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ABSTRACT

This paper undertakes meticulous scrutiny of the pure logit-based distillation un-
der multi-label learning through the lens of activation function. We begin with
empirically clarifying a recently discovered perspective (Yang et al., 2023b;a) that
vanilla sigmoid per se is more suitable than tempered softmax in multi-label distil-
lation, is not entirely correct. After that, we reveal that both the sigmoid and tem-
pered softmax have an intrinsic limitation. In particular, we conclude that ignoring
the decisive factor temperature 7 in the sigmoid is the essential reason for its unsat-
isfactory results. With this regard, we propose unleashing the potential of temper-
ature scaling in the multi-label distillation and present Tempered Logit Distillation
(TLD), an embarrassingly simple yet astonishingly performant approach. Specif-
ically, we modify the sigmoid with the temperature scaling mechanism, deriving
a new activation function, dubbed as tempered sigmoid. With theoretical and vi-
sual analysis, intriguingly, we identify that tempered sigmoid with T smaller than
1 provides an effect of hard mining by governing the magnitude of penalties ac-
cording to the sample difficulty, which is shown as the key property to its success.
Our work is accompanied by comprehensive experiments on COCO, PASCAL-
VOC, and NUS-WIDE over several architectures across three multi-label learning
scenarios: image classification, object detection, and instance segmentation. Dis-
tillation results evidence that TLD consistently harvests remarkable performance
and surpasses the prior counterparts, demonstrating its superiority and versatility.

1 INTRODUCTION

Knowledge distillation (KD), which aims to im-
part the informative knowledge from a cumber-
some teacher (7)) model to a lightweight stu-
dent model (S), is an effective model compres-
sion technique (Hinton et al., 2015). In gen-
eral, KD is executed via minimizing the differ-
ence (e.g., Kullback-Leibler (Lky, ) divergence)
between classification responses (i.e., logit) of
the teacher and student. A crucial step of such
KD is how to activate the logits, as depicted
in Figure 1. In the common practice, the tem-
pered softmax is used to activate the logit, in
which a temperature scaling factor 7 is intro-
duced to modulate the logit smoothness. The
temperature 7 drastically affects the final KD
performance (Zhao et al., 2022; Xu et al., 2020;
Li et al., 2022b; Kim et al., 2021; Kobayashi,
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Figure 1: The general distilling pipeline for logit
KD. Through unleashing the potential of temper-
ature scaling, this paper introduces a better Acti-
vation Function, which is recognized as the foun-
dation for improving multi-label logit distillation.

2022; Chandrasegaran et al., 2022; Li et al., 2023b;a; Sun et al., 2024; Zheng & Yang, 2024) and
the sweet spots of 7 is greater than 1 (T > 1), both empirically and theoretically. Over the past few
years, KD has found success in plenty of single-label learning tasks (Huang et al., 2022; Yang et al.,
2022a; Ding et al., 2023; Miles et al., 2023; Zheng & Yang, 2024).

Recently, applying KD to the more challenging yet realistic multi-label setting has aroused wide
attention (Yang et al., 2023b;a; Zhang et al., 2023). Unfortunately, the concurrent publications L2D
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(Yang et al., 2023b) in the classification (Cls.) and BCKD (Yang et al., 2023a) in the detection (Det.)
discovered that directly migrating the classical KD, i.e., activating logits with tempered softmax,
to multi-label tasks results in trivial improvements. Specifically, L2D stated that the predictive
probabilities may not equal one in multi-label classification, thus causing tempered softmax to be
not suitable. BCKD, based on an overstrict presumption', argued that the tempered softmax leads to
loss vanishing, curtailing the KD performance eventually. To combat this problem, they activate the
logit with the vanilla sigmoid and minimize the difference with Binary-Cross Entropy (Lpcg) loss.

Nevertheless, both the exploration in L2D (Yang et al., 2023b) and BCKD (Yang et al., 2023a) lacks
a convincing theoretical understanding and comprehensive experimental evidence, therefore leaving
how to activate logit in multi-label KD remains an enigma, including: @ Whether the vanilla sigmoid
is truly superior to tempered softmax in practice? @ What are the limitations of them? @ If there is
a simple way that could simultaneously make logit KD excel in multi-label learning and provide a
theoretically sound justification? In this work, by presenting formal answers to these under-explored
questions, we attempt to make a thorough investigation and contribute to the multi-label logit KD.

