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Abstract
Meta-learning represents a strong class of approaches for solving few-shot learning
tasks. Nonetheless, recent research suggests that simply pre-training a generic
encoder can potentially surpass meta-learning algorithms. In this paper, we first
discuss the reasons why meta-learning fails to stand out in these few-shot learn-
ing experiments, and hypothesize that it is due to the few-shot learning tasks
lacking diversity. Furthermore, we propose DRESS, a task-agnostic Disentan-
gled REpresentation-based Self-Supervised meta-learning approach that enables
fast model adaptation on highly diversified few-shot learning tasks. Specifically,
DRESS utilizes disentangled representation learning to create self-supervised tasks
that can fuel the meta-training process. We validate the effectiveness of DRESS
through experiments on few-shot classification tasks on datasets with multiple
factors of variation. Through this paper, we advocate for a re-examination of proper
setups for task adaptation studies, and aim to reignite interest in the potential of
meta-learning for solving few-shot learning tasks via disentangled representations.

1 Introduction & Background
Few-shot learning [1] emphasizes the ability to quickly learn and adapt to new tasks, and is regarded
as one of the trademarks of human intelligence. In the pursuit of few-shot learning, meta-learning
approaches have been widely explored [2–4], as they enable models to learn-to-learn. Nonetheless,
recent research [5] suggests that a generic encoder is sufficient to support highly competitive perfor-
mance on few-shot learning tasks. One can simply train an encoder on the unified set aggregating
samples over meta-training tasks. A linear layer is then added on top of the encoder and is fine-tuned
using the few-shot support samples to adapt to new tasks. Despite completely ignoring information
about task identity, this simple scheme can achieve better results than meta-learning methods [5]. This
finding is surprising, perhaps even confusing, since it suggests that the identities of and distinctions
between individual training tasks are irrelevant to achieving high learning performance.

We believe this observation can be explained by the fact that diversity among tasks is lacking in many
few-shot learning benchmarks. Particularly, for popular few-shot learning datasets such as Omniglot
[6], miniImageNet [7], and CIFAR-FS [8], the tasks differ only by their targets being from disjoint
sets of object classes. These few-shot learning tasks are essentially all object classification tasks.
There is one strategy for solving each of these tasks simultaneously that works without the need to
individually identify each task: simply compare the main object in each query image to the objects in
the few-shot support images, and assign the class label according to the maximally similar support
image. Contrastive learning coupled with semantic-preserving augmentations can directly implement
this strategy of aligning the main objects while discarding other factors (such as orientation and
background) [9]. Therefore, on these specific benchmarks, it is no wonder that a single encoder
aided by contrastive learning can compete against meta-learning methods while ignoring the essential
information of task identities and distinctions.

The notion of task diversity has been studied previously [10–12]. Recently, [13] conducted thorough
experiments suggesting that existing meta-learning methods show very slight improvements over the
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pre-training and fine-tuning scheme on tasks with higher Task2Vec diversity coefficients [11, 12].
Nonetheless, to the best of our knowledge, the intuition behind task diversities and the performance
of few-shot learning has yet to be discussed, nor has any meta-learning approach explicitly exploited
the idea of diversifying meta-training tasks for boosting the fast adaptation ability of a model.

In this paper, we focus on fast adaption to few-shot learning tasks with diversified and distinctive
natures. We consider tasks beyond main object classification, namely identifying orientation, back-
ground angle or color, attributes of secondary objects in the image, and so on. More importantly, to
fully examine few-shot learning ability, the model should be agnostic to the nature of the evaluation
tasks. Such setups can reveal the model’s true capability to learn strictly from the few-shot samples,
with task identification being an essential part of learning.

For effective meta-learning under high task diversities, we bridge the idea of disentangled representa-
tion learning with self-supervised meta-learning, and propose our approach DRESS — task-agnostic
Disentangled REpresentation-based Self-Supervised meta-learning. Specifically, we utilize an en-
coder trained to compute disentangled representations for obtaining encodings of inputs. We then
perform clustering independently within each disentangled latent dimension, and use the cluster
identities to define pseudo-classes. Lastly, we construct a set of self-supervised few-shot classification
tasks based on these pseudo-classes for each latent dimension. With the disentangled latent dimen-
sions representing distinct factors and attributes within the input images, the constructed few-shot
learning tasks are highly diversified. Using these tasks for meta-training, the model can learn to
quickly adapt to various unknown tasks, regardless of which aspects of inputs the tasks focus on. We
conduct experiments on image datasets containing multiple varying factors, beyond the class of the
main object. Our results suggest that DRESS enables few-shot learning performance that can surpass
existing methods and approaches the upper-bound of supervised baselines.

