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Abstract

Spurious correlations in the training data can cause serious problems for machine
learning deployment. However, common debiasing approaches which intervene
on the training procedure (e.g., by adjusting the loss) can be especially sensitive
to regularization and hyperparameter selection. In this paper, we advocate for a
data-based perspective on model debiasing by directly targeting the root causes of
the bias within the training data itself. Specifically, we leverage data attribution
techniques to isolate specific examples that disproportionally drive reliance on
the spurious correlation. We find that removing these training examples can
efficiently debias the final classifier. Moreover, our method requires no additional
hyperparameters, and does not require group annotations for the training data.

1 Introduction

The composition of the training dataset has a substantial impact on the features that a model learns,
and thus its reliability during deployment [5, 11]. In particular, the training dataset might contain
spurious correlations—features which are statistically associated but causally irrelevant for the
final target. Such reliance on spurious correlations can lead to poor generalization, especially on
underrepresented subpopulations that do not share the same spurious patterns [31, 6, 3].

Many current debiasing strategies [26, 13] intervene after training (e.g., by fine-tuning on a smaller,
balanced held-out set [13]). These post-hoc approaches assume that a heavily biased model retains
strong enough features that can be retrofitted to create an unbiased classifier. Other approaches try to
adjust the loss during training [24, 4], or utilize sample re-weighting [16, 19] to improve the worst-
group performance. However, such approaches tend rely heavily on carefully tuned hyperparameters
and, in many settings, do not even outperform basic empirical risk minimization (ERM) [7].

Fundamentally, these approaches do not address the root cause of the bias: the training data itself.
Indeed, recent work has shown that simple balancing can perform on par with more complex
approaches [10]. We thus hypothesize that taking a data-based approach, by eliminating biases
within the training data, can be a more effective strategy for debiasing. Unfortunately, data balancing
requires group labels of the training data (which might not be available). Moreover, for highly skewed
datasets, balancing the data can require either removing large parts of the dataset or oversampling a
very small number of examples, preventing the model from learning useful features [2, 27].

Balancing assumes that all majority examples equally contribute to the underlying bias. But is
this really the case? In particular, if we can identify which examples from the dataset are driving
the model’s reliance on the spurious correlation, we can more efficiently debias the model without
removing a large fraction of the dataset. This motivates the question:
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Figure 1: We use TRAK [22] to identify examples that most drive a model’s bias. By removing those
examples, we can more efficiently improve worst-group accuracy over approaches such as balancing.

How can we pinpoint the training examples that disproportionately drive model biases?

Our Contributions In this work, we investigate using data attribution to measure the impact of
individual training datapoints on a model’s biases. In particular, we leverage TRAK [22], a framework
for approximating the counterfactual impact of training data on model predictions, to identify points
that encourage a model to rely on a spurious correlation. Evaluating our framework on a variety of
tasks, we demonstrate that our approach can:

• Pinpoint influential examples for a specified model bias. We find that typically only a
small fraction of training examples drive reliance on spurious correlations.

• Efficiently debias models by removing a small number of influential training points.
Our approach outperforms balancing and other common debiasing approaches [24, 16, 13].

• Discover biases by examining the data attribution matrix. We demonstrate that biases
can often be extracted directly from the attribution matrix. By leveraging this observation,
we can automatically discover (and then intervene on) hard subpopulations within the data.

Finally, we leverage our framework to discover and mitigate biases within the ImageNet dataset. Our
method surfaces coherent color and co-occurrence biases. We then debias the model according to
these failures, and improve accuracy on the identified populations.

Our approach does not require subpopulation annotations for the training dataset, and only (optionally)
leverages subpopulation labels for a small, held out validation set. By targeting biases within dataset
itself, our work takes a first step toward a data-based perspective on debiasing.

2 Debiasing datasets with data attribution

Spurious correlations can encourage models to rely on features that do not reliably generalize during
deployment. As a running example, consider classifying “young” versus “old” faces from the CelebA
dataset [18], where age and gender are correlated during training (i.e., the faces of young women
and old men are overrepresented). A model trained on such a skewed dataset might learn to conflate
gender with age, and thus struggle to correctly predict the age of old women and young men.

