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ABSTRACT

Current vision systems typically assign fixed-length representations to images,
regardless of the information content. This contrasts with human intelligence
—and even large language models—which allocate varying representational ca-
pacities based on entropy, context and familiarity. Inspired by this, we propose
an approach to learn variable-length token representations for 2D images. Our
encoder-decoder architecture recursively processes 2D image tokens, distilling
them into 1D latent tokens over multiple iterations of recurrent rollouts. Each
iteration refines the 2D tokens, updates the existing 1D latent tokens, and adap-
tively increases representational capacity by adding new tokens. This enables
compression of images into a variable number of tokens, ranging from 32 to
256. We validate our tokenizer using reconstruction loss and FID metrics, demon-
strating that token count aligns with image entropy, familiarity and downstream
task requirements. Recurrent token processing with increasing representational
capacity in each iteration shows signs of token specialization, revealing poten-
tial for object / part discovery. Code available at https://github.com/
ShivamDuggal4/adaptive-length-tokenizer.

1 INTRODUCTION

Representation learning is crucial for decision-making. An effective representation should be com-
pact while encoding all relevant information. However, what constitutes “relevant” information
varies based on the specific task; for example, a coarse classification task may require a different
latent representation compression factor for satisfactory performance compared to a task demanding
perfect pixel-level reconstruction, which necessitates denser representations. This notion of a useful
representation aligns closely with aspects of human intelligence (Legg & Hutter, 2007), particularly
the concept of adaptive and variable-compressible representations (Hutter, 2006). Similarly, lan-
guage models can describe content at various levels of abstraction depending on complexity, context
(Graves, 2016; Dehghani et al., 2018), and familiarity (Baevski & Auli, 2018). In contrast, most
current visual systems, such as VAEs, VQGANs, and ViTs, generate fixed-size representations for
all images. In this work, we take a step toward learning adaptive and variable-length visual repre-
sentations, emphasizing that each image requires a different representation capacity (see Sec. 3).

A common framework for learning image embeddings or representations is the encoder-decoder
approach, where an encoder compresses input data into a compact latent representation, which can
later be decoded and compared with the original image as a learning objective. While there are other
encoder-only methods, such as contrastive learning (Chen et al., 2021) and self-distillation (Caron
et al., 2021), we focus on encoder-decoder approaches because a reconstruction objective intuitively
promotes the learning of adaptive representations by capturing varying level-of-details necessary for
better reconstruction. The current state-of-the-art (transformer-based) encoder-decoder approaches
(Dosovitskiy et al., 2020) operate in the discrete token space, by encoding images into learned tokens
and then decoding them back to image pixels. To generate these tokens, these approaches compress
(slightly) at the input patch-level and then maintain the number of tokens (= number of patches)
throughout the encoder-decoder network depth. Thus, the representation length for all images is
fixed to the number of tokens, equivalent to the fixed patch-size decided by the human-engineer.
Moreover, by having number of tokens equal to number of patches, such approaches are tied to the
natural 2D inductive bias of images, preventing any form of adaptive representation or compression
of different images. Moving away from this inductive bias and with the goal of having modality-
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Figure 1: Adaptive Length Image Tokenizer (ALIT): Given an image, we first convert it into 2D
image tokens before applying the 2D → 1D latent distillation. ALIT recurrently distills 2D image
tokens into variable 1D latent tokens, with each iteration adding new latent tokens and processing
them with the existing 2D image tokens and the old latent tokens. Training focuses on reconstructing
2D image tokens through reverse distillation from latent 1D to masked 2D tokens.

agnostic architecture, Jaegle et al. (2021b;a) proposed Perceiver, a transformer-based architecture
which distills input data tokens to a set of fixed 1D tokens. This process of latent-token distillation
refers to compressing a higher-dimensional input (e.g., 2D image tokens) into a more compact set
of latent variables (1D tokens), capturing the most relevant features. Like Perceiver, we also fall
into the category of latent-token distillation, where we encode 2D image tokens into much fewer 1D
latent tokens via a self-supervised reconstruction objective. While 1D-tokenization overcomes patch
to token constraint & allows more efficient compression of the image, a universal tokenizer should
adaptively assign variable tokens to the input based on content entropy, familiarity etc (Sec. 3).

We tackle the challenge of adaptive or variable-length representation learning by auto-regressively
distilling input visual observations into an increasing number of 1D latent tokens. To achieve this, we
draw inspiration from foundational works on recurrent computation (Graves, 2016; Dehghani et al.,
2018). Recurrent neural networks are often viewed as adaptive thinking modules (Schwarzschild
et al., 2021), capable of enhancing the computational requirements of a specific input through re-
cursive processing with the same neural network architecture. Thus, unlike the Matryoshka style
(Kusupati et al., 2022) approach of learning multiple representations of varying lengths simultane-
ously in one-go, we adopt a recurrent computing approach for visual representation learning. In our
framework, recurrent computing involves recursively distilling an input image or 2D image tokens
into 1D latent tokens through a shared encoder-decoder architecture until each image token has been
sufficiently processed/distilled into the latent tokens. At each iteration of this recurrent rollout, we
provide additional computational resources in the form of new learnable latent tokens, enabling the
model to learn adaptive and variable-length representations across different iterations.