We start by answering question @, and our
primary concern is to ascertain whether
the decent performance reported in L2D
(Yang et al., 2023b) and BCKD (Yang
et al., 2023a) can be attributed to sigmoid.
To this end, we perform pure logit KD
on classification and detection tasks. Ta-
ble 1 summarizes the KD results. Sur-
prisingly, when removing the confound-
ing factors (advanced distance function or
extra re-weight strategy?®), we empirically
observe that the performance gain of sig-
moid substantially disappears and the tem-

Table 1: Motivation experiments on the COCO dataset
for comparing the activation functions (o) in the multi-
label distillation. Related results for Cls. and Det. are
respectively collected from L2D (Yang et al., 2023b)
and BCKD (Yang et al., 2023a), if reported. The three
types of distance function (D) are the most adopted in
logit KD. For sample re-weighting (M), we choose the
strategy used in BCKD, and X means the M can not be
applied. * indicates the vanilla distance metric for each
activation function. A represents the performance gains
over the undistilled student. The teacher-student are
ResNet101-ResNet34 and GFocal based ResNetl101-
ResNet18 for Cls. and Det., respectively.

pered sofimax obtains on par or even better

KD results, especially in the classification | p M | Cls. |  Det
task, which clearly negates the advantages 7 | | mAP A | mAP A
of vanilla sigmoid. As a short takeaway, Teacher " T 362 - | 449 -
it seems that the vanilla sigmoid itself is Student B 17031 - ‘ 358 -
not bette? than zemp .e’?d soﬁmaxlln mult.l_ tempered softmax | Lx1," - | 71.88 157 | 364 0.6
label logl't KD. Additional experiments in w1 Lot X | 7203 172 ‘ 360 02
later sections further confirm our findings. Loce’ - | 7068 037 | 365 07
As to the question @, we disclose that both sigmoid ﬁBCE* v ;gié ;}g ;Z% }'3
the tempered softmax and vanilla sigmoid L X175 - —
have an intrinsic pitfall in multi-label KD. ti/’;’pT ez‘aszgﬁfs’)d ﬁﬁlLST X ‘ ;2;§ g;; ‘ g;g i;

For tempered softmax, we expose that it is
leveraged to capture and transfer the inter-
class relations, which is the primary attribution of such logit KD (Zhao et al., 2022; Chandrasegaran
etal., 2022; Liet al.,, 2022b; Zheng & Yang, 2024). With this perspective, tempered softmax is natu-
rally sub-optimal for logit distillation in multi-label learning, in which each class is optimized indi-
vidually. A similar conclusion can also be found in (Li et al., 2022a; Zhang et al., 2023). Intuitively,
as claimed in L2D (Yang et al., 2023b) and BCKD (Yang et al., 2023a), the one-versus-all (OVA)
approach, i.e., sigmoid, in multi-label learning can alleviate this problem. However, our empirical
results imply that the vanilla sigmoid per se does not have the capacity as expected. Something must
be largely overlooked. In this paper, we posit that ignoring 7 (i.e., 7 is fixed as 1) is the essential
reason for undermining the potential power of sigmoid. This argument is partially underpinned by
the constant superior results established in single-label learning tasks (Li et al., 2022b; 2023b; Sun
et al.,, 2024; Zheng & Yang, 2024) by analyzing the role of 7 in KD. Besides, the exploratory ex-
periments in Table 1 directly attest to our conjecture that the temperature scaled sigmoid, termed
tempered sigmoid, could lead to better results in multi-label KD.

'"BCKD introduced a constant tensor 7 to meet a presumption: z° = z' + 7. z is the logit. However, such a
presumption can not be held for each sample/pixel. Interested readers may refer to their paper for more details.

The re-weight strategy is widely used in the detection task. Hence, to fairly compare sigmoid and tempered
softmax, we also include the KD results without this strategy. BCKD did not conduct such an ablative study.
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Based on the above analysis, we are strongly encouraged to take the fempered sigmoid as a re-
sponse to the question ®. Building upon the behavior of multi-label learning(Yang et al., 2023b)
and temperature scaling (Li et al., 2022b; 2023b), tempered sigmoid brings two desirable proper-
ties: 1) activate each class in the logit individually, successfully aligning the training protocol of the
original tasks; 2) bring back the critical factor 7, endowing us to unleash its effects for multi-label
KD. Particularly, the tempered sigmoid derives two intriguing findings regarding the selection of 7
in logit KD. First, a lower value (7 < 1) achieves more satisfactory performances with tempered
sigmoid, which is exactly opposite to the optimal setting (7 > 1) for tempered softmax. One is
encouraged to think about the reason. The theoretical and empirical answers will be provided later.
Besides, we find that L2D and BCKD are the special case of the proposed method but with 7 = 1.

