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Abstract
Episodic memory is a reconstructive process,
thought to depend on schema-based predictions
made by generative models learned through sys-
tems consolidation. We extend previous work on
memory for static scenes to model the construc-
tion and consolidation of sequential experience.
After sequences are encoded in the hippocam-
pus, a network is trained to predict the next item
in a sequence during replay (simulated by train-
ing GPT-2 on a range of stimuli). The resulting
model can memorise narratives, with characteris-
tic gist-based distortions, and can also be applied
to non-linguistic tasks such as spatial and rela-
tional inference. In addition, we explore ‘retrieval
augmented generation’, in which sequence gen-
eration is conditioned on relevant ‘memories’, as
a model for how hippocampal specifics can be
combined with neocortical general knowledge.

1. Introduction
Brains are thought to make predictions in order to sur-
vive. Previous research explores how memories may be
replayed by the hippocampus over the course of systems
consolidation to train a generative or predictive model of
the world, which supports multiple cognitive functions in-
cluding episodic memory, semantic memory, imagination,
and inference (Spens & Burgess, 2024; Fayyaz et al., 2022;
Káli & Dayan, 2000; 2002). This provides a more mech-
anistic account of the theory that episodic memories are
reconstructions influenced by our beliefs, i.e. that recall
involves ‘predicting’ the past (Hemmer & Steyvers, 2009).

Recent progress on large language models (LLMs) demon-
strates that complex behaviours can develop as a byproduct
of a simple ‘next item prediction’ task (Radford et al., 2019;
Brown et al., 2020). Crucially, LLMs can memorise specific
sequences as well as learning generalities (Carlini et al.,
2022), meaning that episodic and semantic information can
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be captured in a single network. In this paper we model
consolidation as the training of autoregressive sequence
models (simulated using GPT-2; Radford et al., 2019) on
hippocampal memories. We show that our model displays
similar gist-based memory distortions to those observed in
human data (Bartlett, 1932), and is capable of classic spatial
/ relational inference tasks (Whittington et al., 2020), consis-
tent with findings that consolidation promotes inference and
generalisation (Ellenbogen et al., 2007; Kumaran, 2012).

Many situations require inference, planning, and generali-
sation based on recent memories, before their content has
been assimilated into the generative network. This seems
to require both specific knowledge from episodic memo-
ries in the hippocampus and more general knowledge from
the neocortical world model (Robin & Moscovitch, 2017).
Extensive dialogue between hippocampus and neocortex is
observed when recalling memories (Norman et al., 2021),
suggesting that these networks can contribute jointly to some
tasks. Retrieval augmented generation (Lewis et al., 2020)
typically refers to an approach for combining an LLM with
a dataset of other information; given a query, relevant data
is retrieved from the dataset, and used to prompt the LLM.
One might hypothesise that neocortical generative models
and more veridical hippocampal representations could be
combined in a similar way, with neocortical generations
conditioned on hippocampal traces.

2. Methods
GPT-2 (Radford et al., 2019) is a deep neural network which
can be trained on arbitrary linguistic or non-linguistic se-
quences. Training involves learning to predict the next item.
Once the model is trained, it can continue from an input
sequence, or generate a new sequence, by iteratively predict-
ing the probability distribution for the next item.

The following simulations use GPT-2 (Radford et al., 2019)
to represent the generative networks trained through hip-
pocampal replay. Specifically, the medium-sized model
with 345 million parameters is used. In Section 3.2, the
GPT-2 architecture is trained from scratch with randomly
initialised weights, while in Section 3.1 existing GPT-2
weights are used as the starting point for further training.
The hippocampus is not modelled explicitly, but the training
data for the generative networks is intended to represent
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Figure 1. Summary of model. a) Episodic memories are first en-
coded in the hippocampus, then replayed during rest to train
a generative network (GPT-2). b) Even prior to consolidation,
the neocortical and hippocampal networks can work together to
solve problems with ‘retrieval augmented generation’ (Lewis et al.,
2020). c) When the Bartlett (1932) story is ‘consolidated’, it is
distorted towards the ‘priors’ of the neocortical model. Word
clouds show semantic intrusions in the recalled stories (sampled
at a temperature of 0.5, and aggregated across five samples) for
models pre-trained on different background categories. d) The em-
beddings of the training data plus the recalled stories are obtained,
using the ‘all-MiniLM-L12-v2’ model from Reimers & Gurevych
(2019). The cosine distances between the mean embedding for
each category and either the original story (green) or the recalled
story (purple) are shown. Recalled stories become more similar to
the background dataset. See also Table 1.