We refer to our approach as ALIT (Adaptive Length Image Tokenizer), and train it using self-
supervised image reconstruction objective. Credited to the increasing representational capacity, each
recurrent update leads to the latent tokens specializing and attending to localized regions, hinting
at object / part discovery (see, Fig. 3, Appendix Fig. 11, Fig. 12 and Fig. 13). We validate the
effectiveness of the learned tokenizer by demonstrating comparable reconstruction metrics (L1 loss
and FID) and linear probing results on ImageNet-1K, relative to the 2D VQGAN tokenizer (Esser
et al., 2020) and the fixed-latent 1D tokenizer, Titok (Yu et al., 2024), while also allowing for flexible
token counts per image. By utilizing variable representations per image and introducing cumulative
dataset representations, we emphasize key aspects of effective representations: the required capacity
aligns with image’s information entropy, familiarity, and knowledge of downstream tasks / models.

2 ADAPTIVE LENGTH IMAGE TOKENIZATION

Tokenization refers to the process of breaking down input data into discrete units or tokens, that are
suitable for a specific downstream task. General-purpose tokenizers are usually trained with self-
supervised objectives such as auto-encoding, next-token prediction, contrastive learning, or self-
distillation. In the visual domain, prominent tokenizers like VAEs, VQGAN, and ViT rely heavily
on the 2D spatial inductive bias of images, treating 2D patches as tokens. This approach ties the
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Figure 2: Reconstruction Analysis on ImageNet-100: Our approach outperforms all baselines in
terms of reconstruction loss (right). Comparing Row-1 (high complexity) and Row-2 (low com-
plexity) demonstrates the effectiveness of adaptive tokenization. Even with fewer tokens, our recon-
structions maintain reasonable global alignment with ground truth, with an expected loss in detail.

tokenizer’s architecture closely to the inductive bias of the visual domain and limits its representa-
tional capacity to a fixed number of tokens based on the number of image patches. The Perceiver
line of research (Jaegle et al., 2021b;a) overcomes the 2D inductive bias limitation, (proposing a
modality-agnositic architecture) while still distilling 2D image tokens into a fixed one-dimensional
learned representation. In this work, we argue that each image is unique and warrants different
number of tokens. To address this, we propose a novel framework that auto-regressively allocates
more representational capacity (i.e., tokens) to an image, allowing for a variable number of tokens
for each image at test time. We first outline the core auto-encoding modules — latent-distillation
encoder and decoder — that distill 2D images into 1D tokens and back, and then introduce our
approach of auto-regressive token allocation per image. See Fig. 1 for ALIT overview.

Latent Distillation of 2D Image Tokens to 1D Tokens: We want to map an input image to 1D
latent tokens. Focusing on the core problem of compressive / adaptive representation learning (and
primarily for compute reasons), we first leverage an existing VQGAN image tokenizer to first map
an input image to a set of 2D image tokens, Kt=0

2D . Credited to years of research done on quantized
2D auto-encoders, the pre-trained VQGAN model can map a 256 × 256 image to 16 × 16 2D
spatial tokens, without much loss of detail. Each of the 16 × 16 tokens is a pointer to one of the
quantized codes in the trained VQGAN codebook. In this section, we distill the K2D (= 256 for 256-
dimensional image) spatial tokens to a few K1D(≪ 256) 1D tokens. For majority of the experiments,
we set this atomic (min. token count per image) number, K1D to 32, for ease of experimentation.

2D→1D→2D Distillation –– Given K2D spatial image tokens / features, each of dimension d2D,
we append them with K1D latent tokens along the token axis, and pass then through the latent-
distillation-encoder, Enc. K1D are initialized with learned embeddings. The distillation encoder
performs joint self-attention on all the tokens and distills K2D → K1D. Although previous works
(Jaegle et al., 2021b; Jabri et al., 2022) have experimented with cross-attention, we do not focus
on this aspect of the architecture for this work and leave it for future analysis. The distilled latent
tokens, K1D, are then passed to the distillation decoder Dec, which appends them to M2D masked
tokens and performs the reverse task of distilling the latent tokens back to the 2D spatial tokens
i.e K1D → M2D. All inputs to the distillation-encoder and distillation-decoder masked tokens are
added with positional encoding (separate ones for 2D image tokens, 1D latent tokens and 2D masked
tokens). We factorize and quantize the distilled latent tokens (output of Enc) before passing them
to the distillation-decoder, by sampling from a learned 1D codebook via closest codebook logic,
following (Yu et al., 2021; 2024). Among other techniques (Zhu et al., 2024; Huh et al., 2023), we
found factorization to be most useful for learning quantized 1D codebook.

Kt=1
2D ,K

t=1
1D = Enc

([
Kt=0

2D ; K1D
])

Mt=1
2D = Dec

([
M2D ; Kt=1

1D

]) }
Latent Distillation 1st Iteration

K1D → K1D denotes an encoder update to map initialized latent embedding to learned distilled
embedding. Likewise, M2D → M2D denotes reverse distillation using learned latent tokens (K1D)
to map masked 2D tokens to reconstructed image tokens. t=0 to t=1 denotes one encoder update. The
main learning objective is reconstruction loss between M2D and Kt=0

2D . [; ] denotes concatenation.

