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Abstract

The multi-modality nature of human com-001
munication can be utilized to enhance the002
performance of computational language mod-003
els. However, few studies have explored004
the non-verbal channels with finer theoretical005
lens. We use multi-modal language models006
trained against monologue video data to study007
how the non-verbal expression contributes to008
communication, by examining two aspects:009
first, whether incorporating gesture representa-010
tions can improve the language model’s perfor-011
mance (perplexity), and second, whether the012
gesture channel demonstrates the similar pat-013
tern of entropy rate constancy (ERC) found014
in verbal language, which is governed by In-015
formation Theory. We have positive results016
to support both assumptions. The conclusion017
is that speakers indeed use simple gestures to018
convey information that enhances verbal com-019
munication, and how this information is orga-020
nized is a rational process.021

1 Introduction022

Communication is a multi-modal process, in which023

information from verbal and non-verbal modalities024

are mixed into one channel. It has already been025

revealed in empirical studies that speakers’ expres-026

sion in visual modality, including gestures, body027

poses, eye contacts and other types of non-verbal028

behaviors, play critical roles in face-to-face com-029

munication, as they add subtle information that is030

hard to convey in verbal language. However, it031

remains an untested idea to view these sparse and032

random non-verbal signals as a formal communica-033

tion channel that transmits “serious” information,034

which has seldom been validated by computational035

studies. A key missing step is to explore whether036

the non-verbal information can be quantified.037

The questions that are worth further investigation038

include (but are not limited to): How rich is the in-039

formation contained in these non-verbal channels?040

What are their relationships to verbal information?041

Can we understand the meanings of different ges- 042

tures, poses, and motions embedded in spontaneous 043

language in a similar way to understanding word 044

meanings? The goal of this study is to propose a 045

simple but straight-forward framework to approach 046

the above questions, under the guidance of Infor- 047

mation Theory. Some preliminary, yet prospective 048

results are presented. 049

2 Related Work 050

2.1 Gestures as non-verbal communication 051

There is vast literature on the connection between 052

gesture and language in human communication. 053

Gestures, defined as “the spontaneous hand move- 054

ments produced in rhythm with speech” (Clough 055

and Duff, 2020) naturally co-occur with spoken 056

language. According to the thorough survey from 057

(Clough and Duff, 2020), the communication func- 058

tion of gestures is one of the main focus of 059

early studies. McNeill (1992) has classified ges- 060

tures into two categories, representative and non- 061

representative, in which the former has clearer se- 062

mantic meanings (e.g., depicting objects and de- 063

scribing locations), while the latter refers to the 064

brief, repetitive movements that has little substan- 065

tive meanings. 066

2.2 Mixed-modal models in NLP and ML 067

The recent advances of deep neural network-based 068

machine learning techniques provide new methods 069

to understand the non-verbal components of human 070

communication. Many existing works primarily fo- 071

cus on using multi-modal features as clues for a 072

variety of inference tasks, including video content 073

understanding and summarization (Li et al., 2020; 074

Bertasius et al., 2021), as well as more specific 075

ones such as predicting the shared attention among 076

speakers (Fan et al., 2018) and semantic-aware ac- 077

tion segmentation (Gavrilyuk et al., 2018; Xu et al., 078

2019). More recently, models that include mul- 079

tiple channels have been developed to character- 080

1



ize context-situated human interactions (Fan et al.,081

2021). Advances in representation learning have082

enabled researchers to study theoretical questions083

with the tools of multi-modal language models.084

Neural sequential models are used for predicting085

the shared attention among speakers (Fan et al.,086

2018) and semantic-aware action segmentation087

(Gavrilyuk et al., 2018; Xu et al., 2019). More re-088

cently, models that include multiple channels have089

been developed to characterize visually embedded090

and context-situated language use (Fan et al., 2021;091

