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Abstract

The multi-modality nature of human com-
munication can be utilized to enhance the
performance of computational language mod-
els. However, few studies have explored
the non-verbal channels with finer theoretical
lens. We use multi-modal language models
trained against monologue video data to study
how the non-verbal expression contributes to
communication, by examining two aspects:
first, whether incorporating gesture representa-
tions can improve the language model’s perfor-
mance (perplexity), and second, whether the
gesture channel demonstrates the similar pat-
tern of entropy rate constancy (ERC) found
in verbal language, which is governed by In-
formation Theory. We have positive results
to support both assumptions. The conclusion
is that speakers indeed use simple gestures to
convey information that enhances verbal com-
munication, and how this information is orga-
nized is a rational process.

1 Introduction

Communication is a multi-modal process, in which
information from verbal and non-verbal modalities
are mixed into one channel. It has already been
revealed in empirical studies that speakers’ expres-
sion in visual modality, including gestures, body
poses, eye contacts and other types of non-verbal
behaviors, play critical roles in face-to-face com-
munication, as they add subtle information that is
hard to convey in verbal language. However, it
remains an untested idea to view these sparse and
random non-verbal signals as a formal communica-
tion channel that transmits “serious” information,
which has seldom been validated by computational
studies. A key missing step is to explore whether
the non-verbal information can be quantified.

The questions that are worth further investigation
include (but are not limited to): How rich is the in-
formation contained in these non-verbal channels?
What are their relationships to verbal information?

Can we understand the meanings of different ges-
tures, poses, and motions embedded in spontaneous
language in a similar way to understanding word
meanings? The goal of this study is to propose a
simple but straight-forward framework to approach
the above questions, under the guidance of Infor-
mation Theory. Some preliminary, yet prospective
results are presented.

2 Related Work

2.1 Gestures as non-verbal communication

There is vast literature on the connection between
gesture and language in human communication.
Gestures, defined as “the spontaneous hand move-
ments produced in rhythm with speech” (Clough
and Duff, 2020) naturally co-occur with spoken
language. According to the thorough survey from
(Clough and Duff, 2020), the communication func-
tion of gestures is one of the main focus of
early studies. McNeill (1992) has classified ges-
tures into two categories, representative and non-
representative, in which the former has clearer se-
mantic meanings (e.g., depicting objects and de-
scribing locations), while the latter refers to the
brief, repetitive movements that has little substan-
tive meanings.

2.2 Mixed-modal models in NLP and ML

The recent advances of deep neural network-based
machine learning techniques provide new methods
to understand the non-verbal components of human
communication. Many existing works primarily fo-
cus on using multi-modal features as clues for a
variety of inference tasks, including video content
understanding and summarization (Li et al., 2020;
Bertasius et al., 2021), as well as more specific
ones such as predicting the shared attention among
speakers (Fan et al., 2018) and semantic-aware ac-
tion segmentation (Gavrilyuk et al., 2018; Xu et al.,
2019). More recently, models that include mul-
tiple channels have been developed to character-



ize context-situated human interactions (Fan et al.,
2021). Advances in representation learning have
enabled researchers to study theoretical questions
with the tools of multi-modal language models.

Neural sequential models are used for predicting
the shared attention among speakers (Fan et al.,
2018) and semantic-aware action segmentation
(Gavrilyuk et al., 2018; Xu et al., 2019). More re-
cently, models that include multiple channels have
been developed to characterize visually embedded
and context-situated language use (Fan et al., 2021;
Li et al,, 2019, 2021; He et al., 2022). Another
line of work focuses on the predicting task in the
opposite direction, that is, predicting/generating
gesture motion from audio and language data (Gi-
nosar et al., 2019; Yoon et al., 2020; Alexanderson
et al., 2020). For short, advances in representation
learning have enabled researchers to study theoreti-
cal questions complex models.

