liu, Ruihao Gong, Xiuying Wei, Zhiwei Dong, 749
Jianfei Cai, and Bohan Zhuang. 2023c. Qllm: Accu- 750
rate and efficient low-bitwidth quantization for large 751
language models. arXiv preprint arXiv:2310.08041. 752

Yuanzhan Liu, Haodong Duan, Yuanhan Zhang, Bo Li, 753
Songyang Zhang, Wangbo Zhao, Yike Yuan, Jiaqi 754
Wang, Conghui He, Ziwei Liu, Kai Chen, and Dahua 755
Lin. 2023d. Mmbench: Is your multi-modal model 756
an all-around player? ArXiv, abs/2307.06281. 757

Zechun Liu, Barlas Oguz, Changsheng Zhao, Ernie 758
Chang, Pierre Stock, Yashar Mehdad, Yangyang 759
Shi, Raghuraman Krishnamoorthi, and Vikas Chan- 760
dra. 2023e. Llm-qat: Data-free quantization aware 761
training for large language models. arXiv preprint 762
arXiv:2305.17888. 763

Pan Lu, Swaroop Mishra, Tony Xia, Liang Qiu, Kai-Wei 764
Chang, Song-Chun Zhu, Oyvind Tafjord, Peter Clark, 765
and A. Kalyan. 2022. Learn to explain: Multimodal 766
reasoning via thought chains for science question 767
answering. ArXiv, abs/2209.09513. 768

Shuming Ma, Hongyu Wang, Lingxiao Ma, Lei Wang, 769
Wenhui Wang, Shaohan Huang, Li Dong, Ruiping 770
Wang, Jilong Xue, and Furu Wei. 2024. The era of 771

10

https://api.semanticscholar.org/CorpusID:259243928
https://api.semanticscholar.org/CorpusID:259243928
https://api.semanticscholar.org/CorpusID:259243928
https://api.semanticscholar.org/CorpusID:235458009
https://api.semanticscholar.org/CorpusID:235458009
https://api.semanticscholar.org/CorpusID:235458009
https://api.semanticscholar.org/CorpusID:259837088
https://api.semanticscholar.org/CorpusID:259837088
https://api.semanticscholar.org/CorpusID:259837088
https://api.semanticscholar.org/CorpusID:252383606
https://api.semanticscholar.org/CorpusID:252383606
https://api.semanticscholar.org/CorpusID:252383606
https://api.semanticscholar.org/CorpusID:252383606
https://api.semanticscholar.org/CorpusID:252383606

1-bit llms: All large language models are in 1.58 bits.772
arXiv preprint arXiv:2402.17764.773

Markus Nagel, Rana Ali Amjad, Mart Van Baalen,774
Christos Louizos, and Tijmen Blankevoort. 2020. Up775
or down? adaptive rounding for post-training quan-776
tization. In International Conference on Machine777
Learning, pages 7197–7206. PMLR.778

Haotong Qin, Xudong Ma, Xingyu Zheng, Xiaoyang779
Li, Yang Zhang, Shouda Liu, Jie Luo, Xianglong Liu,780
and Michele Magno. 2024. Accurate lora-finetuning781
quantization of llms via information retention. arXiv782
preprint arXiv:2402.05445.783

Yujia Qin, Shengding Hu, Yankai Lin, Weize Chen,784
Ning Ding, Ganqu Cui, Zheni Zeng, Yufei Huang,785
Chaojun Xiao, Chi Han, Yi Ren Fung, Yusheng Su,786
Huadong Wang, Cheng Qian, Runchu Tian, Kunlun787
Zhu, Shi Liang, Xingyu Shen, Bokai Xu, Zhen Zhang,788
Yining Ye, Bo Li, Ziwei Tang, Jing Yi, Yu Zhu, Zhen-789
ning Dai, Lan Yan, Xin Cong, Ya-Ting Lu, Weilin790
Zhao, Yuxiang Huang, Jun-Han Yan, Xu Han, Xian791
Sun, Dahai Li, Jason Phang, Cheng Yang, Tong-792
shuang Wu, Heng Ji, Zhiyuan Liu, and Maosong793
Sun. 2023a. Tool learning with foundation models.794
ArXiv, abs/2304.08354.795

