
Siamese SIREN: Audio Compression with Implicit Neural Representations

Luca A. Lanzendörfer 1 Roger Wattenhofer 1

Abstract

Implicit Neural Representations (INRs) have
emerged as a promising method for representing
diverse data modalities, including 3D shapes, im-
ages, and audio. While recent research has demon-
strated successful applications of INRs in image
and 3D shape compression, their potential for au-
dio compression remains largely unexplored. Mo-
tivated by this, we present a preliminary investiga-
tion into the use of INRs for audio compression.
Our study introduces Siamese SIREN, a novel ap-
proach based on the popular SIREN architecture.
Our experimental results indicate that Siamese
SIREN achieves superior audio reconstruction fi-
delity while utilizing fewer network parameters
compared to previous INR architectures.

1. Introduction
INRs have become known as an alternative representation
for 3D shapes (Park et al., 2019; Mescheder et al., 2019), and
have since been successfully applied to other data modalities
such as radiance fields, images, and audio (Sitzmann et al.,
2020; Yu et al., 2020; Chen et al., 2021; Mildenhall et al.,
2021; Zuiderveld et al., 2021; Szatkowski et al., 2022).

In this paper, we apply INRs to audio compression, that is
we approximate the audio signal function f : T → R, where
T is the time input domain and R is the amplitude output
domain, with a small neural network. We take inspiration
from the recent work on compression with INRs (Dupont
et al., 2021; 2022; Strümpler et al., 2022) and build on pre-
vious work in audio INR (Sitzmann et al., 2020; Zuiderveld
et al., 2021; Szatkowski et al., 2022).

Even though INRs cannot yet compete with other data com-
pression approaches in the visual and audio domain (Dupont
et al., 2022; Strümpler et al., 2022), we believe it still war-
rants further research. INRs have some interesting prop-
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Positional Encoding + SIREN

Ground Truth

Siamese SIREN

Figure 1. Log-mel spectrogram of a random 10-second Lib-
riSpeech sample. We observe background noise produced from
SIREN with positional encoding. Siamese SIREN is able to re-
move the noise by computing the noise estimate.

erties, such as being resolution-invariant to the input data,
meaning the storage size does not scale with the input size,
as well as having the ability to reconstruct data using any
arbitrary resolution during inference.

However, a significant challenge arises when reconstructing
audio with INRs. In images, noise may be present, but is
often less noticeable. In audio data, however, even relatively
small reconstruction errors become clearly perceivable in
the form of stationary background noise due to the loga-
rithmic nature of human hearing (Weber–Fechner law, cf.
Appendix A). This noise thus becomes more pronounced the
further we reduce model size and quantize model weights.

The above trade-off can be phrased in the general case as
the following Pareto optimization problem: Let p be the pa-
rameters of a candidate INR, let Df = {(t, f(t)) : t ∈ T }
be the data of the audio sample f , and let q be a quality
measure (cf. Section 3). Denote the memory footprint by
| · |. Solve

max

(
q(p,Df ),

|Df |
|p|

)
(1)

subject to MSE (p,Df ) → 0,

where the fraction to be optimized represents the compres-
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sion ratio achieved by the INR, and where constraint con-
vergence is to come from gradient-descent training of p on
Df until complete convergence (training for overfitting).

To address this problem, we propose Siamese SIREN, an
INR model built on top of the general-purpose SIREN ar-
chitecture (Sitzmann et al., 2020). The basic idea of our ap-
proach is to add two twin extensions to the standard SIREN
model, both extensions trying to approximate the original
audio signal f . Since both extensions will contain noise, but
different noise, their difference can be leveraged to remove
the noise from the reconstruction f̂ .

We demonstrate the viability of our approach via a
set of audio metrics, log-mel spectrograms, and au-
dio samples. The code and examples are available at
https://github.com/lucala/siamese-siren.

2. Background
INRs are a class of functions, where one set of function
parameters p describes one data sample D. In particular, an
INR is a neural network trained on D that approximates f .

Sinusoidal Representation Networks, referred to as SIREN,
are a particular class of INR models (Sitzmann et al., 2020)
that use the multi-layer perceptron (MLP) architecture with
sine functions as their activation functions:

ϕi : xi → sin
(
ωi · (Wixi + bi)

)
, (2)

where ϕi is the ith layer of the network, Wi and bi are the
weight matrix and bias vector of the ith layer, respectively.
The authors found the frequency scaling hyperparameter
ωi helps SIREN converge faster. They set ωi = 30, with
ω0 = 3000 in the case of audio.