2.3 Insights from cognitive science studies

Gesture-based non-verbal communication has been
proven to facilitate the formation of messages in
cognitive science studies. This facilitation can
come from multiple layers of visual and vocal sig-
nals can add semantic and pragmatic information
in face-to-face communication. (Holler and Levin-
son, 2019). Visible gestures are more powerful
form of communication than vocalization in dia-
logue object description tasks (Macuch Silva et al.,
2020). In these studies, gestures from human sub-
jects are usually encoded by the hands’ spacial loca-
tions, which provide insights to the gesture extrac-
tion method used in this study. Also, their results
strongly indicate the potentials of building more
comprehensive computational language models by
including simple non-verbal features. However, so
far, few computational studies have attempted to
directly model spontaneous language.

2.4 Information theories

Information theory (Shannon, 1948) has been
broadly applied in computational linguistics as the
theoretic background for the probabilistic models
of language. This also provides philosophical ex-
planations to a broad spectrum of linguistic phe-
nomena. One example that interests researchers
the most is the assumption/principle of entropy
rate constancy (ERC). Under this assumption, hu-
man communication in any form (written, spoken,
etc.) should optimize the rate of information trans-
mission rate by keeping the overall entropy rate

constant.

In natural language, entropy refers to the pre-
dictability of words (tokens, syllables) estimated
with probabilistic language models. Genzel and
Charniak (2002, 2003) first formulated a method to
examine ERC for written language, by decompos-
ing the entropy term into local and global entropy:

H (s|context) = H(s|L) — I(s,C|L) (1)

in which s can be any symbol whose probability
can be estimated, such as a word, punctuation, or
sentence. C' and L refer to the global and local
contexts for s, among which C'is purely concep-
tual and only L can be operationally defined. By
ERC, the left term in eq. (1) should remain an in-
variant against the position of s. It results in an
expectation that the first term on the right H (s|L)
should increase with the position of s, because the
second term I (s, C|L), i.e., the mutual information
between s and itself global context should always
decrease (see Genzel and Charniak (2003)’s paper
for more examples). While they have confirmed
the increase of local entropy in written language,
Xu and Reitter (2016, 2018) also confirmed the pat-
tern in spoken language, relating it to the success
of task-oriented dialogues (Xu and Reitter, 2017).

Now, the goal of this study is to extend the ap-
plication scope of ERC to the non-verbal realm.
More specifically, if the s in eq. (1) represents any
symbol that carries information, for example, a ges-
ture or pose, then the same increase pattern should
be observed within a sequence of gestures. ERC
can be interpreted as a “rational” strategy for the
information sender (speaker) because it requires
less predictable content (higher local entropy) to
occur at a later position within the message, which
maximizes the likelihood for the receiver (listener)
to successfully decode information with the least
effort. The question explored here is whether we
“speak’ rationally by gestures.

3  Questions and Hypotheses

We examine two hypotheses in this study:

Hypothesis 1: Incorporating non-verbal represen-
tations as input will improve the performance of
language modeling task. To test Hypothesis 1, we
extract non-verbal representations using the output
from pose estimation, and then compose discrete
tokens to represent the non-verbal information. The
non-verbal tokens are inserted into word sequences



and form a hybrid type input data for training lan-
guage models. The language models are modified
to take non-verbal and verbal input sequences si-
multaneously and compute a fused internal repre-
sentation. We expect the inclusion of non-verbal
information will increase the performance of lan-
guage models measured by perplexity.

Hypothesis 2: Non-verbal communication con-
forms to the principle of Entropy Rate Constancy.
To test Hypothesis 2, we approximate the local en-
tropy (H(s|L)) of non-verbal “tokens” using the
perplexity scores obtained from neural sequential
models, and correlate it with the utterances’ rela-
tive positions within the monologue data. If we can
find that H (s|L) increases with utterance position,
is similar to verbal language, then it supports the
hypothesis.

4 Methods

4.1 Data collection and processing

The video data used are collected from 4 YouTube
channels, i.e., 4 distinct speakers. There are 1 fe-
male and 3 male speakers, and the spoken language
is English. All the videos are carefully selected
based on the standards that each video must con-
tain only one speaker who faces in front of the
camera, and whose hands must be visible. The
automatic generated captions in . vtt format are
obtained for each video.