Our method also possesses two appealing merits: it is compatible with different distance functions
(i.e., Lx1, or LpigT); it is flexible cooperating with feature-based approaches. Massive empirical re-
sults on COCO (Lin et al., 2014), PASCAL-VOC (Everingham et al., 2015), and NUS-WIDE (Chua
et al., 2009) evidence that our method achieves state-of-the-art performance on image classifica-
tion, object detection, and instance segmentation tasks. The embarrassing simplicity and excellent
performance of the proposed method may foresee its broad application in multi-label logit KD and
warrant future research. To sum up, this paper makes the following contributions:

* We clarify that the vanilla sigmoid per se does not bring significant practical benefits than
tempered softmax in multi-label logit distillation, as claimed in previous publications. The
limitation of vanilla sigmoid and tempered softmax is further discussed.

* In particular, we disclose that ignoring the temperature parameter is the essential bottleneck
causing the vanilla sigmoid to produce poor results. This motivates us to introduce the
tempered sigmoid, which is theoretically shown as a hardness-aware activation function
with a proper 7 in multi-label distillation.

* In light of the general character of tempered sigmoid, our method adapts surprisingly well
to three prevalent multi-label learning tasks, and is seamlessly embedded with other distil-
lation approaches to further enhance KD.

* Despite its simplicity, the proposed method consistently delivers notable performance gains
in multi-label distillation and beats its prior counterparts by a large margin.

2 RELATED WORK

Multi-Label Learning. Multi-label learning, in which each sample is generally associated with
multiple class labels, is more applicable for real-world applications (Yang et al., 2023b). Thanks to
the recent advance of backbones (e.g., ResNet (He et al., 2016) and Swin (Liu et al., 2021)), multi-
label learning supports several visual recognition tasks, including image classification (Chen et al.,
2019b), object detection (Lin et al., 2017b), and instance segmentation (Wang et al., 2020).

Knowledge Distillation. Knowledge distillation (KD), which aims to learn a compact yet powerful
model by inheriting knowledge from a high-capacity one, is popularized in single-label learning
(Hinton et al., 2015). Several papers have attempted to investigate KD in multi-label learning tasks.
L2D (Yang et al., 2023b) studied this problem in the classification task and introduced a one-versus-
all distillation manner. In object detection, BCKD (Yang et al., 2023a) further formulated the logit
maps as multiple binary-classification maps with sigmoid and then performed distillation. However,
these methods left some critical questions unanswered and did not explore this problem in general.

Temperature Scaling in KD. In temperature scaling, a parameter 7 is involved to adjust the slope of
predictive distributions. Its pivotal role and practical benefits in logit KD are justified with sufficient
evidence (Xu et al., 2020; Kim et al., 2021; Chandrasegaran et al., 2022; Li et al., 2022b; Kobayashi,
2022; Lietal., 2023b; Zheng & Yang, 2024; Sun et al., 2024; Wang et al., 2024). For example, ATS
(Li et al., 2022b) teaches better students by applying different 7 to the different classes. CTKD (Li
et al., 2023b) adjusted the 7 through an easy-to-hard curriculum learning strategy. TTM (Zheng &
Yang, 2024) dropped the temperature 7 on the student side, further boosting the standard logit KD.
LSKD (Sun et al., 2024) assigned distinct 7 between the teacher and student and across samples.
However, all these methods are based on tempered softmax and devoted to single-label classification
KD. This paper, with distinct motivation, explores the specific properties of 7 in multi-label distilla-
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tion and introduces tempered sigmoid. In addition, using the 7 as a proxy, we recognize and verify
some intriguing phenomena among different logit KD under different learning tasks.

Hard Samples Mining in KD. Mining and prioritizing hard/important samples is a long-standing
issue in knowledge distillation. For example, (Hu et al., 2024; Li et al., 2022a; Yang et al., 2023a)
find that the samples exhibiting larger discrepancy between the teacher and student is hard for distil-
lation and paying more learning effort on them favors the student. This issue is more critical for the
detection KD, where the training samples have an extreme imbalance between positive and negative
pixels. To alleviate this, numerous methods propose to distill the “knowledge-dense” locations by
various sophisticatedly-designed strategies (Wang et al., 2019; Dai et al., 2021; Huang et al., 2023;
Lietal., 2022a; Yang et al., 2022b; Zheng et al., 2022). For instance, (Wang et al., 2019) selected an-
chors overlapping with the ground-truth object anchors as distillation regions. (Huang et al., 2023)
leveraged multiple receptive tokens to perceive each pixel via attention calculation, generating a
pixel-wise distillation mask. (Dai et al., 2021; Li et al., 2022a) distills student detectors based on
valuable locations selected by the predictive discrepancy between the teacher and student. In this
paper, we revealed that the simple temperature scaling operation is capable of providing the effect
of hard mining and consistently outperforms the previous publications.