Li et al., 2019, 2021; He et al., 2022). Another092

line of work focuses on the predicting task in the093

opposite direction, that is, predicting/generating094

gesture motion from audio and language data (Gi-095

nosar et al., 2019; Yoon et al., 2020; Alexanderson096

et al., 2020). For short, advances in representation097

learning have enabled researchers to study theoreti-098

cal questions complex models.099

2.3 Insights from cognitive science studies100

Gesture-based non-verbal communication has been101

proven to facilitate the formation of messages in102

cognitive science studies. This facilitation can103

come from multiple layers of visual and vocal sig-104

nals can add semantic and pragmatic information105

in face-to-face communication. (Holler and Levin-106

son, 2019). Visible gestures are more powerful107

form of communication than vocalization in dia-108

logue object description tasks (Macuch Silva et al.,109

2020). In these studies, gestures from human sub-110

jects are usually encoded by the hands’ spacial loca-111

tions, which provide insights to the gesture extrac-112

tion method used in this study. Also, their results113

strongly indicate the potentials of building more114

comprehensive computational language models by115

including simple non-verbal features. However, so116

far, few computational studies have attempted to117

directly model spontaneous language.118

2.4 Information theories119

Information theory (Shannon, 1948) has been120

broadly applied in computational linguistics as the121

theoretic background for the probabilistic models122

of language. This also provides philosophical ex-123

planations to a broad spectrum of linguistic phe-124

nomena. One example that interests researchers125

the most is the assumption/principle of entropy126

rate constancy (ERC). Under this assumption, hu-127

man communication in any form (written, spoken,128

etc.) should optimize the rate of information trans-129

mission rate by keeping the overall entropy rate130

constant. 131

In natural language, entropy refers to the pre- 132

dictability of words (tokens, syllables) estimated 133

with probabilistic language models. Genzel and 134

Charniak (2002, 2003) first formulated a method to 135

examine ERC for written language, by decompos- 136

ing the entropy term into local and global entropy: 137

H(s|context) = H(s|L)− I(s, C|L) (1) 138

in which s can be any symbol whose probability 139

can be estimated, such as a word, punctuation, or 140

sentence. C and L refer to the global and local 141

contexts for s, among which C is purely concep- 142

tual and only L can be operationally defined. By 143

ERC, the left term in eq. (1) should remain an in- 144

variant against the position of s. It results in an 145

expectation that the first term on the right H(s|L) 146

should increase with the position of s, because the 147

second term I(s, C|L), i.e., the mutual information 148

between s and itself global context should always 149

decrease (see Genzel and Charniak (2003)’s paper 150

for more examples). While they have confirmed 151

the increase of local entropy in written language, 152

Xu and Reitter (2016, 2018) also confirmed the pat- 153

tern in spoken language, relating it to the success 154

of task-oriented dialogues (Xu and Reitter, 2017). 155

Now, the goal of this study is to extend the ap- 156

plication scope of ERC to the non-verbal realm. 157

More specifically, if the s in eq. (1) represents any 158

symbol that carries information, for example, a ges- 159

ture or pose, then the same increase pattern should 160

be observed within a sequence of gestures. ERC 161

can be interpreted as a “rational” strategy for the 162

information sender (speaker) because it requires 163

less predictable content (higher local entropy) to 164

occur at a later position within the message, which 165

maximizes the likelihood for the receiver (listener) 166

to successfully decode information with the least 167

effort. The question explored here is whether we 168

“speak” rationally by gestures. 169

3 Questions and Hypotheses 170

We examine two hypotheses in this study: 171

Hypothesis 1: Incorporating non-verbal represen- 172

tations as input will improve the performance of 173

language modeling task. To test Hypothesis 1, we 174

extract non-verbal representations using the output 175

from pose estimation, and then compose discrete 176

tokens to represent the non-verbal information. The 177

non-verbal tokens are inserted into word sequences 178
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and form a hybrid type input data for training lan-179