The pre-processing step is to extract the full-
body landmark points of the speaker, in prepara-
tion for the next gesture representation step. For
this task, we use BlazePose (Bazarevsky et al.,
2020), which is a lightweight convolutional neural
network-based pose estimation model provided in
MediaPipe!. It outputs 33 pose landmarks of the
human body detected in each frame.

4.2 Extract discrete gesture labels

The next step is to represent gestures so that they
can be embedded into language data. There are var-
ious ways of creating continuous representations
for gestures/poses, such as the pose embedding
technique (Mori et al., 2015). However, it is dif-
ficult to obtain a set of gestures that are universal
across speakers using such continuous represen-
tations. Thus, for the exploratory purpose of this
study, we start with a simple method to create dis-
crete gesture labels, by categorizing the hands po-
sitions into grids.

'https://google.github.io/mediapipe/

We divide the front space of a speaker into 3 x 3
areas, thus, for each frame we have 9 rectangular
areas of the same size, indicated by integer numbers
from 1 to 9. Each hand is assigned an integer based
on which region it falls into. Because the speaker’s
body appear at different positions from frame to
frame, we develop an ad-hoc algorithm to annotate
gesture labels, based on the estimated central axis
of body and shoulder width. The pseudo code is
presented in appendix A.1.

Next, we use the combination of both hands to
create a unique gesture label for that frame. For
example, as shown in fig. 1b, the speaker’s left
and right hands fall into region 9 and 8, so the
gesture label is <72>. Because there are 9 possible
positions for each hand, the total number of gesture
labels is 9 x 9 = 81. For convenience, we use
one integer ID (instead of the merged ID connected
by a hyphen) to denote each of these 81 gestures:
<1>,<2>, ..., <81>. Note that 81 is the maximum
number, and the actual count of unique gesture
labels depends on the data.

4.3 Prepare gesture sequences

After obtaining the discrete gesture labels for all
video frames, we prepare the gesture sequences
based on the time stampped text transcript for
each video. We use the automatically generated
text transcript in . vtt format, which contains the
<START> and <END> time stamps for each word
(token) in the subtitle. See the following example:

<00:00:00.
<00:00:00.
<00:00:01.
<00:00:01.
<00:00:01.
<00:00:01.

510><c>
780><c>
020><c>
140><c>
650><c>
860><c>

let’s</c>
talk</c>
about</c>
saving</c>
some</c>
time</c>

in which each word is annotated by a pair of
<c></c> tag, and the <START> time stamp is
appended to the head. We treat the start time for
one word as the ending time for the previous word.
In this example, the token let’s elapses from 0.780
to 1.020 in seconds. Multiplying the time stamps
with frame rate of 24 FPS (different videos have
slightly different FPS), it tells that the word elapses
from the 19th frame to the 24th. Then, for each
frame within the range of [19, 24], we extract a
gesture label using the method described in Sec-
tion 4.2, resulting in a sequence of gesture labels,
[919, 920, - - - , g24]. This sequence represents a con-
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(a) Both hands in region 5 —  (b) Right hand in region 9, left
label <25>. in 8 — label <72>.

Figure 1: Create discrete gesture labels based on land-
mark positions of both hands.

tinuous change of gestures during the articulation
of the corresponding word, which in most cases,
consists of identical gesture labels. Therefore, we
select the median label ¢g"* as a more compact rep-
resentation.

For an utterance consisting of N word tokens,
{wy,wa, ..., wy}, we obtain the median gesture
label for each token, {g1, g2, - . ., gn }. Despite the
down sampling effect of using the median label,
there is still large amount of repetition in the re-
sulted g™ sequence, which brings a sparsity issue
for later sequential modeling tasks. For example,
in the first row of table 1, the median gesture la-
bel is the same <2 4> for the first 6 tokens, which
means that the speaker did not move his/her hands
during that period of time. It makes sense that we
treat these repeated gesture labels just as one label.
By merging the 6 repeats of <24> and 2 repeats
of <36>, we get a compressed gesture sequence,
{<36>, <24>}, which means the speaker has made
two distinct gestures during the utterance. For each
median gesture sequence of length N, we obtain
its compressed version {§1, g, ..., gn’}, where
N’ < N. See table 1 for more examples.