Yujia Qin, Shi Liang, Yining Ye, Kunlun Zhu, Lan Yan,796
Ya-Ting Lu, Yankai Lin, Xin Cong, Xiangru Tang,797
Bill Qian, Sihan Zhao, Runchu Tian, Ruobing Xie,798
Jie Zhou, Marc H. Gerstein, Dahai Li, Zhiyuan Liu,799
and Maosong Sun. 2023b. Toolllm: Facilitating large800
language models to master 16000+ real-world apis.801
ArXiv, abs/2307.16789.802

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat-803
ula, and Yejin Choi. 2021. Winogrande: An adver-804
sarial winograd schema challenge at scale. Commu-805
nications of the ACM, 64(9):99–106.806

Yuzhang Shang, Zhihang Yuan, Qiang Wu, and Zhen807
Dong. 2023. Pb-llm: Partially binarized large lan-808
guage models. arXiv preprint arXiv:2310.00034.809

Wenqi Shao, Mengzhao Chen, Zhaoyang Zhang, Peng810
Xu, Lirui Zhao, Zhiqian Li, Kaipeng Zhang, Peng811
Gao, Yu Qiao, and Ping Luo. 2023. Omniquant:812
Omnidirectionally calibrated quantization for large813
language models. arXiv preprint arXiv:2308.13137.814

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann815
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,816
and Tatsunori B. Hashimoto. 2023. Stanford alpaca:817
An instruction-following llama model. https://818
github.com/tatsu-lab/stanford_alpaca.819

MLC team. 2023. MLC-LLM.820

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-821
bert, Amjad Almahairi, Yasmine Babaei, Nikolay822
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti823
Bhosale, et al. 2023. Llama 2: Open founda-824
tion and fine-tuned chat models. arXiv preprint825
arXiv:2307.09288.826

Albert Tseng, Jerry Chee, Qingyao Sun, Volodymyr 827
Kuleshov, and Christopher De Sa. 2024. Quip#: 828
Even better llm quantization with hadamard in- 829
coherence and lattice codebooks. arXiv preprint 830
arXiv:2402.04396. 831

Lei Wang, Lingxiao Ma, Shijie Cao, Quanlu Zhang, Ji- 832
long Xue, Yining Shi, Ningxin Zheng, Ziming Miao, 833
Fan Yang, Ting Cao, Yuqing Yang, and Mao Yang. 834
2024. Ladder: Enabling efficient low-precision deep 835
learning computing through hardware-aware tensor 836
transformation. In 18th USENIX Symposium on Op- 837
erating Systems Design and Implementation (OSDI 838
24), pages 307–323, Santa Clara, CA. USENIX As- 839
sociation. 840

Jianyu Wei, Shijie Cao, Ting Cao, Lingxiao Ma, Lei 841
Wang, Yanyong Zhang, and Mao Yang. 2024. T- 842
mac: Cpu renaissance via table lookup for low-bit llm 843
deployment on edge. Preprint, arXiv:2407.00088. 844

Xiuying Wei, Yunchen Zhang, Yuhang Li, Xiangguo 845
Zhang, Ruihao Gong, Jinyang Guo, and Xiang- 846
long Liu. 2023. Outlier suppression+: Accurate 847
quantization of large language models by equiva- 848
lent and optimal shifting and scaling. arXiv preprint 849
arXiv:2304.09145. 850

Xiuying Wei, Yunchen Zhang, Xiangguo Zhang, Ruihao 851
Gong, Shanghang Zhang, Qi Zhang, Fengwei Yu, and 852
Xianglong Liu. 2022. Outlier suppression: Pushing 853
the limit of low-bit transformer language models. 854
Advances in Neural Information Processing Systems, 855
35:17402–17414. 856

