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Abstract

Large language models (LLMs) are crucial in
modern natural language processing and artifi-
cial intelligence. However, they face challenges
in managing their significant memory require-
ments. Although quantization-aware training
(QAT) offers a solution by reducing memory
consumption through low-bit representations
with minimal accuracy loss, it is impractical
due to substantial training resources. To ad-
dress this, we propose Efficient Quantization-
Aware Training (EfficientQAT), a more feasi-
ble QAT algorithm. EfficientQAT involves two
consecutive phases: Block-wise training of all
parameters (Block-AP) and end-to-end train-
ing of quantization parameters (E2E-QP). To
the best of our knowledge, Block-AP is the
first method to enable direct training of all pa-
rameters in a block-wise manner, reducing ac-
curacy loss in low-bit scenarios by enhancing
the solution space during optimization. E2E-
QP then trains only the quantization parame-
ters (step sizes) end-to-end, further improving
the performance of quantized models by con-
sidering interactions among all sub-modules.
Extensive experiments demonstrate that Effi-
cientQAT outperforms previous quantization
methods across a range of models, including
base LLMs, instruction-tuned LLMs, and mul-
timodal LLMs, with scales from 7B to 70B
parameters at various quantization bits. For
instance, EfficientQAT obtains a 2-bit Llama-2-
70B model on a single A100-80GB GPU in 41
hours, with less than 3 points accuracy degra-
dation compared to the full precision (69.48 vs.
72.41).

1 Introduction

Recent advancements in large language models
(LLMs) (Touvron et al., 2023; Bubeck et al., 2023;
Chiang et al., 2023; Xu et al., 2023a; Ying et al.,
2024) have demonstrated impressive capabilities in
diverse language tasks such as reasoning (Clark
et al., 2018, 2019; Zellers et al., 2019), cogni-
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Figure 1: (a) EfficientQAT significantly surpasses ex-
isting uniform quantization methods, and is either su-
perior to or comparable with vector quantization tech-
niques. (b) EfficientQAT markedly outperforms existing
Q-PEFT methods.

tive processing (Fu et al., 2023; Xu et al., 2023a),
and agent-based applications (Qin et al., 2023a,b).
However, these models are characterized by their
extensive parameters, which pose significant chal-
lenges for memory footprint and bandwidth (Kim
et al., 2023b; Xu et al., 2024a).
Quantization-aware training (QAT) is a highly
effective quantization technique that minimizes
quantization errors by incorporating quantization
constraints during training. For example, BitNet
b1.58 (Ma et al., 2024) can achieve nearly loss-
less ternary quantization. The precision of QAT is
due to two main factors: 1) Fully trainable param-
eters allow for enough optimized space for gradi-
ent descent optimization; 2) End-to-end training
accounts for interactions among all sub-modules
in the models. Despite its performance benefits,



QAT demands significant training resources, such
as time and GPUs, as well as extensive training
data. For instance, BitNet b1.58 requires retrain-
ing LLMs from scratch using the entire pre-trained
dataset. Therefore, this approach is impractical for
extremely large models and has only been verified
on 3B models with 100B training tokens.

In optimizing quantization for LLMs, current
methods emphasize either fine-grained reconstruc-
tion or reducing trainable parameters. While these
approaches improve efficiency, they significantly
degrade accuracy in low-bit scenarios. Mainstream
post-training quantization (PTQ) methods (Lin
et al., 2023; Frantar et al., 2022; Shao et al., 2023)
focus on block-wise reconstruction (Li et al., 2021).
They also restrict the optimization space to allevi-
ate overfitting risk by only training rounding pa-
rameters (Nagel et al., 2020; Cheng et al., 2023),
clipping thresholds (Shao et al., 2023), or step sizes
(Esser et al., 2019; Ding et al., 2023). However,
these methods not only limit optimizable param-
eters but also overlook cross-block interactions,
leading to notable accuracy degeneration in low-
bit scenarios, as shown in Figure 1a. Conversely,
quantized parameter-efficient fine-tuning (Q-PEFT)
methods (Dettmers et al., 2023a; Kim et al., 2023a)
reduce training costs by freezing quantized param-
eters and only training a few continuous floats. For
example, PEQA (Kim et al., 2023a) and QA-LoRA
(Xu et al., 2023b) focus on training continuous
quantization parameters. Despite this, their per-
formance remains poor, as depicted in Figure 1b,
because the severe performance loss in low-bit sce-
narios (2-bit and 3-bit) cannot be fully recovered
with limited trainable parameters.

To address these challenges, we introduce
a novel quantization-aware training framework
called EfficientQAT. This framework combines
the advantages of fully trainable parameters and
end-to-end training, similar to native QAT (Ma
et al., 2024), while maintaining the training effi-
ciency of PTQ (Cheng et al., 2023; Shao et al.,
2023) and Q-PEFT (Xu et al., 2023b). Efficien-
tQAT introduces block-wise training of all parame-
ters (Block-AP) to enhance the optimizable space
and mitigate quantization accuracy loss. Block-
AP sequentially trains all parameters, including
original full-precision weights and quantization pa-
rameters (step sizes and zero points), within each
transformer block. Several works have been de-
veloped based on block-wise reconstruction. How-
ever, previous approaches focus on designing addi-

tional trainable parameters, such as clipping thresh-
olds for OmniQuant (Shao et al., 2023), weight
rounding for AutoRound (Cheng et al., 2023) and
BRECQ (Lietal., 2021), or LoRA (Hu et al., 2021)
parameters for CBQ (Ding et al., 2023). Our Block-
AP is the first to directly train all parameters dur-
ing block-wise reconstruction, achieving superior
performance compared to previous methods (see
Table 5). Block-AP successfully demonstrates that
complex trainable parameter design is unnecessary
for effective block-wise reconstruction in LLMs
quantization. Furthermore, we introduce end-to-
end training of quantization parameters (E2E-QP)
to account for inter-block interactions. E2E-QP
keeps the quantized weights fixed and trains only
the quantization parameters (step sizes) end-to-end.