replayed sequences from the hippocampus.

3. Results
3.1. Memorisation and gist-based distortions

In the Bartlett (1932) experiment, students heard a story
called ‘The War of the Ghosts’ and were asked to recall it
after different time intervals. The story, a Native Ameri-
can myth, was chosen to be culturally unfamiliar, making
memory distortions more pronounced. Bartlett found that
the story was recalled in a way that was consistent with the
students’ background knowledge of the world, with con-
fabulation and rationalisation observed, and that memory
distortion increased over time (see also Bergman & Roedi-
ger, 1999). This simulation aims to test the hypothesis
that recalled narratives are distorted based on background
semantic knowledge in our model.

To simulate consolidation, we fine-tuned GPT-2 on the
Bartlett (1932) story in addition to a ‘background dataset’.
Recall was tested by giving the network the first few words
of the story (‘One night two young men from Egulac’),
and inspecting the predicted continuation. To explore the
effect of the model’s ‘priors’ on recall of narratives, the
background dataset was varied, with six categories of arti-
cle (‘Politics’, ‘Health’, ‘Universe’, ‘Sport’, ‘Nature’, and
‘Technology’) selected from a collection of Wikipedia con-
tent (Ziadé, 2024). See SI for further details.

When the Bartlett story is ‘consolidated’ into the generative
network memory distortions are observed, as in the human
data (see Table 2, SI). Furthermore, distortions in recalled
stories reflect the ‘priors’ of the generative network. The
word clouds in Figure 1c show that new words added to
the story (i.e. ‘semantic intrusions’) are representative of
the background dataset used. To quantify this, Figure 1d
shows that the recalled stories move closer towards the
background dataset in text embedding space. See also Table
1 for selected examples of semantic intrusions from the three
models.

3.2. Structural inference

Consolidation not only extracts statistical regularities from
episodic memories (Durrant et al., 2011), but also sup-
ports structural inference (Ellenbogen et al., 2007; Kumaran,
2012). A spatial example of structural inference is the find-
ing of shortcuts, as this relies on the common structure of
space, and a non-spatial example is inferring that A is the
grandfather of C from the knowledge that A is the father of
B, and B is the father of C, as this relies on the common
structure of family trees. The relations in these tasks can be
seen as edges in graphs, and the Tolman-Eichenbaum ma-
chine (TEM; Whittington et al., 2020) simulates this in the
domain of multiple tasks with common transition structures.
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Table 1. Recalled stories for different models, showing how se-
mantic intrusions reflect the ‘priors’ of the generative network.
Examples are selected from a range of temperatures.

Model Recalled story

Nature The young man went ... up the river to the
summit of the glen to make a fire
When the sun rose high above the scrub and
moorland, . . .

Politics they had been active in the local militia
He was ... convicted for violating the law

Health one of their companions, a young man from
the neighbouring town, fell seriously ill
“We will not go along until you are strong
enough to fight”

Universe the sun rose up in the east, and the clouds
became tinged with the yellow of dawn
A large, ferocious cataclysmic storm came
out of the water and many were killed

Sport But one of the warriors [gave] him a lesson
in hand-to-hand fighting
[They] had been training for this event for
weeks

Technology young men from Egulac went to a bar in
San Francisco, California
[He] went on to become one of the chief
hunters of the seals that year.