How can we train a classifier which can accurately classify the age of a face regardless of the gender?
In this paper, we target such biases at their source: by finding (and removing) training examples that
drive the targeted bias. To do so, we leverage data attribution techniques [11, 22, 14], which enable
us to quantify the impact of a particular training point on the model’s predictions.

While any data attribution technique could fit in our framework, here we use TRAK [22], which forms
a linear approximation of the neural network in terms of the model’s gradients and then estimates the
leave-one-out influence of each example. In this section, we’ll briefly describe our problem setup,
and then explain such data attribution methods can be used to debias models.

2.1 Background and setup

We consider a setting where each example z = (x, y) belongs to a pre-defined group G ∈ G. For
instance, in our running example, G would be faces of old women, young women, old men, and
young men. We are given a training dataset Strain = {(x1, y1), ..., (xn, yn)} which does not contain
any group annotations. Additionally, at least initially, we also assume access to a validation set Sval
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where we do know which group G ∈ G each validation example z ∈ Sval belongs to (i.e., z ∈ G). In
Section 3, we will consider the setting where these validation group labels are not available.

Our goal then is to train a classifier to maximize the worst group accuracy: i.e., the minimum accuracy
on the test examples that belong to each of the groups in G. Finally, we leverage TRAK, a scalable
data attribution method. We provide a brief overview of TRAK in Figure B.

2.2 Measuring group alignment

A natural way to use data attribution to address model biases is to eliminate examples that negatively
influence that negatively influence the worst-performing groups. However, not all “minority groups”
may be equally hard for the model. Returning to our running example, while both old women and
young men do not align with the age/gender correlation, the model may still perform better on old
women than young men (e.g., due to data availability).

Thus, for each group, we first compute a weight wG that captures how badly the model is under-
performing on that group. Specifically, for a group G ∈ G, let SG

val = Sval ∩ G be the validation
examples in that group. Following Sagawa et al. [24], we assign a group’s weight according to its

average loss2: wG = exp
(

1
|SG

val|
∑z∈SG

val
log p(z)

)
where p(z) is the probability assigned by the

model to example z for the correct class. Then, for each training example zi, we compute the group
alignment score Ti by examining the (weighted) aggregated influence of zi on each of the groups:

Ti = ∑
G∈G

wG

|SG
val|

∑
z∈SG

val

τ(z)i.

By weighting the groups according to their loss, we prioritize removing negative influencers for
particularly underperforming groups.

Debiasing the dataset Then, to remove bias from the training set, we can simply remove the top K
examples with the most negative Ti as shown in Figure 1. One way to choose the number of examples
K is to search for the best K that maximizes worst group accuracy on the validation set. However,
as a heuristic, we instead choose K to remove all examples with a negative group alignment score
Ti < 0. As will show in Figure 2, this heuristic tends to slightly over-estimate the best K.

2.3 Spurious attribute discovery

To compute τ, we relied on validation group labels which defined the targeted “bias.” However, in
many real-world settings, we might not even know which biases are impacting our model. How can
we use data attribution to discover (and then intervene on) biases within the training data?

We make a key observation: strong biases often cause noticeable variations in the patterns of
attribution scores. Let’s return to the case of predicting age in the presence of a gender skew. Here,
the gender of a validation example has a large impact on the set of training examples it relies on.
Thus, we can isolate intra-class variations in the attribution matrix to automatically discover biases.

Specifically, for each class c, we stack the attribution scores τ(z) for all validation examples of
that class. We then use the top principal component of the resulting matrix to cluster the validation
examples into different “groups.” Indeed in Appendix Figure 5, we find that performing this clustering
on the young vs. old example does identify the underlying bias of gender. We can then use these
pseudo-annotations for the group labels when computing the group alignment scores.

3 Results

In Section 2, we defined the group alignment score Ti, which captures a training example’s contri-
bution to the targeted bias. In this section, we use these alignment scores to efficiently debias the
underlying model. We consider three different datasets that contain a planted spurious correlation:
CelebA-Age [18, 12], CelebA-Blond [18], Waterbirds [25], and MultiNLI [30]. For each
dataset, we compute TRAK and calculate the group alignment scores Ti. We then retrain the model
after removing training examples with negative Ti (See Appendix D.2 for experimental details).