Auto-regressive Framework for Variable Tokenization: In the previous section, we explained
the core module for 2D→1D distillation module. We now describe the auto-regressive rolling of
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Approach ImageNet100 COCO Wikipedia (WIT)
32 64 96 128 160 192 224 256 32# / 64 128 256 32# / 64 128 256

Titok-L-32 11.60 - - - - - - - 14.18# - - 53.57# - -
Titok-B-64 - 8.22 - - - - - - 9.15 - - 42.86 - -
Titok-S-128 - - - 8.22 - - - - - 9.15 - - 38.16 -
VQ-GAN - - - - - - - 7.04 - - 7.77 - - 31.27
Ours-S 22.69 14.99 11.97 10.17 9.54 8.85 8.48 8.02 - - - - - -
Ours-S∗ 22.57 16.17 13.30 11.69 10.22 9.30 8.55 8.25 22.28 14.22 9.72 61.77 47.91 38.45
Ours-SemiLarge∗ 19.70 13.92 11.39 10.41 9.23 8.75 8.22 8.03 - - - - - -

Table 1: Reconstruction FID (↓) on different datasets Our method performs comparably to VQ-
GAN, Titok, despite being amortized over multiple iterations, allowing flexible representations.
(∗for these models, the latent-distillation enc/dec are only trained on Imagenet100.

the encoder-decoder distillation module for learning variable tokens per image, with Kt=1
1D as

the minimum tokens per image. Multiple works (Dehghani et al., 2018; Graves, 2016) in sequential
decision making and natural language processing perform recursive roll-out of the same thinking
architecture to provide more computational budget to the input task. In a similar vein, we perform
recurrent processing of the input image with the objective of learning variable-length compressed
representations. With each roll-out iteration, we not only provide more processing capacity by recur-
sively rolling out the distillation Enc−Dec architecture, but also provide additional computational
memory in terms of new writeable tokens to better distill image tokens into more 1D latents.

At each iteration of latent distillation, we concatenate the latent tokens from the previous iteration,
Kt=T

1D , with additional newly initialized tokens (initialized with learned embeddings), K1D. Option-
ally, to help the distillation encoder focus on image tokens that were not perfectly distilled in the
previous iteration, we apply a masking / dynamic halting operation (Mask) to the processed image
tokens from the last iteration, Kt=T

2D . This mask is determined by the alignment between reconstructed
output Mt=T

2D and original image tokens Kt=0
2D . The masked image tokens are then concatenated with

the latent tokens and passed through the distillation encoder-decoder, Enc−Dec. This process is
repeated across multiple iterations. As in single-step distillation, the primary training objective is
to minimize the reconstruction loss between the new reconstruction, Mt=T+1

2D , and the original image
tokens Kt=0

2D . At each iteration, the distilled latent tokens are factorized and quantized using a shared
1D codebook –– tokens learned across different iterations belong to the same embedding space.

Kt=T
1D =

[
Kt=T

1D ; K1D
]

Kt=T
2D = Mask

(
Kt=T

2D | Mt=T
2D ,Kt=0

2D

)
Kt=T+1

2D ,Kt=T+1
1D = Enc

([
Kt=T

2D ; Kt=T
1D

])
Mt=T+1

2D = Dec
([

M2D ; Kt=T+1
1D

])

 Latent Distillation T+ 1th Iteration

In summary, at each iteration of the recurrent rollout, the latent tokens from the previous iteration
receive residual updates, while new computational memory (additional latent tokens) is introduced.
These new tokens give the existing latent tokens the freedom to focus on specialized regions, leading
to sharper & sparser attention, as shown in Fig. 3, Appendix Fig. 11, Fig. 12 and Fig. 13.

3 NOT ALL IMAGES ARE WORTH THE SAME REPRESENTATION

Each image is unique and requires a different number of tokens as representation. Additionally,
each image or observation can have multiple valid representations, echoing Epicurus’ notion of
multiple explanations. By mapping an image to various quantized latent spaces, the model learns to
sample different tokens from the training set’s codebook, optimizing the reconstruction objective at
different levels of computational capacity. This section provides experimental insights on how rep-
resentational capacity depends on the complexity of an image. Appendix Sec. A.2 further mentions
representation alignment with familiarity of data, downstream task and downstream model strength.

Representation Capacity or Compression Depends on Information Entropy / Complexity:
Schmidhuber’s Low Complexity Art theory (Schmidhuber, 1996) correlates an image’s perceptual
complexity with its compressibility—the smallest description length of an image often aligns with
its complexity. Given that our approach generates multiple compressed representations for a given
image, we evaluate such correlation between human-labeled complexity estimates (ranging from 0
to 100) (Saraee et al., 2018) and the L1 reconstruction loss using our adaptive tokenizer at varying
token capacities. Appendix Fig.4 (left) illustrates reconstructions of completely out-of-distribution
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Figure 3: Role of Recurrence on Latent Tokens: Credited to increasing number of tokens in
each iteration, the recurrent update on existing latent tokens makes them focus on sparser & more
localized regions, leading to improved alignment w/ GT segmentation over iterations (see Tab. 2).