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, 857
Julien Demouth, and Song Han. 2023. Smoothquant: 858
Accurate and efficient post-training quantization for 859
large language models. In International Conference 860
on Machine Learning, pages 38087–38099. PMLR. 861

Peng Xu, Wenqi Shao, Mengzhao Chen, Shitao Tang, 862
Kaipeng Zhang, Peng Gao, Fengwei An, Yu Qiao, 863
and Ping Luo. 2024a. Besa: Pruning large language 864
models with blockwise parameter-efficient sparsity 865
allocation. arXiv preprint arXiv:2402.16880. 866

Peng Xu, Wenqi Shao, Kaipeng Zhang, Peng Gao, 867
Shuo Liu, Meng Lei, Fanqing Meng, Siyuan Huang, 868
Yu Qiao, and Ping Luo. 2023a. Lvlm-ehub: A com- 869
prehensive evaluation benchmark for large vision- 870
language models. arXiv preprint arXiv:2306.09265. 871

Yuhui Xu, Lingxi Xie, Xiaotao Gu, Xin Chen, Heng 872
Chang, Hengheng Zhang, Zhensu Chen, Xiaopeng 873
Zhang, and Qi Tian. 2023b. Qa-lora: Quantization- 874
aware low-rank adaptation of large language models. 875
arXiv preprint arXiv:2309.14717. 876

Yuzhuang Xu, Xu Han, Zonghan Yang, Shuo Wang, 877
Qingfu Zhu, Zhiyuan Liu, Weidong Liu, and Wanx- 878
iang Che. 2024b. Onebit: Towards extremely 879
low-bit large language models. arXiv preprint 880
arXiv:2402.11295. 881

11

https://api.semanticscholar.org/CorpusID:258179336
https://api.semanticscholar.org/CorpusID:260334759
https://api.semanticscholar.org/CorpusID:260334759
https://api.semanticscholar.org/CorpusID:260334759
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/mlc-ai/mlc-llm
https://www.usenix.org/conference/osdi24/presentation/wang-lei
https://www.usenix.org/conference/osdi24/presentation/wang-lei
https://www.usenix.org/conference/osdi24/presentation/wang-lei
https://www.usenix.org/conference/osdi24/presentation/wang-lei
https://www.usenix.org/conference/osdi24/presentation/wang-lei
https://arxiv.org/abs/2407.00088
https://arxiv.org/abs/2407.00088
https://arxiv.org/abs/2407.00088
https://arxiv.org/abs/2407.00088
https://arxiv.org/abs/2407.00088

Kaining Ying, Fanqing Meng, Jin Wang, Zhiqian Li,882
Han Lin, Yue Yang, Hao Zhang, Wenbo Zhang, Yuqi883
Lin, Shuo Liu, et al. 2024. Mmt-bench: A compre-884
hensive multimodal benchmark for evaluating large885
vision-language models towards multitask agi. arXiv886
preprint arXiv:2404.16006.887

Weihao Yu, Zhengyuan Yang, Linjie Li, Jianfeng Wang,888
Kevin Lin, Zicheng Liu, Xinchao Wang, and Li-889
juan Wang. 2023. Mm-vet: Evaluating large mul-890
timodal models for integrated capabilities. ArXiv,891
abs/2308.02490.892

Zhihang Yuan, Lin Niu, Jiawei Liu, Wenyu Liu, Xing-893
gang Wang, Yuzhang Shang, Guangyu Sun, Qiang894
Wu, Jiaxiang Wu, and Bingzhe Wu. 2023. Rptq:895
Reorder-based post-training quantization for large896
language models. arXiv preprint arXiv:2304.01089.897