2Unlike GroupDRO [24], we compute wG only once with the model’s converged parameters
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Figure 2: Worst group and balanced accuracies on CelebA-Age after using TRAK to remove K
training examples (most negative Ti first). The green star marks the K used by our heuristic (Ti < 0).
Debiasing with TRAK efficiently improves worst group accuracy.

Group Info Method Worst Group Accuracy
Train / Val CelebA-Age CelebA-Blond Waterbirds MultiNLI

7/ 7
ERM 56.65 45.86 57.85 67.19

Auto-TRAK (ours) 75.97 83.77 81.04 74.7

7/ 3
JTT [16] 60.95 81.61 63.61 72.6

DFR∗ [13] 70.37 88.40 88.96 74.7
TRAK (ours) 75.55 90.03 87.15 81.54

3/ 3
RWG [10] 75.64 88.40 81.21 68.41
SUBG [10] 68.49 88.26 85.46 67.76

GroupDRO [24] 74.80 90.61 72.47 77.7

Table 1: Balanced accuracy and worst-group accuracy on CelebA-Age , CelebA-Blond , and
Waterbirds . A ∗ indicates that the method uses validation group labels for model finetuning, in
addition to hyperparameter tuning.

Identifying the drivers of model biases How well does Ti isolate the “drivers” of the model’s bias?
To answer this question, we iteratively remove training examples from CelebA-Age starting with the
most negative Ti and measure the worst-group and balanced accuracy (See Figure 2). CelebA-Age
has 40K “majority” examples and 10K “minority” examples; thus, naive balancing requires removing
30K training examples. In contrast, by isolating which specific majority examples contribute to the
bias, our method is able to debias the classifier by removing only 10K examples

We also note that our heuristic of removing examples with negative Ti (the green star in Figure 2)
slightly over-estimates the best number of examples to remove. Thus, while this heuristic gives a
decent starting point for K, actually searching for the best K might further improve performance.

Debiasing the model in the presence of validation group labels We use TRAK to debias the
classifier for each dataset, leveraging the provided validation group labels to compute the group
alignment scores. In Table 2, we compare against several baselines, each of which requires either
only validation group labels (7/ 3) or both training and validation group labels (3/ 3). Further
information about each of these baselines can be found in Appendix D.1. We find that debiasing
with TRAK improves worst-group accuracy over all other baselines on both CelebA datasets. On
Waterbirds, our method out-performs all methods except DFR.3

Discovering biases through the TRAK matrix We now consider the case where validation group
labels are not accessible. To address this setting, we create pseudo-annotations for the validation set
by dividing each class into two groups based on the top principal component of the TRAK matrix.
These pseudo-annotations are then used when computing the group alignment scores (Auto-TRAK in
Figure 2)4. Note that Auto-TRAK is the only method that does not require either train or validation
group labels. Despite this, Auto-TRAK achieves competitive worst-group accuracy in our experiments.

3For WaterBirds, there are more examples for the smallest group in the val split (133) than the training split
(56). Since DFR directly fine-tunes on the validation set, it has a distinct advantage here over all other methods.

4For MultiNLI , we chose the PCA component by inspection that captures examples with/without negation.
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Figure 4: Worst Group Accuracy for ImageNet classes after intervening with either TRAK/Auto-Trak.

4 Case Study: Finding and Mitigating ImageNet Failures

In this section, we consider deploying our method to both discover and mitigate biases within
ImageNet-trained models. Specifically, we first identify potential biases for specific ImageNet classes
by examining the first principal component in the TRAK matrix. We then remedy the identified failure
by using Auto-TRAK to remove the training examples that drive that bias.