2 Self-Supervised Meta-Learning with Disentangled Representations
Self-Supervised Meta-Learning Researchers have recently been interested in the possibilities of
unsupervised or self-supervised meta-learning [14–19]. As an example, [14] proposes an unsuper-
vised task construction approach using an encoding-then-clustering scheme. While promising results
are obtained, [14] does not explicitly address the problem of adaptation under high task diversities.
Our motivation is to generalize to diverse tasks without the costly target collection process required
in these previous approaches. Under high task diversity, labels in the meta-training set might mislead
the model to exclusively capture information irrelevant or unsuitable for solving the meta-testing
tasks. With the general assumption that the meta-testing tasks should be agnostic to the model, a
self-supervised meta-training process is preferable, as the model will not fixate on the specific labels
of a supervisedmeta-training process.

Disentangled Representation Learning Disentangled representation learning has been investigated
in the context of generative modeling [20–24]. One of the main metrics to judge disentangled
representations by is completeness [25]. High completeness means the representation captures more
of the variation within the input distribution. For complex images, factors of variations include the
main object, and in addition, the background, the view angle, and so on. In this paper, we propose
to bridge disentangled representation learning with self-supervised meta-learning. Specifically, we
recognize the rich and diversified information disentangled representations provide, and utilize them
to fuel the meta-training process.

DRESS: Disentangled Representation-based Self-Supervised Meta-Learning We now pro-
pose DRESS, our task agnostic Disentangled REpresentation-based Self-Supervised meta-learning
approach. First, we collect all datapoints available for meta-training, and compute disentangled
latent representations using an encoder, for example a factorized diffusion autoencoder (FDAE)
[24]. Then, we cluster the datapoints along each disentangled latent dimension. Lastly, we construct
self-supervised learning tasks using the cluster identities as the pseudo-class labels. We construct
a large number of few-shot classification tasks under each disentangled latent dimension by first
sampling a subset of cluster identities as classes, and then sampling a subset of datapoints under each
class as the few-shot support samples and query samples. We provide the flow diagram illustration for
DRESS in Figure 1. We also include the entire meta-learning pipeline illustration in Appendix F. As
different dimensions within the disentangled representation depict distinct aspects of the input data,
the sets of self-supervised tasks constructed from disentangled dimensions are naturally diversified,
requiring distinct decision rules to solve. When using these tasks for meta-training, the model can
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Figure 1: DRESS creates diversified self-supervised meta-training tasks through disentanglement
learning. The images are first encoded into disentangled latent representations. Sets of clusters are
formed on each latent dimension individually. Each set of clusters form pseudo classes for a distinct
set of self-supervised classification tasks with their own unique nature, under each latent dimension.

digest each factor of variation within the data, and therefore learns to adapt to unseen few-shot tasks
regardless of their contexts, natures, and meanings.

3 Experiments & Analysis
Datasets and Task Setups To study highly diversified tasks, we utilize two image datasets with
multiple independently varying factors, Shapes3D [26] and MPI3D [27], which are often used in
research on generative modeling and disentangled representations. We provide the details of all
varying factors for Shapes3D and MPI3D in Appendix A. For meta-evaluation as well as meta-
training under supervised baselines (as introduced below), we prepare supervised few-shot learning
tasks, with the detailed descriptions also provided in Appendix A. These few-shot learning setups
reflect the realistic scenario where the tasks that the model needs to adapt to are agnostic to the model
during its training process. We emphasize that we choose not to experiment on popular datasets
including Omniglot, miniImageNet, and CIFAR-FS, due to their lack of task diversities among
meta-training and meta-testing stages, as we have elaborated in section 1.