4.4 Language models that incorporate
gesture inputs

We implement two neural network-based models
for the language modeling tasks, using LSTM
(Hochreiter and Schmidhuber, 1997) and Trans-
former (Vaswani et al., 2017) encoders. The mod-
els are tailored for handling two types of input:
single-modal (words or gestures alone) and mixed-
modal (words + gestures).

Single-modal LM task

The single-modal model takes as input a sequence
of either word (w) or gesture (median g or com-

pressed g) tokens and convert them to the embed-
ding space. Then the token embeddings are fed
to the LSTM/Transformer encoders to compute a
dense representation for tokens at each time step of
the sequence. Finally, the dense representation at
the current time step ¢ is used to predict the token
at the next time step ¢ + 1 using a softmax output.
The model architecture is shown in fig. 2.

The learning object here is the same as a typical
sequential language modeling task, i.e., to mini-
mize the negative log probability:

K

NLL == "log P(tylt1, ta, ..., te1)  (2)
k=1

in which ¢1,...,t;_; is all the tokens (gesture
or word) before t;, within the same utterance. An
exponential conversion of eq. (2) leads to the lo-
cal entropy term, H (g|L) = exp(N LL), which is
the target variable of our interest. Detailed model
hyper-parameters and training procedures are in-
cluded in appendix A.2.

Mixed-modal LM task

The mixed-modal model takes the word sequence
Sw(u) = {w;} and gesture sequence Sy(u) =
{gi} of the same utterance u simultaneously as
input. A pair of sequences, S, (words) and S, (ges-
tures) are the input, which is then fed into a modal-
ity fusion module, where the embedding represen-
tation for words and gestures at each time step, i.e.,
w; and g;, are fused by sum, concat, or a bilinear
fusion component. Finally, the resulting mixed em-
beddings are encoded by the LSTM/Transformer
encoder for the next-word prediction task. The
purpose of this model is to verify Hypothesis 1,
for which we expect the perplexity scores of a
mixed-modal model to be lower than that of a
single-modal one. It is also our interest to explore
the optimal modality fusion method. The model’s
architecture is shown in fig. 2b. Detailed hyper-
parameters will be presented in the Appendix.

5 Results

5.1 Summary of data

53 videos of total length 10 hours and 39 minutes
are collected. The average length of each video is
723.7 seconds (SD =438.1). 17.9K lines of auto-
matically generated subtitles consisting of 121.5K
word tokens are obtained. We have extracted 81
distinct gesture labels, and the total count of the



Word tokens in utterance | Median gesture of each token {g} | Compressed gesture sequence {7} |

going to give you

<24> <24> <24> <24> <24>

a flatter look glossy <24> <36> <36> (N =38) <24> <36>(N' =2)
now this is really <40> <72> <64> <64> <40>
your preference <40> (N = 6) <40> <72> <64> <40> (N' =4)

I think most of us
can get on board

<63> <63> <63> <63> <63>
<63> <63> <63> <63>(N =9)

<63> (N’ = 1)

Table 1: Examples of gesture sequences. Integers wrapped by “<>"" are gesture labels.
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(b) Mixed-modal (word + gesture) model

Figure 2: Architecture of the LSTM/Transformer-based language models for handling single- (a) and mixed-modal

(b) input sequences.

median gesture label is the same as that of the word
tokens (121.5K). The compressed gesture labels
has a smaller total count of 26.12 K.

The top 5 most frequent gesture labels are <63>,
<56>, <64>, <72> and <36>, whose rankings
are slightly different between the median and com-
pressed labels. We find that the frequency distribu-
tion of gesture labels roughly follows the Zipf’s law,
as shown in the frequency vs. rank plots in fig. 3,
which is a common distribution pattern in natural
language data (Zipf, 2013; Piantadosi, 2014).

Gesture label <63> is the dominant gesture
throughout the data. It is gestural position where
the speaker’s right hand (from his/her perspective)
is in region 7, and left hand region 9. A detailed
analysis The positional and semantic meanings of
these labels is provided in section 5.4.

