MILES: Making Imitation Learning Easy with
Self-Supervision

Georgios Papagiannis and Edward Johns
The Robot Learning Lab
Imperial College London, UK
g.papagiannis2l@imperial.ac.uk

Abstract: Data collection in imitation learning often requires significant, labo-
rious human supervision, such as numerous demonstrations and/or frequent en-
vironment resets for methods that incorporate reinforcement learning. In this
work, we propose an alternative approach, MILES: a fully autonomous, self-
supervised data collection paradigm and show that this enables efficient policy
learning from just a single demonstration and a single environment reset. Our
method, MILES, autonomously learns a policy for returning to and then following
the single demonstration, whilst being self-guided during data collection, elimi-
nating the need for additional human interventions. We evaluate MILES across
several real-world tasks, including tasks that require precise contact-rich manip-
ulation, and find that, under the constraints of a single demonstration and no re-
peated environment resetting, MILES significantly outperforms state-of-the-art al-
ternatives like reinforcement learning and inverse reinforcement learning. Videos
of our experiments, code, and supplementary material can be found on our web-
site: www.robot-learning.uk/miles.

£ Human (a) Single D ation (b) Multiple D: ation (c) Imitation Learning + (d)
Lock the lock with a key Behavioural Cloning Behavioural Cloning Reinforcement Learning
3 & = =

Multiple
Demonstrations

& L(;A
[single Demonstration [single Demonstration [Wfsingle Demonstration [single Demonstration
No Inefficient Exploration No Inefficient Exploration [J No Inefficient Exploration No Inefficient Exploration

[J No covariate shift gNo Covariate Shift IYNO Covariate Shift No Covariate Shift
No Repeated Environment Resets [_] No Repeated Environment Resets [J No Repeated Environment Resets E’No Repeated Environment Resets

Figure 1: (a) Behavioural cloning from a single demonstration fails to generalize to states outside the demonstration, due
to covariate shift. (b) Providing multiple demonstrations addresses this, but requires significant human effort. (c) While
incorporating reinforcement learning addresses the issue of covariate shift and the need for multiple demonstrations, it re-
quires frequent environment resetting and is highly inefficient due to random exploration. (d) In MILES, we propose a new
self-supervised paradigm that overcomes these issues and can learn a range of complex tasks from a single demonstration
and no additional human effort, by collecting augmentation trajectories that guide the robot back to the demonstration.

1 Introduction

Imitation learning is frequently described as a convenient way to teach robots new skills, but in
practice, it still demands significant human effort. Behavioral cloning (BC) methods leverage su-
pervised learning to train robust policies, but doing so typically requires tens or hundreds of demon-
strations per task [1, 2]. Inverse reinforcement learning (IRL) offers a solution to this by learning
autonomously from a few demonstrations [3, 4], but IRL methods are often unstable, and inefficient
due to the need for random exploration and laborious repeated environment resets. Instead, learning
from a single demonstration appears to be more convenient in terms of human effort, but policies
learned this way suffer from covariate shift [5].

https://www.robot-learning.uk/miles

Motivated by these challenges, we propose MILES, a framework that enables robots to learn tasks
from just a single demonstration, requiring no prior task knowledge and only one environment re-
set. At its core, MILES trains a BC policy on robot trajectories collected autonomously, in a self-
supervised manner that demonstrate to the robot how to return to, and then follow the single human
demonstration, as shown in Figure 1. This way MILES eliminates the need for multiple demon-
strations and avoids covariate shift by densely covering the space around the demonstration. And
unlike IRL, MILES’ data collection is efficient, as it uses self-labeled data to guide the robot directly
allowing it to shape data collection to be independent of repeated environment resets.

Through extensive real-world experiments on tasks requiring fine-grained and precise manipulation,
such as locking a lock, inserting a USB or opening a lid, we demonstrate that in the setting of a
single demonstration and no repeated environment resetting MILES outperforms recent state-of-
the-art approaches in RL, IRL, and replay-based imitation learning methods.

2 MILES: Making Imitation Learning Easy with Self-Supervision

As follows we describe MILES, a framework that makes imitation learning easy by leveraging a
single human demonstration as guidance to collect self-supervised data demonstrating to the robot
how to return to, and then follow the demonstration.

2.1 Preliminaries

Assumptions. Our setup assumes access to a wrist camera that is rigidly mounted to the robot’s
end-effector (EE) and (optionally) a sensor that measures external forces and torques. We follow
prior work [6, 2, 7] and assume that each task is object-centric, such that only the task-relevant object
is in camera view during data collection and the demonstration can be expressed relative to a single
object, where combining several such tasks results in a multi-stage task. Additionally, as we are
interested in dealing with all types of tasks, including those that require contact-rich manipulation,
we control our robot using an impedance controller.

Single Demonstration. For each task, a human provides a single demonstration (:=
{(w§, 05, aS)}N_, comprising a sequence of N waypoints w§,, observations o, and actions a$,,
as shown in Figure 2 (1). A waypoint wS corresponds to the EE’s 6-DoF pose at timestep 7 cap-
tured via proprioception. An observation oS, consists of an RGB image captured from the wrist
camera and a force-torque measurement. We refer to (wfl, 0%) as the state of the environment at
timestep n. An action a$, contains the gripper’s state and the 6-DoF pose tracked by the impedance
controller at timestep n, expressed relative to the EE’s pose at timestep n — 1. After providing ¢ the
human resets the environment only once, such that if the actions in ¢ are executed, the robot would

successfully perform the task; a trivial process that requires a few seconds of human time.

2.2 Self-Supervised Data Collection

Augmentation Trajectories. Given a single demonstration, MILES collects a dataset of aug-
mentation trajectories D := {73}, where 1 < k < N and each 7, := {(w7t, o7 a7)}M_,
is a robot trajectory whose final, My, state corresponds to a ky, state in the demonstration, i.e.,
(wih,o3y) = (w,c§7 oi). That is, each augmentation trajectory guides the robot to some ky, state in
the demonstration from any state (w7*,o7%) € 7. We can fuse each augmentation trajectory with
the demonstration segment following each kg, state, {(w$, 05, a$)}_, C ¢, to create a new demon-
stration that demonstrates to the robot how to return to and then follow the human demonstration
as shown in Figure 3. By collecting augmentation trajectories that densely cover the state space near
the demonstration we can create a dataset of new demonstrations to train a policy using standard BC
methods. But how do we create such a dataset of augmentation trajectories automatically?

Data Collection. We achieve this by collecting data in the simplest possible way. An overview
of our data collection procedure is shown in Figure 2. To generate a 73, from a demonstration

waypoint wg, we first move the robot to some random pose near the demonstration. The robot

then attempts to return back to w,i in a straight line, while recording RGB and force-feedback

observations {o7%}M_, and actions {a7%}*_, automatically generated by computing the EE’s
relative movement between consecutive timesteps, as shown in Figure 2 (3) (gripper actions are
copied directly from the demonstrated action). In practice, the actual trajectory 7, may not be
a straight line, as collisions with external objects can yield a more complex, curved path due
to the robot’s compliance; an example of this happening for a locking a lock task is shown in

& MILES Overview 3 @ Data Collection

For each the robot collects several Types of
2 Straight line trajectory in free-space Complex, curved trajectory

1 £ User provides a <

LR
8

B 1
i Jl] — Planned straight line trajectory back to demo waypoint
—— u ‘L‘h followed
Time

2 [User resets environment to
: Step-by-step Overview

@ ! After executing an 3
— Check for Reachability |
K 28

initial state only once Collecting an
— Check for Environment ;

W ® ® |
yoll

y X 8 P B | S :
S, w8k

Robot is at a Move robot to random pose @ Colles Finished executing
waypoint near the demonstration by returnmg to the

Figure 2: MILES Overview: (1) First, the user provides a single demonstration and (2) resets the environment only once.
(3) Then, the robot (autonomously) collects self-supervised data. Several augmentation trajectories are collected for each
demonstration waypoint until an environment disturbance is detected or sufficient data is collected for all waypoints. Each
augmentation trajectory is either a straight line, if the motion occurs in free space, or a more complex, curved path as the
augmentation trajectory can be reshaped by collisions with the environment (e.g., with the lock as shown above). (3) (a-b)
To collect an augmentation trajectory, the robot first moves from a demonstration waypoint to a random pose. (c) Then, it
attempts to return back to the waypoint while recording RGB images and force-torque feedback . (d) After completing the
trajectory, we check whether the achieved state meets the conditions of reachability and environment disturbance.