Thanks to the integration of the proposed Block-
AP and E2E-QP, EfficientQAT characterizes it-
self as a fast-converging, memory-efficient, and
high-performing quantization technique. For in-
stance, EfficientQAT can obtain a 2-bit Llama-2-
70B model on a single A100-80GB GPU in just
41 hours, with less than 3 points accuracy degrada-
tion on 5 zero-shot common-sense tasks compared
to its full-precision counterpart (69.48 vs. 72.41).
We also evaluate EfficientQAT across scenarios in-
volving model compression and instruction-tuning.
In model compression, as illustrated in Figure 1a,
EfficientQAT significantly outperforms existing
uniform quantization methods by approximately
5 points on accuracy in the challenging 2-bit quan-
tization setting. In terms of instruction tuning,
as shown in Figure 1b, EfficientQAT consistently
outperforms existing Q-PEFT methods, including
QLoRA (Dettmers et al., 2023a), QA-LoRA (Xu
et al., 2023b), and PEQA (Kim et al., 2023a). For
instance, EfficientQAT surpasses PEQA (Kim et al.,
2023a) with 4.5 points MMLU accuracy when fine-
tuning with Alpaca dataset.

2 Related Works

Post-Training Quantization of LLMs. PTQ is a
pivotal technique for accelerating and deploying
LLMs. Quantization approaches generally fall into
two categories: weight-only quantization (Fran-
tar et al., 2022; Dettmers et al., 2023b; Lee et al.,
2023a; Kim et al., 2023b) and weight-activation
quantization (Xiao et al., 2023; Liu et al., 2023c;
Wei et al., 2022, 2023; Yuan et al., 2023; Zhao
et al., 2023; Ashkboos et al., 2023; Li et al., 2023a;
Ashkboos et al., 2024). Weight-only quantization



focuses on compressing weights into low-bit for-
mats, reducing memory demands and enhancing
the efficiency of memory-bounded computations
in LLMs (Lin et al., 2024; Yuan et al., 2024). Con-
versely, weight-activation quantization compresses
both weights and activations, thus further decreas-
ing the overhead associated with matrix multipli-
cations (Lin et al., 2024). Recent advancements in
weight-only quantization include the introduction
of vector quantization methods by QUIP#(Tseng
et al., 2024) and AQLM(Egiazarian et al., 2024).
These methods have shown promising performance
but also introduce significant overhead (Gong et al.,
2024). Our research continues to explore uniform
quantization, which is preferred for its compatibil-
ity with hardware implementations.

Quantization-Aware Training of LLMs. QAT
can enhance the performance of quantized models
beyond what PTQ offers. However, QAT has been
less explored in LLMs due to the significant train-
ing costs involved. Studies such as LLM-QAT (Liu
et al., 2023e) and BitDistiller (Du et al., 2024)
investigate the application of knowledge distilla-
tion within QAT contexts. Techniques like Bit-
Net b1.58 (Ma et al., 2024) and OneBit (Xu et al.,
2024b) employ QAT to achieve extreme binary or
ternary quantization levels. Although BitNet b1.58
demonstrates near-lossless performance on models
up to 3 billion parameters and 100 billion training
tokens with ternary quantization, its applicability
to larger models or datasets remains uncertain due
to prohibitive training expenses.

Quantized Parameter-Efficient Fine-Tuning
of LLMs. Techniques like QLoRA (Dettmers et al.,
2023a), INT2.1 (Chai et al., 2023), LQ-LoRA (Guo
et al., 2023), and LoftQ (Li et al., 2023b) quantize
model parameters to low-bit representations fol-
lowed by the addition of LoRA (Hu et al., 2021)
modules for fine-tuning. However, these methods
require merging the LoORA modules into quantized
weights, resulting in the model reverting to the
FP16 format. Addressing this issue, QA-LoRA (Xu
et al., 2023b) redesigns the LoRA module to merge
seamlessly into the zero points. The approach most
similar to ours is PEQA (Kim et al., 2023a), which
uses a round-to-nearest (RTN) method for low-bit
quantization and fine-tunes step sizes for task adap-
tation. However, PEQA experiences significant
performance degradation due to limited trainable
parameters, which hinders recovery from quantiza-
tion information loss.

3 EfficientQAT
3.1 Method Overview

In this section, we introduce EfficientQAT, a novel
quantization-aware training framework for LLMs
that enhances memory efficiency. As illustrated in
Figure 2, traditional QAT approaches train the full-
precision weights W and quantization parameters
s (step sizes) and z (zero points) simultaneously
in an end-to-end manner, which significantly in-
creases the memory requirements due to the large
number of parameters involved. To address this
issue, EfficientQAT adopts a two-stage strategy:
block-wise training of all parameters (Block-AP)
and end-to-end training of quantization parame-
ters (E2E-QP). In the Block-AP phase, model pa-
rameters and quantization parameters are trained
block-by-block using reconstruction loss, which
not only allows for precise calibration with full
training but also reduces memory consumption (Li
et al., 2021; Shao et al., 2023) by block-wise train-
ing. Following this, the E2E-QP phase fixes the
quantized weights and trains the step sizes exclu-
sively on target datasets, thus achieving inter-block
interaction in a memory-efficient way. Details on
Block-AP and E2E-QP are further described in
Sections 3.2 and 3.3, respectively.

3.2 Block-Wise Training of All Parameters

In this section, we introduce the Block-Wise Train-
ing of All Parameters (Block-AP) approach, de-
signed to efficiently provide an effective initializa-
tion for following end-to-end training.