guage models. The language models are modified180

to take non-verbal and verbal input sequences si-181

multaneously and compute a fused internal repre-182

sentation. We expect the inclusion of non-verbal183

information will increase the performance of lan-184

guage models measured by perplexity.185

Hypothesis 2: Non-verbal communication con-186

forms to the principle of Entropy Rate Constancy.187

To test Hypothesis 2, we approximate the local en-188

tropy (H(s|L)) of non-verbal “tokens” using the189

perplexity scores obtained from neural sequential190

models, and correlate it with the utterances’ rela-191

tive positions within the monologue data. If we can192

find that H(s|L) increases with utterance position,193

is similar to verbal language, then it supports the194

hypothesis.195

4 Methods196

4.1 Data collection and processing197

The video data used are collected from 4 YouTube198

channels, i.e., 4 distinct speakers. There are 1 fe-199

male and 3 male speakers, and the spoken language200

is English. All the videos are carefully selected201

based on the standards that each video must con-202

tain only one speaker who faces in front of the203

camera, and whose hands must be visible. The204

automatic generated captions in .vtt format are205

obtained for each video.206

The pre-processing step is to extract the full-207

body landmark points of the speaker, in prepara-208

tion for the next gesture representation step. For209

this task, we use BlazePose (Bazarevsky et al.,210

2020), which is a lightweight convolutional neural211

network-based pose estimation model provided in212

MediaPipe1. It outputs 33 pose landmarks of the213

human body detected in each frame.214

4.2 Extract discrete gesture labels215

The next step is to represent gestures so that they216

can be embedded into language data. There are var-217

ious ways of creating continuous representations218

for gestures/poses, such as the pose embedding219

technique (Mori et al., 2015). However, it is dif-220

ficult to obtain a set of gestures that are universal221

across speakers using such continuous represen-222

tations. Thus, for the exploratory purpose of this223

study, we start with a simple method to create dis-224

crete gesture labels, by categorizing the hands po-225

sitions into grids.226

1https://google.github.io/mediapipe/

We divide the front space of a speaker into 3× 3 227

areas, thus, for each frame we have 9 rectangular 228

areas of the same size, indicated by integer numbers 229

from 1 to 9. Each hand is assigned an integer based 230

on which region it falls into. Because the speaker’s 231

body appear at different positions from frame to 232

frame, we develop an ad-hoc algorithm to annotate 233

gesture labels, based on the estimated central axis 234

of body and shoulder width. The pseudo code is 235

presented in appendix A.1. 236

Next, we use the combination of both hands to 237

create a unique gesture label for that frame. For 238

example, as shown in fig. 1b, the speaker’s left 239

and right hands fall into region 9 and 8, so the 240

gesture label is <72>. Because there are 9 possible 241

positions for each hand, the total number of gesture 242

labels is 9 × 9 = 81. For convenience, we use 243

one integer ID (instead of the merged ID connected 244

by a hyphen) to denote each of these 81 gestures: 245

<1>, <2>, ..., <81>. Note that 81 is the maximum 246

number, and the actual count of unique gesture 247

labels depends on the data. 248

4.3 Prepare gesture sequences 249

After obtaining the discrete gesture labels for all 250

video frames, we prepare the gesture sequences 251

based on the time stampped text transcript for 252

each video. We use the automatically generated 253

text transcript in .vtt format, which contains the 254

<START> and <END> time stamps for each word 255

(token) in the subtitle. See the following example: 256

<00:00:00.510><c> let’s</c> 257

<00:00:00.780><c> talk</c> 258

<00:00:01.020><c> about</c> 259

<00:00:01.140><c> saving</c> 260

<00:00:01.650><c> some</c> 261

<00:00:01.860><c> time</c> 262

263

in which each word is annotated by a pair of 264

<c></c> tag, and the <START> time stamp is 265

appended to the head. We treat the start time for 266

one word as the ending time for the previous word. 267

In this example, the token let’s elapses from 0.780 268

to 1.020 in seconds. Multiplying the time stamps 269

with frame rate of 24 FPS (different videos have 270

slightly different FPS), it tells that the word elapses 271

from the 19th frame to the 24th. Then, for each 272

frame within the range of [19, 24], we extract a 273

gesture label using the method described in Sec- 274

tion 4.2, resulting in a sequence of gesture labels, 275

[g19, g20, . . . , g24]. This sequence represents a con- 276
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5

1 2 3

7 8 9

4 6

(a) Both hands in region 5 →
label <25>.

8 9

1 2 3

7

4 65

(b) Right hand in region 9, left
in 8 → label <72>.

Figure 1: Create discrete gesture labels based on land-
mark positions of both hands.