5.2 Examining Hypothesis 1: Mixed vs.
single modal comparison

The plots of validation loss against training epochs
are shown in fig. 4. We use the prefixes s- and
m- to indicate the single-modal and mixed-modal
models, respectively, that is, s- models take pure
word sequences as input, while m- models take
word+gesture sequences as input. It can be clearly
seen that the m-LSTM has lower validation loss
than s-LSTM, and same trend is found between
m-Transformer and s-Transformer. It supports
Hypothesis 1: gestures indeed contain useful in-
formation that can improve the language model’s
performance. The Transformer-based models have
overall lower perplexity than LSTM-based ones,
which is expected as a Transformer encoder has
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Figure 3: Frequency count against the rank gesture la-
bels in logarithm transformed scales. Top three most
frequent gesture labels annotated.

more parameters to facilitate the sequence predic-
tion task. But meanwhile, the validation loss for
training Transformer models does not decrease as
significantly (see the less smooth curves in fig. 4b)
as LSTM models, which probably indicates some
overfitting issue. This can be fixed by collecting
more training data.

We also compare three different feature fusion
method in training the m-LSTM/Transformer mod-
els. The corresponding validation losses are shown
in fig. 5. It is found that sum and concat result
in significantly lower loss for m-LSTM, but the
difference is not that observable in m-Transformer,
because in the latter loss shortly converges after
training starts. Thus, we can conclude that sum and
concat have similar performance in language mod-
eling tasks. We will further verify this principle
on more data (especially on Transformer model) in
future studies.

5.3 Examine Hypothesis 2: Local entropy
increases with utterance position

To examine Hypothesis 2, we plot the local en-
tropy of each gesture sequence (median and com-
pressed, respectively) against the corresponding
utterance’s position in fig. 6, which shows a vis-
ible increasing trend. We also use linear models
to verify the correlations between local entropy
and utterance position, that is, local entropy as
dependent variable and utterance position as pre-
dictor (no random effect is considered due to lim-
ited data size). It is confirmed that utterance po-
sition is a significant predictor of local entropy
with positive 3 coefficients. For raw gestures, the
betas are smaller: Srstm = 1.6 x 1073 (p < .05),
Brm = 2.3 x 1073 (p < .01); for compressed ges-
tures: BLSTM = 0.097, BTrm = 0.093 (p < .001).
Therefore, the increase of local entropy is statisti-
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(b) Transformer model

Figure 4: Validation loss against training epochs for
comparing the mixed-modal and single-modal lan-
guage models.

cally significant. It supports our hypothesis.

5.4 Analysis of typical gesture

We examine the top four frequent gesture labels
<63>, <56>, <72> and <36>, and show some
selected screenshots in fig. 7 (More examples for
each gesture are included in appendix A.3).

For <63>, <56> and <72>, the positions of
both hands are at the mid-lower position in front
of the body. Gesture <63> has two hands evenly
distant from the center, while <56> captures a
movement to the right and <72> to the left. Ges-
ture <3 6> has the right hand at the same height as
the speaker’s neck, and the left hand hanging down,
which is a typical one-hand gesture in conversa-
tion. A technical detail is that in most screenshots
of <36> the left hands are invisible, but the pose
estimation algorithm can still infer their positions
with accuracies above 95% (see the report from
Mediapipe?), which is also why they are included

https://google.github.io/mediapipe/
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Figure 5: Validation loss against training epochs for
comparing the three feature fusion methods in mixed-
modal models: sum, concat, and bilinear.

in our analysis. In general, the selected four ges-
tures can represent commonly seen patterns in daily
communication.