Quantization and Dequantization. Specifi-
cally, Block-AP begins with a standard uniform
quantization method:

W
Wins = clamp(|—] +2,0,2% = 1), (1)

where |-] represents the rounding operation. N
is the target bit number. W;,,; and W denote the
quantized integer and full-precision weights, re-
spectively. s is the scaling factor and z is the zero
point. In the forward propagation, the quantized
weights are converted back to full precision as fol-
lows:

—~

W = (Wit — 2) - 5. )

Here, W refers to the dequantized weights used in
the forward computation. The processes of quanti-
zation (Eq.(1)) and dequantization (Eq.(2)) are inte-
grated within the computation graph and can be op-
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Figure 2: The overall pipeline of naive QAT and proposed EfficientQAT. EfficientQAT introduces two novel
processes: Block-wise Training of All Parameters (Block-AP) and End-to-End Training of Quantization Parameters

(E2E-QP).

timized through gradient descent in a quantization-
aware manner.

Blcok-wise Quantization-aware Training. Tra-
ditional QAT methods (Ma et al., 2024; Esser et al.,
2019; Liu et al., 2023e) train the entire network
using Eq.(1) and Eq.(2) in an end-to-end fashion,
which typically requires substantial computational
resources and extensive data to prevent overfitting.
Here we aim to enhance the training efficiency of
QAT. Previous studies, such as BRECQ (Li et al.,
2021), have demonstrated that block-wise train-
ing achieves faster convergence and requires less
training time, data, and memory than end-to-end
training given a pre-trained model. Following the
methodologies in BRECQ (Li et al., 2021) and Om-
niQuant (Shao et al., 2023), Block-AP sequentially
conducts quantization-aware training within one
transformer block before moving on to the next
under a block-wise reconstruction framework.

Full Training of Model Weights and Quantiza-
tion Parameters. Unlike previous methods which
optimize several quantization parameters such as
rounding parameters (Nagel et al., 2020; Cheng
et al., 2023; Lee et al., 2023b), clipping parame-
ters (Shao et al., 2023), and step sizes (Esser et al.,
2019; Ding et al., 2023), Block-AP behaves like
QAT, training all inherent parameters from Eq.(1)
and Eq.(2), including scaling factor s, zero point z,
and model weights W.

In our Block-AP approach, a straightforward
full-training regimen outperforms existing partial-
training variants (Nagel et al., 2020; Li et al., 2021;
Ding et al., 2023) with intricate designs. Tradi-
tional training methods involving rounding param-
eters (Nagel et al., 2020; Li et al., 2021; Ding
et al., 2023) serve as regularization techniques,
constraining the update range of integral weights

o (—1,+1) to mitigate overfitting. However, this

approach limits the solution space, potentially hin-
dering the final performance of quantized models.
Our empirical findings demonstrate the superiority
of full training within our Block-AP over existing
partial-training variants (Nagel et al., 2020; Li et al.,
2021; Ding et al., 2023), as shown in Table 5.

Following block-wise training, we obtain the
quantized model which includes quantized weights
W, step sizes s, and zero points z for each quanti-
zation group. The weights W, and zero points 2z
are stored in a low-bit format, while step sizes s are
stored in FP16. Note that s and z are shared within
their respective quantization groups and constitute
only a small fraction of the model’s parameters,
approximately 1.6% for a group size of 64. More-
over, the model’s memory footprint is substantially
reduced by transitioning from full-precision 16-bit
weights to 2/3/4-bit quantized weights.

3.3 End-to-End Training of Quantization
Parameters

We further introduce the End-to-End Training of
Quantization Parameters (E2E-QP), aimed at effi-
ciently training the entire quantized model on target
datasets.

End-to-End Training of step sizes. Unlike tra-
ditional Quantization-Aware Training (QAT) meth-
ods (Liu et al., 2023e; Ma et al., 2024) that train
full-precision weights, E2E-QP begins with W,
initialized via Block-AP and focuses solely on the
training of quantization parameters (s and z). Our
findings indicate that training s, z, or both yields
similar performance (see Table 6 for details). How-
ever, since training z involves converting it from
a low-bits format to full-precision, we typically
train only s by default unless specified otherwise
to avoid additional memory overhead.

Additionally, within E2E-QP, there is no quanti-



zation process as per Equation (1); only the dequan-
tization process occurs as described in Equation (2).
Thus, the gradient of the trainable parameter s is
computed as %—f =wg — 2.

Overall, the memory usage for training in E2E-
QP is drastically reduced due to the reduced train-
able parameter count. Detailed memory footprints
for various model sizes and bits under E2E-QP are
listed in Table 7. For instance, the Llama-2-70B
model can complete 2-bit QAT through E2E-QP
using only 34.2GB of memory. Equipped with E2E-
QP, EfficientQAT is adaptable to different scenarios
by simply changing the training datasets, which in-
cludes applications such as continual pre-training
and instruction-tuning (Taori et al., 2023).

4 Experiments

This section presents extensive experiments to ver-
ify our proposed EfficientQAT. Secition 4.1 and
Sec 4.2 present the comparisons with quantiza-
tion methods and Q-PEFT methods respectively.
Section 4.4 details the training cost and inference
speed-up of the proposed EfficientQAT. Section 4.3
presents the comprehensive ablation studies of the
proposed EfficientQAT.

4.1 EfficientQAT for LLMs Quantization

Training. We conduct experiments on the Llama-2
and Llama-3 models. For Block-AP, we use 4096
samples from RedPajama (Computer, 2023) with a
context length of 2048. We train each block with
batch size as 2 and epochs as 2, setting the learning
rate of quantization parameters as 1 x 10™%, and
the learning rate of weights as 2 x 1075 for 2-bit
and 1 x 107 for 3/4-bits. For E2E-QP, we also
employ 4096 samples from RedPajama (Computer,
2023) but with a context length of 4096. We train
the entire model with batch size as 32 and epoch as
1, and set the learning rate of step size as 2 x 107°
for 2-bit and 1 x 10~ for 3-bits.