tinuous change of gestures during the articulation277

of the corresponding word, which in most cases,278

consists of identical gesture labels. Therefore, we279

select the median label gm as a more compact rep-280

resentation.281

For an utterance consisting of N word tokens,282

{w1, w2, . . . , wN}, we obtain the median gesture283

label for each token, {g1, g2, . . . , gN}. Despite the284

down sampling effect of using the median label,285

there is still large amount of repetition in the re-286

sulted gm sequence, which brings a sparsity issue287

for later sequential modeling tasks. For example,288

in the first row of table 1, the median gesture la-289

bel is the same <24> for the first 6 tokens, which290

means that the speaker did not move his/her hands291

during that period of time. It makes sense that we292

treat these repeated gesture labels just as one label.293

By merging the 6 repeats of <24> and 2 repeats294

of <36>, we get a compressed gesture sequence,295

{<36>, <24>}, which means the speaker has made296

two distinct gestures during the utterance. For each297

median gesture sequence of length N , we obtain298

its compressed version {ĝ1, ĝ2, . . . , ĝN ′}, where299

N ′ ≤ N . See table 1 for more examples.300

4.4 Language models that incorporate301

gesture inputs302

We implement two neural network-based models303

for the language modeling tasks, using LSTM304

(Hochreiter and Schmidhuber, 1997) and Trans-305

former (Vaswani et al., 2017) encoders. The mod-306

els are tailored for handling two types of input:307

single-modal (words or gestures alone) and mixed-308

modal (words + gestures).309

Single-modal LM task310

The single-modal model takes as input a sequence311

of either word (w) or gesture (median g or com-312

pressed ĝ) tokens and convert them to the embed- 313

ding space. Then the token embeddings are fed 314

to the LSTM/Transformer encoders to compute a 315

dense representation for tokens at each time step of 316

the sequence. Finally, the dense representation at 317

the current time step t is used to predict the token 318

at the next time step t+ 1 using a softmax output. 319

The model architecture is shown in fig. 2. 320

The learning object here is the same as a typical 321

sequential language modeling task, i.e., to mini- 322

mize the negative log probability: 323

NLL = −
K∑
k=1

logP (tk|t1, t2, . . . , tk−1) (2) 324

in which t1, . . . , tk−1 is all the tokens (gesture 325

or word) before tk within the same utterance. An 326

exponential conversion of eq. (2) leads to the lo- 327

cal entropy term, H(g|L) = exp(NLL), which is 328

the target variable of our interest. Detailed model 329

hyper-parameters and training procedures are in- 330

cluded in appendix A.2. 331

Mixed-modal LM task 332

The mixed-modal model takes the word sequence 333

Sw(u) = {wi} and gesture sequence Sg(u) = 334

{gi} of the same utterance u simultaneously as 335

input. A pair of sequences, Sw (words) and Sg (ges- 336

tures) are the input, which is then fed into a modal- 337

ity fusion module, where the embedding represen- 338

tation for words and gestures at each time step, i.e., 339

wi and gi, are fused by sum, concat, or a bilinear 340

fusion component. Finally, the resulting mixed em- 341

beddings are encoded by the LSTM/Transformer 342

encoder for the next-word prediction task. The 343

purpose of this model is to verify Hypothesis 1, 344

for which we expect the perplexity scores of a 345

mixed-modal model to be lower than that of a 346

single-modal one. It is also our interest to explore 347

the optimal modality fusion method. The model’s 348

architecture is shown in fig. 2b. Detailed hyper- 349

parameters will be presented in the Appendix. 350

5 Results 351

5.1 Summary of data 352

53 videos of total length 10 hours and 39 minutes 353

are collected. The average length of each video is 354

723.7 seconds (SD = 438.1). 17.9K lines of auto- 355

matically generated subtitles consisting of 121.5K 356

word tokens are obtained. We have extracted 81 357

distinct gesture labels, and the total count of the 358
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Word tokens in utterance Median gesture of each token {g} Compressed gesture sequence {ĝ}
going to give you
a flatter look glossy

<24> <24> <24> <24> <24>
<24> <36> <36> (N = 8) <24> <36> (N ′ = 2)

now this is really
your preference

<40> <72> <64> <64> <40>
<40> (N = 6) <40> <72> <64> <40> (N ′ = 4)

I think most of us
can get on board

<63> <63> <63> <63> <63>
<63> <63> <63> <63> (N = 9) <63> (N ′ = 1)

Table 1: Examples of gesture sequences. Integers wrapped by “<>” are gesture labels.

<63> <63> <63> <36> <72> <64> <64><63> <63> <63> <72> <72> <72> <72>

… …

encoder
unit

encoder
unit

encoder
unit

encoder
unit LSTM/Transformer encoder

!𝑦 for predicting the next gesture

Gesture embedding

recommendThere is one thing that I confidenceevery

… …

… that will help theirboost

Softmax

Gesture 
sequence: 
Word 
sequence: 

(a) Single-modal (gesture) model

<43> <43> <43> <40> <70> <67> <67><43> <43> <43> <70> <70> <70> <70>

… …

fusion

encoder
unit

encoder
unit

encoder
unit

encoder
unit LSTM/Transformer encoder

!" for predicting next word/gesture

Gesture embedding Word embedding

recommendThere is one thing that I confidenceevery

… …

… that will help theirboost

(b) Mixed-modal (word + gesture) model

Figure 2: Architecture of the LSTM/Transformer-based language models for handling single- (a) and mixed-modal
(b) input sequences.