Zhihang Yuan, Yuzhang Shang, Yang Zhou, Zhen Dong,898
Chenhao Xue, Bingzhe Wu, Zhikai Li, Qingyi Gu,899
Yong Jae Lee, Yan Yan, et al. 2024. Llm inference900
unveiled: Survey and roofline model insights. arXiv901
preprint arXiv:2402.16363.902

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali903
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a904
machine really finish your sentence? arXiv preprint905
arXiv:1905.07830.906

Yilong Zhao, Chien-Yu Lin, Kan Zhu, Zihao Ye, Lequn907
Chen, Size Zheng, Luis Ceze, Arvind Krishnamurthy,908
Tianqi Chen, and Baris Kasikci. 2023. Atom: Low-909
bit quantization for efficient and accurate llm serving.910
arXiv preprint arXiv:2310.19102.911

12

https://api.semanticscholar.org/CorpusID:260611572
https://api.semanticscholar.org/CorpusID:260611572
https://api.semanticscholar.org/CorpusID:260611572

Overview of Appendix 912

This appendix includes the following sections: 913

• Sec A gives the reproducibility statement to summarize the information related to the reproduction 914

of our method. 915

• Sec. B describes the gradient calculation in the Block-AP process. 916

• Sec. C presents the speedup ratio of uniform quantization using BitBLAS (Wang et al., 2024). 917

• Sec. D details the sources of results for each comparison method to aid reproduction. 918

• Sec. E presents the sizes of quantized models. 919

• Sec. F provides additional ablation studies, including those on group size and training datasets. 920

• Sec. G applies the proposed EfficientQAT to Llava (Liu et al., 2023b) models. 921

A Reproducibility Statement 922

In this section, we summarize the necessary information to reproduce our results. We provide the training 923

and evaluation details at the beginning of each sub-section in Sec. 4. We also provide the source of 924

detailed results for each compared method in Sec.D. 925

B Gradient of Trainable Parameters in Block-AP 926

Block-AP, aligned with LSQ+(Bhalgat et al., 2020), uses a straight-through estimator (STE)(Bengio et al., 927

2013) to facilitate gradient computation through the rounding operation. The gradients of scaling factor s 928

are computed as follows: 929

∂ŵ

∂s
=


⌊w
s
⌉ − w

s
, 0 ≤ ⌊w

s
⌉+ z ≤ 2N−1,

− z, ⌊w
s
⌉+ z < 0,

2N−1 − z, ⌊w
s
⌉+ z > 2N−1.

(3) 930

and the gradient with respect to zero point z is: 931

∂ŵ

∂z
=

0, 0 ≤ ⌊w
s
⌉+ z ≤ 2N−1,

− 1, otherwise,
(4) 932

and the full-precision weight W can also be updated through its gradient2: 933

∂ŵ

∂w
=

1, 0 ≤ ⌊w
s
⌉+ z ≤ 2N−1,

0, otherwise,
(5) 934

C Speedup with BitBlas 935

According to Table 10, INT2 quantization enhances the forward-pass speed by approximately 2.9x to 936

4.4x. 937

2ŵ,w is a element from Ŵ , W

13

Table 10: Speed of the FP16 linear layer matrix-vector multiplication in PyTorch, and relative INT2 speedups in
BitBLAS (Wang et al., 2024). Testing on A100-80GB GPU.

Llama-2 7B 13B 70B

size (out_c × in_c) 4096x4096 11008x4096 5120x5120 13824x5120 8192x8192 28672x8192

FP16 25 us 61 us 38 us 90 us 91 us 286 us
INT2 9 us 21 us 11 us 26 us 24 us 67 us

Speedup 3.1x 2.9x 3.6x 3.5x 3.9x 4.4x

D Results Source of Other Method.938

In this study, we present a thorough comparison of our method against existing PTQ techniques, including939

GPTQ (Frantar et al., 2022), AWQ (Lin et al., 2023), OmniQ (Shao et al., 2023), AutoRound (Cheng et al.,940