Baseline. We compare our results with quan-
tization methods with uniform quantization such
as GPTQ (Frantar et al., 2022), AWQ (Lin et al.,
2023), OmniQ (Shao et al., 2023), ApiQ (Liao and
Monz, 2024) and AutoRound (Cheng et al., 2023),
BitDistiller (Du et al., 2024), and DB-LLM (Chen
et al., 2024).

Accuracy results. We evaluate the zero-shot
accuracy on five common-sense reasoning tasks
using the v0.4.2 Im-evaluation-harness'. These

"https://github.com/EleutherAl/Im-evaluation-harness

tasks include WinoGrande (Sakaguchi et al., 2021),
PIQA (Bisk et al., 2020), HellaSwag (Zellers et al.,
2019), Arc-Easy (Clark et al., 2018), and Arc-
Challenge (Clark et al., 2018). Table 1 shows
that the proposed EfficientQAT significantly out-
performs previous methods across the Llama-2 and
Llama-3 model families, as well as in both 2-bit
and 3-bit quantization settings. The performance
gains are particularly notable in extremely low-bit
quantization, such as 2-bit. For instance, Efficien-
tQAT achieves a +3.26% accuracy improvement
over AWQ in w3g128 quantization with Llama-3-
8B. Moreover, EfficientQAT surpasses DB-LLM
by 49.02% accuracy in w2g64 quantization.

Perplexity results. We also evaluate perplexity
on Wikitext2 and C4 using a 2048 context length,
following prior studies (Frantar et al., 2022; Shao
et al., 2023). The results align with the accuracy
comparison, as EfficientQAT consistently achieves
lower perplexity across the Llama-2 and Llama-3
model families in both 2-bit and 3-bit quantiza-
tion. Notably, the benefits are more pronounced
in Llama-3 models, which face greater challenges
in quantization (Huang et al., 2024). For example,
EfficientQAT reduces perplexity by 0.37 and 4.19
points compared to DB-LLM in Llama-2-7B and
Llama-3-8B, respectively.

4.2 EfficientQAT for Instruction Tuning

Training and Evaluation. Following existing
works (Xu et al., 2023b; Qin et al., 2024), we train
Llama-1 models on the Alpaca dataset (Taori et al.,
2023) and assess their performance by measuring
average 5-shot MMLU (Hendrycks et al., 2020)
accuracy works (Xu et al., 2023b; Qin et al., 2024).
The training hyperparameters are identical to those
described in Section 4.1, except we replace the Red-
Pajama dataset (Computer, 2023) with Alpaca. In
line with QLoRA’s methodology (Dettmers et al.,
2023a), we adjust the source context length to 384
and the target context length to 128, training for
10,000 steps with a batch size of 16.

Baseline. We benchmark EfficientQAT
against several leading methods, including
QLoRA (Dettmers et al., 2023a), QA-LoRA (Xu
et al., 2023b), PEQA (Kim et al., 2023a), and
IR-QLoRA (Qin et al., 2024), across quantiza-
tion setting of 2, 3, and 4 bits. Consistent with
QA-LoRA (Xu et al., 2023b), we also employ
GPTQ (Frantar et al., 2022) to quantize the fine-
tuned QLoRA models into a low-bit format without
FP16 LoRA for equitable comparison.



Table 1: Llama 2 & 3 average zero-shot accuracy on 5 common-sense reasoning tasks (1).

unreachable in the public papers.

non

indicates the result is

Method Bits  Group ‘ 2-7 2-13  2-70 3-8 3-70
FP16 16 - ‘ 64.86 67.81 72.41 68.58 75.33
RTN 3 128 62.06 65.77 70.83 58.72 65.29
GPTQ 3 128 62.48 66.18 71.47 60.58 71.28
AWQ 3 128 62.82 66.14 71.41 64.82 73.65
OmniQ 3 128 62.42 66.18 71.07 64.09 71.90
AutoRound 3 128 63.72 66.68 71.24 - -
EfficientQAT 3 128 | 64.02 67.28 71.76 67.35 73.96
OmniQ 2 128 | 46.98 53.56 54.87 52.66 60.06
AutoRound 2 128 | 54.50 60.72 67.70 - -
EfficientQAT 2 128 | 59.50 63.88 68.93 59.37 67.57
DB-LLM 2 64 5693 61.61 68.01 51.74 -
EfficientQAT 2 64 60.14 64.48 6948 60.76 67.89
Table 2: Llama 2 & 3 Wikitext2 and C4 perplexity ({.), context length 2048. "-" indicates the result is unreachable in
the public papers.
Wikitext 2 C4
Method  Bits Group| 2-7 2-132-70 3-8 3-70| 2-7 2-13 2-70 3-8 3-70
FP16 16 - ‘5.47 4.88 3.32 6.14 2.85 ‘ 6.97 6.47 552 888 6.73
GPTQ 3 128 | 6.29 542 3.85 9.58 5.25|7.89 7.00 5.85 11.66 8.64
AWQ 3 128 |6.24 532374 8.16 4.69|7.84 694 581 1149 791
OmniQ 3 128 |6.03 5.28 3.78 8.27 499 |7.75 6.98 5.8511.66 7.97
BitDistiller 3 128 | 5.97 - - - - - - - - -
EfficientQAT 3 128 |5.81 5.12 3.61 7.09 4.21 | 7.34 6.73 5.71 10.06 7.46
OmniQ 2 128 [11.06 8.26 6.55 18.50 16.79{15.02 11.05 8.52 22.46 15.06
ApiQ 2 128 | 825 6.71 - - - 12.04 9.13 - - -
BitDistiller 2 128 | 8.08 - - - - - - - - -
EfficientQAT 2 128 | 7.19 6.08 4.61 9.80 6.38 | 8.79 7.75 6.48 13.22 9.53
ApiQ 2 64 |759 644 - - - 110.56 8.92 - - -
CBQ 2 64 801 - - - - |11.30 - - - -
DB-LLM 2 64 |7.23 6.19 4.64 13.60 - |9.62 8.38 6.77 19.20 -
EfficientQAT 2 64 |6.86 5.96 4.52 9.41 6.07 | 8.50 7.59 6.38 12.77 9.23

