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ABSTRACT

Scaling inference compute enhances reasoning in large language models (LLMs),
with long chains-of-thought (CoTs) enabling strategies like backtracking and error
correction. Reinforcement learning (RL) has emerged as a crucial method for
developing these capabilities, yet the conditions under which long CoTs emerge
remain unclear, and RL training requires careful design choices. In this study, we
systematically investigate the mechanics of long CoT reasoning, identifying the key
factors that enable models to generate long CoT trajectories. Through extensive su-
pervised fine-tuning (SFT) and RL experiments, we present four main findings: (1)
While SFT is not strictly necessary, it simplifies training and improves efficiency;
(2) Reasoning capabilities tend to emerge with increased training compute, but
their development is not guaranteed, making reward shaping crucial for stabilizing
CoT length growth; (3) Scaling verifiable reward signals is critical for RL. We find
that leveraging noisy, web-extracted solutions with filtering mechanisms shows
strong potential, particularly for out-of-distribution (OOD) tasks such as STEM
reasoning; and (4) Core abilities like error correction are inherently present in base
models, but incentivizing these skills effectively for complex tasks via RL demands
significant compute, and measuring their emergence requires a nuanced approach.

1 INTRODUCTION

Large language models (LLMs) (Brown et al., 2020; Touvron et al., 2023; Anthropic, 2023; OpenAI,
2023) have demonstrated remarkable reasoning abilities in domains like mathematics (Cobbe et al.,
2021) and programming (Chen et al., 2021). Recently, OpenAI’s o1 models (OpenAI, 2024) have
demonstrated significant breakthroughs in these tasks. A key distinguishing feature of these models
is their ability to scale up inference compute with long CoTs, which include strategies such as
recognizing and correcting mistakes, breaking down difficult steps, and iterating on alternative
approaches, leading to substantially longer and more structured reasoning processes.

Several efforts have attempted to replicate the performance of o1 models by training LLMs to generate
long CoTs (Qwen Team, 2024b; DeepSeek-AI, 2025; Kimi Team, 2025; Pan et al., 2025; Zeng et al.,
2025). Most of these approaches rely on verifiable rewards, such as accuracy based on ground-truth
answers, which helps to avoid reward hacking in reinforcement learning (RL) at scale. However, a
comprehensive understanding of how models learn and generate long CoTs remains limited. In this
work, we investigate the underlying mechanics of long CoT generation. Specifically, we explore:

1) Supervised fine-tuning (SFT) for long CoTs – the most direct way to enable long CoT reasoning.
We analyze its scaling behavior and impact on RL, finding that long CoT SFT allows models to reach
higher performance and also facilitates easier RL improvements than short CoT.

2) Challenges in RL-driven CoT scaling – we observe that RL does not always stably extend CoT
length and complexity. So we introduce a cosine length-scaling reward with a repetition penalty, which
stabilizes CoT growth while encouraging emergent behaviors such as branching and backtracking.

3) Scaling up verifiable signals for long CoT RL – Verifiable reward signals are essential for stabilizing
long CoT RL. However, scaling them up remains challenging due to the limited availability of high-

∗Equal Contribution.
†Work started when interning at CMU.

1



Published as a paper at 2nd DATA-FM workshop @ ICLR 2025, Singapore.

quality, verifiable data. To address this, we explore the use of data containing noisy, web-extracted
solutions Yue et al. (2024b). While these “silver” supervision signals introduce uncertainty, we find
that, with appropriate filtration, they show promise, especially in out-of-distribution (OOD) reasoning
scenarios such as STEM problem-solving.

4) Origins of Long CoT Abilities and RL Challenges Core skills like branching and error validation
are inherently present in base models, but effective RL-driven incentivization demands careful designs.
We examine RL incentives on long CoT generation and discuss nuances in analyzing the features like
emergent behaviors and length scaling.

2 IMPACT OF SFT ON LONG COT

In this section, we compare long and short CoT data for SFT and in the context of RL initialization.

2.1 SFT SCALING

To compare long CoT with short CoT, the first step is to equip the model with the corresponding
behavior. The most straightforward approach is to fine-tune the base model on CoT data. Since short
CoT is common, curating SFT data for it is relatively simple via rejection sampling from existing
models. However, how to obtain high-quality long CoT data remains an open question.

Setup. To curate the SFT data, for long CoT, we distill from QwQ-32B-Preview (we dis-
cuss other long CoT data construction methods in §2.3). For short CoT, we distill from
Qwen2.5-Math-72B-Instruct, which is a capable short CoT model in math reasoning. Specif-
ically, we perform rejection sampling by first sampling N candidate responses per prompt and then
filtering for ones with correct answers. For long CoT, we use N ∈ {32, 64, 128, 192, 256}, while for
short CoT, we use N ∈ {32, 64, 128, 256}, skipping one N for efficiency. In each case, the number
of SFT tokens is proportional to N . We use the base model Llama-3.1-8B (Meta, 2024). Please
refer to Appendix K.3 for more details about the SFT setup.
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Figure 1: Scaling curves of SFT and RL on Llama-3.1-8B with long CoTs and short CoTs. SFT
with long CoTs can scale up to a higher upper limit and has more potential to improve with RL.

Takeaway 2.1 for SFT Scaling Upper Limit

SFT with long CoT can scale up to a higher
accuracy upper limit than short CoT. (Figure 1)

Result. The dashed lines in Figure 1 illus-
trate that as we scale up the SFT tokens,
long CoT SFT continues to improve model
accuracy, whereas short CoT SFT saturates
early at a lower accuracy level. For in-
stance, on MATH-500, long CoT SFT achieves over 70% accuracy and has yet to plateau even
at 3.5B tokens. In contrast, short CoT SFT converges below 55% accuracy, with an increase in SFT
tokens from approximately 0.25B to 1.5B yielding a marginal absolute improvement of about 3%.

2.2 SFT INITIALIZATION FOR RL

Since RL is reported to have a higher upper limit than SFT, we compare long CoT and short CoT as
different SFT initialization approaches for RL.

Setup. We initialize RL using SFT checkpoints from §2.1, and train for four epochs, sampling four
responses per prompt. Our approach employs PPO (Schulman et al., 2017) with a rule-based verifier
from the MATH dataset, using its training split as our RL prompt set. We adopt our cosine length
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scaling reward with the repetition penalty, which will be detailed in §3. Further details about our RL
setup and hyperparameters can be found in Appendix K.4 & K.5.1 respectively.

Takeaway 2.2 for SFT Initialization for RL

SFT with long CoTs makes further RL improve-
ment easier, while short CoTs do not. (Figure 1)

Result. The gap between solid and
dashed lines in Figure 1 shows that mod-
els initialized with long CoT SFT can
usually be effectively improved by RL,
while models initialized with short CoT
SFT see little gains from RL. For example, on MATH-500, RL can improve long CoT SFT models
by over 3% absolute, while short CoT models have almost the same accuracies before and after RL.

2.3 SOURCES OF LONG COT SFT DATA

To curate long CoT data, we compare two approaches: (1) Construct long CoT trajectories by
prompting short CoT models to generate primitive actions and sequentially combining them; (2)
Distill long CoT trajectories from existing long CoT models that exhibit emergent long CoT patterns.

Training Long CoT MATH AIME Theo. MMLU
Method SFT Pattern 500 2024 QA Pro-1k

SFT Constructed 48.2 2.9 21.0 18.1
Emergent 54.1 3.5 21.8 32.0

SFT+RL Constructed 52.4 2.7 21.0 19.2
Emergent 59.4 4.0 25.2 34.6

Table 1: Emergent long CoT patterns outperform constructed
ones. All the models here are fine-tuned from the base model
Llama-3.1-8B with the MATH training prompt set.

Setup. To construct long CoT
trajectories, we developed an
Action Prompting framework
(Appendix K.8) which defined
the following actions: clarify,
decompose, solution step,
reflection, and answer. We
employed multi-step prompting
with a short CoT model (e.g.,
Qwen2.5-72B-Instruct) to
sequence these actions, while a
stronger model, o1-mini-0912,
generates reflection steps incorporating self-correction. For distilling long CoT trajectories, we use
QwQ-32-Preview as the teacher model. In both approaches, we adopt the MATH training set
as the prompt set and apply rejection sampling. To ensure fairness, we use the same base model
(Llama-3.1-8B), maintain around 200k SFT samples, and use the same RL setup as in §2.2.

Takeaway 2.3 for Long CoT Cold Start

SFT initialization matters: high-quality, emer-
gent long CoT patterns lead to significantly
better generalization and RL gains. (Table 1)

Result. Table 1 shows that the model dis-
tilled from emergent long CoT patterns gen-
eralizes better than the constructed pattern,
and can be further significantly improved
with RL, while the model trained on con-
structed patterns cannot. Models trained
with the emergent long CoT pattern achieve significantly higher accuracies on OOD benchmarks
AIME 2024 and MMLU-Pro-1k, improving by 15-50% relatively. Besides, on the OOD benchmark
TheoremQA, RL on the long CoT SFT model significantly improves its accuracy by around 20%
relative, while the short CoT model’s performance does not change. This is also why we conduct
most of our experiments based on distilled long CoT trajectories.

3 IMPACT OF REWARD DESIGN ON LONG COT

This section examines reward design, focusing on its influence on CoT length and model performance.

3.1 COT LENGTH STABILITY

Recent studies on long CoT (DeepSeek-AI, 2025; Kimi Team, 2025) suggest that models naturally
improve in reasoning tasks with increased thinking time. Our experiments confirm that models
fine-tuned on long CoT distilled from QwQ-32B-Preview tend to extend CoT length under RL
training, albeit sometimes unstably. This instability, also noted by Kimi Team (2025); Hou et al.
(2025), has been addressed using techniques based on length and repetition penalties.