(OOD) images from the PeopleART dataset (Westlake et al., 2016), using between 32 and 256 tokens
for images of different complexities. These reconstructions are produced using a model trained on
ImageNet-100, which contains no art-related images and is significantly different from PeopleART.
As seen, the low-complexity image (top row) is adequately reconstructed with fewer tokens, while
the highly complex image (bottom row) requires more tokens for accurate reconstruction. Further-
more, the complexity-reconstruction correlation plot in Appendix Fig. 4 (right) perfectly highlights
two observations: (a) as image complexity increases, reconstructions with fewer tokens result in
higher L1 errors, necessitating a larger memory budget; and (b) at a fixed image complexity, increas-
ing the computational budget (i.e., number of tokens) reduces the loss, demonstrating the efficiency
of the adaptive representation model. See Appendix Fig. 5 for results on Places dataset.

4 FURTHER EXPERIMENTS & ABLATIONS

We showcase results on image reconstruction & analysis on token-object binding. Please refer to the
Appendix for more experiments and ablations (scaling-law exp. omitted due to space constraints).
Image Reconstruction: We compare our adaptive tokenizer with the fixed-length 1D tokenizer
Titok (Yu et al., 2024) and 2D tokenizer VQGAN (Esser et al., 2020) based on L1 reconstruction
loss and FID scores on ImageNet100, COCO and Wikipedia Image-Text (WIT) datasets. The recon-
struction loss metrics and the number of images at different sampled reconstruction loss thresholds
are shown in Fig. 2 (right plot). Unlike baselines with fixed-length representations, we amortize
the learning of variable length representations using a smaller network – Titok-L-32 uses 24-layer
encoder/decoder to generate 32 tokens, while Ours-S uses the same 8-layers to learn variable (32 to
256) tokens. Despite that, as shown in Fig. 2, our method achieves slightly lower reconstruction loss
compared to baselines, maintaining significant details of the input image, while the baselines, optim-
tized for realism with GAN loss, achieve slightly better FID than ours for low-token reconstructions.
The amorization of variable-length representation learninf leads to slight loss in FID.
Analyzing Learned Tokens for Object Discovery: We analyze the attention maps of learned
1D latent tokens to 2D image tokens. Appendix Fig. 11 shows attention maps corresponding to
four tokens from the 7th layer of Ours-S distillation-decoder. Many latent tokens correspond to
semantically meaningful objects or parts, suggesting emergence of object discovery. This contrasts
with 2D tokenizers, where each token inductively maps to an image patch, and only single class
token attention heads (Caron et al., 2021) hold such semantic information. To further investigate
this, following DINO (Caron et al., 2021), we computed attention map alignment with ImageNet-S
GT segmentation by thresholding the top X% of attention maps as emergent seg maps. With 40%
attention, we achieve 57.8 mean IOU, and by adjusting the threshold per image, we reach 71.8
mIOU. Our tokens are not optimized for segmentation, high-alignment is an emergent property.

5 CONCLUSION

In this work, we propose a variable-length tokenizer for 2D images that operates by recurrently pro-
cessing 2D image tokens, distilling them into 1D latent tokens, and adaptively adding new 1D tokens
as computational resources for future iterations. This recurrent processing and adaptive computa-
tion enable the learned latent tokens to correspond to semantically meaningful objects or parts in the
input image. We demonstrate comparable performance on reconstruction metrics and ImageNet-
1K linear-probing experiments. Finally, we utilize per-image learned adaptive representations (and
cumulative dataset representations) to highlight alignment of the required image representational ca-
pacity with – information entropy, familiarity with train set, knowledge of downstream tasks/models.

5



Published as a workshop paper at SCOPE - ICLR 2025

REFERENCES

Alexei Baevski and Michael Auli. Adaptive input representations for neural language modeling.
CoRR, abs/1809.10853, 2018. URL http://arxiv.org/abs/1809.10853.

Lucas Beyer, Pavel Izmailov, Alexander Kolesnikov, Mathilde Caron, Simon Kornblith, Xiaohua
Zhai, Matthias Minderer, Michael Tschannen, Ibrahim Alabdulmohsin, and Filip Pavetic. Flex-
ivit: One model for all patch sizes. arXiv preprint arXiv:2212.08013, 2022.

Daniel Bolya, Cheng-Yang Fu, Xiaoliang Dai, Peizhao Zhang, Christoph Feichtenhofer, and Judy
Hoffman. Token merging: Your ViT but faster. In International Conference on Learning Repre-
sentations, 2023.

Mu Cai, Jianwei Yang, Jianfeng Gao, and Yong Jae Lee. Matryoshka multimodal models. arXiv
preprint arXiv:2405.17430, 2024.