This simulation tests the hypothesis that consolidation en-
ables structural inference in the neocortical model. We con-
sider inference in two types of graph: a spatial graph and
a simple family tree graph (as in Whittington et al., 2020).
We trained GPT-2 models (one per task) from scratch on
random walks on 100,000 graphs and then tested the models’
inference abilities on novel sequences with the same under-
lying structure. Figure 2 shows examples of the synthetic
training and test data for each task. (Crucially, whilst each
graph’s structure is the same, each has a unique set of names
for the nodes, representing arbitrary features at a particular
location.) This was intended to represent - in a very abstract
way - sequences of observations that might be experienced,
encoded in the hippocampus, then replayed offline. See SI
for further details.

To test inference, we defined a set of cycles in the graph
for which the final destination could be inferred given the
sequence so far (for example, the next node given ‘ab EAST
cd WEST’ can be inferred to be ‘ab’). These templates were
then populated with random pairs of letters, so that none
of the sequences used for testing featured in the training
data. Beam search with five beams was used to generate
predictions.

Figures 2e and f show the decreasing ‘loss’ (aggregated er-
ror on the training data) of the spatial model and family tree

model respectively, indicating improved ability to predict
the next node on the set of graphs used for training, which
corresponds to the consolidation of previously experienced
environments. Figure 2g shows good performance on a
range of novel structural inference tasks, including surpris-
ingly complex inferences based on up to six ‘hops’ in the
graph. (See Tables 3 and 4 for the full results.)

These results are consistent with the claim that consolidation
supports relational inference and generalisation. Further-
more they suggest that models trained on a simple prediction
error minimisation objective can learn an abstract transition
structure. Unlike in TEM (Whittington et al., 2020), in
which structural regularities and arbitrary specifics are fac-
torised by design, the model learns to separate structure
and content (i.e. roles in the graph and the entities that fill
them). Many inference problems can be framed in terms
of graphs or transition structures, so this approach could be
more generally applicable.

3.3. Retrieval augmented generation

This simulation aims to test the hypothesis that the genera-
tive network and hippocampal network could work together
to support problem solving immediately after encoding, in
a way resembling ‘retrieval augmented generation’ (RAG).
Inference from recent memories is modelled as a process
whereby relevant sequences from the hippocampus are re-
trieved and used to condition the generative model.

We created a ‘toy example’ using the two models from the
structural inference results above. 100 new graphs were
constructed, each missing one edge, so that inference from
memory could be tested. A walk on each of these graphs
was stored in the ‘hippocampus’ (simply a list of strings in
this simulation). Crucially each walk contained sufficient
information from which the missing edge could be inferred.
For each missing edge, a corresponding query was con-
structed (e.g. if the ‘cd PARENT OF ef’ edge was omitted
from the graph, the test would be the model’s continuation
from ‘cd PARENT OF’).

Testing involves two stages, retrieval followed by generation
(see Figure 1b): first the hippocampus is queried for relevant
traces, simply by finding sequences containing the node in
the query. Then the generative network produces an output
conditioned on the retrieved sequence concatenated with
the sequence for the task. (Beam search with five beams
was used to generate predictions.) The results show that a
RAG-inspired system supports structural inference immedi-
ately after encoding sequences in the hippocampus, whereas
relying on either the hippocampal network or generative
network alone gives worse results (Figure 3).
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Figure 2. Modelling structural inference. a) Training data for the
spatial task consists of trajectories in simplified environments with
a shared 3x3 grid structure, but different ‘observations’ at each
node. b) Training data for the family tree task consists of walks on
family tree graphs with a shared structure, but different ‘names’ at
each node. c) Novel spatial inference example. d) Novel family
tree inference example. e) Loss for GPT-2 trained from scratch on
spatial dataset. f) Loss for GPT-2 trained from scratch on family
tree dataset. g) Loop completion performance for the spatial and
family tree models, grouped by the number of edges (‘hops’) in
the template. Error bars give the SEM. See Tables 3 and 4 for the
accuracies for each template.