Setup. We used two different models fine-tuned on long CoT data distilled from
QwQ-32B-Preview using the MATH train split, with a context window size of 16K. The models
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were Llama3.1-8B and Qwen2.5-Math-7B. We used a rule-based verifier along and a simple
reward of 1 for correct answers. We shall refer to this as the Classic Reward. More details can be
found in Appendix K.5.2.
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Figure 2: Both Llama3.1-8B and Qwen2.5-Math-7B models trained under RL with the Classic
Reward manifested emergent CoT length scaling past the context window size, resulting in a decline
in MATH-500 accuracy. The red points on the charts correspond to the iteration where the accuracy
dropped to near zero. “Terminated CoTs” refer to responses that conclude within the context length.

Takeaway 3.1 for CoT Length Stability

CoT length does not always scale up in
a stable fashion. (Figure 2)

Results. We observed that both models increased
their CoT length during training, eventually reach-
ing the context window limit. This led to a decline
in training accuracy due to CoTs exceeding the al-
lowable window size. Additionally, different base
models exhibited distinct scaling behaviors. The weaker Llama-3.1-8B model showed greater
fluctuations in CoT length compared to Qwen-2.5-Math-7B, as illustrated in Figure 2.

We also found that the rate at which CoTs exceeded the context window size leveled off at a certain
threshold below 1 (Figure 2). This suggests that exceeding the limit started to apply significant
downward pressure on the CoT length distribution, and highlights the context window size’s role
in implicit length penalization. Notably, a trajectory might be penalized even without an explicit
exceed-length penalty due to reward or advantage normalization, both of which are standard in RL.

3.2 ACTIVE SCALING OF COT LENGTH

0 20 40 60 80 100120
Iterations

0.0

0.2

0.4

0.6

A
cc

ur
ac

y

a) Training Accuracy

0 20 40 60 80 100120
Iterations

0k

5k

10k

Le
ng

th

b) Response Length

Classic
Cosine

Figure 3: Llama3.1-8B trained with length
shaping using the Cosine Reward exhibited more
stable (a) training accuracy and (b) response length.
This stability led to improved performance on
downstream tasks (Figure 4). Red points indicate
where training accuracy dropped to near zero.

We found that reward shaping can be used to
stabilize emergent length scaling. We designed
a reward function to use CoT length as an addi-
tional input and to observe a few ordering con-
straints. Firstly, correct CoTs receive higher
rewards than wrong CoTs. Secondly, shorter cor-
rect CoTs receive higher rewards than longer cor-
rect CoTs, which incentivizes the model to use
inference compute efficiently. Thirdly, shorter
wrong CoTs should receive higher penalties than
longer wrong CoTs. This encourages the model
to extend its thinking time if it is less likely to
get the correct answer.

We found it convenient to use a piecewise cosine function, which is easy to tune and smooth. We
refer to this reward function as the Cosine Reward, visualized in Figure 8. This is a sparse reward,
only awarded once at the end of the CoT based on the correctness of the answer. The formula can be
found in equation 1 in the appendix.

Takeaway 3.2 for Active Scaling of CoT Length

Reward shaping can be used to stabilize and control
CoT length while improving accuracy. (Figure 3, 4)

Setup. We ran experiments with the
Classic Reward and the Cosine Re-
ward. We used the Llama3.1-8B
fine-tuned on long CoT data distilled
from QwQ-32B-Preview using the
MATH train split, as our starting point. For more details, see Appendix K.5.3.
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Figure 4: Performance of Llama-3.1-8B trained with different reward functions on a variety of
evaluation benchmarks.
Result. We found that the Cosine Reward significantly stabilized the length scaling behavior of the
models under RL, thereby also improving the training accuracy and RL efficiency (Figure 3). We
also observed improvements in performance on downstream tasks (Figure 4).

3.3 COSINE REWARD HYPERPARAMETERS

The Cosine Reward hyperparameters can be tuned to shape CoT length in different ways.

Setup. We set up RL experiments with the same model fine-tuned on long CoT distilled from
QwQ-32B-Preview, but with different hyperparameters for the Cosine Reward function. We
tweaked the correct and wrong rewards rc0, r

c
L, r

w
0 , r

w
L and observed their impact on the CoT lengths.

For more details, see Appendix K.5.4.

Takeaway 3.3 for Cosine Reward Hyperparameters

Cosine Reward can be tuned to incentivize various
length scaling behaviors. (Figure 9)

Result. We see from Figure 9 in the
Appendix that if the reward for a cor-
rect answer increases with CoT length
(rc0 < rcL), the CoT length increases
explosively. We also see that the lower
the correct reward relative to the wrong reward, the longer the CoT length. We interpret this as a kind
of risk aversion, where the ratio of the correct and wrong rewards impacts how confident the model
has to be about an answer to derive a positive reward from terminating its CoT with this answer.

3.4 CONTEXT WINDOW SIZE

We know that longer contexts give a model more room to explore, and with more training samples,
the model eventually learns to utilize more of the context window. This raises an interesting question
– are more training samples necessary to learn to utilize a larger context window?

Setup. We set up 3 experiments using the same starting model fine-tuned on long CoT data distilled
from QwQ-32B-Preview with the MATH train split. We also used the latter as our RL prompt set.
Each ablation used the Cosine Reward and repetition penalty with a different context window size
(4K, 8K, and 16K). For more details, see Appendix K.5.5.
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Figure 5: Performance of Llama-3.1-8B trained with different context window sizes. All experi-
ments used the same number of training samples.

Takeaway 3.4 for Context Window Size

Models might need more training samples to learn to
utilize larger context window sizes. (Figure 5)

Result. We found that the model
with a context window size of 8K per-
formed better than the model with 4K,
as expected. However, we observed
performance was better under 8K than
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16K. Note that all three experiments used the same number of training samples (Figure 5). We see
this as an indication that models need more training compute to learn to fully utilize longer context
window sizes, resonating with the findings of Hou et al. (2025).

3.5 LENGTH REWARD HACKING

We observed that with enough training compute, the model started to show signs of reward hacking,
where it increased the lengths of its CoTs on hard questions using repetition rather than learning to
solve them. We also noted a fall in the branching frequency of the model, which we estimated by
counting the number of times the keyword ”alternatively,” appeared in the CoT (Figure 11).
We mitigated this by implementing a simple N -gram repetition penalty (Algorithm 1). We observed
that the penalty was most effectively applied on repeated tokens, rather than as a sparse reward for
the entire trajectory. Similarly, we found that discounting the repetition penalty when calculating
the return was effective. Specific feedback about where the repetition occurred presumably made it
easier for the model to learn not to do it (see more in §3.6).

Setup. We used the Llama3.1-8B model fine-tuned on long CoT data distilled from
QwQ-32B-Preview. We ran two RL training runs, both using the Cosine Reward, but with
and without the repetition penalty. For more details, please refer to Appendix K.5.6.

Takeaway 3.5 for Length Reward Hacking

Length rewards will be hacked with enough com-
pute (Figure 11), but this can be mitigated using a
repetition penalty. (Figure 4)

Result. The repetition penalty resulted in
better downstream task performance and
also shorter CoTs, with better utilization
of inference compute (Figure 4).

3.6 OPTIMAL DISCOUNT FACTORS

We hypothesized that applying the repetition penalty with temporal locality (i.e., a low discount
factor) would be most effective, as it provides a stronger learning signal about the specific offending
tokens. However, we also observed performance degradation when the discount factor for the
correctness (cosine) reward was too low. To optimally tune both reward types, we modified the
GAE formula in PPO to accommodate multiple reward types, each with its own discount factor γ:
Ât =

∑L
l=0

∑M
m γl

mrm,t+l − V (st). For simplicity, we set λ = 1, which proved effective, though
we did not extensively tune this parameter.

Setup. We ran multiple RL experiments with the same Llama3.1-8B model fine-tuned on
QwQ-32B-Preview distilled long CoT data. We used the Cosine Reward and repetition penalty
but with different combinations of discount factors. For more details, please see Appendix K.5.7.

Takeaway 3.6 for Optimal Discount Factors

Different kinds of rewards and penalties have
different optimal discount factors. (Table 4)

Result. A lower discount factor effectively
enforces the repetition penalty, whereas a
higher discount factor enhances the correct-
ness reward and the exceed-length penalty.
The higher factor allows the model to be
adequately rewarded for selecting a correct answer earlier in the CoT (Figure 4). We observed a
rather interesting phenomenon where decreasing the discount factor γ of the correctness (cosine)
reward increased the branching frequency in the model’s CoT, making the model quickly give up
on approaches that did not seem to lead to a correct answer immediately (Figure 12, Extract in
Appendix J). We hypothesize that this short-term thinking was due to a relatively small number of
tokens preceding the correct answer receiving rewards, which means stepping stones to the right
answer are undervalued. Such behavior degraded performance (Figure 4).

4 SCALING UP VERIFIABLE REWARD

Verifiable reward signals like ones based on ground-truth answers are essential for stabilizing long
CoT RL for reasoning tasks. However, it is difficult to scale up such data due to the limited availability
of high-quality human-annotated verifiable data for reasoning tasks. As an attempt to counter this,
we explore using other data that is more available despite more noise, like reasoning-related QA pairs
extracted from web corpora. Specifically, we experiment with the WebInstruct dataset (Yue et al.,
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2024b). For efficiency, we construct WebInstruct-462k, a deduplicated subset derived via MinHash
(Broder et al., 1998). We also explore SFT with noisy verifiable data in Appendix C.

In this section, We compare two main approaches to obtain rewards from noisy verifiable data: 1)
to extract short-form answers and use a rule-based verifier; 2) to use a model-based verifier capable
of processing free-form responses. Here, a key factor is whether the QA pair can have a short-form
answer, so we also compare whether the dataset is filtered for samples with short-form answers.

Prompt Verifier MATH AIME Theo. MMLU
Set Type 500 2024 QA Pro-1k

MATH Baseline 59.4 4.0 25.2 34.6

SFT Initialization 46.6 1.0 23.0 28.3

Unfiltered Rule-Based 45.4 3.3 25.9 35.1
Model-Based 47.9 3.5 26.2 40.4

Filtered Rule-Based 48.6 3.3 28.1 41.4
Model-Based 47.9 3.8 26.9 41.4

Table 2: Performance of RL with different verifiers and
prompt filtering methods. All the models here are fine-
tuned from Llama-3.1-8B. The “MATH Baseline” is the
model trained with SFT and RL on MATH only in Table 3.
The other models are trained with SFT by distillation from
QwQ-32B-Preview and RL with different setups.