median gesture label is the same as that of the word359

tokens (121.5K). The compressed gesture labels360

has a smaller total count of 26.12 K.361

The top 5 most frequent gesture labels are <63>,362

<56>, <64>, <72> and <36>, whose rankings363

are slightly different between the median and com-364

pressed labels. We find that the frequency distribu-365

tion of gesture labels roughly follows the Zipf’s law,366

as shown in the frequency vs. rank plots in fig. 3,367

which is a common distribution pattern in natural368

language data (Zipf, 2013; Piantadosi, 2014).369

Gesture label <63> is the dominant gesture370

throughout the data. It is gestural position where371

the speaker’s right hand (from his/her perspective)372

is in region 7, and left hand region 9. A detailed373

analysis The positional and semantic meanings of374

these labels is provided in section 5.4.375

5.2 Examining Hypothesis 1: Mixed vs. 376

single modal comparison 377

The plots of validation loss against training epochs 378

are shown in fig. 4. We use the prefixes s- and 379

m- to indicate the single-modal and mixed-modal 380

models, respectively, that is, s- models take pure 381

word sequences as input, while m- models take 382

word+gesture sequences as input. It can be clearly 383

seen that the m-LSTM has lower validation loss 384

than s-LSTM, and same trend is found between 385

m-Transformer and s-Transformer. It supports 386

Hypothesis 1: gestures indeed contain useful in- 387

formation that can improve the language model’s 388

performance. The Transformer-based models have 389

overall lower perplexity than LSTM-based ones, 390

which is expected as a Transformer encoder has 391
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Figure 3: Frequency count against the rank gesture la-
bels in logarithm transformed scales. Top three most
frequent gesture labels annotated.

more parameters to facilitate the sequence predic-392

tion task. But meanwhile, the validation loss for393

training Transformer models does not decrease as394

significantly (see the less smooth curves in fig. 4b)395

as LSTM models, which probably indicates some396

overfitting issue. This can be fixed by collecting397

more training data.398

We also compare three different feature fusion399

method in training the m-LSTM/Transformer mod-400

els. The corresponding validation losses are shown401

in fig. 5. It is found that sum and concat result402

in significantly lower loss for m-LSTM, but the403

difference is not that observable in m-Transformer,404

because in the latter loss shortly converges after405

training starts. Thus, we can conclude that sum and406

concat have similar performance in language mod-407

eling tasks. We will further verify this principle408

on more data (especially on Transformer model) in409

future studies.410

5.3 Examine Hypothesis 2: Local entropy411

increases with utterance position412

To examine Hypothesis 2, we plot the local en-413

tropy of each gesture sequence (median and com-414

pressed, respectively) against the corresponding415

utterance’s position in fig. 6, which shows a vis-416

ible increasing trend. We also use linear models417

to verify the correlations between local entropy418

and utterance position, that is, local entropy as419

dependent variable and utterance position as pre-420

dictor (no random effect is considered due to lim-421

ited data size). It is confirmed that utterance po-422

sition is a significant predictor of local entropy423

with positive β coefficients. For raw gestures, the424

betas are smaller: βLSTM = 1.6× 10−3 (p < .05),425

βTrm = 2.3× 10−3 (p < .01); for compressed ges-426

tures: βLSTM = 0.097, βTrm = 0.093 (p < .001).427

Therefore, the increase of local entropy is statisti-428
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Figure 4: Validation loss against training epochs for
comparing the mixed-modal and single-modal lan-
guage models.

cally significant. It supports our hypothesis. 429

5.4 Analysis of typical gesture 430

We examine the top four frequent gesture labels 431

<63>, <56>, <72> and <36>, and show some 432

selected screenshots in fig. 7 (More examples for 433

each gesture are included in appendix A.3). 434

For <63>, <56> and <72>, the positions of 435

both hands are at the mid-lower position in front 436

of the body. Gesture <63> has two hands evenly 437

distant from the center, while <56> captures a 438

movement to the right and <72> to the left. Ges- 439

ture <36> has the right hand at the same height as 440

the speaker’s neck, and the left hand hanging down, 441

which is a typical one-hand gesture in conversa- 442

tion. A technical detail is that in most screenshots 443

of <36> the left hands are invisible, but the pose 444

estimation algorithm can still infer their positions 445

with accuracies above 95% (see the report from 446

Mediapipe2), which is also why they are included 447

2https://google.github.io/mediapipe/
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Figure 5: Validation loss against training epochs for
comparing the three feature fusion methods in mixed-
modal models: sum, concat, and bilinear.