Figure 2 (3). This is particularly useful for contact-rich tasks, as these trajectories contain in-
formation on overcoming potential collisions or large friction areas by regulating force when in
contact with an object. After executing the potential augmentation trajectory we check that it is
valid and that it can be fused with the demonstration by evaluating two key conditions, that of
reachability and environment disturbance which we describe in the supplementary material sec-
tion A.3. If both conditions are met we store that augmentation trajectory, otherwise, it is discarded.
We repeat this process several times for each demonstra-

tion state, starting from the first waypoint in the demon-

strat@on wf and gra.duauy progress thropgh the demor.l— \J ?q/ aF w

Fusing with the

stration, as shown in Figure 2 (3), until: (1) an envi-
ronment disturbance is detected, in which case we stop

the data collection and store the demonstration timestep é
where the disturbance occurred, denoted R, and the ac- g ¢
; — N . / K
tions Cremaining ‘= {.a%}n= R for.the remaining demon- § a3 'y 3
stration states for which no data is collected; or (2) we :
have collected a prespecified number of Z augmentation @ omonstaton Waypoits 4> Demonsiration Trajectory
trajectories for each of the IV demonstration states, in = NowDemonsiaions | g Augmentation Trlactories
A @ Target Demonstration Waypoints
which case R = N. Figure 3: After finishing the data collection,

. each augmentation trajectory is fused with the
At the end of the data collection process, every augmen- jemonstration segment following the demonstra-

tation trajectory is fused with (to form a new demonstra- tion waypoint it returns to, to create a dataset of
tion (, = {(Th a’Tk)}%zl U {(OC ab) . as shown in ew demonstration trajectorles.

Figure 3. And as a result, we obtain a dataset Drew = {C, Cll', G, CF . CETY CE). Every tra-
jectory in D,,.,, corresponds to a new demonstration, automatically created, that solves the task up
to the Ry, state in the demonstration. Further details concerning a practical implementation of our
data collection procedure and pseudocode can be found in our supplementary material section A.2.

Policy. After collecting self-supervised data for a task we train an LSTM-based policy on D¢,
using standard behavioral cloning. At deployment, if no environment disturbance occurred during
data collection for the task of interest, we deploy the policy in a closed-loop manner to complete it.
If an environment disturbance did occur, we deploy the policy closed-loop to solve the task up to
the Ry, demonstration state after which point we replay the actions Cremaining = {a%}ﬁfz R
in-depth discussion on MILES’ policy can be found in our supplementary material section A.S.

3 Experiments

We assess the performance of MILES across a diverse set of 7 everyday tasks, shown in Figure 1
and compare it to various state-of-the-art baseline methods capable of learning from a single demon-

Methods Lock Insert Plug into Insert Twist Bread in Open

with key USB socket power cable screw toaster 1lid Mean
Demo Replay 0 0 0 0 0 15 25 6
Reset Free Residual RL 0 15 35 0 0 0 0 7
Reset Free FISH 0 30 25 15 0 0 0 10
Pose Estimation + Demo Replay 50 10 85 80 70 100 100 71
MILES 90 70 85 85 85 95 100 87

Table 1: Task success rates (%) for 20 trials reported for each method.

stration. For details regarding MILES deployment, implementation and experimental set up please
see our supplementary material section B.1. For the contact-rich tasks our setup follows prior work
on contact-rich manipulation [8, 9, 10, 11, 12] and the NIST benchmark [13]. Similar to prior work
[14, 15], we focus our evaluation on single-task performance, but also report ablation results, sim-
ulation benchmarking experiments, results of MILES under different input modalities, results on
generalization, robustness to distractors, and multi-stage tasks in the supplementary material sec-
tion C. We provide a detailed description of each task in the supplementary material section B.4.

Baseline Methods. We chose 4 baselines that can learn from a single demonstration without prior
task knowledge, similar to MILES. (1) Demo Replay which involves replaying the demonstrated
actions. (2) Pose Estimation + Demo Replay follows [7] and leverages MILES’ data to perform
pose estimation followed by demonstration replay. (3) Reset Free Residual RL replays the demon-
stration’s actions at each timestep and learns corrective actions on top using DDPG [16]. Finally,
(4) Reset Free FISH (Inverse Residual RL) uses the state-of-the-art inverse RL method FISH [3].
Like MILES, no human intervenes to reset the environment during RL, hence we call both methods
“Reset Free”. Further, implementation details on the baselines, our evaluation procedure, and setup
can be found in our supplementary material sections B.5 and B.6 respectively.

Results. As shown in Table 1 MILES obtains a high success rate across all tasks, with an average
success rate of 87%. The ”Open lid” task has the highest success rate of 100%. From the contact-
rich tasks, inserting the key and locking the lock achieved the best performance despite the task’s
low tolerance and complex interaction, with an impressive 90% success rate. The lowest success
rate is observed in the USB insertion task, where MILES obtains 70%, a performance dip that we
attribute to the task’s low tolerance of less than Imm. Despite the USB task, for the remaining
tasks that required high precision MILES was able to complete them consistently well. The next
best-performing method, Pose Estimation + Demo Replay, obtained an average success rate of
71%. Our experiments showed that small errors in object pose estimation led to failures due to the
compounding errors of demonstration replay, as observed in prior work [2, 17]. This is particularly
evident in tasks requiring precise manipulation including "Lock with key”, ”Insert USB” and ”Twist
screw”. Instead, while MILES also replays part of the demonstration for some tasks, the fact that it
does so for a much shorter horizon allows it to obtain considerably higher success rates.

Reset Free FISH failed to solve the majority of tasks, yielding an average performance of 10%
across all evaluated scenarios. During training, for several tasks, the policy caused significant distur-
bances to the environment that made policy learning very hard without manual resetting. We believe
that this is the central reason behind Reset Free FISH’s low performance Additionally, compared
to the original FISH implementation, as we train policies that predict 6-DoF actions the learning
efficiency of Reset Free FISH is negatively affected. Lastly, Reset Free Residual RL obtained a
lower success rate, averaging 7% due to similar challenges with Reset Free FISH. As anticipated, the
Demo Replay baseline was the least effective among the baselines. Simply replaying the demon-
stration without pose estimation or online action correction leads to task failures.

While the RL methods would have benefited from manual environment resets during training, our
results demonstrate that in our “easy” imitation learning setting, where only a single demonstration is
available without additional human interventions, MILES significantly outperformed the baselines.

4 Conclusion

We introduced MILES, a framework that makes imitation learning easy by leveraging a single
demonstration to collect self-supervised data that demonstrate to the robot how to return to and
then follow that demonstration. Through a series of real-world experiments on 7 everyday tasks
that require precision and dexterity we showed that MILES significantly outperforms state-of-the-
art baselines when only a single demonstration is available. We provide additional discussion on
MILES and an in-depth analysis of MILES’ limitations in the supplementary material section C.9.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

(13]

[14]

[15]

[16]

(17]

(18]
(19]

[20]

A. Brohan et al. Rt-1: Robotics transformer for real-world control at scale. In arXiv preprint
arXiv:2212.06817, 2022.

A. Mandlekar, S. Nasiriany, B. Wen, 1. Akinola, Y. Narang, L. Fan, Y. Zhu, and D. Fox. Mimicgen: A
data generation system for scalable robot learning using human demonstrations. In Conference on Robot
Learning, 2023.

S. Haldar, J. Pari, A. Rai, and L. Pinto. Teach a robot to fish: Versatile imitation from one minute of
demonstrations. arXiv preprint arXiv:2303.01497, 2023.

J. Ho and S. Ermon. Generative adversarial imitation learning. In Conference on Neural Information
Processing Systems, page 4572-4580, 2016.

S. Ross, G. Gordon, and D. Bagnell. A reduction of imitation learning and structured prediction to
no-regret online learning. In International Conference on Artificial Intelligence and Statistics, pages
627-635, 2011.

N. D. Palo and E. Johns. On the effectiveness of retrieval, alignment, and replay in manipulation. RA-
Letters, 2024.

E. Johns. Coarse-to-fine imitation learning: Robot manipulation from a single demonstration. In /EEE
International Conference on Robotics and Automation (ICRA), 2021.

G. Schoettler, A. Nair, J. Luo, S. Bahl, J. Aparicio Ojea, E. Solowjow, and S. Levine. Deep reinforcement
learning for industrial insertion tasks with visual inputs and natural rewards. In International Conference
on Intelligent Robots and Systems (IROS), 2020.