2023), QuIP# (Tseng et al., 2024), and AQLM (Egiazarian et al., 2024). We also compare with existing941

QAT methods, including LLM-QAT (Liu et al., 2023e), BitDistiller (Du et al., 2024), PB-LLM (Shang942

et al., 2023) and DB-LLM (Chen et al., 2024). Additionally, we also evaluate quantized parameter-efficient943

fine-tuning methods such as PEQA (Kim et al., 2023a), QLoRA (Dettmers et al., 2023a), QA-LoRA (Xu944

et al., 2023b), and IR-QLoRA (Qin et al., 2024). The results we discuss originate from their respective945

official publications, and other scholarly articles, or are derived from our reproduction. We meticulously946

document the source of the results for each method as follows:947

• GPTQ, AWQ, OmniQ, AutoRound: The zero-shot accuracy results for Llama-2 models using these948

methods are derived from the AutoRound GitHub repository3. The perplexity results for the Llama-2949

models using GPTQ, AWQ, and OmniQ are taken from the OmniQ paper (Shao et al., 2023). The950

results for Llama-3 models using AWQ4 and GPTQ5 were obtained through their open-source951

implementations.952

• QuIP#, AQLM: We replicated the results using the official pre-trained models provided by QuIP#6953

and AQLM7.954

• LLM-QAT, BitDistiller: These results are cited from BitDistiller (Du et al., 2024) paper.955

• PB-LLM, DB-LLM: These results are cited from recent Llama-3 quantization empirical study (Huang956

et al., 2024).957

• ApiQ: These results are cited from IR-ApiQ (Liao and Monz, 2024) paper.958

• PEQA: The per-channel quantization results (g=-1) are cited from their publication (Kim et al.,959

2023a), and the results for a group size of 64 were produced using our codebase.960

• QA-LoRA, QLoRA, QLoRA w/ GPTQ: These results are cited from QA-LoRA (Xu et al., 2023b)961

paper.962

• IR-QLoRA: These results are cited from IR-QLoRA (Qin et al., 2024) paper.963

3AutoRound: https://github.com/intel/auto-round/blob/main/docs/acc.md
4AWQ:https://github.com/mit-han-lab/llm-awq
5GPTQ:https://github.com/qwopqwop200/GPTQ-for-LLaMa
6https://github.com/Cornell-RelaxML/quip-sharp
7https://github.com/Vahe1994/AQLM

14

Table 11: Model size of quantized models. Compression ratio indicates the compression ratio of quantized models
compared with FP16 models.

Model # Bit Group size bits/param size (GiB) Compression ratio (%)

LLaMA-2-7B

16 - 16 12.55 -
4 32 4.63 3.98 68.33
4 64 4.31 3.74 70.20
4 128 4.16 3.62 71.14
3 32 3.59 3.35 73.28
3 64 3.30 3.13 75.08
3 128 3.15 3.01 75.98
2 32 2.56 2.42 80.71
2 64 2.28 2.21 82.40
2 128 2.14 2.10 83.25

LLaMA-2-13B

16 - 16 24.24 -
4 32 4.63 7.44 69.30
4 64 4.31 6.98 71.21
4 128 4.16 6.75 72.16
3 32 3.59 6.22 74.33
3 64 3.30 5.78 76.16
3 128 3.15 5.56 77.07
2 32 2.56 4.40 81.87
2 64 2.28 3.98 83.58
2 128 2.14 3.77 84.44

LLaMA-2-70B

16 - 16 128.48 -
4 32 4.63 37.83 70.55
4 64 4.31 35.34 72.49
4 128 4.16 34.10 73.46
3 32 3.59 31.26 75.67
3 64 3.30 28.87 77.53
3 128 3.15 27.67 78.46
2 32 2.56 21.40 83.34
2 64 2.28 19.16 85.09
2 128 2.14 18.04 85.96