Identifying ImageNet Biases We compute the TRAK matrix over the training dataset for a held
out validation split (10% of the training set). Focusing on four ImageNet classes (as in Jain et al.
[12]), we then use the first principal component of the TRAK matrix to identify potential biases. In
Figure 3, we display the most extreme training examples according to the top principal component
for each class. Our method identifies semantically color and co-occurrence biases (e.g., tench fishes
with our without humans or yellow/white cauliflowers that are either cooked or uncooked.)5

Mitigating ImageNet Biases with Auto-TRAK For each of the four targeted ImageNet classes,
we seek to mitigate the identified failure modes with TRAK. In order to evaluate the efficacy of our
approach, we hand-label the 50 test images for each targeted class according to a human description
of identified bias. In Figure 4, we display the worst group accuracy on the test images of the targeted
class (with groups hand-labeled according to a human description of the identified bias) after using
TRAK (with hand-labeled validation groups) or Auto-TRAK (deriving group validation labels from the
top principal components) to remove examples. 6 Both TRAK and Auto-TRAK are able to improve
worst group accuracy over the ERM model without significantly impacting the overall ImageNet
accuracy (see Appendix Table 3).

5 Conclusion

In this work, we propose a simple method for debiasing models by isolating training examples which
disproportionately contribute to the model’s predictions on underperforming groups. Our method
does not require training group labels, and does not rely on carefully-tuned hyperparameters. By
targeting biases at their source, our work takes a first step toward a data-centric approach on debiasing.

5Our identified biases match the challenging subpopulations in Jain et al. [12].
6Here, we only consider the target class when computing the loss weighting. As a result, the heuristic

overestimates the number of examples to remove. Thus, we instead search for the best number to remove using
our held out validation split.
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A Appendix

B Background on Data Attribution and TRAK

Let Z be the input space and S be a training set of interest. For a given training subset S′ ⊂ S and
target example z, data attribution techniques seek to estimate the attribution score of z — that is, the
change in the model’s prediction on z when the model is trained on the subset S′. More formally, let
f (z, θ(S)) be the model’s output function on example z. Then we can define τ(z)i as the attribution
score of the ith training example zi on target example z

τ(z)i = f (z, θ(S))− f (z, θ(S\zi)).

While τ(z) is relatively straightforward to compute for linear models [23], computing this influence
is far more challenging for neural networks. Thus, in order to approach this problem, TRAK first
approximates f (z; θ(S)) as a linear model on top of the gradients ∇θ( f ; θ∗) of the original neural
network after convergence. We can then plug this approximation into the estimate for linear classifiers
to approximate τ(z). After simplification, the TRAK estimate of the influence of z is

τ(z) = −φ(z)T(ΦTΦ)−1ΦQ

where φ(z) = ∇ f (z; θ(S∗)) are the (randomly projected) gradients on example z, Φ are the stacked
training gradients Φ = [φ(z1), ..., φ(zn)], and Q is a normalization matrix.

C Additional Related Work

A variety of approaches have been proposed to mitigate learning spurious correlations or shortcuts
from training data, and learn classifiers which optimize the model to be robust to group shifts. Many
approaches leverage group information during training to combat spurious correlations or improve
robustness to shifts in group proportions between train and test distributions. For example, some
methods minimize the worst-group loss during training [24, 32, 9], reweight or subsample to balance
majority and minority groups [10], use a balanced validation set to re-train the last layer [13], or
impose regularization around minority points [1].

In the absence of group labels during training, several works aim to identify the minority group
examples [17, 33], learn multiple diverse classifiers [15, 21, 29], or use partially available group
labels [28, 20]. However, all approaches require group information for model selection. In our
approach Auto-TRAK, we do not have access to group annotations for training or hyperparameter
selection. In TRAK, we assume having access to a small validation set annotated with group labels.

D Details of Experiments

D.1 Experimental Setup

In this section, we describe the datasets, models and evaluation procedure that we use throughout the
paper.

Datasets. In order to cover a broad range of practical scenarios, we consider the following image
classification and text classification problems.

• Waterbirds [25] is a binary image classification problem, where the class corresponds to
the type of the bird (landbird or waterbird), and the background is spuriously correlated with
the class. Namely, most landbirds are shown on land, and most waterbirds are shown over
water.

• CelebA-Blond [18] is a binary image classification problem, where the goal is to predict
whether a person shown in the image is blond; the gender of the person serves as a spurious
feature, as 94% of the images with the “blond” label depict females.