J. Luo, O. O. Sushkov, R. Pevceviciute, W. Lian, C. Su, M. Vecerik, N. Ye, S. Schaal, and J. Scholz.
Robust multi-modal policies for industrial assembly via reinforcement learning and demonstrations: A
large-scale study. ArXiv, abs/2103.11512, 2021.

J. Luo, Z. Hu, C. Xu, Y. L. Tan, J. Berg, A. Sharma, S. Schaal, C. Finn, A. Gupta, and S. Levine. Serl:
A software suite for sample-efficient robotic reinforcement learning. In International Conference on
Robotics and Automation (ICRA), 2024.

T. Z. Zhao, J. Luo, O. Sushkov, R. Pevceviciute, N. Heess, J. Scholz, S. Schaal, and S. Levine. Of-
fline meta-reinforcement learning for industrial insertion. In International Conference on Robotics and
Automation (ICRA), pages 6386—6393, 2022.

A. Nair, B. Zhu, G. Narayanan, E. Solowjow, and S. Levine. Learning on the job: Self-rewarding offline-
to-online finetuning for industrial insertion of novel connectors from vision. In International Conference
on Robotics and Automation (ICRA), pages 7154-7161, 2023.

K. Kimble, K. Van Wyk, J. Falco, E. Messina, Y. Sun, M. Shibata, W. Uemura, and Y. Yokokohji. Bench-
marking protocols for evaluating small parts robotic assembly systems. IEEE Robotics and Automation
Letters, 5(2):883-889, 2020.

C. Chi, S. Feng, Y. Du, Z. Xu, E. Cousineau, B. Burchfiel, and S. Song. Diffusion policy: Visuomotor
policy learning via action diffusion. In Proceedings of Robotics: Science and Systems (RSS), 2023.

T.Z.Zhao, V. Kumar, S. Levine, and C. Finn. Learning fine-grained bimanual manipulation with low-cost
hardware, 2023.

T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. M. O. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra.
Continuous control with deep reinforcement learning. ArXiv, abs/1509.02971, 2015.

P. Vitiello, K. Dreczkowski, and E. Johns. One-shot imitation learning: A pose estimation perspective. In
Conference on Robot Learning, 2023.

0. X.-E. Collaboration et al. Open X-Embodiment: Robotic learning datasets and RT-X models, 2023.

E. Jang, A. Irpan, M. Khansari, D. Kappler, F. Ebert, C. Lynch, S. Levine, and C. Finn. BC-z: Zero-shot
task generalization with robotic imitation learning. In Conference on Robot Learning, 2021.

Y. Hu, M. Cui, J. Duan, W. Liu, D. Huang, A. Knoll, and G. Chen. Model predictive optimization for
imitation learning from demonstrations. Robotics and Autonomous Systems, 163, 2023.

[21]

[22]

(23]

[24]

[25]

[26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

[34]

(35]

(36]

(371

(38]

[39]

[40]

Y. Huang, J. Silvério, L. Rozo, and D. G. Caldwell. Generalized task-parameterized skill learning. In
2018 IEEE International Conference on Robotics and Automation (ICRA), pages 5667-5474, 2018. doi:
10.1109/ICRA.2018.8461079.

C. Finn, T. Yu, T. Zhang, P. Abbeel, and S. Levine. One-shot visual imitation learning via meta-learning.
ArXiv, abs/1709.04905, 2017.

Z. Mandi, F. Liu, K. Lee, and P. Abbeel. Towards more generalizable one-shot visual imitation learning.
In 2022 International Conference on Robotics and Automation (ICRA), pages 2434-2444, 2022. doi:
10.1109/ICRA46639.2022.9812450.

G. Papagiannis and Y. Li. Imitation learning with sinkhorn distances. In European Conference in Machine
Learning and Knowledge Discovery in Databases, 2022.

W. Sun, A. Vemula, B. Boots, and D. Bagnell. Provably efficient imitation learning from observation
alone. In K. Chaudhuri and R. Salakhutdinov, editors, Proceedings of the 36th International Confer-
ence on Machine Learning, volume 97 of Proceedings of Machine Learning Research, pages 6036—-6045.
PMLR, 09-15 Jun 2019. URL https://proceedings.mlr.press/v97/sunl9.html.

E. Valassakis et al. Demonstrate once, imitate immediately (dome): Learning visual servoing for one-shot
imitation learning. 2022.

B. Wen, W. Lian, K. E. Bekris, and S. Schaal. You only demonstrate once: Category-level manipulation
from single visual demonstration. ArXiv, abs/2201.12716, 2022.

M. Laskey, J. Lee, R. Fox, A. D. Dragan, and K. Goldberg. Dart: Noise injection for robust imitation
learning. In Conference on Robot Learning, 2017.

L. Ke, J. Wang, T. Bhattacharjee, B. Boots, and S. Srinivasa. Grasping with chopsticks: Combating
covariate shift in model-free imitation learning for fine manipulation. In International Conference on
Robotics and Automation (ICRA), 2021.

A. Zhou, M. J. Kim, L. Wang, P. Florence, and C. Finn. Nerf in the palm of your hand: Corrective
augmentation for robotics via novel-view synthesis, 2023.

M. Jia, D. Wang, G. Su, D. Klee, X. Zhu, R. Walters, and R. Platt. Seil: Simulation-augmented equivariant
imitation learning. In International Conference on Robotics and Automation (ICRA), pages 1845-1851,
2023. doi:10.1109/ICRA48891.2023.10161252.

L. Ke, Y. Zhang, A. Deshpande, S. Srinivasa, and A. Gupta. CCIL: Continuity-based data augmentation
for corrective imitation learning. In First Workshop on Out-of-Distribution Generalization in Robotics at
CoRL 2023, 2023.

G. Cideron, B. Tabanpour, S. Curi, S. Girgin, L. Hussenot, G. Dulac-Arnold, M. Geist, O. Pietquin, and
R. Dadashi. Get back here: Robust imitation by return-to-distribution planning, 2023.

M. Caron, H. Touvron, I. Misra, H. J’egou, J. Mairal, P. Bojanowski, and A. Joulin. Emerging properties
in self-supervised vision transformers. International Conference on Computer Vision (ICCV), 2021.

S. Amir et al. Deep vit features as dense visual descriptors. ECCVW What is Motion For?, 2022.

K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual Learning for Image Recognition. In Proceedings of
2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 16, pages 770-778. IEEE,
June 2016.

S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Computation, 9(8), 1997.

A. Mandlekar et al. What matters in learning from offline human demonstrations for robot manipulation.
In Conference on Robot Learning, 2021.

S. James, Z. Ma, D. R. Arrojo, and A. J. Davison. Rlbench: The robot learning benchmark & learning
environment. CoRR, abs/1909.12271, 2019. URL http://arxiv.org/abs/1909.12271.

J. Pari, N. M. Shafiullah, S. P. Arunachalam, and L. Pinto. The surprising effectiveness of representa-
tion learning for visual imitation. CoRR, abs/2112.01511, 2021. URL https://arxiv.org/abs/
2112.01511.

http://dx.doi.org/10.1109/ICRA.2018.8461079
http://dx.doi.org/10.1109/ICRA.2018.8461079
http://dx.doi.org/10.1109/ICRA46639.2022.9812450
http://dx.doi.org/10.1109/ICRA46639.2022.9812450
https://proceedings.mlr.press/v97/sun19b.html
http://dx.doi.org/10.1109/ICRA48891.2023.10161252
http://arxiv.org/abs/1909.12271
https://arxiv.org/abs/2112.01511
https://arxiv.org/abs/2112.01511

[41]

[42]

D. Seita, Y. Wang, S. J. Shetty, E. Y. Li, Z. Erickson, and D. Held. Toolflownet: Robotic manipulation
with tools via predicting tool flow from point clouds. In K. Liu, D. Kulic, and J. Ichnowski, editors,
Proceedings of The 6th Conference on Robot Learning, volume 205 of Proceedings of Machine Learning
Research, pages 1038-1049. PMLR, 14-18 Dec 2023. URL https://proceedings.mlr.press/
v205/seita23a.html.

N. Di Palo and E. Johns. Learning multi-stage tasks with one demonstration via self-replay. In Conference
on Robot Learning (CoRL), 2021.

https://proceedings.mlr.press/v205/seita23a.html
https://proceedings.mlr.press/v205/seita23a.html

Supplementary Material
MILES: Making Imitation Learning Easy with Self-Supervision

For videos demonstrating MILES’ performance and code implementation please see our webpage:
www.robot-learning.uk/miles.