3 METHODOLOGY

We elaborate our method under the classification task for simplicity, and extending it to dense pre-
diction tasks is straightforward. Let z = [z1, 22, ..., 2¢] € RC represent the logit, where z; is the
logit output of the i-th class and C is the number of classes. With an activation function o, z is
converted to the predictive probability p € R®. We discriminate the notations with superscripts s
and t for the student (S) and teacher (7).

3.1 PRELIMINARIES

Tempered Softmax. Following the classical KD (Hinton et al., 2015) in single-label learning, the
logit is activated by softmax with a temperature factor 7:

zi|T
e
pi,- = softmax(z;, 7) = —— (1)
Z Zf:l e7/T
and the KD is implemented by minimizing the Kullback-Leibler (Lkp,) divergence :
C
Lxu(ps,ph) = -7 _pl, logp;, )
i=1

where 7 is involved to regulate the logit smoothness, and generally, 7 > 1 (e.g., 7 = 10 in LD
(Zheng et al., 2022)). Note that, we omit the denominator term in Lk, as it does not contribute to
the gradient. We refer to this method as KL.

Sigmoid. Lately, L2D (Yang et al., 2023b) argued that the above KD scheme in single-label learning
can not be directly applied in the multi-label scenario, and advocated that the sigmoid activated logit
is more suitable for performing distillation. A similar conclusion can be also drawn in BCKD (Yang
et al., 2023a) with the detection task. Formally, sigmoid activates the logit as:

1
p; = sigmoid(z;) = = 3)

and KD loss is calculated by Binary Cross Entropy (Lpcg), and we refer to this method as BCE.

c

Lpce(p®,p') = — »_(ptlog p; + (1 - p!)log(1 - p})) )
=1

However, as discussed before, the tempered softmax and vanilla sigmoid both have an intrinsic
problem regarding performing KD in multi-label learning tasks. Our experimental results also prove
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that they actually distill similar inferior students in practice, as shown in Table 1. In this paper,
we put forth an alternative activation manner through a simple yet effective temperature scaling
operation that can attain better performance and provide convincing justification.

3.2 TEMPERED LOGIT DISTILLATION (TLD)

Loss Formulation. We reduce the multi-label classification score to a series of independent binary
classification tasks. Formally, we obtain the positive response of the i-th class with tempered sigmoid
as:

1

Pi.r = sigmoid(z;,7) = ;7

(&)

where 7 plays the same role as in Eq. (1). Under the OVA strategy, we derive the negative response

for the i-thclassas 1 — p; » = ﬁ By concatenating the positive and negative class response,
we have the binary predicted probabilities P, = [[p1.7,1 — P1.+] -, [Pers 1 — Per]] € REX2
Then we distill the per-class independently with a binary version of Lkr, and the KD loss is as:
c
Lrup = Lk (B3, PL) = Y Lxu(P] . P!,
i=1
. (©6)
=—72> (pi,logp;, + (1 —p},)log(1—p;,))
i=1

Note that, we choose the vanilla Lk, as the distance function in TLD to make fair comparisons with
KL and BCE. However, TLD works well with more advanced loss functions, e.g., Lpist in (Huang
et al., 2022). Furthermore, comparing Eq. (4) with Eq. (6), we can derive that L2D (Yang et al.,
2023b) and BCKD (Yang et al., 2023a) is equivalent to our method by setting 7 = 1.

Overall Loss. The overall training objective of optimizing the student is formulated as:

Loverall = ﬁtask + /\LTLD (7)

where Ly, is the original task loss for training the students and A is the factor for balancing the
losses. In practical scenarios, any pure feature-based methods in the corresponding task can be
easily fused to gain extra improvements. Distillation results will be included for this consideration.

Theoretical Analysis. Here, we theoretically show that TLD pays more attention to hard samples
during KD when the 7 is properly set, i.e., 7 < 1. Since our TLD distill per-class individually, we
derive (more details are in Appendix C.1) the gradient of Lr1,p with respect to z; as follows and:

OLrTLD
0z8

3

= T(f’?,r - f)ﬁ,‘l') (8)

This formula suggests that the gradient is proportional to the discrepancy between p; . and P!,
with 7 controlling the penalty strength of each sample. Now, let us consider two cases.