Results. Both Table 3 and Figure 1b indicate that
EfficientQAT significantly outperforms existing Q-
PEFT methods. For instance, in channel-wise quan-
tization (group size of -1), EfficientQAT achieves
more than 3% higher accuracy than PEQA (Kim
et al., 2023a). In the 2-bit quantization scenario,
the superiority of EfficientQAT is even more pro-
nounced, surpassing QA-LoRA (Xu et al., 2023b)
by 5.1% and 4.0% in 7B and 13B models, respec-
tively, and outperforming PEQA by 4.5% and 8.7%
in the same models. Moreover, Table 3 also demon-
strates that EfficientQAT outperforms both QA-

LoRA and QLoRA with GPTQ in smaller model
memory footprint (larger group size).

4.3 Ablation Analysis

The EfficientQAT algorithm is comprised of two
main components: Block-AP and E2E-QP. This
section evaluates the effectiveness, trainable pa-
rameters, and training sample requirements of each
component. We present the average perplexity for
WikiText2 and C4 datasets, and the average accu-
racy for five zero-shot reasoning tasks, similar to
Table 1.



Table 3: Llama-1 average MMLU accuracy (5-shot)
about instruction-tuning on Alpaca dataset.

Method Bits Group | 7B 13B
16 - ‘ 34.6 463
PEQA 4 - 358 45.0
EfficientQAT 4 -1 38.8 48.2
QLoRA 4+16 - 384 484
QLoRA w/GPTQ 4 32 36.0 48.0
QA-LoRA 4 32 394 492
PEQA 4 64 394 474
IR-QLoRA 4 64 40.8 493
EfficientQAT 4 64 412 495
QLoRA w/ GPTQ 3 32 340 46.1
QA-LoRA 3 32 374 473
IR-QLoRA 3 64 38.4 -
PEQA 3 64 38.5 463
EfficientQAT 3 64 40.0 48.2
QLoRA w/ GPTQ 2 32 258 309
QA-LoRA 2 32 275 369
IR-QLoRA 2 64 | 278 -
PEQA 2 64 28.1 322
EfficientQAT 2 64 32.6 409

Effectiveness of each component. As indicated
in Table 4, both the Block-AP and E2E-QP com-
ponents significantly enhance performance, with
their combination yielding the best results. Notably,
Block-AP outperforms E2E-QP, aligning with find-
ings from BRECQ (Li et al., 2021).

Trainable parameters of Block-AP. Block-AP
trains all parameters, including original weights
and quantization parameters. Previous methods
have introduced various training strategies to mit-
igate overfitting, such as trained rounding (Nagel
et al., 2020; Cheng et al., 2023), clipping thresh-
olds (Shao et al., 2023), and step sizes (Esser et al.,
2019; Ding et al., 2023). We compare Block-AP
with these methods by modifying only the train-
able parameters of Block-AP. As shown in Table 5,
Block-AP (training s, z, W) performs best with an
acceptable training cost. Additionally, the memory
footprint of directly training W is even smaller
than that of training the rounding operation, which
requires an additional copy of rounding parameters.

Trainable parameters of E2E-QP. We further
examine the trainable parameters within E2E-QP.
Table 6 shows that training s, z, or both yields sim-
ilar performance. However, given that converting z
from an original low-bit representation to a train-
able FP16 format increases the average bit count,
we opt to train only s by default.

Samples number of Block-AP. We assess the
number of training samples for Block-AP, noting
that E2E-QP trains all parameters, which may lead

Table 4: Effectiveness of each component on Llama-2-
7B w2g64 quantization.

Block-AP E2E-QP|Avg. PPL Avg. Acc.

X X 453.49  40.69
v X 8.53 58.99
X v 9.33 55.71
v v 7.68 60.14

Table 5: W2g64 Llama-2-7B performance with different
trainable parameters in the block-wise training (w/o
E2E-QP). “#” indicates trainable parameters count in a
block.

Param. ‘ # Memory Avg. PPL Avg. Acc.

clipping| 6.3M 64GB 1128  53.20

s> | 63M 64GB 1026 5520
round [2024M 8.6GB 1550  45.32
s,zround208.7M 93GB  9.17  57.14
s,2,W [208.7M 85GB 853  58.99

Table 6: Llama-2-7B w2g64 quantization with different
trainable parameters for E2E-QP (w/ Block-AP).

Param.|Avg. Bits Avg. PPL Avg. Accuracy

S 2.28 7.68 60.14
2.50 7.69 60.08
8,2 2.50 7.68 60.18

to overfitting. To address this, we introduce an ad-
ditional 64 unseen samples from ReadPajama to
evaluate the overfitting issue. We adjust the train-
ing epochs to ensure a similar total training time,
allowing for fair comparisons across different sam-
ple sizes. As illustrated in Figure 3, increasing the
number of training samples significantly reduces
the gap between training loss and validation loss
from 1.07 to 0.06. This reduction corresponds to an
increase in the average accuracy for zero-shot tasks
from 57.14% to 58.99%. Consequently, we set the
default number of training samples for E2E-QP
at 4096, as this maintains a minimal gap between
training and validation losses.

Samples number of E2E-QP. In the E2E-QP,
we train the model for 1 epoch to avoid over-fitting.
Our examination of the training sample sizes for
E2E-QP, detailed in Table 8, reveals that average
perplexity consistently improves as sample sizes
increase from 128 to 32,674. However, there is no
significant improvement in average accuracy be-
yond 4096 samples. Therefore, we set the training



Table 7: The detailed training time and training memory of EfficientQAT across different model size and quantization

bits on a single A100-80GB GPU.