Figure 3. Inference based on recent memories: comparing retrieval
augmented generation (RAG) to two baselines. In RAG, the most
relevant sequence from the hippocampus is used to condition the
generative network. The ‘hippocampus only’ baseline randomly
selects one of the locations / people in the retrieved sequence. The
‘neocortex only’ baseline conditions the generative network on the
task alone, without retrieving sequences from the hippocampus.
(The models trained in Section 3.2 are used as the generative
networks.)

4. Discussion
We have presented a model of the construction and consoli-
dation of sequential memories, in which sequences encoded
in the hippocampus are replayed to train a generative net-
work to capture the transition probabilities between states
through prediction error minimisation. This network ex-
hibits a number of capabilities in addition to the memorisa-
tion of ‘replayed’ sequences, such as spatial and relational
inference (Section 3.2). The computational approach taken
is applicable to any sequence of symbols, meaning that lin-
guistic and non-linguistic sequences can be modelled in a
consistent way: we also demonstrated how distortions arise
in narratives, and how these reflect priors in the generative
model (Section 3.1). We also suggest that retrieval aug-
mented generation (Lewis et al., 2020) is a potential model
of how the generative network might interact with stored
sequences in the hippocampus, with relevant memories re-
trieved from the hippocampus to condition the generative
network (Section 3.3).

In recent years, neuroscience has seen a move from a modu-
lar view of many semi-independent networks learning par-
ticular tasks to a focus on the learning of multipurpose repre-
sentations, often by prediction error minimisation (Friston,
2010; Káli & Dayan, 2000; 2002). Similarly, there has been
a transition in machine learning from task-specific mod-
els to larger task-general ones, sometimes referred to as
‘foundation models’ (Bommasani et al., 2021). We should
perhaps think of the brain as learning neural ‘foundation
models’ too, and this paper and others suggest how memory
consolidation could contribute to their development.

4



Learning sequence models through consolidation

References
Bartlett, F. C. Remembering: A study in experimental and

social psychology. Cambridge university press, 1932.

Bergman, E. T. and Roediger, H. L. Can Bartlett’s repeated
reproduction experiments be replicated? Memory &
cognition, 27(6):937–947, 1999.

Bommasani, R., Hudson, D. A., Adeli, E., Altman, R.,
Arora, S., von Arx, S., Bernstein, M. S., Bohg, J., Bosse-
lut, A., Brunskill, E., et al. On the opportunities and risks
of foundation models. arXiv preprint arXiv:2108.07258,
2021.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:
1877–1901, 2020.

Carlini, N., Ippolito, D., Jagielski, M., Lee, K., Tramer, F.,
and Zhang, C. Quantifying memorization across neu-
ral language models. arXiv preprint arXiv:2202.07646,
2022.

Durrant, S. J., Taylor, C., Cairney, S., and Lewis, P. A. Sleep-
dependent consolidation of statistical learning. Neuropsy-
chologia, 49(5):1322–1331, 2011.

Ellenbogen, J. M., Hu, P. T., Payne, J. D., Titone, D., and
Walker, M. P. Human relational memory requires time
and sleep. Proceedings of the National Academy of Sci-
ences, 104(18):7723–7728, 2007.

Fayyaz, Z., Altamimi, A., Zoellner, C., Klein, N., Wolf,
O. T., Cheng, S., and Wiskott, L. A model of seman-
tic completion in generative episodic memory. Neural
Computation, 34(9):1841–1870, 2022.

Friston, K. The free-energy principle: a unified brain theory?
Nature reviews neuroscience, 11(2):127–138, 2010.