E Size of Quantized Models 964

This section illustrates model size reduction achieved through quantization. Models quantized to low-bit 965

representations are more compact. 966

We implement N-bit quantization with a grouping size of g, where each group of g weights shares the 967

same FP16 step size and an N-bit zero point. Consequently, the average number of bits per parameter is 968

calculated as N + N+16
g . It is important to note that only the linear layers within the transformer blocks 969

are quantized; other layers, such as normalization layers, embeddings, and the classification head, remain 970

in FP16 format. Table 11 provides detailed comparisons of quantized model sizes and their compression 971

ratios. 972

Table 12: Lllma-2-7B 2-bit quantization performance with different group sizes for proposed EfficientQAT.

Group Avg. Bits Avg. PPL Avg. Accuracy

32 2.56 7.59 60.28
64 2.28 7.68 60.14
128 2.10 7.99 59.50
256 2.07 8.18 58.67

F Additional Ablation Analysis 973

Quantization Group Size. The group size is a crucial hyperparameter in weight-only quantization. 974

A smaller group size offers more granular compression and reduces quantization loss but increases the 975

number of quantization parameters required. As indicated in Table 12, a group size of 64 strikes an 976

optimal balance for 2-bit quantization using EfficientQAT. It outperforms a group size of 128 by achieving 977

a 0.31 lower perplexity and a 0.64% higher accuracy, yet it slightly underperforms compared to a group 978

15

Table 13: Block-AP (w/o E2E-QP) results of Llama-2-7B in different calibration datasets.

Bits Dataset Wiki PPL C4 PPL Avg. Accuracy

w3g128 WikiText2 5.72 7.52 63.24
w3g128 C4 5.92 7.38 63.82
w3g128 Redpajama 5.91 7.41 63.50
w2g64 WikiText2 6.73 9.89 58.26
w2g64 C4 7.87 9.30 59.24
w2g64 Redpajama 7.70 9.36 58.99

size of 32, with a marginal difference of 0.09 in perplexity and 0.14% in accuracy.979

Training Dataset. More trainable parameters can increase the risk of overfitting. Previous works (Gong980

et al., 2024) show that a similar distribution between the calibration dataset and the test dataset can981

improve test accuracy. RedPajama and C4 datasets are diverse, while WikiText2 is simpler and sourced982

from Wikipedia. The close distribution of training and test datasets for WikiText2 results in significantly983

lower WikiText2 perplexity when using it as a calibration dataset. However, the average accuracy of984

zero-shot tasks in Table R7 shows that Block-AP’s generation ability is excellent, with only 0.26% and985

1.28% accuracy declines when changing the calibration dataset from RedPajama to WikiText2 for w3g128986

and w2g64, respectively. Additionally, using C4 as a calibration dataset can even increase the average987

accuracy by 0.2-0.3 points. Overall, we recommend using Block-AP with more diverse calibration datasets988

like C4 or RedPajama.989

Table 14: Results about instruction tuning of large vision-language models. We following the overall training
pipeling of LLaVA-1.5 (Liu et al., 2023a) and just change the fine-tuning methods. ‘QLoRA + Block-AP’ indicates
that we leverage proposed Block-AP to quantized the QLoRA models into low-bits for fair comparisons. † MME’s
perception scores are normalized to 100 percent.

Model Method #Bit MMbench MME
†

MM-Vet ScienceQA Avg.
Training Inference

LLaVA-1.5-7B

LoRA 16 16 66.1 73.8 30.2 68.4 59.6
QLoRA 4+16 16 64.1 72.8 30.3 68.0 58.8

QLoRA + Block-AP 4+16 4 63.6 72.0 29.8 67.7 58.3
EfficientQAT 4 4 64.4 73.2 30.3 68.1 58.8(+0.5)

QLoRA + Block-AP 4+16 3 62.9 71.8 29.7 66.4 57.7
EfficientQAT 3 3 63.2 71.4 30.9 67.3 58.2(+0.5)