Llama-2 Block-AP E2E-QP
Time Memory Time Memory (4-/3-/2-bits) Total Time
7B 3.3h 8.5GB ~1.5h 7.0/6.4/5.6GB 4.8h
13B 5.6h 10.3GB ~2.9h 11.7/10.6/9.1GB 8.5h
70B 26.6h 299GB ~14.3h 48.4/42.0/34.2GB 40.9h
are—— — vg Acuracy 0 59.0 Table 8: Llama-2-7B w2g64 quantization performance
1501 - vﬁ"dats,,, Loss ‘e ;y - S with different sample numbers for E2E-QP (w/ Block-
8 1.251 e 853 AP).
& 1.00 T~ 58.0 3
2 < # Samples | Avg. PPL.  Avg. Accuracy
0.751 pa— 575 o
0.50. ,/, | | | | = 128 8.09 59.03
128 256 512 1024 2048 4096 512 7.88 59.81
Number of Samples
’ 2048 775 60.13
Figure 3: Illustration of training loss, validation loss and 4096 7.68 60.14
average accuracy of w2g64 Llama-2-7b with different 8192 7.63 60.19
training samples size for Block-AP (w/o E2E-QP). 32764 7.50 60.31

sample size for E2E-QP at 4096 by default to bal-
ance efficiency and performance. Nonetheless, it
is possible to further enhance the performance of
EfficientQAT by increasing the sample size.

4.4 Efficiency of EfficientQAT

Training Efficiency Table 7 illustrates the required
memory and time for training Lllama-2 models
using EfficientQAT. The results indicate that the
model completes training rapidly, taking 4.8 hours
for the 7B model and 40.9 hours for the 70B model.
we further compare the training time with other
QAT methods, including BitDistiller, and DB-LLM.
As shown in Table 9, the training time of Efficien-
tQAT is significantly lower than that of existing
methods. For example, the tuning time of Efficien-
tQAT is only 50% of DB-LLM. Additionally, for
quantizing a 70B model, the full process of Efficien-
tQAT can be completed on a single A100-80GB
GPU. However, other methods require at least 4
A100-80GB GPUs to quantize a model of this size.
Therefore, EfficientQAT is both a time-efficient
and memory-efficient QAT method.

Inference Efficiency Due to the leverage of stan-
dard uniform quantization, the quantized models of
EfficientQAT can also achieve speedup through a
lot of toolboxes, such as MLC-LLM (team, 2023),
AWQ (Lin et al., 2023), and BitBLAS (Wang et al.,
2024), T-MAC (Wei et al., 2024), Marlin (Frantar
et al., 2024), etc. For example, Table 10 shows that

INT2 quantization of EfficientQAT can enhance
the forward-pass speed by approximately 2.9x to
4.4x through BitBLAS (Wang et al., 2024).

Table 9: Comparisons of training time with existing
methods in Llama-2-70B.

Method  One A100-80GB? GPU hours (h)
LLM-QAT X 900
BitDistiller X 64

DB-LLM X 82
EfficientQAT v 41

5 Conclusion

In this study, we introduce EfficientQAT, a novel
method that completes QAT with improved effi-
ciency in both memory usage and training time.
Through comprehensive testing, EfficientQAT
proves superior to existing PTQ, QAT, and Q-PEFT
methods in terms of versatility and performance
across various models and quantization levels. Ad-
ditionally, EfficientQAT leverages a standard uni-
form quantization, which simplifies deployment
using popular toolboxes. We anticipate that Effi-
cientQAT will stimulate further research and im-
prove the compression of Large Language Models
(LLMs), making them more efficient and widely
accessible.



6 Limitation

EfficientQAT achieves impressive results in low-
bit quantization scenarios, but there remains a per-
formance gap compared to full-precision (FP16)
models, particularly in 2-bit settings. Reducing
this gap without sacrificing efficiency remains a
challenge. Additionally, the method depends on
the availability of high-quality and diverse datasets,
requiring 4096 samples for effective training in
both the Block-AP and E2E-QP phases. The per-
formance of the quantized models can vary signifi-
cantly based on the size and distribution of the train-
ing data. This reliance may limit its effectiveness
in data-scarce or domain-specific applications.
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Overview of Appendix

This appendix includes the following sections:

* Sec A gives the reproducibility statement to summarize the information related to the reproduction
of our method.

* Sec. B describes the gradient calculation in the Block-AP process.

* Sec. C presents the speedup ratio of uniform quantization using BitBLAS (Wang et al., 2024).
* Sec. D details the sources of results for each comparison method to aid reproduction.

* Sec. E presents the sizes of quantized models.

* Sec. F provides additional ablation studies, including those on group size and training datasets.
» Sec. G applies the proposed EfficientQAT to Llava (Liu et al., 2023b) models.

A Reproducibility Statement

In this section, we summarize the necessary information to reproduce our results. We provide the training
and evaluation details at the beginning of each sub-section in Sec. 4. We also provide the source of
detailed results for each compared method in Sec.D.

B Gradient of Trainable Parameters in Block-AP

Block-AP, aligned with LSQ+(Bhalgat et al., 2020), uses a straight-through estimator (STE)(Bengio et al.,
2013) to facilitate gradient computation through the rounding operation. The gradients of scaling factor s
are computed as follows:

w w w

“1-Z0< | = < oN-1
=i
w w
as ) ng +2<0, ©)

and the gradient with respect to zero point z is:

w N—1
T 0,0 |—|+2L2 ,
aw_ st @)

0z — 1, otherwise,
and the full-precision weight W can also be updated through its gradient’:

o0 [L0< D] +z<2V -
= s
Ow 0, otherwise,

C Speedup with BitBlas

According to Table 10, INT2 quantization enhances the forward-pass speed by approximately 2.9x to
4.4x.