Hemmer, P. and Steyvers, M. A Bayesian account of re-
constructive memory. Topics in Cognitive Science, 1(1):
189–202, 2009.
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A. Supplementary information
A.1. Modelling sequence learning

The primary goal during the training of GPT-2 (Radford et al., 2019) is to adjust the model’s parameters through maximum
likelihood estimation, so that the probability it predicts for the true next item in each sequence, based on the items so far, is
as high as possible. In other words, the network’s weights are updated to predict the probability distribution of the next item
as accurately as possible. The training data for the original GPT-2 model is the WebText dataset of online content. Once the
model is trained, it predicts the probability distribution across all items given the items so far, and one can either sample
from this distribution or simply take the most probable item at each step. The equation below gives the probability of a
sequence x as a product of conditional probabilities of its items:

p(x) =

n∏
i=1

p(sn|s1, ..., sn−1)

The first stage of using GPT-2 (and similar models) is to prepare the inputs with tokenisation. A tokeniser maps commonly
occurring chunks of characters to IDs (in order to look up the right token embedding in a learned embedding matrix); in the
case of language tokens are often words or parts of words. The concept of tokenisation is applicable to arbitrary sequences,
but for simplicity and consistency across the simulations all stimuli are converted to strings of characters (if they are not
already text-based), and the default GPT-2 tokeniser is used.

As described above, the objective for training is causal language modelling, the task of predicting the next token (‘chunk’ of
characters) in sequences from the training data. This is achieved with the Transformers Python library (Wolf et al., 2019).
What exactly does causal language modelling with a custom dataset involve? First the training data is split into blocks,
and then for every block the cross-entropy loss is aggregated across all the next token prediction tasks within the block.
For GPT-2, the block size (which is also the context size of the trained model) is 1024 tokens. This means that the model
is trained to consider up to 1024 tokens of context when predicting the next token in a sequence. So for each block the
model tries to predict the second token based on the first token, then the third token based on the first two, and so on, until it
predicts the final token based on the preceding 1023.

The loss measures the difference between two probability distributions: the distribution predicted by the model and the
actual distribution in the data. For each token prediction task, the actual distribution is a ‘one-hot’ vector with a one for
the real next token and zeros elsewhere. Specifically, the cross-entropy loss for a single prediction task is calculated as the
negative log probability assigned by the model to the actual next token. For a block of tokens, the total loss is the sum of the
cross-entropy losses for each token prediction task within the block, and the weights of the model are updated based on this
total loss. This procedure is the same whether the model is fine-tuned or trained from scratch.

A.2. Sampling options

There are many ways to generate sequences given a trained sequence model like GPT-2. As a reminder, a token is a group of
commonly co-occurring characters. The same tokeniser is used as in the pre-trained GPT-2 model (Radford et al., 2019).

Greedy decoding, where the model selects the token with the highest probability as the next token in the sequence, is the
simplest way to generate sequences. However this can lead to repetitive and predictable sequences, as greedy decoding
always opts for the most likely option without exploring potential alternatives. Sampling from the learned probability
distribution with a given temperature introduces randomness into the selection of the next item, and provides a way to control
the model’s ‘imaginativeness’. The temperature parameter determines the ‘sharpness’ of the distribution from which output
tokens are selected, so that sequences at a higher temperature are more ‘imaginative’, but more likely to be nonsensical.

To be more precise, the equation below describes the ‘softmax with temperature’ function that is applied to the vector of
scores for each token. The softmax function transforms this vector of scores into a vector of probabilities. As the numerator
is an exponential, a large temperature T flattens the distribution, whereas T close to zero approximates a ‘one-hot’ vector,
with a probability of one for the most likely token. The denominator normalises each element in the vector by the sum of all
the exponentials, ensuring the probabilities add up to one:
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σ(si) =
e

si
T∑n

j=1 e
sj
T

Top-K sampling limits the model’s choice to the K most likely next words and samples from this subset according to their
probability distribution. This prevents the model from picking highly improbable words, reducing the risk of generating
nonsensical text. Unlike top-K sampling, top-p (nucleus) sampling uses a cumulative probability threshold (p) and then
selects from the smallest set of items whose combined probability is below this threshold. This method allows the model to
consider a broader or narrower set of options depending on the certainty of its predictions, which can lead to more coherent
outputs. Beam search is not a sampling method but a search strategy that expands on greedy decoding by considering
multiple potential paths through the model’s probability ‘landscape’. At each step, it keeps a fixed number (the beam width)
of the most probable sequences generated so far and extends them, eventually choosing the sequence with the highest overall
probability. Beam search is particularly useful for tasks requiring high-quality outputs, such as translation or summarisation,
but can be computationally intensive.