A MILES: Additional Details on the Method

A.1 Related Work

As follows, we ground our work relative to methods that can learn manipulation skills from a single
demonstration, unlike most approaches that require large demonstration datasets [1, 18, 19].

Imitation learning from prior knowledge. An effective way to compensate for the lack of large
demonstration datasets is to leverage prior task knowledge such as access to ground truth object
poses [20, 21] or by meta-learning policies by first pretraining on large demonstration datasets [22,
23]. However, precise knowledge of the objects’ poses is hard to obtain in practice and meta-learning
methods are often limited to tasks similar to the ones seen in the demonstrations. Instead, MILES
can learn a new task from just a single demonstration without any prior object or task knowledge.

Imitation learning via Reinforcement learning (RL). Inverse RL methods from a single demon-
stration learn to follow that demonstration by minimizing a similarity metric between the trajecto-
ries of the learned policy and the demonstration [3, 24, 4, 25]. Other RL methods that learn from
demonstrations infer rewards through alternative means, like goal images [8]. Though effective,
these methods are often inefficient as they rely on random exploration and repeated environment
resets which require significant human effort. Instead, our self-supervised data collection makes
MILES highly efficient and eliminates the need for repeated environment resetting.

Imitation learning via pose estimation and demonstration replay. Replay-based imitation learn-
ing methods first estimate and move the robot to a similar pose relative to the objects of interest as
in the demonstration and then replay the demonstrated robot actions [7, 26, 6, 17, 27]. While these
methods are the most efficient in terms of human time, small errors in pose estimation cause errors to
compound during demonstration replay, leading to task failures [2]. And even under the assumption
of perfect pose estimation, potential environment collisions may prevent the robot from reaching
the desired pose or may perturb the objects such that replaying the demonstration fails to complete
the task. Instead, MILES’ self-supervised data collection procedure retains the human-time effi-
ciency of pose estimation methods, while learning to avoid unnecessary collisions, and minimizing
or completely eliminating open-loop replay errors depending on the task.

Imitation learning by demonstration augmentation. Demonstration augmentation approaches
like DAgger [5] and DART [28] mitigate covariate shift by relying on laborious interactive expert
queries to expand the known state distribution of a policy. And methods that do not require an
interactive expert still rely on multiple demonstrations or task-specific optimizations [29, 30, 31, 32,
33] which limit their practical application. Instead, MILES is a fully autonomous method that uses
self-supervision to augment a single demonstration and can learn a wide range of diverse tasks.

A.2 Method Pseudocode
We provide a detailed pseudocode describing MILES, in Algorithms 1- 8.

A.3 Validity Conditions for Augmentation Trajectories

As follows, we introduce two conditions that determine whether an augmentation trajectory can be
fused with the human demonstration. Consider an augmentation trajectory 73 aimed at returning the
robot to the ky, demonstration state, (w,f,, oi):

(1) Condition 1, Reachability: After executing the augmentation trajectory, the EE’s pose must

equal the pose of the demonstration waypoint wi This equality can be verified trivially using

proprioception. In many scenarios, the environment’s dynamics (e.g. collisions) or inevitable sys-
tematic inaccuracies in a robot’s controller may prevent it from reaching its target waypoint w,ﬁ.

Al

https://www.robot-learning.uk/miles

Thus, if w}i% # w,i, the augmentation trajectory cannot return to demonstration state k, rendering
the augmentation trajectory invalid.

(2) Condition 2, Environment Disturbance: While collecting 71, the robot may disturb the envi-
ronment, resulting in a final observation o}% that no longer matches that of the demonstration (even

if wi is reached). For instance, during data collection if the robot’s gripper pushes an object to a
different pose than it had at timestep k£ of the demonstration, the final observation in the augmen-

tation trajectory will differ from the demonstration’s k;, observation. Therefore, if o}% # oi, the
augmentation trajectory cannot be combined with the human demonstration to create a new, valid
demonstration. To detect such disturbances, we compare the cosine similarity of the DINO features

[34, 35] of the RGB image I ,f from the demonstration’s observation oi and the image I,% after
executing the augmentation trajectory. If the similarity falls below a threshold 6, we assume the
environment has been disturbed and stop data collection.

A.3.1 How do we check for the Reachability condition?

Reachability. To check for reachability, after executing an augmentation trajectory 7, we verify
whether the final achieved pose matches the pose of the k;;, demonstration waypoint using proprio-
ception, as described in section A.3. Pseudocode describing how we check for reachability is also
provided in Algorithm 3. It is crucial to check for reachability because an augmentation trajectory
that does not meet this condition cannot be fused with the demonstration, as it cannot return to

the demonstration state. If the waypoint w,i is unreachable during data collection, we cannot auto-

matically determine how to reach wi from w?%, without collecting observations that do so during
self-supervised data collection. Consequently, we cannot automatically determine what actions to
take to return back to the demonstration from w}’, as we can with valid augmentation trajectories.
Figure A.2 (a, left) shows an example where the reachability condition is not met due to environ-
mental dynamics, such as a key getting “jammed” and failing to reach the target waypoint due to
collision and friction in the lock. A similar example where the reachability condition is met is shown
in Figure A.2 (a, right).

A.3.2 How do we check for the Environment Disturbance condition?

Environment Disturbance. To determine whether an environment disturbance occurred, we com-
pare the RGB image captured at the k;;, demonstration timestep with the RGB image captured at
the final timestep of the augmentation trajectory, as described in section A.3. A detailed pseudocode
describing how we determine whether an environment disturbance occurred can be found in Algo-
rithm 5, and a visual example can be seen in Figure A.2 (b). The comparison between the two RGB
images relies on the similarity of their DINO features [34]. Specifically, we use a pre-trained DINO
ViT [34] to obtain the DINO features for different patches of each image similarly to [35]. By com-
puting the cosine similarity between the DINO features of each corresponding image patch in / ,g and
I}, we can calculate the average similarity between the two images [35]. If the similarity is below a
threshold 6 (to see how we automatically determine 6 please see section B.3.3), we assume the robot
has disturbed the environment, and data collection is stopped. Our experiments showed that DINO
ViT features are necessary because they are robust to lighting changes and noise in the RGB image.
Other methods we tried, such as template matching or computing the per-pixel Euclidean distance,
proved brittle and sensitive to lighting variations or noise in the captured images. Understanding
why checking for an environment disturbance is important is straightforward. Consider the rectan-
gular object shown in Figure A.2 (b), and assume the task is to learn how to pick up that object.
If the robot pushes the rectangular object, causing it to fall over during data collection, the image
observed after returning to the demonstration state will no longer match that state’s observation
from when the demonstration was provided. Consequently, from the point where the disturbance
occurred onward, we have no way of knowing how to reach any of the remaining demonstration
states and as a result how to solve the task. This is because we only know how to solve a task by
learning how to follow the demonstration after returning to it. But if an environment disturbance has
occurred (e.g., the rectangular object has fallen), following the demonstration’s actions no longer
leads to task completion. Hence, if data collection continued, all future augmentation trajectories
would contain invalid observations and actions, as they would demonstrate behavior that does not
solve the task that the human demonstrated. This is why we stop data collection after detecting an
environment disturbance.

A2

Examples of DINO Features Cosine Similarities

(a) No Environment Disturbance (b) Small Environment Disturbance (c) Medium Environment Disturbance (d) Large Environment Disturbance

Demonstration Image New Image Demonstration Image New Image Demonstration Image New Image Demonstration Image New Image

Lo 10 10 10
09 09 0s 0s
Al o8 4 o8 4l r 08 Al 08

Overlayed Cosine simil larity: 0.961 Overlayed Cosine similarity: 0.934 Overlayed Cosine similarity: 0.929 Overlayed Cosine similarity: 0.874
o1 o or o
os o o o
B
P os os A s i o

(e) Toy Screwdriver

Figure A.1: The cosine similarity computed using the DINO features for the screwdriver task under varying environment
disturbances.

A.4 Additional Results on Environment Disturbances and DINO Features

We demonstrate in this section several examples of possible environment disturbances and how we
can detect them using the DINO features on the toy screwdriver used in our experiments. We use
the screwdriver as an example as during data collection for the "Twist screw” task, data collection
was stopped due to an environment disturbance caused at the grasped screwdriver. Additionally,
disturbances caused in the grapsed objects are often the most subtle, and as such make for the most
interesting cases.