in our analysis. In general, the selected four ges-448

tures can represent commonly seen patterns in daily449

communication.450

Based on the results from section 5.2 that includ-451

ing gesture features can improve the performance452

of language models, we conjecture that there could453

exist a correlation between gestures and certain454

semantic representations, i.e., a speaker may use455

certain type of gestures to convey certain meanings.456

We verify this guess by examining the embedding457

vectors of word tokens that co-locate with four458

selected gestures: <0>, <56>, <64>, and <72>.459

Among them, <0> is the label that indicates “no460

gesture”, i.e., no body key point detected in the461

frame, which means the speaker is a narrator hid-462

den behind the camera. It is included because of its463

high frequency in our data. The other three labels464

are among the top four most frequent gestures (as465

shown before). The other two frequent gestures,466

<36> and <63> are excluded because <63> is467

overwhelmingly frequent, which could result in468

in-balanced samples across gestures, and <36> is469

scarcely distributed, which makes it difficult to find470

sentences solely containing it. Next, we pick sen-471

tences that contain one distinct gesture, and then472

obtain the corresponding sentence vectors from a473

pre-trained BERT model 3. The last hidden layer474

of 768-d for each word is collected, and the mean475

of all word vectors is used as the sentence vector.476

We run t-SNE (Van der Maaten and Hinton,477

2008) on all sentence vectors and show the result478

in fig. 8. It can be seen that the sentence vectors479

from different gestures cannot be visually distin-480

guished. To further examine the possibility that481

the sentence vectors of certain gestures may dif-482

solutions/hands.html
3https://huggingface.co/

bert-base-uncased
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Figure 6: Local entropy of gesture sequences increases
with utterance position. Dots are actual data points.
Lines are smoothed curves using generalized additive
models (GAM). Shaded areas are 95% bootstrap confi-
dence intervals.

fer from the others, we calculate the inner-group 483

pair-wise distances (norm-2 Euclidean distance) 484

for each gesture, and the outer-group pair-wise 485

distances between all gestures. From the results 486

shown in table 2, we can see that for gesture <0> 487

and <72>, their inner-group distances are smaller 488

than the outer-group ones, which suggest that their 489

corresponding sentences are distributed in a se- 490

mantic sub-space that is more distinguishable from 491

other gestures. Since <0> is for no-gesture (nar- 492

rator mode), its particularly small inner-distance 493

value indicates that speakers do have different pref- 494

erences in planning semantic content depending 495

on whether they are in front of the camera or not. 496

<72> is the most significant example of actual 497

gestures whose inner-distance is smaller, which in- 498

dicates that it is probably a gesture that co-occur 499
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Gesture <0> <56> <64> <72>
<0> 8.09 (1.78) 8.43 (1.04) 8.47 (0.89) 8.36 (1.04)
<56> 8.43 (1.04) 8.60 (2.03) 8.54 (0.89) 8.47 (1.04)
<64> 8.47 (0.89) 8.54 (0.89) 8.51 (1.65) 8.45 (0.96)
<72> 8.36 (1.04) 8.47 (1.04 ) 8.45 (0.96) 8.25 (1.85)

Table 2: Pair-wise inner-group average norm-2 Euclidean distances (diagonal cells) and outer-group average dis-
tances (other cells) between sentence vector of corresponding gestures. Standard deviations shown in parentheses.

Video ID: 0iApML4l0lI Time stamp: 00:00:07.200

1 2 3

4 65

8 97
Gesture label: <63> Word token: “because”

Video ID: 7vkJqXYIbOI Time stamp: 00:00:37.559

1 2 3

4 65

7
Gesture label: <56> Word token: “books”

8 9

Video ID: TgOmBWdK84k Time stamp: 00:05:24.880

1 2 3

4 65

Gesture label: <72> Word token: “energy”

987

Video ID: JVFbZhS40is Time stamp: 00:07:52.479

1 2 3

65

Gesture label: <36> Word token: “four”

97

4
8

Figure 7: Selected screenshots for the top 4 frequent
gestures.

with distinct meanings in sentences. This needs be500

further examined in future studies using more data.501

To sum, we found preliminary positive evidence502

for associating gestures with distinct semantic503

meanings. However, the analysis above is limited504

in following aspects: First the sentences that con-505

tain gesture <0> are all from one single video,506

which means the findings lacks generality. Second,507

pre-trained embeddings are used instead of fine-508

tuned parameters, which can result in inaccurate509

description of the semantic space. We believe these510

limits can be overcome in our future plan.511
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Figure 8: t−SNE plot of the BERT vectors obtained
from utterances that include gesture tokens <0>, <56>,
<64> and <72>.