• CelebA-Age [18, 12] is a binary image classification problem, where the goal is to predict
whether a person shown in the image is young; the gender of the person serves as a spurious
feature. For this task, we specifically subsample the training set such that the ratio of samples
in the majority vs. minority groups is 4:1.
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Methods. We benchmark our approach against the following methods:

• ERM is simple empirical risk minimization on the full training set.
• RWG [10] is ERM applied to random batches of the data where the groups are equally

represented with a combination of upsamping and downsampling such that the size of the
dataset does not change.

• SUBG [10] is ERM applied to a random subset of the data where we subsample all groups
such that they have the same number of examples.

• GroupDRO [24] trains that minimizes the worst-case performance over pre-defined groups
in the test dataset.

• Just Train Twice (JTT) [17] trains an ERM model with upsamping initially misclassified
training examples by an initial ERM model.

• DFR [13] trains an ensemple of linear models on a balanced validation set, given ERM
features.

D.2 Training Details

In this section, we detail the model architectures and hyperparameters used by each approach. We
used the same model architecture across all approaches: Randomly initialized ResNet-18 [8] for
CelebA and ImageNet-pretrained ResNet-18s for Waterbirds. We use the GroupDRO implementation
by Sagawa et al. [24] and DFR implementation by Kirichenko et al. [13].

For all approaches, we tune hyperparameters for ERM-based methods (ERM, DFR, and FAIR-TRAK)
and re-weighting based methods (RWG, SUBG, GroupDRO and JTT) separately. For RWG, SUBG,
GroupDRO and JTT, we early stop based on highest worst-group accuracy on the validation set as
well. We optimize all approaches with Adam optimizer.

For the CelebA dataset, we all methods with learning rate 1e− 3, weight decay 1e− 4, and batch
size 512. We train RWG, SUBG, GroupDRO and JTT with learning rate 1e− 3, weight decay 1e− 4,
and batch size 512. We train all models for the CelebA-Age task to up to 5 epochs and all models
for CelebA-Blond task up to 10 epochs.

For the Waterbirds dataset, we train the approaches that use the ERM objective (including FAIR-
TRAK) with learning rate 1e− 4, weight decay 1e− 4, and batch size 32. We train RWG, SUBG,
GroupDRO and JTT with learning rate 1e− 5, weight decay 0.1, and batch size 32. We train all
models to up to 20 epochs.

For all other hyperparameters, we use the same hyperparameters as Kirichenko et al. [13] for DFR
and the same hyperparameters as Liu et al. [16] for JTT.

We report the performance of the models via Worst-group Accuracy, or Balanced Accuracy in Table 2,
which is the average of accuracies of all groups. If all groups in the test set have the same number of
examples, balanced accuracy will be equivalent to average accuracy.
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Figure 5: Procedure for discovering spurious attributes.

D.3 Details on Auto-Trak

To discover spurious attributes, we first compute the TRAK matrix for the validation set. We then
compute the top principal components of the TRAK matrix and cluster the validation examples based
on them. Finally, we use the clusters to create pseudo-annotations for the validation set.
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E Omitted Results

E.1 Balanced Accuracies

Below we include the balanced accuracies for the experiments in Table 2.

Group Info CelebA-Age CelebA-Blond Waterbirds MultiNLI

Method Train / Val Balanced
Accuracy

Worst Group
Accuracy

Balanced
Accuracy

Worst Group
Accuracy

Balanced
Accuracy

Worst Group
Accuracy

Balanced
Accuracy

Worst Group
Accuracy

ERM 7/ 7 77.96 56.65 82.59 45.86 83.40 57.85 80.92 67.19
Auto-TRAK (ours) 7/ 7 80.05 75.97 91.01 83.77 90.36 81.04

RWG [10] 3/ 3 80.66 75.64 90.42 88.40 86.51 81.21 78.61 68.41
SUBG [10] 3/ 3 77.57 68.49 91.30 88.26 86.97 85.46 73.64 67.76
GroupDRO [24] 3/ 3 80.88 74.80 91.83 90.61 86.51 72.47 81.4 77.7

JTT [16] 7/ 3 68.06 60.95 92.01 81.61 85.24 63.61 78.6 72.6
DFR [13] 7/ 33 80.69 70.37 91.93 88.40 90.89 88.96 82.1 74.7
TRAK (ours) 7/ 3 81.05 75.55 91.08 90.03 91.46 87.15 81.54 75.46

Table 2: Balanced accuracy and worst-group accuracy on CelebA-Age , CelebA-Blond , and
Waterbirds . A double checkmark (33) indicates that the method uses validation group labels for
model finetuning, in addition to hyperparameter tuning.
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E.2 ImageNet Accuracies

Below we included the detailed accuracies for the ImageNet experiment.