2%,w is a element from W, W
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Table 10: Speed of the FP16 linear layer matrix-vector multiplication in PyTorch, and relative INT2 speedups in
BitBLAS (Wang et al., 2024). Testing on A100-80GB GPU.

Llama-2 7B 13B 70B
size (out_c X in_c) 4096x4096 11008x4096 5120x5120 13824x5120 8192x8192 28672x8192
FP16 25 us 61 us 38 us 90 us 91 us 286 us
INT2 9 us 21 us 11 us 26 us 24 us 67 us
Speedup 3.1x 2.9x 3.6x 3.5x 3.9x 4.4x

D Results Source of Other Method.

In this study, we present a thorough comparison of our method against existing PTQ techniques, including
GPTQ (Frantar et al., 2022), AWQ (Lin et al., 2023), OmniQ (Shao et al., 2023), AutoRound (Cheng et al.,
2023), QulP# (Tseng et al., 2024), and AQLM (Egiazarian et al., 2024). We also compare with existing
QAT methods, including LLM-QAT (Liu et al., 2023e), BitDistiller (Du et al., 2024), PB-LLM (Shang
etal., 2023) and DB-LLM (Chen et al., 2024). Additionally, we also evaluate quantized parameter-efficient
fine-tuning methods such as PEQA (Kim et al., 2023a), QLoRA (Dettmers et al., 2023a), QA-LoRA (Xu
et al., 2023b), and IR-QLoRA (Qin et al., 2024). The results we discuss originate from their respective
official publications, and other scholarly articles, or are derived from our reproduction. We meticulously
document the source of the results for each method as follows:

* GPTQ, AWQ, OmniQ, AutoRound: The zero-shot accuracy results for Llama-2 models using these
methods are derived from the AutoRound GitHub repository. The perplexity results for the Llama-2
models using GPTQ, AWQ, and OmniQ are taken from the OmniQ paper (Shao et al., 2023). The
results for Llama-3 models using AWQ* and GPTQ® were obtained through their open-source
implementations.

* QuIP#, AQLM: We replicated the results using the official pre-trained models provided by QuIP#°
and AQLM”.

* LLM-QAT, BitDistiller: These results are cited from BitDistiller (Du et al., 2024) paper.

* PB-LLM, DB-LLM: These results are cited from recent Llama-3 quantization empirical study (Huang
et al., 2024).

* ApiQ: These results are cited from IR-ApiQ (Liao and Monz, 2024) paper.

* PEQA: The per-channel quantization results (g=-1) are cited from their publication (Kim et al.,
2023a), and the results for a group size of 64 were produced using our codebase.

* QA-LoRA, QLoRA, QLoRA w/ GPTQ: These results are cited from QA-LoRA (Xu et al., 2023b)
paper.

* IR-QLoRA: These results are cited from IR-QLoRA (Qin et al., 2024) paper.

3 AutoRound: https://github.com/intel/auto-round/blob/main/docs/acc.md
* AWQ:https://github.com/mit-han-lab/lim-awq
SGPTQ:https://github.com/qwopqwop200/GPTQ-for-LLaMa
®https://github.com/Cornell-RelaxML/quip-sharp
"https://github.com/Vahe1994/AQLM
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Table 11: Model size of quantized models. Compression ratio indicates the compression ratio of quantized models
compared with FP16 models.

Model #Bit  Group size  bits/param  size (GiB) Compression ratio (%)
16 - 16 12.55 -
B S 463 - T 7398 T T T T 7 6833 T T T 7
4 64 4.31 3.74 70.20
4 128 4.16 3.62 71.14
- 3 TT3R T T T T 359 T T 73337 T T T T 7328 T T 77
LLaMA-2-7B 3 64 3.30 3.13 75.08
3 128 3.15 3.01 75.98
T2 T T T TR T T T T2536 T T T TZ42 T T T T T T 8071 T T T °
2 64 2.28 2.21 82.40
2 128 2.14 2.10 83.25
16 - 16 24.24 -
TTET T TR T T T 463 -~ 744 T T T T 7 6930 0 T T T °
4 64 4.31 6.98 71.21
4 128 4.16 6.75 72.16
9. T3 T TR T T T 339 T T T T622 T T T T 743377 7 77
LLaMA-2-138 5 64 330 578 76.16
3 128 3.15 5.56 77.07
I 256 T 440 T T 7 T 7 8I87 -~ T T T
2 64 2.28 3.98 83.58
2 128 2.14 3.77 84.44
16 - 16 128.48 -
Y S 463 -~ T 3783 " T T 7 7055 T T 7 7
4 64 4.31 35.34 72.49
4 128 4.16 34.10 73.46
- T3 N T T 339 Br26- - T T T T 7567 T 77
LLaMA-2-70B 3 64 330 28.87 77.53
3 128 3.15 27.67 78.46
B 256 2140 -7 7 7 7 8334 T 77
2 64 2.28 19.16 85.09
2 128 2.14 18.04 85.96

E Size of Quantized Models

This section illustrates model size reduction achieved through quantization. Models quantized to low-bit
representations are more compact.

We implement N-bit quantization with a grouping size of g, where each group of g weights shares the
same FP16 step size and an N-bit zero point. Consequently, the average number of bits per parameter is
calculated as N + %. It is important to note that only the linear layers within the transformer blocks
are quantized; other layers, such as normalization layers, embeddings, and the classification head, remain
in FP16 format. Table 11 provides detailed comparisons of quantized model sizes and their compression
ratios.

Table 12: Lllma-2-7B 2-bit quantization performance with different group sizes for proposed EfficientQAT.