Setup. We implement the model-
based verifier by prompting
Qwen2.5-Math-7B-Instruct
with the raw reference solution.
To extract short-form answers,
we first prompt Llama-3.1-
8B-Instruct to extract from
the raw responses and then
apply rejection sampling with
QwQ-32B-Preview. Specifically,
we generate two responses per prompt
from WebInstruct-462k and discard
cases where neither response aligns
with the extracted reference answers.
This process yields approximately
189k responses across 115k unique
prompts. For SFT we train Llama-3.1-8B on the filtered dataset as initialization for reinforcement
learning (RL). In the RL stage, we use the full 462k prompt set in the unfiltered setup and the 115k
subset in the filtered setup, training with 30k prompts and 4 responses per prompt. Further details
about the model-based verifier, the answer extraction and the RL hyperparameters can be found in
Appendix & K.5.8 & K.6 & K.7 respectively.

Takeaway 4 for RL with Noisy Verifiable Data

To obtain reward signals from noisy verifiable data,
the ruled-based verifier after filtering the prompt set
for short-form answers works the best. (Table 2)

Result. Table 2 shows that RL with
the rule-based verifier on the filtered
prompt set with short-form answers
achieves the best performance across
most benchmarks under the same
number of RL samples. This might
indicate that rule-based verifier after appropriate filtration can produce the highest-quality reward
signals from noisy verifiable data. Moreover, compared to the model trained on human-annotated
verified data (MATH), leveraging noisy yet diverse verifiable data still significantly boosts perfor-
mance on O.O.D. benchmarks, with absolute gains of up to 2.9% on TheoremQA and 6.8% on
MMLU-Pro-1k. In contrast, applying a rule-based verifier to unfiltered data results in the worst
performance. This might be caused by its low training accuracy on free-form answers, while the
model-based verifier achieves much better performance.

5 EXPLORATION ON RL FROM THE BASE MODEL

DeepSeek-R1 (DeepSeek-AI, 2025) has demonstrated that long chain-of-thought reasoning can
emerge by scaling up reinforcement learning compute on a base model. Recent studies (Zeng et al.,
2025; Pan et al., 2025) have attempted to replicate this progress by running a relatively small number
of RL iterations to observe the emergence of long CoT behavior (e.g., the “aha moment” (DeepSeek-
AI, 2025), an emergent realization moment that enables critical functions like self-validation and
correction). We discuss nuances in measuring their emergence in this section. For more related
analysis and results, please refer to Appendix D & E & F

5.1 NUANCES IN ANALYSIS BASED ON EMERGENT BEHAVIORS

Self-validation behaviors are sometimes flagged as emergent behaviors or “aha-moment” by the
model’s exploration, since such patterns are rare in short CoT data. However, we notice that sometimes
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self-validation behaviors already exist in the base model and reinforcing them through RL requires
strict conditions, such as a strong base model.

Setup. We follow the setup from Zeng et al. (2025) to train Qwen2.5-Math-7B using PPO
with a rule-based verifier on approximately 8k MATH level 3-5 questions, but we use our own
rule-based verifier implementation. For inference, we adopt temperature t = 0 (greedy decoding),
as our preliminary experiments show that t = 0 usually significantly outperforms t > 0 for models
obtained by direct RL from Qwen2.5-Math-7B. We use the maximum output length of 4096
tokens considering the training context length of 4096 tokens. Note that we use zero-shot prompting
for the base model to avoid introducing biases to the output pattern. We select five representative
keywords, “wait”, “recheck”, “alternatively”, “retry” and “however” from long CoT cases in previous
works (OpenAI, 2024; DeepSeek-AI, 2025; Pan et al., 2025; Zeng et al., 2025), and calculate their
frequencies to quantify the extent to which the model does self-validation. Further details about the
RL hyperparameters can be found in Appendix K.5.9.
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Figure 6: Dynamics of accuracies and reflection keyword rates on different benchmarks during our
RL from the base model Qwen2.5-Math-7B. We do not see the keyword rates of self-validation
patterns significantly improve during the RL training even though the accuracy is steadily increasing.

Result. Figure 6 shows that our RL from Qwen2.5- Math-7B effectively boosts the accuracies,
but does not increase the frequency of the “recheck“ pattern existing in the output of the base model,
nor effectively incentivize other reflection patterns such as “wait” and “alternatively”. This indicates
that RL from the base model does not necessarily incentivize reflection patterns. Sometimes such
behaviors exist in the base model’s output and RL does not substantially enhance them.

5.2 NUANCES IN ANALYSIS BASED ON LENGTH SCALING

The length scaling up is recognized as another important feature of the effective exploration of
the model. However, we notice that sometimes length scaling up can be accompanied by the KL
divergence decreasing, which raises the possibility that the length is mainly driven by the KL penalty,
reverting back to the base model’s longer output, rather than by the model’s exploration.

Setup. The setup is the same as in §5.1. Besides the output token length, we also calculate the
“coding rate”. We classify the model’s output as “coding” if it contains the “‘‘‘python”, since
Qwen2.5-Math-7B uses both natural language and coding to solve mathematical problems. Note
that we don’t execute the code in the coding output.
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Figure 7: Dynamics of the output token lengths and the coding rate on MATH-500 and the KL
divergence of the policy over the base model on MATH Lv3-5 (training data) during our RL from
Qwen2.5-Math-7B. “NL” means Natural Language.
Result. Figure 7 (1) shows that the length of the output token increases after an initial drop, but
never exceeds the initial length of the base model. Zeng et al. (2025) suggest that the initial drop may
be due to the model transitioning from generating long coding outputs to shorter natural language
outputs. However, Figure 7 (2) indicates that natural language outputs are actually longer than coding
outputs, and the initial drop in length occurs in both types of output. Furthermore, Figure 7 (3) shows
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that the coding rate subsequently increases again, suggesting that the distinction between coding and
natural language may not significantly impact the optimization process. Moreover, we suspect that
the subsequent length scaling up is not from the model’s exploration, since when the length scales
up, the KL divergence of the policy over the base model drops, as shown in Figure 7 (4). This might
indicate that it is the KL penalty influencing length. If that is the case, there is little potential for the
policy output length to exceed the base model’s since the exploration is limited by the KL constraint.
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6 APPENDIX

A PROBLEM FORMULATION

In this section, we define the notation, followed by an overview of SFT and RL methods for eliciting
long CoTs.

Research Aim

Our goal is to demystify long chain-of-thought reasoning in LLMs. Through systematic
analysis and ablations, we extract key insights and offer practical strategies to enhance and
stabilize its performance.

A.1 NOTATION

Let x be a query, and let y be the output sequence. We consider a LLM parameterized by θ, which
defines a conditional distribution over output tokens: πθ(yt | x, y1:t−1).

We denote by CoT(y) ⊆ y the tokens in the generated output that constitute the chain-of-thought,
which is often a reasoning trace or explanatory sequence. The final answer can be a separate set of
tokens or simply the last part of y.

In this work, we use the term long chain-of-thought (long CoT) to describe an extended sequence of
reasoning tokens that not only exhibits a larger-than-usual token length but also demonstrates more
sophisticated behaviors such as:

1) Branching and Backtracking: The model systematically explores multiple paths (branching) and
reverts to earlier points if a particular path proves wrong (backtracking).

2) Error Validation and Correction: The model detects inconsistencies or mistakes in its intermedi-
ate steps and takes corrective actions to restore coherence and accuracy.

A.2 SUPERVISED FINE-TUNING (SFT)

A common practice is to initialize the policy πθ via SFT (Lamb et al., 2016) on a dataset DSFT =
{(xi, yi)}Ni=1, where yi can be normal or long CoT reasoning tokens.

A.3 REINFORCEMENT LEARNING (RL)

After optional SFT initialization, we can further optimize the generation of long CoT with reinforce-
ment learning.
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Reward Function. We define a scalar reward rt designed to encourage correct and verifiable
reasoning. We only consider the outcome-based reward for the final answer produced, and do not
consider process-based reward for the intermediate steps. We denote the term ranswer(y) to capture
the correctness of the final solution.

Policy Update. We adopted Proximal Policy Optimization (PPO) (Schulman et al., 2017) as the
default policy optimization method in our experiments. We also briefly discuss REINFORCE (Sutton
& Barto, 2018) method in subsection B.3. We adopt a rule-based verifier as the reward function,
which compares the predicted answer with the ground truth answer directly. The resulting updates
push the policy to generate tokens that yield higher reward.

A.4 TRAINING SETUP

We adopt Llama-3.1-8B Meta (2024) and Qwen2.5 -7B-Math Qwen Team (2024a) as the
base models, which are representative general and math-specialized models respectively. For both
SFT and RL, we use the 7,500 training sample prompt set of MATH (Hendrycks et al., 2021) by
default, with which verifiable ground truth answers are provided. For SFT when ground truth answers
are available, we synthesize responses by rejection sampling (Zelikman et al., 2022; Dong et al.,
2023; Yuan et al., 2023; Gulcehre et al., 2023; Singh et al., 2023; Yue et al., 2024a; Tong et al., 2024).
Specifically, we first sample a fixed number N of candidate responses per prompt and then filter by
only retaining ones with final answers consistent with the corresponding ground truth answers. We
also discuss data like WebInstruct Yue et al. (2024b) that is more diverse but without gold supervision
signals like ground truth answers in §4. We train the models with the OpenRLHF framework Hu et al.
(2024).

A.5 EVALUATION SETUP

We focus on four representative reasoning benchmarks: MATH-500, AIME 2024, TheoremQA (Chen
et al., 2023), and MMLU-Pro-1k (Wang et al., 2024a). Given that our training data is primarily in the
mathematical domain, these benchmarks provide a comprehensive framework for both in-domain
(MATH-500 test set) and out-of-domain evaluations (AIME 2024, TheoremQA, MMLU-Pro-1k). By
default, we generate from the models using a temperature of t = 0.7, a top-p value of 0.95, and a
maximum output length of 16,384 tokens. Please refer to Appendix K.1 for further details on the
evaluation setup.