Class-Level ImageNet-Level
Class
(bias) Method Balanced

Accuracy
Worst Group

Accuracy
Overall

Accuracy

Red Wolf
(Red Coat)

ERM 46.87 22.62 63.97
TRAK 65.63 52.38 63.71

Auto-TRAK 59.94 39.29 63.87

Tench
(Presence of human)

ERM 85.10 78.12 63.97
TRAK 90.73 86.88 63.84

Auto-TRAK 86.67 80.00 63.97

Cauliflower
(Not Cooked)

ERM 77.81 63.64 63.97
TRAK 85.77 79.55 63.70

Auto-TRAK 86.73 79.40 63.75

Strawberry
(Not on a plate)

ERM 58.93 35.58 63.97
TRAK 70.49 51.92 63.88

Auto-TRAK 68.99 50.48 63.79

Table 3: Auto-TRAK identifies and mitigates biases in ImageNet. For four ImageNet classes, a bias
was identified from inspecting the TRAK PCA directions. Then Auto-TRAK is applied in order to
mitigate the bias for that class. Auto-TRAK is able to improve the worst group accuracy for the
targeted class without significantly changing the overall ImageNet accuracy.

F Case Study: Interpreting the Flagged Data

What type of data does our method flag? In particular, do the examples we identify as driving the
targeted bias share some common characteristics? To test this hypothesis, in Figure F.1 we inspect
the data flagged by our method and identify subpopulations within the majority groups that are
disproportionately responsible for the bias. Then, in Figure F.2 we retrain the model after excluding
all training examples from the identified subpopulations and show that this is a viable strategy for
mitigating the bias in the model’s predictions.

F.1 Identifying subpopulations responsible for model bias

Consider the running example from Figure 1 where we train a model on the CelebA-Age dataset to
predict whether a person is “young” or “old” in the presence of a spurious feature, (“man”/“woman”)
(in the CelebA-Age dataset, young women and old men are overrepresented). In this setup, we have
access to a number of group annotations both in the training and validation sets. For instance, each
training example has a label indicating whether the person is wearing eyeglasses.

While TRAK and Auto-TRAK do not require group annotations for the training set, we can use
these annotations to inspect the data flagged by our methods. Specifically, we calculate the average
attribution score of the training examples in each subpopulation (see Figure 6). We consider sub-
populations within the cartesian product of labels and group annotations, e.g., subpopulations of the
form (“young”, “wearing eyeglasses”). I We find that subpopulations such as “5 o’clock shadow" and
“busy eyebrows” have particularly negative attribution scores for the old class, while “gray hair” is
particularly negative for the young class. In Figure 7, we show examples from the subpopulations
with the most negative attribution scores. Indeed, we observe that a large fraction of the examples in
these subpopulations contain labeling errors (e.g., platinum blond instead of gray hair).

F.2 Retraining without identfied subpopulations

In Figure F.1, we identified subpopulations that have overwhelmingly negative attribution scores. A
natural, interpretable strategy for mitigating the bias in the model’s predictions is to exclude these
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Figure 6: Average attribution score of the training examples in each subpopulation.
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Figure 7: Randomly sampled examples from the subpopulations with the most negative attribution
scores.

subpopulations from the training set. To explore this approach, we exclude the five subpopulations
with the most negative attribution scores on average from the CelebA-Age dataset: “Young” + “Gray
Hair”, “Old”+ “5 o’Clock Shadow”, “Old” + “Bushy Eyebrows”, “Young” + “Blond Hair”, and “Old”
+ “Sideburns”

After retraining the model on this modified training set, we get a worst-group accuracy of 68.4%—an
approximately 12 percentage-points improvement over the worst-group accuracy of the original
model (56.7%).
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