SIREN INRs have been shown to outperform standard
ReLU-activated INRs on images, audio, and 3D geome-
try (Sitzmann et al., 2020).

Positional Encoding (PE) has been shown to help INRs
learn high-frequency representations (Tancik et al., 2020;
Mildenhall et al., 2021; Benbarka et al., 2021; Strümpler
et al., 2022). We observe the same effect and also utilize PE,
transforming the input into a high-dimensional embedding:

γ(t) =
(
t, sin(σ0πt), cos(σ0πt), . . . ,

sin(σLπt), cos(σLπt)
)
, (3)

where t is a normalized point in time, σ is a frequency
scaling term, and L is the number of frequencies.

We propose a novel extension of SIREN, which we call
Siamese SIREN. This architecture is motivated by our find-
ing that small reconstruction errors of the waveform pro-
duced by SIREN contain audible background noise, even
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Figure 2. Overview of our proposed Siamese SIREN architecture,
compared to SIREN with positional encoding (PE+SIREN). The
above diagram illustrates a Siamese SIREN with two shared layers
and two siamese layers, where each shared layer contains four
units and each siamese layer contains two units. Our experiments
are centered around two shared layers with 256 units each, and
one siamese layer where each siamese head contains 128 units.

when training for tens of thousand of iterations (cf. Ap-
pendix C). This error is often magnified after quantizing the
network weights. To remove the background noise of the
reconstructed signal, we use Noise Reduce (Sainburg, 2019),
an algorithm which computes a spectrogram of the signal
and noise estimate. The signal and noise estimate are used
to compute a noise threshold for each frequency band. A
noise mask is computed based on the threshold, which is in
turn used to remove the noise.

To construct a noise estimate for Noise Reduce, assume that
a noisy reconstructed signal f̂ can be linearly decomposed
into the true signal f and the noise component ε. Since
the distribution from which ε was sampled is not known
in general, it has to be estimated. Training two INRs with
different random weight initializiations on the same signal
f we obtain two approximations f̂0, f̂1 of f . We use the
following rule to arrive at an estimate noise signal ε•

ε• = α

(
f̂• −

f̂0 + f̂1
2

)
, (4)

where α is a hyperparameter controlling the amplitude of
the noise estimate. We find that tuning α has an impact on
results, and we settle at α = 2 for all experiments. ε• can
either be ε0 or ε1, and having no preference, we then feed
ε0 as the noise estimate to Noise Reduce.

Instead of naively training two INRs to be able to estimate
the noise of the signal and thus doubling our parameter
count, our proposed Siamese SIREN network merges a
subset of layers, reducing the number of required parameters
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Figure 3. Comparison between different quantized models at training iteration t on a 10-second LibriSpeech sample. SIREN without
positional encoding (PE) cannot reproduce data after quantization. PE+SIREN is able to reproduce the signal with noise. Siamese SIREN
can successfully estimate the background noise and remove it while using less parameters than PE+SIREN.

while still allowing for signals f̂0 and f̂1 to be learned. That
way, each siamese twin possesses layers that are shared as
well as layers that are specific only to it (siamese layers). In
other words, the shared layers form a common backbone
for the INR networks, whereas the siamese layers act as two
separate heads, see Figure 2.

During training, both siamese heads learn to reconstruct the
same signal f , but due to different random weight initializa-
tion of the heads, the reconstructed signals will vary slightly.
We leverage this phenomenon to capture the noise estimate
that is needed for noise removal, and find it to be effective.

Further on the front of parameter memory footprint reduc-
tion, weight quantization strategies reduce |p| and increases
inference throughput by converting network weights. These
are usually often stored with 32-bit floating point precision,
but can be often quantized into smaller data types such as
8-bit integers. There exist various quantization schemes
– two common approaches are: Post-Training Quantiza-
tion (PTQ) and Quantization-Aware Training (QAT). QAT
tends to achieve lower reconstruction error after quantiza-
tion. However, QAT needs to either be part of the network
while training or fine-tuned after training the unquantized
model. PTQ can be applied after training and does not
require retraining the network, at the expense of slightly
worse reconstruction quality. We use PTQ, as in our early
experimentation we found PTQ errors did not significantly
affect subjective signal quality.