QLoRA + Block-AP 4+16 2 53.7 64.3 28.9 60.7 51.9
EfficientQAT 2 2 62.3 68.0 27.8 63.4 55.4(+3.5)

LLaVA-1.5-13B

LoRA 16 16 68.5 77.1 38.3 71.2 63.8
QLoRA 4+16 16 67.6 76.9 36.0 69.9 62.7

QLoRA + Block-AP 4+16 4 67.4 76.6 35.6 69.3 62.4
EfficientQAT 4 4 67.5 74.8 35.6 70.2 62.0(-0.4)

QLoRA + Block-AP 4+16 3 66.8 75.5 34.5 68.4 61.3
EfficientQAT 3 3 67.4 74.8 35.3 69.3 61.7(+0.4)

QLoRA + Block-AP 4+16 2 62.5 72.1 32.5 65.0 58.0
EfficientQAT 2 2 63.9 73.1 33.9 68.6 59.9(+1.9)

G Instruction Tuning for LVLMs.990

Traditional Q-PEFT methods only do experiments on the language models. In this section, we further991

extend proposed EfficientQAT into Large vision-Language models (LVLMs) such as LLaVA (Liu et al.,992

2023b).993

Training and Evaluation. For the fine-tuning of large vision-language models (LVLMs), we largely994

align with LLaVA1.5 (Liu et al., 2023a), which encompass the training model, datasets, and hyperparame-995

ters8. Unlike LLaVA1.5, which begins fine-tuning with full-precision Vicuna models using either full996

8For comprehensive details, please consult the official repository at https://github.com/haotian-liu/LLaVA.

16

fine-tuning or LoRA-based methods (Hu et al., 2021), EfficientQAT starts with Vicuna models already 997

quantized using our Block-AP method and continues with our E2E-QP fine-tuning approach. The training 998

process involves two steps: initially freezing the LLM and pre-training a projector to align features with a 999

Vision Transformer (ViT), followed by end-to-end fine-tuning of both the LLM and the projector. For 1000

EfficientQAT, we modify the learning rates in the second step to 2× 10−5 for 4-bit and 3× 10−5 for 2-bit 1001

and 3-bit. 1002

Evaluation. Evaluation of the fine-tuned LVLMs are conducted across four benchmarks: MME (Fu 1003

et al., 2023), MM-Vet (Yu et al., 2023), MMBench (Liu et al., 2023d), and ScienceQA (Lu et al., 2022). 1004

Baseline. We compare our results with those of QLoRA (Dettmers et al., 2023a), applying our Block-AP 1005

method to quantize the QLoRA fine-tuned models to low bits for fair comparison. 1006

Results. As shown in Table 14, EfficientQAT outperforms QLoRA (Dettmers et al., 2023a) in low-bit 1007

settings for both LLaVA-1.5-7B and LLaVA-1.5-13B models, consistent with previous results in LMMs. 1008

Remarkably, the 2-bit LLaVA-1.5-13B model trained with EfficientQAT achieves an average score of 1009

59.9, surpassing the 59.6 of the FP16 LLaVA-1.5-7B model trained with LoRA. However, there is a 1010

slight performance decrease observed in the 4-bit EfficientQAT and 16-bit QLoRA compared to the 16-bit 1011

LoRA, indicating that further research is needed to optimize Q-PEFT within LVLMs. 1012

17

	Introduction
	Related Works
	EfficientQAT
	Method Overview
	Block-Wise Training of All Parameters
	End-to-End Training of Quantization Parameters

	Experiments
	EfficientQAT for LLMs Quantization
	EfficientQAT for Instruction Tuning
	Ablation Analysis
	Efficiency of EfficientQAT

	Conclusion
	Limitation
	Reproducibility Statement
	Gradient of Trainable Parameters in Block-AP
	Speedup with BitBlas
	Results Source of Other Method.
	Size of Quantized Models
	Additional Ablation Analysis
	Instruction Tuning for LVLMs.