B DISCUSSIONS AND FUTURE WORK

In this work, we demystify long CoT reasoning in LLMs. In this section, we outline potential future
directions.

B.1 SCALING UP MODEL SIZE

We believe that model size is the primary factor limiting the emergence of the behavior observed in
subsection 5.1. Hyung Won Chung Chung (2024) recently shared a similar perspective, suggesting
that smaller models may struggle to develop high-level reasoning skills and instead rely on heuristic-
based pattern recognition. Future research could investigate RL using a larger base model.

B.2 RL INFRASTRUCTURE IS STILL IN ITS INFANCY

While attempting to scale up the model size, we encountered significant challenges in expanding
to 32B, ultimately determining that the required number of GPUs was too large to proceed. We
observe that open-source RL frameworks (e.g., OpenRLHF Hu et al. (2024)) often coordinate multiple
systems optimized for different training and inference workloads, leading to multiple copies of model
parameters being stored in memory. Additionally, algorithms like PPO alternate between these
workloads synchronously and sequentially, further limiting efficiency. These factors contribute to
low hardware utilization, an issue that is particularly exacerbated in long CoT scenarios due to the
higher variance in CoT length, which leads to stragglers during inference Kimi Team (2025). We
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look forward to advancements in machine learning and systems research that will help overcome
these limitations and accelerate progress in long CoT modeling.

B.3 REINFORCE IS MORE TRICKY TO TUNE THAN PPO

We also explored REINFORCE++ Hu (2025) as a faster alternative to PPO for scaling up data.
However, we found it to be significantly more unstable than PPO, leading to lower training accuracies
(Figure 13). As this instability may be due to an untuned setup (Appendix K.5.10), we refrain from
making general claims about the algorithm. We present this as an observation that may be useful to
the community.

B.4 SCALING UP VERIFICATION

While our findings demonstrate that combining rule-based verifiers with prompt set filtering is
highly effective, designing such rules and curating prompt sets across different domains remains
labor-intensive. More fundamentally, this approach embeds human-designed heuristics into the RL
environment, reflecting how we think rather than allowing for emergent learning. As highlighted
in The Bitter Lesson1, manually encoding human intuition tends to be an inefficient long-term
strategy. This raises an intriguing question: how can verification signals be scaled effectively? Is
there an equivalent of pretraining in the context of designing RL environments? We look forward to
future research on silver supervision signals and the potential for self-supervised approaches in RL
verification.

B.5 LATENT CAPABILITIES IN BASE MODELS

Reasoning is a latent capability in base models that has only recently been unlocked. Our analysis
suggests that one possible source of this emergent thinking is human dialogue on Internet discussion
forums. This raises a broader question: what other abilities exist, waiting to be elicited from the vast
reservoir of human knowledge and experience embedded in pre-training data? We look forward to
more detailed analyses tracing model behaviors back to their data origins, which could yield new
insights and help uncover hidden capabilities within base models.

C SFT WITH NOISY VERIFIABLE DATA

We first explore adding such diverse data to SFT. Intuitively, despite less reliable supervision signals,
diverse data might facilitate the models exploration during RL.

Table 3: Adding data with a silver supervision signal is often
beneficial. “WebIT” is the abbreviation of WebInstruct.

Long CoT Training MATH AIME Theo. MMLU AVGSFT Data Method 500 2024 QA Pro-1k

100% MATH SFT 54.1 3.5 21.8 32.0 27.9
SFT + RL 59.4 4.0 25.2 34.6 30.8

100% WebIT SFT 41.2 0.8 21.9 41.1 26.3
SFT + RL 44.6 1.9 22.5 43.3 28.1

50% MATH SFT 53.6 4.4 23.5 41.7 30.8
+ 50% WebIT SFT + RL 57.3 3.8 25.1 42.0 32.1

Setup. We experiment with
three setups, varying the propor-
tion of data without gold super-
vision signals: 0%, 100%, and
approximately 50%. We con-
duct long CoT SFT by distill-
ing from QwQ-32B-Preview.
For data with gold supervision
signals (MATH), ground truth an-
swers are used for rejection sam-
pling. In contrast, for data from
WebInstruct without fully reli-
able supervision signals but with
a much larger scale, we sample
one response per prompt from the teacher model without filtration. For RL here, we adopt the same
setup as in §2.2, using the MATH training set.

Result. Table 3 shows that incorporating silver-supervised data improves average performance.
Adding WebInstruct data to long CoT SFT yields a substantial 510% absolute accuracy gain on

1http://www.incompleteideas.net/IncIdeas/BitterLesson.html
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MMLU-Pro-1k over using MATH alone. Furthermore, mixing MATH and WebInstruct data achieves
the best average accuracy across benchmarks.

Takeaway C for SFT with Noisy Verifiable Data

Adding noisy but diverse data to SFT leads balanced performance across different tasks.
(Table 3)

D POTENTIAL REASONS WHY EMERGENT BEHAVIOR IS NOT OBSERVED
WITH QWEN2.5-MATH-7B

Our detailed analysis of RL from Qwen2.5-Math-7B, as presented in §5.1 and §5.2, suggests that
it fails to fully replicate the training behavior of DeepSeek-R1. We identify the following potential
causes: 1) The base model, being relatively small (7B parameters), may lack the capacity to quickly
develop such complex abilities when incentivized. 2) The model might have been overexposed to
MATH-like short instruction data during (continual) pre-training and annealing, leading to overfitting
and hindering the development of long CoT behaviors.

E COMPARISON BETWEEN RL FROM THE BASE MODEL AND RL FROM LONG
COT SFT

We compare the performance of RL from the base model and RL from long CoT SFT and find that
RL from long CoT SFT generally performs better.

Setup. We compare using the base model Qwen2.5- Math-7B. The results of RL from the base
model are from the model trained in §5.1. For RL from long CoT SFT, we adopt a setup similar to
§2.2. Specifically, we choose the 7.5k MATH training set as the prompt set, curate the SFT data
by rejection sampling with 32 candidate responses per prompt using QwQ-32B-Preview, and
perform PPO using our cosine length-scaling reward with repetition penalty and our rule-based
verifier, sampling 8 responses per prompt and training for 8 epochs. To adapt Qwen2.5-Math-7B
with a pre-training context length of only 4096 tokens to long CoT SFT and RL, we multiply its
RoPE (Su et al., 2024) θ by 10 times. We don’t report the results of RL with classic reward from
long CoT SFT since it collapses. For evaluation, we adopt our default temperature sampling setup
for RL from long CoT SFT as in §A.5 and greedy decoding setup for RL from the base model as in
§5.1 for the best performance. Further details about the distillation, SFT hyperparameters and RL
hyperparameters can be found in Appendix K.2 & K.3 & K.5.9, respectively.

Result. Table 5 shows that, on Qwen2.5-Math-7B, RL initialized from the long CoT SFT model
significantly outperforms RL from the base model and further improves upon the long CoT SFT itself.
Specifically, RL from long CoT SFT with our cosine reward surpasses RL from the base model by
a substantial 8.7% on average and improves over the SFT initialization by 2.6%. Notably, simply
applying SFT with long CoT distilled from QwQ-32B-Preview already yields strong performance.

F LONG COT PATTERNS IN PRE-TRAINING DATA

Based on the results in §5.1, we hypothesize that incentivized behaviors, such as the model revisiting
its solutions, may have already been partially learned during pre-training. To examine this, we
employed two methods to investigate whether such data are already present on the web.

Firstly, we used a generative search engine Perplexity.ai to identify webpages explicitly containing
problem-solving steps that approach problems from multiple angles or perform verification after
providing an answer. The query we used and the examples we identified are in Appendix L.1).

Secondly, we used GPT-4o to generate a list of phrases that are characteristic of the “aha moment”
(Appendix L.2.1), then used the MinHash algorithm Broder (1997) to search through OpenWebMath
Paster et al. (2023), a dataset filtered from the CommonCrawl Rana (2010) frequently used in pre-
training. We found that there was a significant number of matches in discussion forum threads,
where the dialogue between multiple users showed similarity to long CoT, with multiple approaches
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being discussed along with backtracking and error correction (Appendix L.2.2). This raises the
intriguing possibility that long CoT originated from human dialogue, although we should also note
that discussion forums are a common source of data in OpenWebMath.

Based on these observations, we hypothesize that RL primarily guides the model to recombine skills
it already internalized during pre-training towards new behaviors to improve performance on complex
problem-solving tasks. Given the broad scope of this paper, we leave a more in-depth investigation of
this behavior to future work.

G RELATED WORK

Complex reasoning and chain of thought prompting. Large Language Models (LLMs) have
demonstrated remarkable capabilities in various natural language processing tasks, including complex
reasoning. A significant advancement in improving LLM reasoning ability is the implementation
of Chain of Thought (CoT) prompting Wei et al. (2022). This technique involves guiding models
to generate intermediate reasoning steps, thereby improving their performance on tasks that require
logical deduction and multistep problem solving. Initial studies Lambert et al. (2024); Wei et al.
(2022); Longpre et al. (2023); Yu et al. (2024) focused on short CoT, where models produce concise
reasoning paths to arrive at solutions. Although effective for straightforward problems, short CoT
can be limiting when addressing more intricate tasks that necessitate deeper deliberation. OpenAIs
o1 OpenAI (2024) series models were the first to introduce inference-time scaling by increasing
the length of the CoT reasoning process. This approach helps LLMs tackle complex problems by
breaking them into finer steps and reflecting during problem-solving, leading to more accurate and
comprehensive solutions. In this work, we explore long CoT by identifying key factors that enable
models to exhibit this behavior, encouraging advanced reasoning capabilities.