Table 2. Recalled stories for different temperatures, for a model trained on the Bartlett (1932) story plus the ‘Sport’ category of the
Wikipedia dataset (Ziadé, 2024) as the background data distribution. The continuation given ‘One night two young men from Egulac’ is
shown.

Type Recalled story

Original One night two young men from Egulac went down to the river to hunt seals and while
they were there it became foggy and calm. Then they heard war-cries, and they thought:
“Maybe this is a war-party”. They escaped to the shore, and hid behind a log. Now canoes
came up, and they heard the noise of paddles, and saw one canoe coming up to them.
There were five men in the canoe, and they said: . . .

No sampling One night two young men from Egulac went down to the river to hunt seals and while
they were there it became foggy and calm. Then they heard war-cries, and they thought:
“Maybe this is a war-party”. They escaped to the shore, and hid behind a log. Now the
war-party started, and they heard the noise of paddles, and saw one canoe coming up to
them. There were five men in the canoe, and they said: ...

Temperature of 0.5 One night two young men from Egulac went out to the river to hunt seals and while they
were there they were robbed by the men from Egulac. The men ran back to Egulac and
hid behind a log. When they came out they discovered a canoe coming up to them and
they jumped up and began to fight. The canoe came down to the ground and they began to
wrestle. The men said they had been robbed by the thieves. . . .

Temperature of 1 One night two young men from Egulac went up to the river and they saw a canoe coming
up to them. It was full speed, and they could not believe their luck when they saw it
coming up the river. They jumped on the canoe and started to paddle, but the canoe was
not there. And they could not feel their feet on the canoe; they thought they were sinking.
When they reached the shore, they saw one canoe . . .

A.3. Modelling distortions in narratives

To simulate consolidation, the medium-sized GPT-2 model was fine-tuned on the Bartlett (1932) story in addition to items
from one of six ‘background datasets’, allowing the network’s ‘priors’ to be manipulated based on the choice of dataset.
Recall was tested by inspecting the continuation of the story at a given temperature. A dataset of Wikipedia content (Ziadé,
2024) was used, with six categories of article selected to provide a wide range of style and content (‘Politics’, ‘Health’,
‘Universe’, ‘Sport’, ‘Nature’, and ‘Technology’). The training data for each model was made up of 1000 articles sampled
from the relevant category (with the first 1000 characters of each article taken) plus the Bartlett (1932) story. Each model
was trained for 50 epochs on this combined dataset.

Figure 1c shows ‘semantic intrusions’ at a temperature of 0.5, aggregated across ten sampled ‘memories’ of the story. Word
clouds, created with the ‘wordcloud’ Python package, are used to visualise these intrusions. They show terms in the recalled
Bartlett stories which did not appear in the original (with common words, i.e. ‘stopwords’ like ‘the’, excluded). Table 2
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shows the effect of varying the temperature. Recall at a higher temperature becomes more ‘imaginative’, but even without
sampling distortions are observed.

To show more quantitatively that recalled stories are distorted towards the ‘background dataset’, the ‘all-MiniLM-L12-v2’
model from Reimers & Gurevych (2019) was used to obtain the embeddings of the training data, plus those of the original
and recalled stories. The cosine distances between the mean embedding for each category and either the original story or
the recalled story are shown in Figure 1d. (Specifically, five recalled stories were sampled at a temperature of 0.1, and the
average distance to the category mean was calculated to give the purple bars in this figure.)