Implementation Details of DRESS We use the FDAE architecture [24] as the encoder for obtaining
disentangled representations, which is trained from scratch on meta-training images from Shapes3D
or MPI3D. The FDAE encoder computes a pair of codes for each visual concept, the content code and
the mask code. We regard these codes as two independent spaces, each with dimensionality given by
the FDAE encoding vector. Hence, the 6 visual concepts in Shapes3D images and 7 visual concepts in
MPI3D images lead to 12 and 14 disentangled latent dimensions for each dataset respectively. Under
each latent dimension (i.e. a vector for each image), we first apply PCA to reduce the dimensionality,
and then compute 200 clusters via K-Means, which serve as the pseudo-classes for self-supervised
meta-training tasks. Hence, each disentangled latent dimension corresponds to a distinct set of
few-shot classification tasks with their own unique nature.

Baseline Methods We compare DRESS to several popular baseline methods on few-shot learning.

Pre-training and Fine-tuning We implement the encoder-based pre-training and fine-tuning method
as described in [5], using SimCLR [28] with its standard image augmentation pipeline for pre-training.
The details are elaborated on in Appendix D.

Supervised Meta-Learning We evaluate three supervised meta-learning baselines, with increasing
knowledge of ground-truth factors and setups for tasks: Supervised-Original, Supervised-All, and
Supervised-Oracle. Exact definitions of these baselines are provided in Appendix B. Supervised-
Original is a commonly used baseline for meta-learning [14], while we have designed the two
more powerful baselines to reflect the upper bounds of what may be achieved with meta-learning
in principle. Specifically, Supervised-All serves as the upper bound on performance attainable
when the evaluation tasks are agnostic to the model, while Supervised-Oracle serves as the ultimate
performance upper bound when both the ground-truth factors as well as the natures of the evaluation
tasks (i.e. which factors the evaluation tasks focus on) are perfectly known.

Unsupervised & Self-Supervised Meta-Learning We utilize CACTUS [14] as an unsupervised
meta-learning baseline, implemented with two encoders: DeepCluster [29] trained from scratch on
Shapes3D or MPI3D; and off-the-shelf DINOv2 [30]. We refer to these two variants as CACTUS-
DeepCluster and CACTUS-DINOv2. Detailed settings for them are provided in Appendix C. While
there are many more methods which could serve as relevant baselines, e.g. [16, 17, 19], their use of
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Table 1: Few-shot learning classification accuracies, aggregated over 4 trials with different seeds,
with each trial conducted over 1000 meta-testing few-shot learning tasks.

Method Shapes3D MPI3D-Easy MPI3D-Hard

Supervised-Original 62.03%± 1.55% 57.75%± 0.46% 63.27%± 1.25%
Supervised-All 99.93%± 0.02% 99.29%± 0.29% 91.03%± 1.70%
Supervised-Oracle 99.97%± 0.02% 100.00%± 0.00% 99.42%± 0.11%
Few-Shot Direct Adaptation 65.70%± 2.05% 60.59%± 0.29% 62.27%± 0.28%
Pre-Training and Fine-Tuning 57.88%± 2.19% 92.93%± 0.48% 79.50%± 0.76%
CACTUS-DeepCluster 86.81%± 0.68% 84.95%± 0.56% 72.77%± 0.97%
CACTUS-DINOv2 80.62%± 0.25% 94.39%± 0.44% 81.92%± 0.39%
DRESS 93.05%± 0.18% 99.94%± 0.03% 84.95%± 0.50%
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Figure 2: Two self-supervised tasks constructed by DRESS on MPI3D. The top task focuses on the
object color; while the bottom task focuses on the robot arm angle. In particular, in the bottom task,
DRESS is able to incorporate the effect of camera height when comparing the robot arm angles.

data augmentation and pre-training techniques (i.e. contrastive learning) makes them close in nature
to our Pre-training and Fine-tuning baseline as well as CACTUS-DINOv2, since DINOv2 is already
a strong self-supervised image encoder. Lastly, we use Few-Shot Direct Adaptation as a lower bound
of what should be achievable with the model directly optimized on the few-shot support samples
from each meta-evaluation task.