Reinforcement learning for LLM. Reinforcement Learning (RL) has proven effective in enhancing
LLM performance across domains. RL techniques, such as Reinforcement Learning from Human
Feedback (RLHF), align model outputs with human preferences, improving coherence Ouyang et al.
(2022). Recent studies Kimi Team (2025); DeepSeek-AI (2025); Lambert et al. (2024) leverage
RL to enable LLMs to explore reasoning paths autonomously for complex problems. DeepSeek-R1
DeepSeek-AI (2025) achieves strong performance in mathematics, coding, and reasoning tasks
without relying on a trained reward model Lightman et al. (2024); Wang et al. (2024b) or tree search
Feng et al. (2023); Snell et al. (2024). Notably, this capability emerges even in base models without
supervised fine-tuning, albeit at the cost of output readability. Similarly, Kimi K1.5 Kimi Team (2025)
enhances general reasoning with RL, focusing on multimodal reasoning and controlling thought
process length. These works highlight RLs role in optimizing reasoning when intermediate steps are
hard to supervise, and only final outcomes are verifiable. Our research share a similar setup but with
more detail on disentangling how different model behaviors emerge under varying training conditions
and initialization strategies.
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Figure 8: The Classic and Cosine Reward functions. The Cosine Reward varies with generation
length.

0 5 10 15 20 25 30 35 40 45 50 55 60
# of Iterations

0

2,000

4,000

6,000

8,000

10,000

R
es

po
ns

e 
Le

ng
th Reward A

Reward B
Reward C

(a) Response lengths under
different Cosine Rewards

0 2,0004,0006,0008,00010,00012,00014,00016,00018,000
Generation Length

0

2

4

6

8

10

R
ew

ar
d

correct
wrong

(b) Reward A

0 2,0004,0006,0008,00010,00012,00014,00016,00018,000
Generation Length

−10

−5

0

5

R
ew

ar
d

correct
wrong

(c) Reward B

0 2,0004,0006,0008,00010,00012,00014,00016,00018,000
Generation Length

−10

−5

0

5

10

R
ew

ar
d

correct
wrong

(d) Reward C

Figure 9: (a) Tuning the hyperparameters of the Cosine Reward results in different length scaling
behavior. Note that Reward A results in some performance degradation on downstream tasks due to the
model’s reduced ability to stop within the window. (b) Reward A: rc0 = 0, rcL = 10, rw0 = rwL = 0, (c)
Reward B: rc0 = 6, rcL = 5, rw0 = −10, rwL = 0 (d) Reward C: rc0 = 10, rcL = 9, rw0 = −10, rwL = 0.
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Figure 10: Training response length of models trained with Cosine Reward with and without repetition
penalty. We see that repetition penalty reduced the length.
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Figure 11: CoT branching frequency, estimated by the keyword count of the pivot word ”alterna-
tively,”, decreased under the Cosine Reward with more training compute. We attributed this, along
with increased repetition, to reward hacking.
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Figure 12: Branching frequency in CoT at different γc values. Lowering the discount factor increased
branching frequency, causing the model to abandon problem-solving approaches more quickly.
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Figure 13: Reinforce with classic reward shows signs of training instability.

Table 4: Performance of model trained with different discount factors for the correctness (cosine)
reward and repetition penalty. We see that different reward types have different optimal values.

Correctness
Discount

Repetition
Discount

MATH
-500

AIME
2024

Theo.
QA

MMLU
-Pro-1k

SFT 50.4 3.5 20.6 32.4

1.000
1.000 55.7 5.0 25.7 34.5
0.999 58.0 4.6 26.0 36.5
0.99 57.8 3.8 24.5 33.3

0.999 0.999 53.5 2.1 19.5 30.7
0.99 55.2 1.7 18.5 32.0

0.99 0.99 47.9 0.2 15.6 25.5

Table 5: Performance of different models based on Qwen2.5-Math-7B. The SFT data here is
distilled with rejection sampling from QwQ-32B-Preview.

Setup MATH AIME Theo. MMLU AVG500 2024 QA Pro-1k

Base (0-shot) 52.0 13.3 17.1 2.4 21.2
(Direct) RL 77.4 23.3 43.5 19.7 41.0
SFT 84.0 24.4 42.2 38.5 47.3
SFT + RL 85.9 26.9 45.4 40.6 49.7
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I ALGORITHMS AND FORMULAS

I.1 COSINE REWARD FORMULA

R(C,Lgen) =


CosFn(Lgen, Lmax, r

c
0, r

c
L), if C = 1,

CosFn(Lgen, Lmax, r
w
0 , r

w
L ), if C = 0,

re, if Lgen = Lmax.

Hyperparameters:
rc0/r

w
0 : Reward (correct/wrong) for Lgen = 0,

rcL/r
w
L : Reward (correct/wrong) for Lgen = Lmax,

re : Exceed length penalty,
Inputs:

C : Correctness (0 or 1),
Lgen : Generation length.

CosFn(t, T, ηmin, ηmax) = ηmin +
1

2
(ηmax − ηmin)(1 + cos(

tπ

T
)) (1)

The formula above is commonly used as the learning rate schedule during gradient descent optimiza-
tion. It was introduced by Loshchilov & Hutter (2017).

I.2 N-GRAM REPETITION PENALTY

Algorithm 1 N-gram Repetition Penalty

1: Input:
2: s : sequence of tokens
3: l : sequence length
4: N : n-gram size
5: P : penalty value
6: m : maximum sequence length
7: Output: r ∈ Rm

8: seq ← s[1 : l] {Extract subsequence of length l}
9: ngrams← ∅ {Set of observed n-grams}

10: r ← 0⃗ ∈ Rm {Initialize reward vector}
11: for j ← 1 to |seq| −N + 1 do
12: ng ← (seq[j], seq[j + 1], ..., seq[j +N − 1]) {Current n-gram}
13: if ng ∈ ngrams then
14: for t← j to j +N − 1 do
15: r[t]← P {Apply penalty}
16: end for
17: end if
18: ngrams← ngrams ∪ {ng}
19: end for
20: Output: r
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J EXTRACTS

Short-Term Thinking (γc = 0.99)

But in this case, we saw that the fixed points don’t satisfy the equation

p(p(x)) = x.

Wait, maybe the solutions to p(p(x)) = x are not the fixed points of p, but something else.
Alternatively, perhaps I can consider that p(p(x)) = x implies that p is a bijection, but since
p(x) is quadratic, it’s not necessarily invertible over all real numbers.
Wait, but the problem says that p(p(x)) = x has four real solutions, so perhaps there are four
values of x that satisfy this equation.
Alternatively, perhaps I need to find the roots of

p(p(x))− x = 0,

and solve for x. But that seems complicated. Maybe there’s a better way.
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K EXPERIMENTAL SETUP

K.1 EVALUATION SETUP

Benchmarks Below are details of our evaluation benchmarks:

• MATH-500 (Hendrycks et al., 2021): an in-domain mathematical reasoning benchmark.
MATH consists of 12,500 problems from American high school math competitions. For
efficiency, we adopt MATH-500, a widely-used i.i.d. subset of its test split.

• AIME 2024: an out-of-domain mathematical reasoning benchmark consisting of the 30
problems from American Invitational Mathematics Examination (AIME) 2024.

• TheoremQA (Chen et al., 2023): an out-of-domain STEM reasoning benchmark consisting
of 800 samples. It covers 350+ theorems spanning across Math, EE&CS, Physics and
Finance.

• MMLU-Pro-1k (Wang et al., 2024a): an out-of-domain general reasoning benchmark.
MMLU-Pro comprises over 12,000 questions from academic exams and textbooks, spanning
14 diverse domains including Biology, Business, Chemistry, Computer Science, Economics,
Engineering, Health, History, Law, Math, Philosophy, Physics, Psychology, and Others. For
efficiency, we adopt an 1,000-sample i.i.d. subset of its test split, called MMLU-Pro-1k. We
tried to keep the distribution identical to the original one. Figure 14 shows the distribution
before/after the downsampling.
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Figure 14: MMLU-Pro test distribution before/after downsampling for the MMLU-Pro-1k subset.
The subset is i.i.d. to the full set.

Statistical Metrics We calculate the average accuracy with at least 4 random seeds. To tame the
variance caused by the small size of AIME 2024, we sample 16 responses per prompt.

Implementation We adopt the vLLM library to accelerate the inference and SymEval2, an elaborate
answer grader capable of processing complex mathematical objects like matrices and functions,
keeping consistent with the sampling and reward implementation in our RL setup. Note that a few
RL experiments are carried out with an earlier version of the grader, causing nuanced performance
differences.

2https://github.com/tongyx361/symeval
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K.2 DETAILS ABOUT DISTILLATION

To distill long CoT trajectories from QwQ-32B-Preview, we adopt the temperature t = 1.0, the
top-p value of 0.95 and the maximum output length of 8192 tokens. Our preliminary experiments
show that 8192 tokens show almost the same accuracy with QwQ-32B-Preview on MATH-500 as
16384 tokens, while costing significantly less time.

To distill short CoT trajectories from Qwen2.5-Math-72B-Instruct, we adopt the temper-
ature t = 0.7, the top-p value of 0.95 and the maximum output length of 4096 tokens, since
Qwen2.5-Math-72B-Instruct has a context limit of 4096 tokens and our preliminary experi-
ments observe a non-negligible ratio of nonsense output when using t = 1.0.

Note the data is distilled with SGLang (Zheng et al., 2024) with an early version of our code.

When applying rejection sampling, we adopt the SymEval verifier as the grader.

K.3 DETAILS ABOUT SFT SETUP

We use OpenRLHF (Hu et al., 2024) for our SFT experiments. By default, we adopt the SFT
hyperparameters in Table 6.

For efficiency, we utilize Flash Attention 2 (Dao, 2024) and ZeRO (Rajbhandari et al., 2020) based
on the DeepSpeed library (Rasley et al., 2020). We uniformly set the micro batch size as 1 since we
don’t observe acceleration when increasing it.

Table 6: SFT Hyperparameters

Batch Size Context Length LR Epochs

256 128K 5e-6 2

K.4 DETAILS ABOUT RL SETUP

We use OpenRLHF Hu et al. (2024) for our RL experiments. When describing hyperparameters, we
adopt the same naming conventions as OpenRLHF.