3. Experiments
To evaluate the quality of our models, we use the GTZAN
(Tzanetakis et al., 2001) and LibriSpeech datasets (Panay-
otov et al., 2015). GTZAN contains 1000 music snippets of
ten different genres at 30 seconds each. For speech we use
the train.100 split of LibriSpeech which contains 14
second audio snippets of English speakers reading passages
of text. We crop each audio snippet on the first 10 seconds
at a sampling rate of 22050 Hz.

To evaluate the reconstruction quality we mainly rely on
ViSQOL (Chinen et al., 2020), a metric to determine per-
ceived audio quality. ViSQOL is designed to approximate a
subjective listening test and produces Mean Opinion Scores
between a reference and a test signal. We also employ
CDPAM (Manocha et al., 2021), which approximates per-
ceptual audio similarity between two signals. Additionally,
we evaluate our models for LibriSpeech with PESQ (Rix
et al., 2001) and STOI (Taal et al., 2011), which are de-
signed to measure the perceived quality and intelligibility
of speech in a signal. See Appendix B for more details.

4. Results
We are interested in the trade-off between compression
speed, compression quality q(p,Df ), and compression ratio
|Df |
|p| . We therefore evaluate SIREN and Siamese SIREN

using small MLPs and over a small number of training itera-
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Table 1. Comparison between different SIREN configurations after quantization, over random LibriSpeech samples. PE refers to Positional
Encoding, ω0 refers to the scaling factor of the first SIREN layer, ω refers to all other SIREN layer scaling factors. 1x128 Siamese Layer
refers to one layer with 128 units for each siamese head. The original SIREN performs worse since it is not able to reconstruct the signal
after weight quantization.

Model
Name

Shared
Layers

Siamese
Layers PE ω0 ω #Params (103) Unquantized

File Size (kB)
Quantized

File Size (kB) ViSQOL↑ CDPAM↓ PESQ↑ STOI↑

original SIREN 3x256 0 0 3000 30 794 1594.6 410.9 1.01 0.84 1.05 -0.01
PE + SIREN 3x256 0 16 30 30 843 1692.9 435.5 1.63 0.2 1.91 0.93

optimized SIREN 3x256 0 16 100 100 843 1692.9 435.5 1.97 0.18 2.18 0.95
Siamese SIREN 2x256 1x128 16 100 100 513 1164.9 303.7 2.12 0.16 2.58 0.93

Table 2. Comparison between different layer configurations over
random LibriSpeech samples.

Shared Siamese #Params (103) ViSQOL↑ CDPAM↓ PESQ↑ STOI↑
3x256 0 843 1.5 0.23 2.26 0.94
2x256 1x128 513 1.92 0.2 2.62 0.9
2x128 1x64 142 1.28 0.31 1.58 0.68
2x64 1x32 42 1.34 0.34 1.18 0.43

tions. We train each model for 2500 iterations, which results
in a compression time of around 25 seconds per sample on
one Titan RTX. We find that the first 2500 iterations have
the biggest impact on reconstruction quality. Preliminary
experiments conducted by training to 10k iterations had led
to slightly better results, but with a clear trend of dimin-
ishing returns. Even though the underlying signal can be
distinctly heard after a few hundred steps, it is challenging
to remove the remaining background noise. Longer training
times reduce the presence of the noise, but it is left clearly
audible. Our proposed approach solves this by estimating
and removing the noise.

To compress the network, we quantize the network weights
with PTQ, which reduces the storage size by 4x. We also an-
alyze how the performance scores react to drastic reductions
in network size. We find that the reconstruction degrades
heavily when the network does not have sufficient parame-
ters to learn to fit the signal, as can be seen in Table 2.

We notice a significant gap in metric performance compared
to subjective listening evaluations. This is a well-known
problem in audio model evaluation (Cartwright et al., 2016;
Kilgour et al., 2019; Vinay & Lerch, 2022). We find that
audio evaluation metrics tend to hold up better in speech
signal analysis when compared to music signals.

To analyze the effect of estimating the noise distribution
using our Siamese SIREN approach, we conduct an ablation
study as shown in Figure 4. We observe a more pronounced
cut-off when no noise estimate is provided, especially for
music signals. We also noticed that the largest discrepancy
in signal fidelity comes from reconstruction – the signal is
subjectively only slightly more degraded after quantization.