Results and Analysis We present few-shot classification accuracies in Table 1. On these datasets,
DRESS consistently achieves the best few-shot adaptation performance (except for Supervised-All
and Supervised-Oracle as upper bounds). The performance of Supervised-Original is unimpressive,
indicating that meta-training targets could mislead a supervised model when adapting to highly
diversified tasks as we discussed in section 2. In contrast to [5], Pre-training and Fine-Tuning is not
on par with meta-learning approaches, due to the more challenging and diverse tasks we benchmark
on. CACTUS shows varying results across datasets with different encoders, reflecting the importance
of the latent representations in task construction. As DRESS uses disentangled representation learning
to construct diversified pre-training tasks, it obtains superior results across these datasets and task
setups. We provide visualizations of two tasks constructed by DRESS in Figure 2 which require
the model to learn to identify the object color, and the robot arm angular position respectively. In
Appendix E, we visualize more tasks constructed by DRESS focusing on other factors within MPI3D.

4 Conclusion
We surfaced an issue in popular few-shot learning benchmarks: the tasks are not diversified enough to
truly test model adaptation ability. Instead, few-shot learning tasks that cover various aspects of the
inputs and require distinct learning rules serve as more informative benchmarks. We proposed a self-
supervised meta-learning approach that harnesses the expressiveness of disentangled representations
to construct self-supervised tasks. Our approach enables models to acquire broad knowledge on
underlying factors in the dataset, and quickly adapt to tasks of various natures.
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A Dataset Descriptions

A.1 Shapes3D

Shapes3D contains 480,000 images, of which we use 400,000 images for meta-training and 50,000
images for meta-testing, leaving 30,000 images for meta-validation. Each image has a resolution of
64×64 pixels with RGB color channels.

The images in the dataset incorporate 6 factors of variations, as detailed in Table 2.

Table 2: Factors of Variation in Shapes3D

Attribute Name Number of Values Constructed Tasks

Floor Hue 10 Meta-Test
Wall Hue 10 Meta-Test
Object Hue 10 Meta-Train
Scale 8 Meta-Train
Shape 4 Meta-Train
Orientation 15 Meta-Test

A.2 MPI3D

MPI3D consists of four dataset variants. We utilize the MPI3D_toy dataset containing simplistic
rendered images. Throughout the paper, we refer to this dataset simply as MPI3D. The dataset
contains 1,036,800 images, of which we use 1,000,000 images for meta-training and 30,000 images
for meta-testing, leaving 6,800 images for meta-validation. Each image has a resolution of 64×64
pixels with RGB color channels.

The images in the dataset incorporate 7 factors of variations, as detailed in Table 3. We note that
for the two factors horizontal axis and vertical axis, denoting the robot arm’s angular position, the
ground truth labels for each are based on a 40-interval partition of the entire 180-degree anglular
range, leading to a mere 4.5-degree maximum angle difference for two different factor values. In
our experiments, we re-group the partitions into 10 intervals for each of the two axes, leading to a
18-degree maximum angle difference between two factor values.

Table 3: Factors of Variation in MPI3D

Attribute Name Number of Values Constructed Tasks (Easy) Constructed Tasks (Hard)
Object Color 6 Meta-Train Meta-Train
Object Shape 6 Meta-Train Meta-Train
Object Size 2 Meta-Train Meta-Train
Camera Height 3 Not Used Meta-Test
Background Color 3 Not Used Meta-Test
Horizontal Axis 40 Meta-Test Not Used
Vertical Axis 40 Meta-Test Not Used

A.3 Attribute Splits for Supervised Few-Shot Learning Tasks

We prepare few-shot binary classification tasks, specifically, two-way five-shot tasks, based on the
ground-truth factor values, following the procedure in [14]: select a subset of attributes and two
value combinations of these attributes, then assign the positive class (and negative class) to images
whose attributes match the first (and second) value combination. We also prepare five query samples
under each class (i.e. a total of ten query samples to be classified by the model). Note that we do not
provide the model with the class-distribution information over these query samples.

For the attribute subset selection, we partition the entire set of factors into disjoint meta-training sets
and meta-testing sets. The detailed split for both Shapes3D and MPI3D on each attribute is listed
above in Table 2 and Table 3 respectively.
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Specifically for MPI3D, we conduct experiments on two setups: MPI3D-Easy and MPI3D-Hard. For
MPI3D-Easy, the meta-testing tasks focus on identifying the background and camera height attributes,
while for MPI3D-Hard, the meta-testing tasks focus on predicting the horizontal and vertical robot
arm angular positions (which are also perturbed visually at various camera heights).