K.5 EXPERIMENT HYPERPARAMETERS

Note that the BS column below refers to both rollout batch size (the number of prompts used
in a sampling-training iteration) and train batch size (the number of samples used in a training
update) because we adopt the same number for these two hyperparameters in most of our RL setups.
Also, the Samples column refers to the number of samples per prompt.
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K.5.1 DETAILS OF SECTION 2.2 (SFT INITIALIZATION FOR RL)

SFT Data: CoT data distilled from QwQ-32B-Preview or Qwen2.5-Math-72B-Instruct
with the MATH train split with different number of candidate responses per prompt.

Table 7: Hyperparameters

Base Model Rewards GAE Episodes Samples BS Epochs Context Length LR KL

Llama3.1-8B

Cosine:
rc0 = +2
rcL = +1
rw0 = −10
rwL = 0

re = −10
Rep. Penalty:
P = −0.05
N = 40

λ = 1
γ = 1

4 4 512 1 Prompt: 2048
Gen: 14336

Actor: 5e-7
Critic: 9e-6 0.01

K.5.2 DETAILS OF SECTION 3.1 (COT LENGTH STABILITY)

SFT Data: Long CoT data distilled from QwQ-32B-Preview with the MATH train split.

Table 8: Hyperparameters

Base Model Rewards GAE Episodes Samples BS Epochs Context Length LR KL

Llama3.1-8B Correct: +1
λ = 1
γ = 1

8 8 512 1 Prompt: 2048
Gen: 14336

Actor: 5e-7
Critic: 4.5e-6 0.01

Qwen2.5-Math-7B Correct: +1
λ = 1
γ = 1

8 8 512 1 Prompt: 2048
Gen: 14336

Actor: 5e-7
Critic: 4.5e-6 0.01
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K.5.3 DETAILS OF SECTION 3.2 (ACTIVE SCALING OF COT LENGTH)

SFT Data: Long CoT data distilled from QwQ-32B-Preview with the MATH train split.

Table 9: Hyperparameters

Base Model Rewards GAE Episodes Samples BS Epochs Context Length LR KL

Llama3.1-8B Correct: +1
λ = 1
γ = 1

8 8 512 1 Prompt: 2048
Gen: 14336

Actor: 5e-7
Critic: 4.5e-6 0.01

Llama3.1-8B

Cosine:
rc0 = +2
rcL = +1
rw0 = −10
rwL = 0

re = −10

λ = 1
γ = 1

8 8 512 1 Prompt: 2048
Gen: 14336

Actor: 5e-7
Critic: 4.5e-6 0.01

Llama3.1-8B Correct: +1
λ = 1
γ = 1

8 16 512 2 Prompt: 2048
Gen: 14336

Actor: 5e-7
Critic: 9e-6 0.01

Llama3.1-8B

Cosine:
rc0 = +2
rcL = +1
rw0 = −10
rwL = 0

re = −10

λ = 1
γ = 1

8 16 512 2 Prompt: 2048
Gen: 14336

Actor: 5e-7
Critic: 9e-6 0.01

Llama3.1-8B

Cosine:
rc0 = +2
rcL = +1
rw0 = −10
rwL = 0

re = −10
Rep. Penalty:
P = −0.05
N = 40

λ = 1
γc = 1

γp = 0.99
8 16 512 2 Prompt: 2048

Gen: 14336
Actor: 5e-7
Critic: 9e-6 0.01
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K.5.4 DETAILS OF SECTION 3.3 (COSINE REWARD HYPERPARAMETERS)

SFT Data: Long CoT data distilled from QwQ-32B-Preview with the MATH train split.

Table 10: Hyperparameters

Base Model Rewards GAE Episodes Samples BS Epochs Context Length LR KL

Llama3.1-8B

Cosine:
rc0 = 0

rcL = +10
rw0 = 0
rwL = 0

re = −10
Rep. Penalty:
P = −0.05
N = 40

λ = 1
γc = 1

γp = 0.99
4 4 512 1 Prompt: 2048

Gen: 14336
Actor: 5e-7
Critic: 9e-6 0.01

Llama3.1-8B

Cosine:
rc0 = +6
rcL = +5
rw0 = −10
rwL = 0

re = −10
Rep. Penalty:
P = −0.05
N = 40

λ = 1
γc = 1

γp = 0.99
4 4 512 1 Prompt: 2048

Gen: 14336
Actor: 5e-7
Critic: 9e-6 0.01

Llama3.1-8B

Cosine:
rc0 = +10
rcL = +9
rw0 = −10
rwL = 0

re = −10
Rep. Penalty:
P = −0.05
N = 40

λ = 1
γc = 1

γp = 0.99
4 4 512 1 Prompt: 2048

Gen: 14336
Actor: 5e-7
Critic: 9e-6 0.01
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K.5.5 DETAILS OF SECTION 3.4 (CONTEXT WINDOW SIZE)

SFT Data: Long CoT data distilled from QwQ-32B-Preview with the MATH train split.

Table 11: Hyperparameters

Base Model Rewards GAE Episodes Samples BS Epochs Context Length LR KL

Llama3.1-8B

Cosine:
rc0 = +2
rcL = +1
rw0 = −10
rwL = 0

re = −10
Rep. Penalty:
P = −0.05
N = 40

λ = 1
γc = 1

γp = 0.99
8 8 512 1 Prompt: 2048

Gen: 2048
Actor: 5e-7
Critic: 9e-6 0.01

Llama3.1-8B

Cosine:
rc0 = +2
rcL = +1
rw0 = −10
rwL = 0

re = −10
Rep. Penalty:
P = −0.05
N = 40

λ = 1
γc = 1

γp = 0.99
8 8 512 1 Prompt: 2048

Gen: 6144
Actor: 5e-7
Critic: 9e-6 0.01

Llama3.1-8B

Cosine:
rc0 = +2
rcL = +1
rw0 = −10
rwL = 0

re = −10
Rep. Penalty:
P = −0.05
N = 40

λ = 1
γc = 1

γp = 0.99
8 8 512 1 Prompt: 2048

Gen: 14336
Actor: 5e-7
Critic: 9e-6 0.01

K.5.6 DETAILS OF SECTION 3.5 (LENGTH REWARD HACKING)

SFT Data: Long CoT data distilled from QwQ-32B-Preview with the MATH train split.

Table 12: Hyperparameters

Base Model Rewards GAE Episodes Samples BS Epochs Context Length LR KL

Llama3.1-8B

Cosine:
rc0 = +2
rcL = +1
rw0 = −10
rwL = 0

re = −10

λ = 1
γ = 1

8 16 512 2 Prompt: 2048
Gen: 14336

Actor: 5e-7
Critic: 9e-6 0.01

Llama3.1-8B

Cosine:
rc0 = +2
rcL = +1
rw0 = −10
rwL = 0

re = −10
Rep. Penalty:
P = −0.05
N = 40

λ = 1
γc = 1

γp = 0.99
8 16 512 2 Prompt: 2048

Gen: 14336
Actor: 5e-7
Critic: 9e-6 0.01
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K.5.7 DETAILS OF SECTION 3.6 (OPTIMAL DISCOUNT FACTORS)

SFT Data: Long CoT data distilled from QwQ-32B-Preview with the MATH train split.

Table 13: Hyperparameters

Base Model Rewards GAE Episodes Samples BS Epochs Context Length LR KL

Llama3.1-8B

Cosine:
rc0 = +2
rcL = +1
rw0 = −10
rwL = 0

re = −10
Rep. Penalty:
P = −0.05
N = 40

λ = 1
γc = 1
γp = 1

4 4 512 1 Prompt: 2048
Gen: 14336

Actor: 5e-7
Critic: 9e-6 0.01

Llama3.1-8B

Cosine:
rc0 = +2
rcL = +1
rw0 = −10
rwL = 0

re = −10
Rep. Penalty:
P = −0.05
N = 40

λ = 1
γc = 1

γp = 0.999
4 4 512 1 Prompt: 2048

Gen: 14336
Actor: 5e-7
Critic: 9e-6 0.01

Llama3.1-8B

Cosine:
rc0 = +2
rcL = +1
rw0 = −10
rwL = 0

re = −10
Rep. Penalty:
P = −0.05
N = 40

λ = 1
γc = 1

γp = 0.99
4 4 512 1 Prompt: 2048

Gen: 14336
Actor: 5e-7
Critic: 9e-6 0.01

Llama3.1-8B

Cosine:
rc0 = +2
rcL = +1
rw0 = −10
rwL = 0

re = −10
Rep. Penalty:
P = −0.05
N = 40

λ = 1
γc = 0.999
γp = 0.999

4 4 512 1 Prompt: 2048
Gen: 14336

Actor: 5e-7
Critic: 9e-6 0.01

Llama3.1-8B

Cosine:
rc0 = +2
rcL = +1
rw0 = −10
rwL = 0

re = −10
Rep. Penalty:
P = −0.05
N = 40

λ = 1
γc = 0.999
γp = 0.99

4 4 512 1 Prompt: 2048
Gen: 14336

Actor: 5e-7
Critic: 9e-6 0.01

Llama3.1-8B

Cosine:
rc0 = +2
rcL = +1
rw0 = −10
rwL = 0

re = −10
Rep. Penalty:
P = −0.05
N = 40

λ = 1
γc = 0.99
γp = 0.99

4 4 512 1 Prompt: 2048
Gen: 14336

Actor: 5e-7
Critic: 9e-6 0.01
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K.5.8 DETAILS OF SECTION 4 (RL WITH NOISY VERIFIABLE DATA)

SFT Data: 115k filtered from 462k instances of long CoT data distilled from QwQ-32B-Preview
with WebInstruct.