Table 1 shows the results of our ablation study between the
original SIREN and our Siamese SIREN. We observe the
lowest score for the original SIREN, as the model cannot
reconstruct the output after weight quantization. This can
be seen in Figure 3.

Table 3. Evaluating the effect of layer sharing over random Lib-
riSpeech samples.

Shared Siamese #Params (103) ViSQOL↑ CDPAM↓ PESQ↑ STOI↑
3x256 0 843 2.06 0.34 2.21 0.95
2x256 1x128 513 2.22 0.14 2.73 0.93
1x256 2x128 151 1.94 0.24 2.00 0.87

0 3x128 75 1.85 0.31 1.77 0.81
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Figure 4. Comparison of noise removal. We visualize noise esti-
mate ε0 (a) and signal f̂0 (b). We demonstrate denoising results
with noise estimate (c) and without noise estimate (d), we observe
better results when using a noise estimate.

We also measure the impact of increasing the proportion
of shared layers (cf. Table 3). Unsurprisingly, we find that
the parameter count has a large influence on reconstruction
quality of the signal, indicating that there is a trade-off be-
tween reducing network size and maintaining reconstruction
quality. Our experiments further show that keeping large
parts of the network shared and only splitting the last layer
into siamese heads achieves the best quality-size trade-off.

In summary, we present a first approach to audio compres-
sion using INRs. We introduce Siamese SIREN – an exten-
sion to SIREN designed for audio compression and denois-
ing tasks – and find it to be a viable candidate for INR-driven
compression of audio. We hope our work will help to facili-
tate future research on INRs for sound and speech.
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A. Noise Perception
We demonstrate the effect of logarithmic hearing perception by adding noise ε ∼ N (0, 10−3I) to a LibriSpeech sample
(cr. Figure 5). We visualize this effect using log-mel spectrograms. The log-mel spectrogram is a perceptually-relevant
amplitude and frequency representation of an audio sample. We observe a strong distinction between the ground truth
log-mel spectrogram and the log-mel spectrogram of the noisy sample. However, this difference is not clearly noticeable
when examining the amplitude waveform. Since we train SIREN and its extensions to learn on the amplitude waveform, it is
unsurprising that there exists an inherent difficulty in removing noise.

B. Model Training Parameters
We train all models for 2500 iterations using Adam optimizer (Kingma & Ba, 2017) with the β1 and β2 parameters as
proposed in the paper, learning rate of 1e−4, a weight decay of 1e−5 , and mean squared error as the loss function. We
use frequency scaling with ω = 100, which we found to give better results compared to the widely used ω = 30. We use
L = 16 positional frequency encoding with scaling σ = 2, resulting in a 33-dimensional input embedding which is passed
into the MLP. Furthermore, we normalize time inputs into the range of T = [−1, 1]. In our early experiments we tested
other loss functions, scaling and positional frequencies, optimizers, learning rate and weight decay values, and learning rate
schedules, but found them to have little effect on reconstruction quality. Furthermore, the noise reduce algorithm we used
allows to only remove a percentage of detected noise. We did not use this feature, as we found keeping partial noise did not
increase reconstruction quality.

Ground Truth Noisy Sample

Figure 5. Log-mel spectrogram of a LibriSpeech sample and the same sample with added ε ∼ N (0, 10−3I) noise. We can clearly see
the difference in the spectrogram, but not in the waveform. This discrepancy is at the root of the challenge to remove noise. Even if the
waveform is closely approximated, small errors are magnified and lead to distinctly audible noise.
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C. SIREN and Stationary Background Noise
We demonstrate the challenge of removing noise from an audio reconstruction. We train the original SIREN setup for
audio, as described by (Sitzmann et al., 2020), and SIREN with positional encoding, over 100k iterations on a LibriSpeech
sample (cf. Figure 6). For this experiment we do not quantize model weights. Comparing the spectrograms, we notice
that without positional encoding the original SIREN struggles to reproduce high-frequency bands while simultaneously
containing substantial stationary background noise in the mid-frequency and low-frequency bands. SIREN with positional
encoding is capable of learning high-frequency content, however, it also produces substantial noise in these high-frequency
bands. Furthermore, we observe only minimal improvement when training for more than 5000 iterations.

Original SIREN PE + SIREN Ground Truth

Figure 6. Log-mel spectrogram of unquantized original SIREN and unquantized SIREN with positional encoding over 100k iterations.
We observe significant background noise in both reconstructions.
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