Figure A.1 (e) shows the screwdriver object (not grasped). All the other figures depict the screw-
driver as it appears in the view of the wrist camera when grasped by the robot. Figure A.1 (a) shows
a “Demonstration Image” and a “New Image” that depicts the DINO Cosine similarity (higher bet-
ter) when no environment disturbance has occurred, i.e., the grasp has not changed. The heatmap
demonstrates the similarity between each corresponding patch between the “Demonstration Image”
and the “New Image” (the cosine similarity reported is the mean of these). As shown, the cosine
similarity (0.961) is greater than our universal threshold 6 of 0.94 (for more details please see exper-
iments section 3). The reason it is not a perfect 1.0 is due to noise and light changes as the photos
were captured at different moments in time. Figure A.1 (b), shows a detected environment distur-
bance based on the DINO features. As shown under the "New Image” the screwdriver has moved
by a small amount in the gripper and the cosine similarity falls slightly below our threshold 6. Then,
Figure A.1 (c) shows a slightly bigger detected environment disturbance, and finally Figure A.1 (d)
shows a rather large environment disturbance. Generally, as shown in Figure A.1, the DINO features
are robust in detecting environment disturbances of different scales and as we move from smaller to
larger disturbances in the grasped screwdriver the cosine similarity also decreases, as expected.

A.5 MILES’ Policy

A.6 Policy Overview

Training. We train a separate policy 7 for each task as an LSTM network with behavioral cloning
that receives as input the RGB and force-torque observations in the dataset D,,.,, and regresses the
corresponding actions. Note that D,,.,, does not contain proprioception data, allowing our policies
to generalize to different object poses naturally due to the use of our wrist camera.

Inference. We deploy our policy 7 to solve a task up to the Ry, demonstrated state. If no environ-
ment disturbance occurred during data collection for that task, then the Ry, state is the final state
in the demonstration and 7 solves the task completely in a closed-loop manner. Otherwise, after
m completes the task up to the Ry, state, the remaining demonstrated action segment Cremaining IS
replayed. We provide more details regarding how we deploy our policy, the network architecture,
and how we detect that 7 has reached the Ry, below.

A3

Reachability Environment Disturbance

Unreachable Observation at the Planned i ol ion after
State Trajectory Augmentation Trajectory

Collision and friction get the
key jammed and not inserted

/

tate
State Object has fallen

Target

State The observatiol

, does not match

the demonstration observation
— Invalid Augmentation Trajectory Valid Augmentation Trajectory

(2) (b)

Figure A.2: Reachability: Two examples of possible augmentation trajectories for a locking task are shown; an invalid
trajectory (left) that fails to reach the target demonstration waypoint due to collisions, friction, and potentially inevitable
systematic controller errors and a valid one (right) that successfully reaches the target waypoint. Environment Disturbance:
As the robot collects an augmentation trajectory, it perturbs the environment such that after returning to the demonstration’s
waypoint the live observation and the demonstrated one no longer match, indicating that data collection should stop.

A.6.1 How is our policy defined when No Environment Disturbance occurred during data
collection?

No Environment Disturbance. When no disturbance occurred our dataset D,,¢,, contains augmen-
tation trajectories that can return to and then follow the demonstration from every state. In that
case, we leverage D, to train an end-to-end behavioral cloning policy 7 that comprises a single
neural network fy, parameterized by 1), that receives as input an RGB image captured from the
wrist camera and force-torque feedback to predict 6-DoF actions: fy, : REXW>3 5 R6 — SE(3) as
well as an additional binary value indicating the gripper action (R <" *3 refers to the RGB images
where H: height, W: width and R® to measured forces and torques). The force-torque feedback
is captured directly using Franka Emika Panda’s joint force sensors. For our policy to generalize
spatially, no proprioception input is passed to fy and all actions are predicted relative to the EE’s
frame. fy consists of a ResNet-18 backbone [36] for processing RGB images, and a small MLP
embeds force feedback into a 100-dimensional space. The output of the force MLP and ResNet-18
are concatenated and fed into an LSTM [37] network for action prediction. The network is trained
using standard behavior cloning to maximize the likelihood of D,, ¢, -

A.6.2 How is our policy defined when an Environment Disturbance occurred during data
collection?

Environment Disturbance. When self-supervised data collection was stopped due to an environ-
ment disturbance, our dataset D,,.,, contains augmentation trajectories that can return the robot to
any state from the initial demonstration state up to the demonstration state at timestep R, where
R < N (see section 2.2). In this scenario, if our policy consists only of fy, then during task execu-
tion the robot would be able to solve the task only up to the Ry, state, but not complete it. As such,
we define our policy 7 to consist of two components: (1) the first component is a neural network fy,
identical to the above scenario, but trained up to the Ry, state and (2) the second component corre-
sponds simply to the sequence of the remaining demonstration actions from the Ry, state onwards,
for which no self-supervised data was collected, i.e., (remaining = {a%}nN: R

A.6.3 How do we deploy MILES’ policy?

Deployment: Our LSTM-based policy closely follows the implementation of BC-RNN [38]. De-
ploying the policy is straightforward and depends on whether data collection was interrupted due to
an environment disturbance. If uninterrupted, then only the neural network f, is used to complete
the task equivalently to policies trained using reinforcement learning or behavioral cloning.

If data collection was interrupted, first f,, is deployed to solve the task up to the Ry, state in an
identical way as the scenario of no environment disturbance”. After the robot reaches the R, state
then Cremaining 18 €xecuted. We determine whether the closed-loop policy has completed the task
up to the Ry, in a very simple way as described in section A.6.4.

During deployment we reset the hidden state of the LSTM at an interval equal to two times the
number of timesteps (i.e., waypoints) in the demonstration for which augmentation trajectories were
collected. For example, if for a task MILES collected augmentation trajectories for 40 demonstration

A4

waypoints before stopping due to an environment disturbance, then, during deployment the hidden
state of the LSTM is reset every 80 timesteps. We did not find the frequency of resetting the hidden
memory to have significant effects on the policy’s performance. We would like to note that the only
important observation we made was that the number of timesteps should not be very low (e.g., 5) as
then the robot would end up progressing towards completing a task very slowly.

Pseudocode describing MILES’ policy deployment can be found in Algorithm 8.

A.6.4 How do we determine when to switch from closed-loop control to demonstration
replay?

Switching from closed-loop to demonstration replay is straightforward. As the objects and the robot
can be at different poses during deployment from the ones during data collection, we cannot just use
the robot’s proprioception to know when the Ry, state has been reached. Hence, we deploy fy, until
it predicts continuously the identity transformation, indicating no robot movement. Then, we switch
to demonstration replay, where we replay the rest of the demonstration (remaining-

B More details on the Experimental Setup

B.1 Implementation Details

For our experiments, we use a FLIR camera mounted to the wrist of Franka Emika Robot. We
sample Z = 10 augmentation trajectories for each demonstration waypoint (=~ approximately 1
minute of data collection per waypoint). This number is set arbitrarily, but as we show later in our
ablations, some tasks may require less data. We collect augmentation trajectories with initial poses
near the demonstration in the range of 4cm and 4 degrees around each demonstration waypoint, a
wider range compared to existing augmentation methods that learn from multiple demonstrations
[29, 30]. As commonly done in the literature [3, 8, 7, 17], we provide our demonstrations starting
near each object. At deployment, to reach the object from far away we first estimate the object’s pose
using pose estimation and approach it before switching to MILES. Finally, we set the environment
disturbance threshold 6 to 0.94 for all our tasks. Additional details on the pose estimation method
we use and how to set each one of MILES’ parameters can be found below.

B.2 Pose Estimation

In practice, as with most methods [3, 8, 7, 17], we naturally provide the demonstrations starting near
the task-relevant object to focus self-supervised data collection at the part of the task that is the most
important, that is the robot-object interaction part.As such, we need a way to ensure that MILES can
still solve any task regardless of how far the robot is from an object. An apparent solution to this is
to provide the demonstration starting from a pose far away from the object and deploy MILES’ data
collection. While this is possible — as MILES makes no assumptions or restrictions on the length
of the demonstration— it may be inconvenient. As such, inspired by [2, 26, 17] we use a simple
pose estimator at deployment to estimate the relative pose between the robot at the initial state of
the demonstration (for which MILES collected data) and the task-relevant object. As we do not
assume any 3D object models, we use the method deployed in [7] although any other model-free
pose estimator can be used. This allows us to first coarsely estimate the pose and move near the task-
relevant object from any robot starting pose before deploying MILES. Uncut videos demonstrating
this behavior can be found on our webpage: www.robot-learning.uk/miles.