Table 14: Hyperparameters

Base Model RL Prompt Set
Verifier Rewards GAE Episodes

Instances Samples BS Epochs Context Length LR
KL

Llama3.1-8B
Unfiltered

(30k sampled)
Symeval

Cosine:
rc0 = +2
rcL = +1
rw0 = −10
rwL = 0

re = −10
Rep. Penalty:
P = −0.05
N = 40

λ = 1
γc = 1

γp = 0.99

1
30k instances 4 512 1 Prompt: 2048

Gen: 14336

Actor: 5e-7
Critic: 9e-6

KL: 0.01

Llama3.1-8B
Unfiltered

(30k sampled)
LLM-as-a-judge

Cosine:
rc0 = +2
rcL = +1
rw0 = −10
rwL = 0

re = −10
Rep. Penalty:
P = −0.05
N = 40

λ = 1
γc = 1

γp = 0.99

1
30k instances 4 512 1 Prompt: 2048

Gen: 14336

Actor: 5e-7
Critic: 9e-6

KL: 0.01

Llama3.1-8B
Filtered

(30k sampled)
Symeval

Cosine:
rc0 = +2
rcL = +1
rw0 = −10
rwL = 0

re = −10
Rep. Penalty:
P = −0.05
N = 40

λ = 1
γc = 1

γp = 0.99

1
30k instances 4 512 1 Prompt: 2048

Gen: 14336

Actor: 5e-7
Critic: 9e-6

KL: 0.01

Llama3.1-8B
Filtered

(30k sampled)
LLM-as-a-judge

Cosine:
rc0 = +2
rcL = +1
rw0 = −10
rwL = 0

re = −10
Rep. Penalty:
P = −0.05
N = 40

λ = 1
γc = 1

γp = 0.99

1
30k instances 4 512 1 Prompt: 2048

Gen: 14336

Actor: 5e-7
Critic: 9e-6

KL: 0.01

K.5.9 DETAILS OF SECTION 5 (EXPLORATION ON RL FROM THE BASE MODEL)

Table 15: Hyperparameters

Base Model Rewards GAE Episodes Samples BS Epochs Context Length LR KL

Qwen2.5-Math-7B
Correct: +1

Wrong: −0.5
No Answer: −1

λ = 0.95
γ = 1

20 8 1024
(Train: 128) 1 Prompt: 1024

Gen: 3072
Actor: 5e-7
Critic: 9e-6 0.01

Qwen2.5-Math-7B Correct: +1
λ = 1
γ = 1

8 8 512 1 Prompt: 2048
Gen: 14336

Actor: 5e-7
Critic: 4.5e-6 0.01

Qwen2.5-Math-7B

Cosine:
rc0 = +2
rcL = +1
rw0 = −10
rwL = 0

re = −10
Rep. Penalty:
P = −0.05
N = 40

λ = 1
γ = 1

8 8 512 1 Prompt: 2048
Gen: 14336

Actor: 5e-7
Critic: 4.5e-6 0.01
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K.5.10 DETAILS OF SECTION B.3 (REINFORCE IS MORE TRICKY TO TUNE THAN PPO)

SFT Data: Long CoT data distilled from QwQ-32B-Preview with the MATH train split.

Table 16: Hyperparameters

Base Model Rewards Gamma Episodes Samples BS Epochs Context Length LR KL Clip

Llama3.1-8B Correct: +1 γ = 1
8

(stopped early) 8 512 1 Prompt: 2048
Gen: 14336 5e-7 0.01 0.1

K.6 IMPLEMENTATION OF THE MODEL-BASED VERIFIER

We used Qwen2.5-7B-Instruct as our model-based verifier. It was provided with both the
reference answer and the suffix of the long CoT. We truncated the long CoT to avoid confusing the
verifier. We used the following prompt.

Prompt Template for Model-Based Verifier

Given the following last 20 lines of the LLM response to a math
question

and the reference solution to that question, evaluate if the LLM
response is correct based only on the LLM’s final answer.

LLM response (last 20 lines):
...
{out}

Reference solution:
{ref}

Explain your thought process step-by-step before responding with ‘
Judgement: <correct/wrong/not_found>‘

K.7 IMPLEMENTATION OF SHORT-FORM ANSWER EXTRACTION

We use the Llama-3.1-8B-Instruct model to extract short-form answer from QA pairs in
WebInstruct, with the following prompt template:
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Prompt Template for Short-Form Answer Extraction

Problem: {Problem}

Solution: {Solution}

Based on the Problem and the Solution, extract a short final answer
that is easy to check.

Provide the short final answer in the format of "The final answer
is $$

\boxed{...}
$$"
- If the answer is a mathematical object, write it in LaTeX, e.g., "

The final answer is $$
\boxed{\frac{1}{2}}
$$"
- If the answer is a boolean, write it as "True" or "False", e.g., "

The final answer is $$
\boxed{True}
$$"
- If the Problem can’t be answered in a short form, respond with ""

like "The final answer is $$
\boxed{}
$$"

For generation parameters, we use temperature t = 0 (greedy decoding) and set the maximum output
length as 512 tokens.

After generation, we simply extract the short-form answer from within the \boxed{...}.

K.8 ACTION PROMPTING FRAMEWORK

We studied the publicly released CoTs of o1-preview and identified that its thoughts could be
categorized into a few types of actions (listed below). To construct long CoTs, we designed prompts
for each of these actions and implemented a multi-step prompting framework to sequence them. The
framework ceded control flow of the CoT to the LLM, with the LLM making branching or looping
decisions while the framework acted more passively as a state machine reacting to the LLM outputs.
The framework took care of the boilerplate around constructing the CoT with an append-only log and
managed all of the orchestration.

• clarify: Making some observations about the problem in order to identify an approach
to solve it.

• decompose: Breaking the current problem down into smaller and easier sub-problems to
solve.

• solution step: Computing a single step in the solution. In the context of math, this
could be doing some arithmetic or symbolic manipulation.

• reflection: Evaluating the current approach and partial solution to see if any mistakes
were made, any sub-goals were achieved, or if alternative approaches should be considered
instead. Note that we used a strong teacher model o1-mini for the reflection action
as that one was a more difficult prompt to respond to correctly as it requires self-correction.

• answer: Responding with a final answer and terminating the CoT.

K.8.1 CONTROL FLOW

Simplified description of the interaction between the framework and LLM.
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Algorithm 2 Action Prompting State Machine

1: Input: prompt
2: Output: chain of thought sequence
3: chain of thought← [prompt] {Initialize singleton chain of thought sequence from prompt}
4: state← “clarify”
5: while True do
6: if state = “clarify” then
7: output← prompt action clarify()
8: (state, thought)← parse(output)
9: chain of thought.append(thought)

10: else if state = “decompose” then
11: output← prompt action decompose()
12: (state, thought)← parse(output)
13: chain of thought.append(thought)
14: else if state = “solution step” then
15: output← prompt action solution step()
16: (state, thought)← parse(output)
17: chain of thought.append(thought)
18: else if state = “reflection” then
19: output← prompt action reflection()
20: (state, thought)← parse(output)
21: chain of thought.append(thought)
22: else if state = “answer” then
23: output← prompt action answer()
24: (state, thought)← parse(output)
25: chain of thought.append(thought)
26: return chain of thought {Terminate after answer action}
27: end if
28: end while

K.8.2 ACTION PROMPTING TEMPLATES

Action: Clarify

You are a very talented mathematics professor.
In a few sentences, VERY CONCISELY rephrase the problem to clarify

its meaning and explicitly state what needs to be solved.
Highlight any assumptions, constraints and potential
misinterpretations.

Do NOT attempt to solve the problem yet -- you are just clarifying
the problem in your mind.

<problem>
{goal}
</problem>

Answer in the following format:

<clarification>
Problem clarification as instructed above
</clarification>
<goal>
Summarize the problem into a single statement describing the goal,

e.g. Find the value of the variable w.
</goal>
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Action: Decompose

You are a talented mathematics professor.
You already have a partial solution to a problem.
In a single sentence, propose candidates for the next subgoal as

the next step of the partial solution that will help you make
progress towards the current goal.

Do not repeat any subgoal, we don’t want any infinite loops!
Do not suggest using a computer or software tools.

<current goal>
{current_goal}
</current goal>
<parent goal>
{parent_goal}
</parent goal>
<partial solution>
{solution}
</partial solution>

Format your answer as follows:

<thinking>
step-by-step thinking of what the next possible subgoal should be,

as well as some other alternatives that might also work
remember, we want to solve the parent goal WITHOUT repeating the

subgoals that are already DONE.
do not suggest verification or checking.
{parent_goal}
</thinking>
<sentence>
single sentence describing the subgoal
phrase it as if you were thinking to yourself and are considering

this as a hypothesis (don’t express too much certainty)
</sentence>
<sentence>
single sentence describing an *ALTERNATIVE* subgoal, without

repeating previous ones
start off with "Alternatively,"
</sentence>
<sentence>
single sentence describing an *ALTERNATIVE* subgoal, without

repeating previous ones
start off with "Alternatively,"
</sentence>
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Action: Solution Step

You are an extremely PEDANTIC mathematics professor who loves to
nitpick.

You already have a partial solution to a problem. Your task is to
solve *only* the current goal.

You should include symbols and numbers in every sentence if
possible.

<current goal>
{current_goal}
</current goal>
<partial solution>
{solution}
</partial solution>

BE VERY CONCISE. Include calculations and equations in your
response if possible, and make sure to solve them instead of
just describing them.

DO NOT SOLVE THE WHOLE QUESTION, JUST THE CURRENT GOAL: {
current_goal}

Do not repeat any calculations that were already in this prior step:

{prior_step}
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Action: Reflection

You are a talented mathematics professor.
You already have a partial solution to a math problem.
Verify whether the current subgoal has been achieved.