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
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A APPENDIX

A.1 RELATED WORK

The goal of image tokenization is to map high-dimensional 2D images into compressed latent repre-
sentations. Modern vision systems often use self-supervised learning objectives, such as contrastive
learning, self-distillation, in-painting, and generative modeling, to achieve this. Architecturally,
these methods typically convert images into 2D feature embeddings using convolutional backbones
or transformers after splitting images into patches. However, this approach constrains and tightly
binds the processing, compression, and representation capacities to a fixed number of processing
units, down-sampling steps or patches, regardless of the input image. Several prior works have
explored such issues with different motivations, as discuss below –

Dynamic Token Processing: Several works (Bolya et al., 2023; Rao et al., 2021; Yin et al., 2022)
focus on dynamically processing tokens in the ViT architecture by pruning or merging them across
layers. Token Merging (Bolya et al., 2023) accelerates ViT by merging a fixed number of tokens
per layer, resulting in a consistent token count for each image. Inspired by ACT (Graves, 2016) and
Universal Transformers (Dehghani et al., 2018), DynamicVIT (Rao et al., 2021) and A-ViT (Yin
et al., 2022) adaptively prune tokens or dynamically halt processing for different tokens, with a focus
on classification tasks. Concurrent work (Jain et al., 2024) extends this by routing 2D image tokens
through different experts, rather than pruning or merging, for classification and image retrieval.
Tokens in these works remain tightly coupled to image patches. Our approach also involves dynamic
token processing but primarily focuses on distilling images into a variable-length compressed 1D
latent space via a self-supervised reconstruction objective, allowing each image to have flexible
representational capacity beyond patch-based tokens.

Flexible or Variable-Length Representation Learning: Each image has varying levels of de-
tail, making a single patch size insufficient for vision transformers. FlexViT (Beyer et al., 2022)
uses variable patch sizes for multiple image representations, though theoretically its capacity is still
limited by the smallest patch size and 2D token-patch bias. Matryoshka Representation Learning
(Kusupati et al., 2022) learns flexible but fixed representations (bounded by the feature dimension)
by ensuring low-dimensional subsets of a feature vector can perform classification and image re-
trieval. Concurrent works (Hu et al., 2024; Cai et al., 2024) extend this to token space, enforcing sub-
sets of tokens to support vision-language tasks. We also learn variable-length token representations,
but unlike static Matryoshka methods, which learn all the representations in one go, we focus on
recurrent processing & adaptive memory—iteratively refining & adding new latent tokens—opening
doors for longer representations (for streaming data) through longer rollouts in future. Recently
published on arXiv, ElasticTok (Yan et al., 2024)—similar to Matryoshka representations—learns
variable-length encodings for images and videos by learning a fixed, max-sized representation in
one step, then searching for a mask to sample a subset of this full-length representation.

Latent Tokens or 1D Tokenization: To overcome the 2D token-patch bias, Perceiver (Jaegle
et al., 2021b;a) distills 2D image tokens into 1D latent tokens not tied to specific patches, aim-
ing for modality-agnostic transformers. Similar approaches, such as Recurrent Interface Networks
(RIN) (Jabri et al., 2023), AdaTape (Xue et al., 2023), and Titok (Yu et al., 2024), perform 2D-to-
1D distillation or read-write operations for generation, recognition, and reconstruction, respectively.
RIN and Titok use fixed-length token representations, while AdaTape allows a one-time selection of
variable-length latent tokens per input image. RIN uniquely performs recurrent read-write between
image and latent tokens. Unlike these, we integrate 2D-to-1D distillation with both recurrent pro-
cessing and adaptive memory—iteratively refining image and existing latent tokens, and adaptively
adding more latent tokens as new memory. We also enable optional dynamic halting for improved
distillation in regions needing further refinement. Beyond the technical differences, we emphasize
that each image requires unique representation depending on complexity, familiarity, downstream
model/task (Sec. 3). Moreover, the proposed recurrent computing with adaptive memory promotes
emergent token specialization for object/part discovery, Fig. 3, Appendix Fig. 11, Fig. 12 and Fig. 13

Relevant works on large-language models include (Goyal et al., 2024; Herel & Mikolov, 2024)
which allocate additional compute budget in terms of fixed additional “thinking” tokens, separate
from input tokens. They demonstrate improved reasoning capabilities w/ thinking tokens for LLMs.
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Figure 4: Compression vs. Information Entropy Hypothesis on the Out-of-Distribution People-
Art Dataset: Adaptive tokenization enables analysis of the Low-Complexity Art Hypothesis by
examining token requirements for images of varying complexity. The plot on the right clearly shows
that as (human-annotated) image complexity increases, so does the need for more computational
tokens. More complex images have higher L1 reconstruction loss at fewer token count.
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Figure 5: Compression vs. Entropy Hypothesis on Places Dataset: Trained on Imagenet100.

A.2 NOT ALL IMAGES ARE WORTH THE SAME REPRESENTATION

Low-Complexity Art Hypothesis or Representation Capacity ∼ Image Entropy Here, we pro-
vide additional experimental analysis supporting representation capacity alignment with image en-
tropy claim made in the main paper, Sec.3. We extracted human-annotated image complexity scores
for the Places2 subsets of the SAVOIAS dataset (Saraee et al., 2018). We leverage a model trained
on ImageNet-100 to study this hypothesis – thus Places may be slightly out-of-distribution (OOD).
Fig. 5 complexity-reconstruction loss alignment graph showcases that an increase in image com-
plexity demands more tokens & more tokens ∼ smaller recon. loss.