Based on the results from section 5.2 that includ-
ing gesture features can improve the performance
of language models, we conjecture that there could
exist a correlation between gestures and certain
semantic representations, i.e., a speaker may use
certain type of gestures to convey certain meanings.
We verify this guess by examining the embedding
vectors of word tokens that co-locate with four
selected gestures: <0>, <56>, <64>, and <72>.
Among them, <0> is the label that indicates “no
gesture”, i.e., no body key point detected in the
frame, which means the speaker is a narrator hid-
den behind the camera. It is included because of its
high frequency in our data. The other three labels
are among the top four most frequent gestures (as
shown before). The other two frequent gestures,
<36> and <63> are excluded because <63> is
overwhelmingly frequent, which could result in
in-balanced samples across gestures, and <36> is
scarcely distributed, which makes it difficult to find
sentences solely containing it. Next, we pick sen-
tences that contain one distinct gesture, and then
obtain the corresponding sentence vectors from a
pre-trained BERT model 3. The last hidden layer
of 768-d for each word is collected, and the mean
of all word vectors is used as the sentence vector.

We run ¢t-SNE (Van der Maaten and Hinton,
2008) on all sentence vectors and show the result
in fig. 8. It can be seen that the sentence vectors
from different gestures cannot be visually distin-
guished. To further examine the possibility that
the sentence vectors of certain gestures may dif-

solutions/hands.html
‘https://huggingface.co/
bert-base-uncased
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Figure 6: Local entropy of gesture sequences increases
with utterance position. Dots are actual data points.
Lines are smoothed curves using generalized additive
models (GAM). Shaded areas are 95% bootstrap confi-
dence intervals.

fer from the others, we calculate the inner-group
pair-wise distances (norm-2 Euclidean distance)
for each gesture, and the outer-group pair-wise
distances between all gestures. From the results
shown in table 2, we can see that for gesture <0>
and <72>, their inner-group distances are smaller
than the outer-group ones, which suggest that their
corresponding sentences are distributed in a se-
mantic sub-space that is more distinguishable from
other gestures. Since <0> is for no-gesture (nar-
rator mode), its particularly small inner-distance
value indicates that speakers do have different pref-
erences in planning semantic content depending
on whether they are in front of the camera or not.
<72> is the most significant example of actual
gestures whose inner-distance is smaller, which in-
dicates that it is probably a gesture that co-occur
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Gesture <0> <56> <64> <72>
<0> 8.09 (1.78) | 8.43(1.04) | 8.47 (0.89) | 8.36 (1.04)
<56> | 8.43(1.04) | 8.60(2.03) | 8.54(0.89) | 8.47 (1.04)
<64> | 8.47(0.89) | 8.54(0.89) | 8.51(1.65) | 8.45 (0.96)
<72> | 8.36(1.04) | 8.47(1.04) | 8.45(0.96) | 8.25 (1.85)

Table 2: Pair-wise inner-group average norm-2 Euclidean distances (diagonal cells) and outer-group average dis-
tances (other cells) between sentence vector of corresponding gestures. Standard deviations shown in parentheses.

Video ID: 01ApML41@1T Time stamp: 00:00:07.200  Video ID: 7vkJqXYIbOI Time stamp: @@:00:37.559

Gesture label: <63> Word token: “because” Gesture label: <56> Word token: “books”

Video ID: TgOmBWdK84k Time stamp: @0:05:24.880  Video ID: JVFbZhS4@is Time stamp: 9:67:52.479
/ By

Gesture label: <72> Gesture label: <36> Word token: “four”

Word token: “energy”

Figure 7: Selected screenshots for the top 4 frequent
gestures.

with distinct meanings in sentences. This needs be
further examined in future studies using more data.

To sum, we found preliminary positive evidence
for associating gestures with distinct semantic
meanings. However, the analysis above is limited
in following aspects: First the sentences that con-
tain gesture <0> are all from one single video,
which means the findings lacks generality. Second,
pre-trained embeddings are used instead of fine-
tuned parameters, which can result in inaccurate
description of the semantic space. We believe these
limits can be overcome in our future plan.

30 °
20 =

10

=20

mXxr>e

64
72
56

-30 x xA®

Figure 8: {—SNE plot of the BERT vectors obtained
from utterances that include gesture tokens <0>, <56>,
<64>and <72>.