B Supervised Meta-Learning Baselines

In this section, we provide the complete description of the three supervised meta-learning baselines
adopted in our experiments.

• Supervised-Original: Only use the ground-truth factors allocated for meta-training to prepare
few-shot learning tasks to meta-train the model.

• Supervised-All: Use all the ground-truth factors to prepare few-shot learning tasks to meta-
train the model.

• Supervised-Oracle: Use the ground-truth factors allocated for meta-testing to prepare few-
shot learning tasks to meta-train the model.

These method progressively increase the amount or relevance of information available to the model.
Supervised-Original must learn to generalize from a limited set of factors to completely new factors at
meta-test-time. Supervised-All has strictly more information than the other two, but must be prepared
to adapt to any of them meta-test-time. Supervised-Oracle is given exactly the factors that it will
be tested on, so generalization to new factors is not required for good performance. Hence, it is
feasible for either Supervised-All or Supervised-Oracle to come out ahead as the upper-bound on
performance. For instance, if there are similar or overlapping factors across meta-train and meta-test,
Supervised-All may benefit for seeing all of it.

C Setups for All Meta-Learning Methods

For DRESS as well as each meta-learning baselines, we generate self-supervised few-shot learning
tasks, following the same format as the supervised tasks specified in Appendix B: two-way five-shot,
with five query samples per class.

For each meta-learning method (including the supervised meta-learning methods), we use MAML [2]
as the meta-optimization engine, with a convolutional neural network of identical specification as
the base learner, for fair comparisons between the methods. For each method, we use the setup for
meta-training and meta-evaluation as listed in Table 4.

Table 4: Few-Shot Learning Setup

Setting Value

Tasks per Meta-Training Epoch 8
Meta-Training Epochs 30,000
Tasks in Meta-Evaluation 1,000
Gradient Descent Steps in Adaptation 5
Adaptation Step Learning Rate 0.05
Meta-Optimization Step Learning Rate 0.001

We summarize in Table 5 all hyper-parameter values of meta-learning baselines. We note that for the
DeepCluster encoder, PCA is applied on its output to reach the number of latent dimensions as listed.

Table 5: Few-Shot Learning Setup

Setting CACTUS-DeepCluster CACTUS-DINOv2

Latent Dimensions 256 384
Randomly Scaled Latent Spaces 50 50
Clusters Over Each Latent Space 300 300
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D Setups for Pre-training and Fine-tuning

For pre-training, we use an encoder backbone that shares the same architecture as the ResNet-18
[31] backbone used for FDAE. After the pre-training, a trainable linear layer is attached on top of
the encoder for the adaptation process on evaluation tasks. The encoder is frozen throughout the
adaptation process. We include the details for this approach in Table 6. Note that we do not use a
supervised loss in pre-training in order to avoid the encoder focusing only on tasks that are irrelevant
to the meta-evaluation tasks, as we have discussed in section 2.

Table 6: Pre-Training and Fine-Tuning Setup

Setting Value

Pre-Training Epochs 10
Tasks in Meta-Evaluation 1000
Gradient Descent Steps in Adaptation 5

Regarding the number of epochs for pre-training, in the pre-training procedure, the entire set of
meta-training image inputs are fed to the encoder (i.e. 400,000 images for Shapes3D; and 1,000,000
images for MPI3D). Therefore, with 10 epochs over the entire meta-training dataset, the number of
forward-backward computations for optimizing the encoder already surpasses the models trained
with the meta-learning methods.

E Additional Task Visualizations from DRESS

We provide more visualizations on self-supervised few-shot learning tasks generated by DRESS in
Figure 3. These visualizations illustrate that the generated tasks cover multiple aspects and factors of
variations within the dataset.
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Figure 3: More self-supervised tasks constructed by DRESS. The top task focuses on the background
color; while the bottom task focuses on the camera height.

F Meta-Learning on Few-Shot Learning Pipeline

We provide the visualization for the general pipeline on applying meta-learning to solve few-shot
learning tasks in Figure 4.
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Figure 4: During meta-training stage, the model adapts on batches of sampled (self-supervised) tasks.
The model’s performance is optimized for meta-parameter optimization. After meta-training, the
model can be quickly adapted to meta-testing tasks and perform few-shot inference.
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