B.3 MILES Data Collection Hyperparameters

B.3.1 How do we set the data collection range around each demonstration waypoint?

As discussed in our experiments section 3, we collect data in a range of 4cm and 4 degrees around
each demonstration waypoint. However, this range is not limiting and can be set to any desirable
range like any other robot learning method. In our case, we set this range to be the average pose
estimation error to reach the initial pose of the demonstration relative to the task-relevant object
using the pose estimation method described in section B.2 which we obtained based on [7].

A5

https://www.robot-learning.uk/miles

Task: Description DCT Task: Description DCT
Lock with Insertakey into a lock and rotate 90 s Twist Insert a toy screwdriver into a screw s
. 24 - o 22
key degrees to lock it. screw and twist by 90°.
Insert USB Insert a USB stick into a USB port 21°. Bread in Put a plastic bread inside a toaster. 40’
(< 1mm tolerance) toaster
Plug into poy UK plug 3-pin) toasocket. 37 | Open lid Lift the lid of a blue box. 31
socket
Insert Plug the power cable into the power s
power ort of a PC 2
cable P .

Table 2: Task descriptions of the 7 tasks used in our experiments. DCT stands for Data Collection Time and corresponds to
the time spent collecting self-supervised data.

B.3.2 How do we determine the number of augmentation trajectories to collect for each
demonstration waypoint?

For all of our experiments, we set the number of augmentation trajectories per demonstration way-
point, Z = 10. In our case, we set this arbitrarily, but as we showed in our method’s data collection
ablation in section C.4 different tasks require different numbers of augmentation trajectories. As
such, we provide two guidelines for setting the value for Z. Firstly, high tolerance tasks, like the
”Open lid” task reported in our experiments usually require a small number of augmentation trajec-
tories. On the other hand, precise tasks, like the "USB insertion” task reported in our experiments
require more augmentation trajectories. Secondly, as the data collection range around each demon-
stration waypoint increases, the number of augmentation trajectories collected should also increase
with an approximately linear relationship, i.e., if the range is doubled, then the number of augmenta-
tion trajectories should be doubled as well. We recommend as a starting point, for a data collection
range similar to our experimental setting of 4cm and 4 degrees, to collect 10 augmentation trajecto-
ries for precise, low-tolerance tasks, and 4 augmentation trajectories for high-tolerance tasks.

B.3.3 How do we determine the Environment Disturbance threshold 6 ?

We determined 6 simply by spawning several random RLBench [39] tasks in CoppeliaSim and
running MILES. By setting up custom heuristics that determine environment resets in the simulation
we found that for the DINO model we use, a similarity of § < 0.94 appeared to detect environment
disturbances across all tasks successfully. Consequently, we used that in our real-world experiments
too.

B.4 Task Descriptions

A detailed description of each task along with their Data Collection Times (DCT) can be found in
Table 2.

B.4.1 How long is each demonstration?

The demonstration lengths varied across each task. As follows, we list for each task the number of
demonstration waypoints comprising each human demonstration (each demonstration waypoint can
be interpreted as a timestep): Lock with key: 32, USB task: 20, Plug into socket: 40, Insert power
cable: 29, Twist screw: 47, Bread in Toaster: 70, Open lid: 80. All demonstrations were collected
using teleoperation. Note that the number of demonstration waypoints is not necessarily equal to
the number of waypoints for which MILES collected augmentation trajectories. This is because
environment disturbances may have caused the data collection to stop earlier.

B.4.2 For which tasks was an Environment Disturbance detected?

An environment disturbance was detected for the following tasks: Twist screw, Bread in
Toaster and Open 1id. As such for these tasks the policies comprise a closed-loop and a
demonstration replay component.

We also note that for the lock with key task, we stopped data-collection "half-way” through the 90
degrees twisting rotation for hardware safety. This is because the forces exerted on the robot as

A6

Insert Onto Lightbulb Pick Up

Methods Turn Tap Lamp On Mean

Square Peg In Cup
Demo Replay 0 0 5 5 0 2
Reset Free Residual RL 0 0 0 0 0 0
Reset Free FISH 0 0 0 0 20 4
Pose Estimation + Demo Replay 70 65 90 80 95 80
MILES 90 75 100 75 100 88

Table 3: Task success rates (%) of each method on RLBench.

it was collecting self-supervised data were too high. In this case, we treated this identically to an
environment disturbance. At deployment, the learned policy completes most of the task closed-loop,
apart from a small twisting motion done with demo replay, after the closed-loop policy converges to
predicting the identity transformation as discussed in section A.6.4. This is similar to adding force
limits to reinforcement learning algorithms and was done to protect our robotic hardware; however,
doing so is not a requirement.

B.5 Baselines

Here, we provide further implementation details on two of the baselines we used in our paper.

Pose Estimation + Demo Replay. For this baseline, we follow the same problem formulation as
in [7], but improve upon that baseline in two key ways: (1) the data on which it is trained on is the
same data collected for MILES, as such it contains only valid trajectories that cover a larger part of
the task space and (2) instead, of replaying recorded velocities, we also replayed the recorded forces
which is particularly important for the contact rich tasks. This baseline estimates and moves the
robot to a pose relative to the object of interest as depicted in the first state in the demonstration and
replays the complete demonstration. We chose this baseline compared to alternatives, as it leverages
task-specific data allowing it to achieve very precise pose estimation.

Reset-Free FISH [3]. For Reset-Free FISH we use the implementation provided by the authors as
it can be found in: https://github.com/siddhanthaldar/FISH. We only changed the implementation
such that the policy always predicts 6-DOF actions instead of constraining the output to specific
DOFs, as doing so assumes access to prior task knowledge. To learn residual actions on top of the
demonstration we tested both using demo replay as the base policy, as well as VINN [40] but found
that demo replay led to better performance.

B.6 Details on the Evaluation Setup

For a fair evaluation, we carefully tuned each method’s hyperparameters. Additionally, each
learning-based baseline collected the same number of observations as MILES during data collec-
tion for each task. We evaluated each method’s success rate across 20 trials. For each trial we
randomized the relative starting pose of the robot and the task-relevant object equivalently across all
methods within a sphere of 20cm around the object as long as the object was visible to the camera.
Finally, we emphasize that for all evaluations both MILES and the baselines predict 6-DoF actions.

C Additional Experiment Results

C.1 Simulation Results

To aid other researchers in reproducing our results, we conducted additional simulation experiments
on the RLBench benchmark [39] on 5 tasks, specifically: 1) "Insert Onto Square Peg’, 2) *Lightbulb
In’, 3) "Pick Up Cup’, 4) "Turn Tap’ and 5) 'Lamp On’. We performed an identical evaluation to
our real-world experiments where we performed 20 evaluation trials for each method. Additionally,
we used the images captured only from the wrist camera in RLBench. During training we allowed
each method to collect the same amount of data and we did not perform any environment resets
during training/data collection for any methods. The results can be seen in Table 3. As shown,
MILES significantly outperforms the baselines, while the relative performance when comparing all
methods remained relatively unchanged compared to our real-world results.

A7

Lock Insert Plug into Insert Twist Bread in Open

Method Ablations with key USB socket power cable screw toaster lid Mean
No Sequence 60 20 20 10 0 85 95 43
No Environment Disturbance 90 70 85 85 0 0 0 47
No Reachability 75 40 95 20 85 95 100 73
No Memory 50 65 100 75 35 90 100 74
MILES 90 70 85 85 85 95 100 87

Table 4: Task success rates (%) for 20 trials reported for each method ablation.

Lockwith key |

Figure C.3: The tasks used in our experiments. The "Markers in Bin” is used to evaluate MILES’ ability to generalize (the
bins marked green denote the training set, while the red denote the test set).

Similarly to our real-world experiments, the reinforcement learning baselines obtained poor perfor-
mance for reasons in line with the ones discussed in our experiments section. Specifically, during
training we observed that for the tasks ‘Insert Onto Square Peg’ and ‘Lightbulb In’ a random gripper
action drops the grasped object during exploration and the policy never manages to grasp it again
during training without a reset in the given training time. For the *Pick Up Cup’ task, the reinforce-
ment learning policy knocks the cup off the table during exploration, consequently never learning
something useful. For the *Turn Tap’ task the RL policies never learned to properly grasp and rotate
the handle and for the ‘Lamp On’ task, only Reset Free FISH managed to learn a policy that obtains
20% success rate in the given training time. As discussed in our real-world experiments, if instead
we had allowed environment resets and more training time that would have resulted in significantly
higher success rates for the RL baselines, compared to their current performance.