Group | Avg. Bits Avg. PPL.  Avg. Accuracy

32 2.56 7.59 60.28
64 2.28 7.68 60.14
128 2.10 7.99 59.50
256 2.07 8.18 58.67

F Additional Ablation Analysis

Quantization Group Size. The group size is a crucial hyperparameter in weight-only quantization.
A smaller group size offers more granular compression and reduces quantization loss but increases the
number of quantization parameters required. As indicated in Table 12, a group size of 64 strikes an
optimal balance for 2-bit quantization using EfficientQAT. It outperforms a group size of 128 by achieving
a 0.31 lower perplexity and a 0.64% higher accuracy, yet it slightly underperforms compared to a group

15



Table 13: Block-AP (w/o E2E-QP) results of Llama-2-7B in different calibration datasets.

Bits Dataset Wiki PPL  C4 PPL  Avg. Accuracy
w3gl128  WikiText2 5.72 7.52 63.24
w3gl128 C4 5.92 7.38 63.82
w3gl128 Redpajama 5.91 7.41 63.50

- w2gb4  WikiText2 ~ 673 989 5826
w2g64 Cc4 7.87 9.30 59.24
w2g64  Redpajama 7.70 9.36 58.99

size of 32, with a marginal difference of 0.09 in perplexity and 0.14% in accuracy.

Training Dataset. More trainable parameters can increase the risk of overfitting. Previous works (Gong
et al., 2024) show that a similar distribution between the calibration dataset and the test dataset can
improve test accuracy. RedPajama and C4 datasets are diverse, while WikiText2 is simpler and sourced
from Wikipedia. The close distribution of training and test datasets for WikiText2 results in significantly
lower WikiText2 perplexity when using it as a calibration dataset. However, the average accuracy of
zero-shot tasks in Table R7 shows that Block-AP’s generation ability is excellent, with only 0.26% and
1.28% accuracy declines when changing the calibration dataset from RedPajama to WikiText2 for w3g128
and w2g64, respectively. Additionally, using C4 as a calibration dataset can even increase the average
accuracy by 0.2-0.3 points. Overall, we recommend using Block-AP with more diverse calibration datasets
like C4 or RedPajama.

Table 14: Results about instruction tuning of large vision-language models. We following the overall training
pipeling of LLaVA-1.5 (Liu et al., 2023a) and just change the fine-tuning methods. ‘QLoRA + Block-AP’ indicates
that we leverage proposed Block-AP to quantized the QLoRA models into low-bits for fair comparisons. f MME’s
perception scores are normalized to 100 percent.

i T
Model Method #Bit MMbench MME MM-Vet ScienceQA Avg.
Training Inference

LoRA 16 16 661 738 302 684 596

QLORA 4416 16 641 728 303 680 588
‘QLoRA +Block-AP 4+16 =~ 4 =~ 636 720 298 ~ 677 583
EfficientQAT 4 4 644 732 303  68.1 58.8(+0.5)

LLaVA-1.5-TB ()] ORA + Block-AP 4416 3 629 718 297 664 577
EfficientQAT g g 632 714 309 673 582(+0.5)

QLORA + Block-AP  4+16 2 537 643 289 607 519
EfficientQAT 2 2 623 680 278 634  55.4(+3.5)

LoRA 16 16 685 771 383 712 638

QLORA 4416 16 67.6 769 360 699 627
‘QLoRA +Block-AP 4+16 =~ 4 =~ 674 766 356 = 693 624
EfficientQAT 4 4 67.5 748 356 702  62.0(-04)

LLaVA-15-13B (v} (RA + Block-AP  4+16 3 668 755 345 684 613
EfficientQAT 3 3 674 748 353 693  61.7(+0.4)

QLORA + Block-AP  4+16 2 625 721 325 650 580
EfficientQAT 2 2 639 731 339 686 59.9(+1.9)

G Instruction Tuning for LVLMs.

Traditional Q-PEFT methods only do experiments on the language models. In this section, we further
extend proposed EfficientQAT into Large vision-Language models (LVLMs) such as LLaVA (Liu et al.,
2023b).

Training and Evaluation. For the fine-tuning of large vision-language models (LVLMs), we largely
align with LLaVAL.5 (Liu et al., 2023a), which encompass the training model, datasets, and hyperparame-
ters®. Unlike LLaVA1.5, which begins fine-tuning with full-precision Vicuna models using either full

8For comprehensive details, please consult the official repository at https://github.com/haotian-liu/LLaVA.
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fine-tuning or LoRA-based methods (Hu et al., 2021), EfficientQAT starts with Vicuna models already
quantized using our Block-AP method and continues with our E2E-QP fine-tuning approach. The training
process involves two steps: initially freezing the LLM and pre-training a projector to align features with a
Vision Transformer (ViT), followed by end-to-end fine-tuning of both the LLLM and the projector. For
EfficientQAT, we modify the learning rates in the second step to 2 x 10~° for 4-bit and 3 x 10~ for 2-bit
and 3-bit.

Evaluation. Evaluation of the fine-tuned LVLMs are conducted across four benchmarks: MME (Fu
et al., 2023), MM-Vet (Yu et al., 2023), MMBench (Liu et al., 2023d), and ScienceQA (Lu et al., 2022).

Baseline. We compare our results with those of QLoRA (Dettmers et al., 2023a), applying our Block-AP
method to quantize the QLoRA fine-tuned models to low bits for fair comparison.

Results. As shown in Table 14, EfficientQAT outperforms QLoRA (Dettmers et al., 2023a) in low-bit
settings for both LLaVA-1.5-7B and LLaVA-1.5-13B models, consistent with previous results in LMMs.
Remarkably, the 2-bit LLaVA-1.5-13B model trained with EfficientQAT achieves an average score of
59.9, surpassing the 59.6 of the FP16 LLaVA-1.5-7B model trained with LoORA. However, there is a
slight performance decrease observed in the 4-bit EfficientQAT and 16-bit QLoRA compared to the 16-bit
LoRA, indicating that further research is needed to optimize Q-PEFT within LVLMs.
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