6 Conclusions 512

Our main conclusions are two-fold: First, incorpo- 513

rating gestural features will significantly improve 514

the performance of language modeling task, even 515

when gestures are represented with a simplistic 516

method. Second, the way gestures are used as a 517

complementary non-verbal communication side- 518

channel follows the principle of entropy rate con- 519

stancy (ERC) in Information Theory. It means that 520

the information encoded in hand gestures, albeit 521

subtle, is actually organized in a rational way that 522

enhances the decoding/understanding of informa- 523

tion from a receiver’s perspective. This is the first 524

work done, to the best of our knowledge, to extend 525

the scope of ERC to non-verbal communication. 526

The conclusions are based on empirical results 527

from multi-modal language models trained on 528

monologue speech videos with gesture informa- 529

tion represented by discrete tokens. There are two 530

explanations for what causes the observed entropy 531

increasing pattern: First, more rare gestures (higher 532

entropy) near the later stage of communication; 533

Second, the entropy for the same gesture also in- 534

creases during the communication. While the latter 535

indicates a more sophisticated and interesting the- 536

ory about gesture usage, both explanations requires 537

further investigation. 538

This work is exploratory but the evidence is 539

promising, as only a small data-set is used and a 540

simplistic gesture representation method is applied. 541

For future work, we plan to work with a larger and 542

more diverse dataset with a higher variety in genres 543

(public speech, etc.) and examine more advanced 544

representation methods, such as continuous embed- 545

ding and clustering. Another direction to pursue 546

is to interpret the semantic meanings of gestures 547

and other non-verbal features by examining their 548

semantic distance from utterances in vector space. 549

More specifically, non-parametric clustering algo- 550

rithms can be useful to identify distinct dynamic 551

actions, which provides a different way to extract 552

non-verbal representations. 553
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A Appendix686

A.1 Algorithm for labeling gestures687

The algorithm for labeling gestures based on the688

hand positions is described by the pseudo code689

below:690

Algorithm 1 Algorithm for hand position-based
labeling

Require: 0 < r = H
W < 1, ε = 0.001, N = 3

Ensure: label ∈ {1, 2, . . . , 81}
1: l_shd_x← x coord of left shoulder
2: r_shd_x← x coord of right shoulder
3: l_hip_x← x coord of left hip
4: r_hip_x← x coord of right hip
5: nose_x← x coord of nose
6: xc = (nose_x + l_shd_x+r_shd_x

2 +
l_hip_x+r_hip_x

2 )/3
7: xleft = xc − 0.5 · r + ε
8: xright = xc + 0.5 · r − ε
9: w = xright − xleft

10: ybot = ε
11: ytop = 1− ε
12: h = ytop − ybot
13: l_hnd_x← x coord of left hand
14: r_hnd_x← x coord of right hand
15: l_hnd_y← y coord of left hand
16: r_hnd_y← y coord of right hand
17: l_col = bmin(max(l_hnd_x−xleft,0),w)c

r ·N +1

18: r_col = bmin(max(r_hnd_x−xleft,0),w)c
r ·N +1

19: l_row = bmin(max(l_hnd_y−ybot,0),h)c
r ·N +1

20: r_row = bmin(max(r_hnd_y−xbot,0),h)c
r ·N +1

21: l_label = b(l_row− 1) ·N + l_colc
22: r_label = b(r_row− 1) ·N + r_colc
23: label = (l_label− 1) ·N2 + r_label