6 Conclusions

Our main conclusions are two-fold: First, incorpo-
rating gestural features will significantly improve
the performance of language modeling task, even
when gestures are represented with a simplistic
method. Second, the way gestures are used as a
complementary non-verbal communication side-
channel follows the principle of entropy rate con-
stancy (ERC) in Information Theory. It means that
the information encoded in hand gestures, albeit
subtle, is actually organized in a rational way that
enhances the decoding/understanding of informa-
tion from a receiver’s perspective. This is the first
work done, to the best of our knowledge, to extend
the scope of ERC to non-verbal communication.

The conclusions are based on empirical results
from multi-modal language models trained on
monologue speech videos with gesture informa-
tion represented by discrete tokens. There are two
explanations for what causes the observed entropy
increasing pattern: First, more rare gestures (higher
entropy) near the later stage of communication;
Second, the entropy for the same gesture also in-
creases during the communication. While the latter
indicates a more sophisticated and interesting the-
ory about gesture usage, both explanations requires
further investigation.

This work is exploratory but the evidence is
promising, as only a small data-set is used and a
simplistic gesture representation method is applied.
For future work, we plan to work with a larger and
more diverse dataset with a higher variety in genres
(public speech, etc.) and examine more advanced
representation methods, such as continuous embed-
ding and clustering. Another direction to pursue
is to interpret the semantic meanings of gestures
and other non-verbal features by examining their
semantic distance from utterances in vector space.
More specifically, non-parametric clustering algo-
rithms can be useful to identify distinct dynamic
actions, which provides a different way to extract
non-verbal representations.
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A Appendix
A.1 Algorithm for labeling gestures

The algorithm for labeling gestures based on the
hand positions is described by the pseudo code
below:

Algorithm 1 Algorithm for hand position-based
labeling

Require: 0 <7 ={} <1,6=0.001, N =3
Ensure: label € {1,2,...,81}
1: 1_shd_x < «x coord of left shoulder
2: r_shd_x < x coord of right shoulder
3: 1_hip_x < x coord of left hip
4: r_hip_x < x coord of right hip
5
6

: nose_x < x coord of nose

D T, — (DOS@_X + l_shd_xgr_shd_x +

1_h ip_x—;r_h ip_x )/3

Tleft = e — 0.5 -7+ ¢
:xrigh[:xc—l—Oé-r—e

[c BN

91 W = Tright — Tleft

10: Ypot = €

1 yop=1—¢

12: 'h = Yop — Ybot

13: 1_hnd_x < x coord of left hand
14: r_hnd_x < x coord of right hand
15: 1_hnd_y < y coord of left hand

16: r_hnd_y < y coord of right hand
17: 1_col = |min(max(1_hnd_x—=ef,0),w) | N+1

18 T col — \_min(max(r_hrrd_x—l‘lefuo)7W)J N +1
B T

19° 1 row — |min(max(1_hnd_y—ybot,0),h)] N+1
B T
) __ |min(max(r_hnd_y—po,0),h)]

20: ¥_row = - ! -N+1

21: 1_label = |(1_row—1)-N+1_col]
22: r_label = |(r_row—1)- N+ r_col]
23: label = (1_label —1)-N? +r_label

The algorithm takes an image frame of size
H x W (pixels) as input (H = 720, W = 1280
for most videos). » = H/W is the ration of frame
height over width, and thus its value is fixed as
r = 720/1280 = 0.5625 in our data. All z and y
coordinates returned by the body key points detec-
tor (Mediapipe) are relative values within the range
of [0,1]. We have also observed that a H x H
square region centered around the central axis of
body can consistently cover the speaker’s hands, so
that is why we use 7 as the relative width to define
the left and right boundaries of the N x N split
areas (line 7 and 8). The resulting label for left
hand 1_label € {1,..., N}, and label for right
hand r_label € {1,..., N}. According to line

23, the final label combing information from both
hands label € {1,2,..., N2}, which contains
81 distinct labels when N = 3.

The code for the labeling algorithm will be pub-
lished in a public repository under the MIT license.