C.2 How does MILES perform under different method ablations?

This section studies MILES’ performance by ablating 4 different components of the method: (1)
No Environment Disturbance: we ablate the environment disturbance condition by not checking
for that condition when collecting augmentation trajectories. (2) No reachability: we ablate the
reachability condition by relabeling each observation’s action (of the existing MILES data), to move
the robot to the nearest waypoint in the demonstration based on their Euclidean distance. If the con-
straint for reachability is not important, then simply moving from each pose to the nearest waypoint
in the demonstration in a straight line would be sufficient to solve a task. (3) No sequence: we rec-
ollect MILES’ data but instead of collecting Z augmentation trajectories for the first demonstration
state, then progressing to the second state and so on, we collect data without following the demon-
stration’s waypoint sequence and instead follow a random one. (4) No Memory: For this ablation
we retrain a network on the existing MILES data that does not account for history.

Results. Table 4 shows MILES performance after ablating each component. Collecting augmenta-
tion trajectories for each demonstration state in a random order (No Sequence), with an average suc-
cess rate of 43%. Additionally, not checking for the environment disturbance condition (No Envi-
ronment Disturbance) appears to cause significant performance degradation for the tasks where an
environment disturbance occurred during data collection, corresponding mostly to the non-contact
rich tasks. On the other hand, not checking for the reachability condition (No Reachability) also
lowers performance, particularly for the precise, contact-rich tasks, indicating that the reachability
condition is the most important when learning tasks requiring precise manipulation. Finally, the
lower performance obtained by removing the LSTM (No Memory) demonstrates the performance
benefits of training memory-based networks on datasets collected using MILES.

C.3 How important are vision and force modalities to the performance of MILES?

In this section, we ablate the use of vision and force feedback as policy inputs for the
four contact-rich tasks from our earlier experiments. We retrain and evaluate two poli-
cies: one using only vision and one using only force. The results, shown in Fig-
ure C.4, indicate that the vision-based policy improves MILES’ performance in the “In-
sert USB” and “Plug into socket” tasks but reduces performance in the other two tasks.

A8

This suggests that force feedback might not consistently benefit MILES, possibly due to
its noisy signal which makes it hard to distinguish between different environment states.
The force_based pO]le, hOWCVCI‘, fal]S a‘lmost Task Performance underD\fferentObzgrvat\on Modalities
completely. This is expected as force feedback > %0 5 5 g

is zero in free space and can be ambiguous due 7° ?

to symmetries in object surfaces. Overall, while

force feedback aids performance in some tasks,

Success Rate (%)

it is not always necessary. Vision remains the 0 5 0 0
mOSt CruCial mOdahty tO MILES’ hlgh perfor_ Lock with key 3 Insert USB P\u? jr\luso(kst Insert power cable

Vision + Force Vision Force
mance.

Figure C.4: MILES’ performance when trained only on either
C.4 How does MILES perform under vision or force feedback or both.
different sizes of self-supervised data?

In this section, we ablate the dataset size used to learn four tasks by splitting their origi-
nal datasets into chunks containing 75%, 50%, and 25% of the original data. We evalu-
ated the best and worst performing contact-rich tasks ("Lock with key” and “Insert USB”)
and non-contact-rich tasks ("Open lid” and “Twist screw”). Data collection times for each
task can be found in the supplementary material. Figure C.5 shows that for high toler-
ance tasks like "Open lid,” MILES achieves a 100% success rate even with 25% of the data,

corresponding to only 8 minutes of data collec- Task Performance under Different Dataset Sizes

tion. However, for precise tasks, success rates % . mEm
decrease as dataset size is reduced. Notably, % 70 .

for ”Lock with key” and “Twist screw,” reduc- 2« = -

ing the dataset to 50% results in a high failure § 2

rate. To summarize, we observe that high tol- @ u 0 i I s .

erance tasks are likely to require less data, and T lodkwitnkey insercUs5 Tt screw opentid

in practice only a few minutes of data collec- Zo% SO TSR 1oo%

tion time. Instead, for high-precision tasks, like Figure C.5: MILES’ performance when trained on different
inserting a USB, the dataset size appears to im- dataset sizes. 100% corresponds to the original dataset. 75%,
pact MILES® performance significantly. 50%, and 25% correspond to splits of the original dataset.

C.5 Experiment Results on Generalization Performance

Since MILES uses BC to train policies, existing generalization results for BC [19, 1] also apply to
MILES. For tasks that include demonstration replay following the closed-loop policy, MILES can
generalize to new objects by retrieving the replay trajectory of the most similar object in the existing
demonstrations, similar to prior work [6]. To test this, we tasked MILES with throwing markers of
different colors into differently shaped and colored bins, shown in Figure C.3 (8). Trained on five
bins (marked green) and tested on two new bins (marked red), MILES achieved an 80% success
rate on the pink bin and 60% on the gray bin, over 10 trials each starting from poses where simple
demonstration replay would fail. The data collection time for this task was on average 34 minutes for
each bin and an environment disturbance was detected for each bin. To determine which remaining
actions to replay for the previously unseen bins, we selected the remaining actions from the bin in
the training set whose RGB image in the demonstration has the highest similarity in terms of DINO
features with the bin during deployment, inspired by prior work [6]. Videos exhibiting MILES
generalization on the two test case bins can be found on our webpage: www.robot-learning.uk/miles.

C.6 Experiment Results on Multi-stage Tasks

To evaluate MILES’ ability to solve multi-stage tasks, we tasked MILES with picking up the plastic
bread shown in Figure 1 (as part of the ”Bread in Toaster” task) and inserting it into the toaster. To
achieve this we broke the task down into two stages: first, we provided a demonstration showing
how to pick up the bread and trained MILES. Then, we used the policy already trained on the
”Bread in Toaster” task to finish the task. To link the two stages together, first the policy to pick
up the bread is deployed. After, the execution ends, the robot returns to its default position. Then,
the pose estimation method described in section B.2 is deployed to approach the toaster, and then
the policy trained with MILES is deployed to insert the bread into the toaster. Videos exhibiting
MILES’ multi-stage task performance on picking up and inserting the bread into the toaster can be
found on our webpage: www.robot-learning.uk/miles.

A9

https://www.robot-learning.uk/miles
https://www.robot-learning.uk/miles

C.7 MILES’ Performance with distractors

We found that performing standard image augmentation techniques, including changing the bright-
ness, contrast, noise, cropping random image parts, etc. allowed MILES to be robust to distractor
objects, as shown in the videos provided on our webpage: www.robot-learning.uk/miles.

C.8 What if MILES stops data collection early due to a detected environment disturbance?

There is no requirement as to how early MILES may stop data collection due to an environment dis-
turbance, as long as it has collected sufficient augmentation trajectories for at least the first demon-
stration waypoint. During data collection, MILES can effectively learn a policy even if an environ-
ment disturbance occurs early. Unlike RL, MILES learns to solve the task closed-loop up to the
demonstration waypoint where the disturbance was detected, after which it replays the demonstra-
tion. This is because MILES collects data progressively for each demonstration waypoint, rather
than rolling out a policy all at once like RL. Consequently, during data collection, if a disturbance
occurs as early as (for example) near the 2nd waypoint, MILES will still know how to get to the 1st
waypoint during deployment, where it will replay the demonstration.

Overall, MILES can handle early environment resets during data collection. While as with the
majority of learning-based methods, the more the data the better the performance, as such the later an
environment disturbance occurs in the data collection process the better. However, MILES can still
learn a robust policy as long as sufficient data has been collected at least for the 1st demonstration
waypoint. This is typically trivial as most human demonstrations naturally begin by controlling the
robot in free-space far from the object of interest, before interacting with it.

C.9 Discussion

Limitations. We now highlight some important limitations of our method. Firstly, MILES’ reliance
on a wrist camera enables MILES to obtain spatial generalization, however, simultaneously this
limits its field of view and its applicability to larger task spaces. Future work could address this
by incorporating an external camera to initially approach an object before switching to the wrist
camera, similarly to [17]. Secondly, while MILES is robust to distractors at deployment before data
collection begins it requires a human to set up the robot’s workspace such that only the task-relevant
object is in camera view for the policy to achieve spatial generalization. While this requires only
a few seconds of human time, future work could address this by extending MILES to incorporate
segmentation methods, similar to [17, 41], that segment the task-relevant object in the dataset. Simi-
larly, to address any unwanted collisions that MILES could cause in the presence of multiple objects,
future work could study incorporating an external camera during self-supervised data collection to
plan and collect collision-free augmentation trajectories. Thirdly, our current implementation of
MILES trains a separate policy for each task and hence it is unclear how well MILES would gener-
alize to completely new tasks. In future work, we aim to study this by training a single monolithic
policy on MILES’ self-supervised data combined with replay-trajectory retrieval [42].