A.4. Modelling structural inference

In the spatial task, a three-by-three grid represents a simple 2D environment, where the nine nodes are locations and the
edges between them (‘NORTH’, ‘EAST’, ‘SOUTH’ and ‘WEST’) are possible transitions (Figure 2a). Whilst each graph’s
structure is the same, nodes are labelled with names to represent arbitrary features at a particular location (random pairs of
letters are used to increase the possible number of names). Trajectories through the environment are walks on the resulting
directed graph, which are represented as strings such as ‘ab EAST wd SOUTH ea WEST hn’. The family tree graph has a
simple structure for illustrative purposes, consisting of two children, their parents, and two sets of grandparents. See Figure
2b. We model this as a directed graph with edges for different relationships. As in the spatial graph case, all graphs have the
same structure, but each graph has different names assigned to its nodes. Walks on the graph are represented by strings such
as ‘lk PARENT OF nd SIBLING OF re’.

In each case, we created 100,000 graphs with the same structure but randomly chosen values (pairs of letters) for the nodes.
A random walk of 50 transitions was sampled from each graph to create the training data, which represent sequences of
observations that might be experienced, encoded in the hippocampus, then replayed offline. (These random walks were not
filtered to cycles, meaning that the models’ inference abilities could not be attributed to learning that all sequences start and
end at the same node.) GPT-2’s medium-sized architecture was then trained from scratch for five epochs.

After training the models, we tested novel inference. We chose ‘loops’ in the graph for which the final destination could be
inferred given the sequence so far (for example, the next node given ‘ab EAST cd WEST’ can be inferred to be ‘ab’). The
templates were then populated with random pairs of letters, so that each sequence was novel, before testing the accuracy of
inferring the final node. Note that only the next node prediction was used to evaluate inference but predictions continued
beyond this point (i.e. intersecting the path in the prompt). Tables 3 and 4 give the average score for each ‘template’, while
Figure 2g aggregates these results by the number of graph transitions in the sequence (or ‘hops’). Many other tests could be
performed, e.g. of the ability to generate structurally valid graphs given a prompt.

Table 3. Family tree task inference templates and their average accuracies.

Inference template Average accuracy

{} CHILD OF {} PARENT OF {} 0.81
{} PARENT OF {} CHILD OF {} 0.76
{} GRANDCHILD OF {} GRANDPARENT OF {} 0.80
{} GRANDPARENT OF {} GRANDCHILD OF {} 0.62
{} CHILD OF {} CHILD OF {} GRANDPARENT OF {} SIBLING OF {} 0.70
{} CHILD OF {} SPOUSE OF {} PARENT OF {} SIBLING OF {} 0.75
{} PARENT OF {} SIBLING OF {} CHILD OF {} SPOUSE OF {} 0.79
{} PARENT OF {} PARENT OF {} GRANDCHILD OF {} SPOUSE OF {} 0.77
{} CHILD OF {} SPOUSE OF {} CHILD OF {} SPOUSE OF {} GRANDPAR-
ENT OF {} SIBLING OF {}

0.75

{} GRANDPARENT OF {} SIBLING OF {} CHILD OF {} SPOUSE OF {}
CHILD OF {} SPOUSE OF {}

0.72
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Table 4. Spatial task inference templates and their average accuracies.

Inference template Average accuracy

{} EAST {} WEST {} 0.87
{} WEST {} EAST {} 0.82
{} NORTH {} SOUTH {} 0.81
{} SOUTH {} NORTH {} 0.87
{} EAST {} SOUTH {} WEST {} NORTH {} 0.71
{} SOUTH {} WEST {} NORTH {} EAST {} 0.78
{} WEST {} NORTH {} EAST {} SOUTH {} 0.80
{} NORTH {} EAST {} SOUTH {} WEST {} 0.81
{} EAST {} EAST {} NORTH {} WEST {} WEST {} SOUTH {} 0.79
{} NORTH {} NORTH {} WEST {} SOUTH {} SOUTH {} EAST {} 0.74
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