A.2 Hyper-parameters and training
procedures

For the LSTM-based encoder, embedding size is
300, hidden size is 200, number of layers is 2;
a fully connected layer is used as the decoder
connecting the encoder output and the softmax;
dropout layers of probability 0.2 are applied to the
outputs of both the encoder and decoder. For the
Transformer-based encoder, model size is 20, hid-
den size is 100, number of layers is 2; same fully
connected linear decoder is used; dropout layers of
probability 0.5 are used at the position encoding,
and each transformer encoder layer. To enable the
one-direction (left to right) modeling effect, a mask
matrix (of 0 and 1s) in an upper-triangular shape is
used together with each input sequence.

Model parameters are randomly initialized.
Training is done within 40 epochs, with batch size
of 20, at and initial learning rate Ir = 0.05. SGD
optimizer with default momentum is used for train-
ing the LSTM model; Adam optimizer is used for
training the Transformer model. Data are split to
80% for training and 20% for testing. After each
training epoch, evaluation is done over the test
set, and the model with lowest perplexity scores is
saved as the best one.

Models are implemented with PyTorch.
torch.nn.CrossEntropyLoss module is
used as the loss function. The mathematical
meaning of the output from this function is the
negative logarithm likelihood (NLL in eq. (2)), and
thus we compute the exponential values of the
output to get the local entropy scores. The entropy
scores used in the plot and statistical analysis are
obtained from both train and test sets. Models are
trained on 4 Nvidia 1080Ti GPU cards. The total
GPU hours needed is about 2 hours.

The code for training, testing the language mod-
els will be published in a public repository under
the MIT license. The binary files of trained model
will also be provided via URLs included in the
repository. The intended use of the trained lan-
guage models are for scientific research about gen-
eral patterns in human non-verbal communication,
but not for identification of individual speakers, nor



for other commercial use.

A.3 Screenshots for frequent gestures

Some typical screenshots for the top 4 frequent

gestures from all four speakers are shown in fig. 9.

We can find similar appearance of same gestures
across different speakers.
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Video ID: @1ApML4101I Time stamp: 00:00:07.200  Video ID: 7vkIqXYIbOI Time stamp: 80:01:11.850 Video ID: TgOmBWdK84k Time stamp: 00:02:04.479 Video ID: JVFbZhS40@is Time stamp: 80:09:04.320

Gesture label: <63> Word token: “because” Gesture label: <63> Word token: “reason” Gesture label: <63> Word token: “enough” Gesture label: <63> Word token: “leader”

(a) Gesture label <63>

Video ID: @iApML41@1I Time stamp: ©0:02:57.519  Video ID: 7vkIgXYIbOI Time stamp: 80:00:37.559 Video ID: TgOmBWdK84k Time stamp: ©0:06:05.360 Video ID: JVFbZhS40is Time stamp: 00:11:07.360

Gesture label: <56> Word token: “every” Gesture label: <56> Word token: “books” Gesture label: <56> Word token: “maintain” Gesture label: <56> Word token: “lot”

(b) Gesture label <56>
Video ID: @iApML41@1I Time stamp: ©0:05:05.120 Video ID: FMIm8w2n7KM Time stamp: ©0:07:36.54@ Video ID: TgOmBWdK84k Time stamp: @0:05:24.880 Video ID: JVFbZhS40is Time stamp: ©0:01:09.920

ctdr/(CD) 2 -

fakdowns toage its

Gesture label: <72> Word token: “sending” Gesture label: <72> Word token: “like” Gesture label: <72> Word token: “energy” Gesture label: <72> Word token: “well”

(c) Gesture label <72>

Video ID: @iApML41@1I Time stamp: 80:01:56.000 Video ID: FMIm8w2n7KM Time stamp: 80:08:37.83@  Video ID: TgOmBWdK84k Time stamp: 00: 0! .839  Video ID: JVFbZhS4@is Time stamp: 00:07:52.479
—

Gesture label: <36> Word token: “is” Gesture label: <36> Word token: “guys” Gesture label: <36> Word token: “we’ re” Gesture label: <36> Word token: “four”

(d) Gesture label <36>

Figure 9: Typical screenshots for gesture labels <63>, <56>, <72> and <36>.
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