Representation Capacity Depends on Familiarity with the Training Set: Similar to how out-
of-syllabus questions require more effort, reconstructing OOD images demands more computational
tokens. By learning quantized adaptive representations, our model maps test images to adaptive
tokens by sampling from a learned trainset codebook. This enables us to distinguish between in-
distribution (IID) and out-of-distribution (OOD) images. IID images are more efficiently recon-
structed with fewer tokens, as they can sample familiar representations from the trained codebook,
whereas OOD images require more tokens. From Tab.1, the FID gap between 64 and 256 tokens is
smallest on in-distribution ImageNet-100 validation set (7.92), larger on less in-distribution COCO
dataset (12.56), and largest on highly OOD Wikipedia images (23.32). In summary, while all models
exhibit performance loss on OOD images, the loss is pronounced w/ fewer tokens. Training larger
adaptive tokenizers on larger datasets (eg: LAION) for longer periods may close distribution gap.

Representational Capacity Depends on Downstream Task: We utilize our variable-length rep-
resentations to demonstrate how dataset representations vary across downstream tasks. To achieve
this, we select different tokens for each image based on specific token-selection criteria (TSC) and
analyze the minimum dataset representations required for optimal performance, plotting cumula-
tive image token counts as a fraction of the total VQGAN tokens. By dataset representation, we
mean cumulative token count for the dataset when different images are reconstructed using differ-
ent token counts. For TSC=Classification 2, we evaluate the minimum tokens needed for the best
top-1, top-2, ..., top-X accuracy. For TSC=Depth Estimation, we determine the token count nec-
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Figure 6: Analysing Dataset Representation Capacity: We vary tokens per image using different
Token Selection Criteria (TSC) 2– Best Top-X Classification Accuracy (Left) and Depth Error <
Threshold (Right). We use GT class/depth maps for computing TSC classification/depth errors. We
then evaluate Classification Accuracy (Task of Interest, TOI) on the dataset reconstructed using
different TSCs. X-axis = TSC, Y-axis = Dataset Token Count, Marker-Color = TOI Perf.
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Figure 7: TSC–TOI Alignment determines Dataset Representation Capacity: We vary tokens
per image via “Reconstruction Loss < Threshold” as automatic Token Selection Criteria (TSC)
and evaluate multiple Tasks of Interest (TOI) on the reconstructions. Since TSC determines dataset
token count, strong TSC–TOI alignment enables desired TOI performance at compressed represen-
tations –– 60% of max-tokens (selected via Recon. TSC) achieve similar perf. on all TOIs as max
tokens perf., supporting adaptive-tokenization. Fig. 8 / 9 show classification / depth TSC plots.

essary to achieve per-image relative depth errors below thresholds such as 0.2, 0.4, 0.6. Likewise
TSC=Reconstruction Loss, selects per image tokens based on L1 recon. loss < certain thresholds.
Notably – Reconstruction Loss serves as an automatic (self-supervised) token selection criteria,
while Classification / Depth Error as TSC requires GT class-labels / Pseudo-GT depth maps.

In Fig.6, we select minimum tokens based on two criteria: classification (left) and depth (right). The
images reconstructed using selected tokens are then assessed using ResNet-18 for Classification
Accuracy as the task-of-interest (TOI). The resulting Pareto curves indicate that as token-selection
criteria (TSC) increases in complexity, the representation capacity requirement also rises; for ex-
ample, achieving a depth error < 0.41 requires more tokens per image than a depth error < 1.4.
Moreover, optimal performance on task of interest occurs when tokens are selected using the same
criteria as the downstream task (i.e. TSC=TOI, Best Top-1 Accuracy is achieved when both TSC
and TOI are Classification (Fig.6, left), compared to when TSC=Depth, TOI=Classification (Fig.6,
right)) and (b) selecting tokens based on arbitrary thresholds for depth or reconstruction loss has
small impact on classification accuracy i.e. classification accuracy with TSC = Depth Loss < 0.41
is similar to that with TSC = Depth Loss < 1.40, suggesting that classification requires fewer tokens
(as supported by Linear Probing Experiments in Sec.A.4). Thus, optimal tokens per image depends
on both token-selection criteria & the desired task.

Next, we explore the scenario where the token-selection criteria remain constant, but the task of
interest (TOI) varies. Since the TSC enables sampling different dataset representations, the optimal
compression of dataset representations for maximum TOI performance depends on the alignment
between the TSC and the TOI. In other words, dataset representations are more compressible when

2Token-Selection Criteria (TSC) Example – Selecting per-image tokens using TSC = Top-X Classification
means – identifying the minimum number of tokens for each image such that the corresponding reconstructed
image is correctly classified (by comparing against GT label) among the Top X predictions by ResNet-18.
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Figure 8: Dataset Representation Analysis as factor of TSC-TOI Alignment: We vary tokens
per image using “Best Top-X Classification” Accuracy as the Token Selection Criteria (TSC)
and evaluate different Tasks of Interest (TOI) on the reconstructions. We sample tokens per image
such that each reconstructed image is classified correctly under Top-X Classification criteria, and
then evaluate different downstream tasks of interests (TOIs) on the reconstructed dataset.
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Figure 9: Dataset Representation as a factor of TSC-TOI Alignment: We vary tokens per image
using “Depth Loss < some Threshold” as the Token Selection Criteria (TSC) and evaluate dif-
ferent Tasks of Interest (TOI) on the reconstructions. Being a dense task, depth error thresholding
at several continuous thresholds provide more granular and diverse support to dataset representation
compression and TOI performance, compared to Top-X Classification (X being discrete integer).