Conclusion. We introduced MILES, a framework that makes imitation learning easy. MILES re-
quires only a single demonstration and collects self-supervised data that demonstrate to the robot
how to return to and then follow that demonstration. Subsequently, this enabled us to obtain ma-
nipulation skills comprising either (1) a single end-to-end policy trained with behavioral cloning or
(2) a combination of an end-to-end policy and demonstration replay. Our real-world experiments
showed that self-supervised data enable the acquisition of manipulation skills that achieve consider-
ably improved performance compared to several state-of-the-art baselines on many everyday tasks
ranging from learning to open a lid to using a key to lock a lock or inserting a USB into a port, both
of which require complex and precise contact-rich manipulation.

Al0

https://www.robot-learning.uk/miles

D

Detailed Pseudocode

Algorithm 1: MILES Overview (Simplified)

Input: Single Task Demonstration: ¢ = {(w§,, 0$, a$

1:
2:
3:

A

8:

9:
10:
11:
12:
13:
14:
15:

16:
17:
18:
19:
20:
21:
22:
23:
24
25:
26:
27:

28:
29:
30:
31:

¢ .05, aS)Y_,, Number of augmentation trajectories
per demonstration waypoint Z, environment disturbance threshold 6 (Default: § = 0.94)
D={}// init empty dataset of augmentation trajectories
Reachable = True // init variable that tracks reachability
Disturbance = True // init variable that tracks environment
disturbances
R=1// init variable that stores the timestep when
self-supervised data collection stops

Move robot to the initial demonstration pose w%

for iteration £k = 1 to N do
j=1// init variable that tracks the number of collected
augmentation trajectories per demo waypoint
while j < Z do
Tk <—SampleTraject0ry(wg) (Alg. 2)
Reachable eCheckReachability(w,i) (Alg. 3)
if Reachable is False then
ReturnToDemoWaypoint(k, () (Alg. 4)
Break // exit while loop
end if
I} < Capture RGB wrist-cam image // M is the My, (final) timestep
of 1

Disturbance «— CheckEnvDisturbance(oCk, I3, 0) (Alg.5)
if Disturbance is True then
R=Fk// store timestep when data collection stops
Break // exit while loop
end if
D=DUT, // add augmentation trajectory to dataset
j=j+1
end while
if Disturbance is True then
Break // exit for loop
end if
Proceed to the next demonstration state by performing action ai // follow the
demonstration’s progression
end for
Dhew FuseAugmentationsWithDemo(D, R, ()(Alg. 6)
7 <—TrainPolicy(Dyew, R, ()(Alg. 7)
Deploy(r, R, ()(Alg. 8)

Output: 7

All

Algorithm 2: SampleTrajectory

Algorithm 6: FuseAugmentationsWithDemo

Input: Demonstration waypoint w,ﬁ

I ={}// init empty augmentation trajectory
2: Sample initial pose w7* and move robot (Optional:
record trajectory poses)

3: hdovebackt01ui // either by tracking the
recorded trajectory poses backward or by
re-planning a new, straight-line trajectory
(equal performance, the former often leads to
faster data collection).

4: m=1// observations, actions index

5: while moving to w,g do

6: T =Tk U(wlk, ok alk) // add waypoints,
observations and actions to augmentation
trajectory; actions are automatically
inferred as the relative EE poses between
consecutive timesteps; gripper actions are

automatically copied from the demonstration.

7: (o]k comprises wrist cam RGB images + force-torque
readings)
8: end while

Output: Return augmentation trajectory 7

Algorithm 3: CheckReachability
¢

Input: Demonstration waypoint w;
I: Reachabk:e—]kue,// init reachability variable
2: wik <~ EEpose // achieved after executing the

augmentatlon trajectory (comprising M
timesteps); read from proprioception

r
3: Reachable = (w}t == wk) // check whether poses
are equal (within the controller’s feasible
precision)

Output: Reachable

Algorithm 4: ReturnToDemoWaypoint

Input: Demonstration timestep k, single demonstration ¢
1: Move to initial demonstration waypoint wf e(
// replay demonstration up to the kn timestep
2: for iterationt = 1tot = k do
3: Perform action atc €¢
4: end for

Algorithm 5: CheckEnvDisturbance

Input: Demonstration observation oi, captured live image I},
similarity threshold 6
1: Disturbance < False // init environment
disturbance variable
2:]£ E(é // retrieve RGB image [g from the
demonstration’s observations

3| }57 I(,..]eDINO -ViT(I{) // compute DINO-ViT
features [35, 34] for each image patch fﬁ for
k
the demo waypoint image
4 [f}m, fines -] <~DINO-ViT(I}}) // compute DINO-ViT
M M
features [35, 34] for each image patch fir
M

from the current live environment image
(captured after executing the augmentation

trajectory) .
. sim =AvgCosineSimilarity([f? it IC’ s [f Tk,f Tk,...]

5
6: if sim < 0 then
7: Disturbance < True
8: end if
Output: Disturbance

Input: Dataset of augmentation trajectories D, final data collection
time step R, single demonstration ¢
1: Diew ::{}// init empty dataset to store fused
trajectories
2: for 7 in D do

3t Ceegment = {(wrg")%’a%)}r}f:k} €¢

demonstration segment from kg,
demo waypoint to Ry,

4 Thyew -— Tk U Csegment
5 Dhew = Dhew U Tknew
6: end for

Output: D,y

Algorithm 7: TrainPolicy

Input: Dataset of augmentation trajectories + demo D, final data
collection timestep R, single demonstration ¢
1: Train neural network f,, on Dy, using standard behavioral
cloning// Discard proprioception waypoints (w;¥ and

uﬁ), only observation inputs are used for fy

2: if R < length(() then

32 w={fy,{a$}_g} // policy consists of an
end-to-end neural net + demo replay (if an
environment disturbance stopped data collection
before the last demo waypoint)

4: else

m={fy}// policy consists only of an

end-to—-end neural net

6: end if

Output: 7

“

Algorithm 8: Deploy

Input: Policy m, final data collection timestep R, single demonstration
¢
1: Capture observation o // comprising RGB wrist cam
image + force-torque feedback
Action a = fy(0)
Perform action a
while « is not the identity transformation do
Capture observation o
Action a = fy(0)
Perform action a
end while
// if an environment disturbance stopped data
collection before the last demo waypoint
9: if R < length(() then
10: Replay remaining demo {a§,}_ 5
11: end if

e A

Al2

	Introduction
	MILES: Making Imitation Learning Easy with Self-Supervision
	Preliminaries
	Self-Supervised Data Collection

	Experiments
	Conclusion
	MILES: Additional Details on the Method
	Related Work
	Method Pseudocode
	Validity Conditions for Augmentation Trajectories
	How do we check for the Reachability condition?
	How do we check for the Environment Disturbance condition?

	Additional Results on Environment Disturbances and DINO Features
	MILES' Policy
	Policy Overview
	How is our policy defined when No Environment Disturbance occurred during data collection?
	How is our policy defined when an Environment Disturbance occurred during data collection?
	How do we deploy MILES' policy?
	How do we determine when to switch from closed-loop control to demonstration replay?

	More details on the Experimental Setup
	Implementation Details
	Pose Estimation
	MILES Data Collection Hyperparameters
	How do we set the data collection range around each demonstration waypoint?
	How do we determine the number of augmentation trajectories to collect for each demonstration waypoint?
	How do we determine the Environment Disturbance threshold ?

	Task Descriptions
	How long is each demonstration?
	For which tasks was an Environment Disturbance detected?

	Baselines
	Details on the Evaluation Setup

	Additional Experiment Results
	Simulation Results
	How does MILES perform under different method ablations?
	How important are vision and force modalities to the performance of MILES?
	How does MILES perform under different sizes of self-supervised data?
	Experiment Results on Generalization Performance
	Experiment Results on Multi-stage Tasks
	MILES' Performance with distractors
	What if MILES stops data collection early due to a detected environment disturbance?
	Discussion

	Detailed Pseudocode