The algorithm takes an image frame of size691

H ×W (pixels) as input (H = 720, W = 1280692

for most videos). r = H/W is the ration of frame693

height over width, and thus its value is fixed as694

r = 720/1280 = 0.5625 in our data. All x and y695

coordinates returned by the body key points detec-696

tor (Mediapipe) are relative values within the range697

of [0, 1]. We have also observed that a H × H698

square region centered around the central axis of699

body can consistently cover the speaker’s hands, so700

that is why we use r as the relative width to define701

the left and right boundaries of the N × N split702

areas (line 7 and 8). The resulting label for left703

hand l_label ∈ {1, . . . , N}, and label for right704

hand r_label ∈ {1, . . . , N}. According to line705

23, the final label combing information from both 706

hands label ∈ {1, 2, . . . , N2}, which contains 707

81 distinct labels when N = 3. 708

The code for the labeling algorithm will be pub- 709

lished in a public repository under the MIT license. 710

A.2 Hyper-parameters and training 711

procedures 712

For the LSTM-based encoder, embedding size is 713

300, hidden size is 200, number of layers is 2; 714

a fully connected layer is used as the decoder 715

connecting the encoder output and the softmax; 716

dropout layers of probability 0.2 are applied to the 717

outputs of both the encoder and decoder. For the 718

Transformer-based encoder, model size is 20, hid- 719

den size is 100, number of layers is 2; same fully 720

connected linear decoder is used; dropout layers of 721

probability 0.5 are used at the position encoding, 722

and each transformer encoder layer. To enable the 723

one-direction (left to right) modeling effect, a mask 724

matrix (of 0 and 1s) in an upper-triangular shape is 725

used together with each input sequence. 726

Model parameters are randomly initialized. 727

Training is done within 40 epochs, with batch size 728

of 20, at and initial learning rate lr = 0.05. SGD 729

optimizer with default momentum is used for train- 730

ing the LSTM model; Adam optimizer is used for 731

training the Transformer model. Data are split to 732

80% for training and 20% for testing. After each 733

training epoch, evaluation is done over the test 734

set, and the model with lowest perplexity scores is 735

saved as the best one. 736

Models are implemented with PyTorch. 737

torch.nn.CrossEntropyLoss module is 738

used as the loss function. The mathematical 739

meaning of the output from this function is the 740

negative logarithm likelihood (NLL in eq. (2)), and 741

thus we compute the exponential values of the 742

output to get the local entropy scores. The entropy 743

scores used in the plot and statistical analysis are 744

obtained from both train and test sets. Models are 745

trained on 4 Nvidia 1080Ti GPU cards. The total 746

GPU hours needed is about 2 hours. 747

The code for training, testing the language mod- 748

els will be published in a public repository under 749

the MIT license. The binary files of trained model 750

will also be provided via URLs included in the 751

repository. The intended use of the trained lan- 752

guage models are for scientific research about gen- 753

eral patterns in human non-verbal communication, 754

but not for identification of individual speakers, nor 755
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for other commercial use.756

A.3 Screenshots for frequent gestures757

Some typical screenshots for the top 4 frequent758

gestures from all four speakers are shown in fig. 9.759

We can find similar appearance of same gestures760

across different speakers.761
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Video ID: 0iApML4l0lI Time stamp: 00:00:07.200

1 2 3

4 65

8 97
Gesture label: <63> Word token: “because”

Video ID: 7vkJqXYIbOI Time stamp: 00:01:11.850

1 2 3

4 65

8 97
Gesture label: <63> Word token: “reason”

Video ID: TgOmBWdK84k Time stamp: 00:02:04.479

1 2 3

4 65

8 97
Gesture label: <63> Word token: “enough”

Video ID: JVFbZhS40is Time stamp: 00:09:04.320

1 2 3

4 65

8 97
Gesture label: <63> Word token: “leader”

(a) Gesture label <63>
Video ID: 0iApML4l0lI Time stamp: 00:02:57.519

1 2 3

4 65

7
Gesture label: <56> Word token: “every”

8 9

Video ID: 7vkJqXYIbOI Time stamp: 00:00:37.559

1 2 3

4 65

7
Gesture label: <56> Word token: “books”

8 9

Video ID: TgOmBWdK84k Time stamp: 00:06:05.360

1 2 3

4 65

7
Gesture label: <56> Word token: “maintain”

8 9

Video ID: JVFbZhS40is Time stamp: 00:11:07.360

1 2 3

4 65

7
Gesture label: <56> Word token: “lot”

8 9

(b) Gesture label <56>
Video ID: 0iApML4l0lI Time stamp: 00:05:05.120

1 2 3

4 65

Gesture label: <72> Word token: “sending”

987

Video ID: FMIm8w2n7KM Time stamp: 00:07:36.540

1 2 3

4 65

Gesture label: <72> Word token: “like”

987

Video ID: TgOmBWdK84k Time stamp: 00:05:24.880

1 2 3

4 65

Gesture label: <72> Word token: “energy”

987

Video ID: JVFbZhS40is Time stamp: 00:01:09.920

1 2 3

4 65

Gesture label: <72> Word token: “well”

987

(c) Gesture label <72>
Video ID: 0iApML4l0lI Time stamp: 00:01:56.000

1 2 3

65

Gesture label: <36> Word token: “is”

97

4
8

Video ID: FMIm8w2n7KM Time stamp: 00:08:37.830

1 2 3

65

Gesture label: <36> Word token: “guys”

97

4
8

Video ID: TgOmBWdK84k Time stamp: 00:05:47.039

1 2 3

65

Gesture label: <36> Word token: “we’re”

97

4
8

Video ID: JVFbZhS40is Time stamp: 00:07:52.479

1 2 3

65

Gesture label: <36> Word token: “four”

97

4
8

(d) Gesture label <36>

Figure 9: Typical screenshots for gesture labels <63>, <56>, <72> and <36>.
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