optimized and tested on a similar task. This also aligns with the idea that representational capacity is
influenced by familiarity with the training data. For instance, in Fig. 7, we allocate variable tokens
per image using image reconstruction loss below a threshold as the token-selection criteria. The
resulting token-reconstructions are then evaluated across three tasks: classification accuracy using
ResNet-18, depth estimation accuracy using DepthAnythingV2, and FID using VGG16 features.
Approximately 60% of the total dataset representations (sampled using Reconstruction Loss as TSC)
are sufficient to achieve near-optimal performance across all tasks—classification, depth estimation,
and FID, highlighting that reconstruction loss could be a good self-supervised objective to select
tokens per-image. Appendix Fig. 9 and Fig. 8 analyze different Tasks of Interest (TOIs) performance
using Depth Error Thresholding and Best Classification Accuracy as TSC respectively.

In addition to Fig. 7, where we evaluated Reconstruction Loss Thresholding as a Token Selec-
tion Criterion (TSC), we further assess GT-oracle-based Classification and pseudo-GT-oracle-based
Depth Error metrics as TSC through Fig. 8 and Fig. 9. For Top-X Classification as TSC, an image
receives 32 latent tokens if ResNet-18’s top-X predictions from the 32-token reconstruction include
the ground truth class. Key Takeaways – Compared to depth, reconstruction loss, and FID as the
tasks of interest (TOI), the decrease in classification accuracy with a reduction in dataset repre-
sentation capacity (cumulative tokens per dataset) is relatively smaller due to classification being a
coarser task. When TSC ̸= TOI, using different TSCs to sample the same fraction of tokens yields
similar TOI performance. For example, FID and Reconstruction Loss at 40% of max token capacity
are comparable (compare 2nd, 3rd plots of Fig. 8 and Fig. 9), regardless of whether depth or classi-
fication was the token-selection criterion. However, compared to Top-X classification, choosing the
more granular tasks of depth and reconstruction as TSC provide finer support for token sampling,
with better/ diverse performance range for TOI. Reconstruction loss serves as self-supervised TSC.
Representational Capacity Depends on Model Strength or Current Knowledge Fig.10 exam-
ines the relationship between downstream model strength and tokenized representations for tasks
such as depth estimation, classification, and vision-language modeling. Weaker models exhibit
smaller performance drops with reduced token counts, as shown by the color in Fig.10, which repre-
sents the perf. gap between GT and reconstructed images. For instance, fewer-token reconstructions
have minimal impact on AlexNet (Classification) and the Blip model (vision-language modeling).
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Figure 10: Tokens vs. Model Strength: Stronger models outperform weaker ones across all token
counts but are more sensitive to fewer-token reconstructions, showing a sharper perf. drop (∼color)
at fewer tokens. In contrast, weaker models (lower GT perf.) can manage with fewer tokens.

Fig.10 VLM experiments support concurrent works of Matryoshka VLMs (Hu et al., 2024; Cai et al.,
2024), further promoting recurrent and adaptive tokenization using VLMs as TSC and TOI.

A.3 ANALYSING THE LEARNED LATENT TOKENS

Emergent Object Binding: Compared to 2D tokenizers, where each token is bound to a patch
(other than class or global tokens), the learned 1D tokens demonstrate signs of object binding and
localization. In addition to Fig.11 and Fig.3, we showcase more examples of how the learned latent
tokens bind to semantically meaningful objects on COCO dataset. For instance, in Fig. 12, note the
token-zebra binding in the second example, the near-perfect segmentation of the bicycle symbol on
the lane in row 3, the segmentation of the frisbee and human into different tokens in example 4, and
the clustering of both plants (as indicated by high attention weights) in the final example.

Mean IOU w/ GT Seg. 
(IN-S) by thresholding 
attn. weights to keep 
Top X% of mass.

57.8 56.3 53.1 47.6 39.0 25.1

Figure 11: Visualizing Latent Token Attention Maps: The learned latent tokens effectively bind
to distinct objects, suggesting potential for object discovery as future research. This contrasts with
2D tokenizers, where tokens are strongly biased to predefined patches (also see Appendix Fig. 12).

Recurrent Processing of Latent Tokens: We further explore the role of recurrence in enhancing
token attention and binding to semantic objects and parts. With each iteration of the model rollout,
new tokens are added, allowing existing tokens to focus on specialized tasks rather than covering
the entire image. Figure 13 illustrates five examples from the COCO dataset, showing how the
attention maps of selected tokens receive residual updates over eight recurrent iterations, leading to
improved object binding. To quantitatively support this enhanced localization, we calculate mIOU
segmentation metrics at different iterations of the recurrent processing, as shown in Tab. 2.