<current goal>
{current_goal}
</current goal>
{parent_goal}
<partial solution>
{solution}
</partial solution>

Format your answer as follows:

<verification>
Come up with a quick, simple and easy calculation to double check

that the solution is correct.
This calculation should not re-compute the solution in the same way,

as that would defeat the purpose of double-checking.
Use one of the following strategies:
- An easier, alternative method to arrive at the answer
- Substituting specific values into equations and checking for

consistency
- Working backwards from the answer to derive the given inputs and

then checking for consistency
Be consise. Do not suggest using a computer.
At the end of your verification, restate the answer from the

current solution. Do not calculate it if it hasn’t been solved.
Phrase it as if you are reflecting as you solve the problem.
</verification>
<current_goal_achieved>
true or false, depending on whether the solution is correct and the

current goal has been achieved: {current_goal}
</current_goal_achieved>
<parent_goal_achieved>
true or false, depending on whether the parent goal has been

achieved:
{parent_goal.target}
</parent_goal_achieved>
<new_goal>
If the solution is not correct or the current goal has not been

achieved, suggest an alternative current goal here in a single
sentence.

Start off with "Alternatively,"
Your goal should be sufficiently different from subgoals that have

been solved or that have timed out:
{parent_goal_tree}
</new_goal>

Action: Answer

Extract the final answer, making sure to obey the formatting
instructions.

Solution:
{solution}

Formatting instructions:
{format}
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L LONG COT PATTERNS IN PRE-TRAINING DATA

L.1 SNAPSHOT OF WEBPAGES

Source: brilliant.org

The following two examples demonstrate how explicit verification after answering a question can
naturally exist on a webpage.

Explicit verification

x+ 7 = 10
This problem can be solved by subtracting 7 from each side.
x+ 7− 7 = 10− 7
x = 3
Once the problem is solved, the solution can be verified by rewriting the problem with 3
substituted for x.
3 + 7 = 10
10 = 10
Both sides are equal, verifying that x = 3 is a valid solution.

Explicit verification that found an error

x+ 7 = 10 A student rushing through her homework might mistakenly write x = 2 as the
solution to this problem. If she takes a moment to rework the equation with her answer, she
will realize the answer is incorrect.
x+ 7 = 10
2 + 7 = 10
9 = 10
Since 9 ̸= 10, the student knows she needs to go back and find a different solution to the
problem.
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Source: kidswholovemath.substack.com

Attempt the question from different perspective

The Double Check Game
Regardless of the scenario, we can play the double check game!
The game is simple: we try to solve the problem in as many different ways as possible.
Elementary School Example
Math problem is: 78− 57 =?
To play the game, we try to solve the problem in as many different ways as possible.
The first solution:
? = 78− 57
Break apart the 57:
? = 78− 50− 7
? = 28− 7
? = 21
A second solution:
? = 78− 57
Subtract an easier number from 78:
? = 78− 60 + 3
? = 18 + 3
? = 21
A third solution:
? = 78− 57
Subtract 57 from an easier number:
? = 80− 57− 2
? = 23− 2
? = 21
...
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L.2 OPENWEBMATH

L.2.1 QUERIES

We used GPT-4o to generate examples of typical pivot keywords found in long CoT. These were
used to find documents in OpenWebMath that have interesting properties characteristic of long CoT
trajectories.

”Aha” Phrases

"Let’s think step by step."
"Let’s go through this one step at a time."
"Breaking it down step by step..."
"Thinking about it logically, first..."
"Step 1: Let’s figure out the starting point."
"If we follow the steps carefully, we get..."
"To solve this, lets analyze it piece by piece."
"Going through this systematically, we have..."
"Okay, lets solve this gradually."
"Does that make sense?"
"Is this correct?"
"Wait, does that check out?"
"Am I missing something?"
"Hmm does that work?"
"Let me verify that."
"That makes sense, right?"
"Hold on, is this right?"
"Lets double-check this."
"Wait, actually..."
"Oh, hold on..."
"Wait a second..."
"Actually, let me rethink that."
"Hmm, let me go back for a moment."
"I might need to check this again."
"Let’s pause and reassess."
"Lets check by doing the reverse."
"Let’s verify by working backward."
"Can we check this by reversing the process?"
"To confirm, let’s undo the steps."
"A good way to verify is by reversing it."
"If we undo the operations, do we get the same result?"
...
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L.2.2 MATCHES

Source: MC Stan Discussion Forum

The discussion below took place on a message board for the probabilistic programming framework
MC Stan. The user Tiny has a question about how to interpret some data and multiple other users are
responding. We can see the usual pivot keywords (highlighted in bold) characteristic of long CoT,
including branching, self-correction and even an assessment of the feasibility of an approach.

Discussion on message board

So the question is then to find the right prediction task, looking
at your setup, those may include:

...

For a hypothetical future serial drawn from the same
p o p u l a t i o n as the observed serials. (i.e. include the

varying intercept via a new level and sample_new_levels =
u n c e r t a i n t y )

For the t r u e or a v e r a g e underlying system (i.e.
ignore the varying intercept)
In the experiments you actually observed (i.e. include the
fitted varying intercepts for your experiments)

But you could also ask other stuff, like:

What is the expected difference in some of the constants (or
anything else) between two future experiments?

All of those (and more) should be answerable using the posterior of
the model. But you still need to figure out which questions do

you actually want to ask, as there is a lot of options

Does that make sense?

Best of luck with your model!

...

I am not sure I follow your thought here, but maybe thats just
because I would have worded it differently?

...

An alternative approach would be to
try to find a different parametrization of the model where the
parameters are interpretable separately, but that might be
hard.

Also, if this is the parametrization of the process used by many in
the field, than maybe poeple would expect you to report as (\

frac {L} {mol})ˆ{n-1} sˆ{-1}, because t h a t s what everybody
has been doing (although possibly with fixed n)?

Does that make sense?

Can you not just recast the model (with modified parameters) as

...
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Source: physicsforums.com

The discussion below took place on a physics forum. The user Songoku is asking for help with
homework and another user BvU is trying to assist without revealing the solution directly. We see
the usual pivot keywords indicating self-reflection, expression of uncertainty and formulation of
hypotheses.

Discussion on a physics forum

# Cylinder in 3 D
1. Dec 13, 2017

### songoku
1. The problem statement, all variables and given/known data
Let r be a positive constant. Consider the cylinder x2 + y2 <= r2,

and let C be the part of the cylinder that satisfies
0 <= z <= y.
(1) Consider the cross section of C by the plane x = t (-r <= t <=

r), and express its area in terms of r, t.
(2) Calculate the volume of C, and express it in terms of r.

...

5. Dec 13, 2017
### BvU
Simple case: x = 0. So -1 <= y <= 1. In the yz plane 0 <= z <= y is

a triangle.
What about y ?

6. Dec 13, 2017
### songoku
I think I am missing something

here because I feel I can’t really grasp the hint given.
Let me start from the basic again:
1. Let the x - axis horizontal, y - axis vertical and z - axis in /

out of page. I imagine there is circle on xy plane with radius
r then it extends out of page (I take out of page as z+) to form
3 D cylinder. Is this

correct?
2. Plane x = t is like the shape of a piece of paper hold

vertically with the face of paper facing x - axis (I mean x -
axis is the normal of the plane). Is this
correct?

Thanks

7. Dec 14, 2017
### BvU
Yes

8. Dec 14, 2017
### songoku

"Consider the cross section of C by plane x = t" means plane x = t
cuts the cylinder?

And the intersection will be rectangle?
...
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Source: StackExchange

The user Baymax is asking for help on a probability problem and we see dialogue with another user
Lulu. We see that the quick back-and-forth between them is similar to the kind of nimble branching
behavior in long CoT where multiple solutions are quickly assessed and considered. We also see an
expression of realization which can be easily re-cast as self-verification in a long CoT.

Discussion on Stack Exchange

# probability that we stop flipping after exactly ten flips in a
biased coin flipping?

...

I thought that let us fix of getting a third head at last that is
at 10th flip, so that we would stop there, and the remaining -
getting two heads can be accommodated in the 9 trials. so there
are $$9$$ choose 2 ways of getting two heads so the probability
that we stop flipping after exactly ten flips is $$ˆ9C_{2}$$ .
$$\frac{1}{4}ˆ3$$.$$\frac{3}{4}ˆ7$$. Is this
correct?

EDIT - Now the probability of getting exactly 3 heads? I got it to
be $$ˆ{10} C_{3} \frac{1}{4}ˆ3 \frac{3}{4}ˆ7$$. Should we get
the same as the previous one? any reason why they should/should
not be same?

I think you switched $P(H),P(T)$ but the approach is
good. lulu Oct 1 ’18 at 16:13
oh i see now! thanks! BAYMAX Oct 1 ’18 at 16:13
@lulu please see the edit BAYMAX Oct 1 ’18 at 16:30
Your probability for exactly 3 heads is right as well. It
should be obvious why the results have to be different. In the
first case the outcome of the last flip is fix and in the second
case the outcome of the last flip is not fix. callculus Oct
1 ’18 at 16:31

...
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Source: StackExchange

User88 interacts with multiple other users. Observe that they are helping to clarify each others’
doubts, which is reminiscent of self-correction in long CoT trajectories.

Discussion on Stack Exchange

Choosing units for drug testing

Here’s a third puzzle that I found in a book, slightly paraphrased
because I don’t entirely remember the format of the original.

...

How can he arrange the dosage amounts so that he ends up using all
25 test packages, and the total units of dosage used in the
tests are as low as possible?

The book had the answer, but one, it didn’t explain how the answer
was arrived at, and two, I don’t remember what the answer was
and no longer have that book with me.

Am I missing something, or is the goal just to find 25 coprime
numbers from 25 to 50? Aza May 20 ’14 at 4:33
They don’t have to be coprime. There just can’t be any two
where one is a factor of the other. And the range is from 1 to
50, not 25 to 50. Joe Z. May 20 ’14 at 4:34
Wouldn’t a single
test of 1 unit technically satisfy the requirement? Or am I
missing something? Ah, I guess you have
to perform exactly 25 tests. arshajii May 20 ’14 at 14:28
Yea. Wouldn’t 1 win? awesomepi May 20 ’14 at 19:24
You have to use all 25 tests. Joe Z. May 20 ’14 at 19:31

By logically starting from 26-50 and trying to shrink them one by
one you can easily show: $8
,12,14,17,18,19,20,21,22,23,25,26,27,29,30,31,33,35,37,39,
41,43,45,47,49$

Which equals $711$

...
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