A.4 ADDITIONAL EXPERIMENTS

Linear Probing for ImageNet-1K Classification: We evaluate the learned adaptive representa-
tions on the downstream task of classification by linear probing the latent representations, following
standard practices (He et al., 2021). Specifically, we use the output of the latent-distillation encoder
(mean pooling both the processed image tokens and 1D latent tokens). Our linear probe perfor-
mance is on par with Titok models—Ours-S-32 (after 1st iteration) achieves 49.9% Top-1 Accuracy,
compared to Titok-S-32’s 48.0%, and Ours-SemiLarge achieves 59.5% compared to Titok-L-32’s
60.0%, despite our model having a much smaller network (SemiLarge = 16 layers vs. L = 24
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Attention Threshold. Recurrent Iteration
Percentile 1 2 3 4 5 6 7 8

40% 56.7 57.4 57.5 57.6 57.6 57.7 57.7 57.8
60% 51.5 52.4 52.5 52.7 52.8 52.9 53.0 53.1
80% 37.1 38.6 38.4 38.6 38.7 38.8 39.0 39.0

Table 2: Recurrent Processing enhances Alignment of Token Attn Maps with GT Segments.
Note – we did not optimize for segmentation, and token attention maps binding to segments is an
emergent property. This binding improves with recurrent processing (under increasing memory
constraint). To extract a segment from a token attn map, we threshold the top X% of the attn map.

layers). Two key observations: (a) Role of Recurrent Processing—the single iteration output of
Ours-L distillation encoder with 32 latent tokens achieves 55.6% Top-1 Accuracy, while recurrent
processing through the encoder 2–3 times improves this to 59.5%. (b) Distilling 2D tokens into 64
to 128 1D tokens is sufficient for the coarse classification task; mean pool of first 64 to 128 latent
tokens yield better linear-probing classification accuracy than pooling all (max. 256) latent tokens.
Thus, the first few tokens capture most of the information required for classification, while additional
tokens are crucial for reconstruction refinement. Thus, recurrent processing sharpens/localizes token
attention, improving both reconstruction and classification.

A.5 EXPERIMENTAL DETAILS

Training Details In this section, we provide additional training details (see Sec. 2 for approach
details and training procedure summary). We train ALIT in two phases – latent-distillation pre-
training and full fine-tuning stage (with gan loss). In the latent-distillation pre-training stage, we
leverage a pre-trained image tokenizer (VQGAN or VAE) which maps an input image to 2D tokens.
We only train the latent-distillation encoder-decoder modules in this stage, using image token recon-
struction loss as the core-learning objective. With VQGAN as base tokenzier, we use cross-entropy
loss comparing predicted logits with the ground-truth VQGAN-codebook index at each 2D token
position. We use mean-squre reconstruction loss when using VAE as the base-tokenizer. We unroll
the recurrent token allocation procedure for 8 iterations, expanding token memory from 32 (in 1st

iteration) to 256 (in 8th) during training. All the recurrent rollouts are trained end-to-end. At each
iteration, we process the image-tokens, the existing 1D latent tokens and add new latent tokens.
During this training phase, we perform dynamic halting of the image tokens in each iteration, allow-
ing the latent-distillation modules to focus on distilling image tokens which cannot be reconstructed
perfectly till current iterations. We use transformer backbones for both latent-distillation encoder
and decoder, performing self-attention among 2D image tokens and latent 1D tokens.
In the next training phase, we jointly fine-tune both the base image tokenizer modules and the
latent-distillation encoder-decoder modules with losses directly at the pixel-space. The training ob-
jectives are pixel-level reconstruction and adversarial losses (gan generator and discriminator losses)
inspired from VQGAN (Esser et al., 2020) training procedure. We optimize for reconstruction loss
for first few epochs, later switching to both reconstruction and adversarial losses. We recurrently
map an image to variable-tokens (increasing token count by 32 in each iteration) for 8 iterations.
However, unlike previous stage, we only compute loss at only iteration, thus we only need to per-
form recurrent processing of the latent-distillation encoder in each training run, executing the latent-
distillation decoder and the base tokenizer decoder only once. This helps speed up the training and
the compute memory requirements. No dynamic halting is performed in this phase. Thanks to the
gan losses, this phase help boost the photo-realism / FID metric of the reconstructions, specially at
lower-token counts. For more low-level details, please refer to our codebase.
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Figure 12: Recurrent processing of Latent Tokens on COCO Validation Set: Recurrent process-
ing with increasing computational tokens leads to specialization of attention. We showcase all the
first 32 tokens after the 1st & 8th iterations (out of total 256 tokens at the 8th iteration). (Left) A
broader comparison b/w iteration 1 vs 8 attention maps highlight emerging sparsity in attention.
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GT Image Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5 Iteration 6 Iteration 7 Iteration 8

Figure 13: Token Visualization over Multiple Recurrent Iteration: Recurrent processing leads to
sparse attention & specialization of tokens to localised objects, parts etc. For example – recurrence
led to near-perfect bed segmentation (row 1), bicycle-sign segmentation (row 2), improved human
segmentation (row 3), zebra-instance segmentation (row 4), and potted-plants segmentation (row 5).

Input Image 
(from Internet)

64 Token
Reconstruction

128 Token
Reconstruction

256 Token
Reconstruction

Figure 14: Generalization of ALIT trained on Imagenet100 on Internet Images: ALIT performs
quite well even on OOD imagesmost times, with great potential of being an “any-image” generaliz-
able adaptive tokenizer with some scaling.
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