(i) When 7 < 1 and 7 — 0, the p! _ starts resembling to the ground-truth [1,0]. Since the student
could make correct (i.e., ground-truth) predictions p; , for easy samples, therefore, the loss magni-
tude that comes from the hard samples is intensified with 7 < 1. In other words, our TLD under
7 < 1 regulates the students to take more effort into emulating the hard areas, benefiting the KD
performance eventually. Note that an extremely small 7 will cause the loss only to concentrate on
very limited samples, thus degrading the performance as well.

(ii) Conversely, when 7 > 1 and 7 — oo, the p! _ is approaching to a uniform one, i.e., [0.5, 0.5]. In
this case, the loss tends to distribute over the whole logit space, accordingly attenuating the learning
effort put in hard samples. Besides, uniform targets render the identity information erasure, which
also negatively affects the student’s learning.
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Table 2: Multi-Label image classification KD performance on COCO. T indicates that we replace
the vanilla Lk, with more advanced Lpist (Huang et al., 2022) in Eq. (6). The related results
reference the L2D (Yang et al., 2023b).

| ResNetl01-ResNet34 | SwinTiny-MobileNetV2 | RepVGGA2-RepVGGAO |  WRNI101-WRN50
| mAP OFI CFl | mAP OFI CFl | mAP OFI  CFl | mAP OFl CFI

Teacher 73.62 73.89 68.61 | 79.43 7877 75.07 | 7271 74.11 68.63 7470 75.76  70.73
Student 7031 7249 66.82 | 71.85 7359 68.26 | 70.02 72.49 66.77 7445 7543 70.61

RKD 70.13 7244 66.78 | 71.74 73.68 68.37 | 70.13 72.39 66.73 7470 75771 70.84
PKT 7043 72.64 66.68 | 71.84 73776 6837 | 70.11 72.47 66.80 74.54 7547 70.58
Review KD | 70.39 72.62 66.76 | 71.73 7371  68.33 | 70.00 72.35 66.82 74.03 7529 70.36
MSE 70.54 7275 66.85 | 71.80 73.74 6838 | 70.26 72.54  66.99 74.53 75.60 70.71

Method

PS 70.86 72.66 67.12 | 7242 74.14 68.94 | 70.65 72.89 67.60 7512 76.05 71.63
BCE 70.68 72.69 67.19 | 7235 74.10 6891 | 70.74 72.81 67.46 7492 7575 71.21
L2D 72.02 73.63 6827 | 7345 7519 69.92 | 72.17 74.00  68.85 74.82 7579 71.25

TLD 73.48 74.84 6937 | 73.93 7521 7045 | 7271 7434 6920 | 77.29 77.65 7297
TLDf 7426 75.32 70.06 | 74.08 7547 70.69 | 73.01 7448 69.31 | 77.40 77.71 73.16

BCE+L2D | 72.87 74.45 6943 | 7421 7572 70.87 | 72.81 7459  69.49 76.61 77.08 72.79
TLD +L2D | 74.01 75.14 70.23 | 74.75 7594 7095 | 73.52 7499 69.69 | 77.59 7791 73.32

Table 3: Multi-Label image classification KD Table 4: Multi-Label image classification KD
performance on PASCAL-VOC. The related re- performance on NUS-WIDE. The related re-

sults reference the L2D (Yang et al., 2023b). sults reference the L2D (Yang et al., 2023b).
| ResNet50-ResNetl8 | SwinSmall-SwinTiny | ResNetl01-ResNet34 | SwinTiny-MobileNetV2
Method Method

| mAP  OF1 CFl | mAP OF1 CFI | mAP OF1 CFl | mAP OF1  CFl

Teacher | 86.73 84.92 81.21 | 9275 91.05 88.82 Teacher | 5532 7556 61.13 | 59.73 7730 6544
Student | 84.01 83.60 79.42 | 91.31 89.98 88.00 Student | 5341 7510 60.08 | 5449 7572 61.74
RKD 84.48 83.54 79.83 | 91.52 90.44 8851 RKD 53.62 7520 5991 | 5476 75.69 61.74
PKT 84.12 83.10 79.31 | 91.28 90.17 88.03 PKT 53.55 75.08 60.35 | 5459 7569 61.74
Review KD | 83.71 83.01 79.25 | 9145 90.17 88.06 Review KD | 53.52 7523 6044 | 5485 7584 61.75
MSE 8423 83.16 79.29 | 91.06 89.99 87.66 MSE 5352 7513 59.94 | 5486 7580 61.69
PS 84.44 8378 79.95 | 91.21 9025 88.12 PS 5414 7543 6079 | 5518 7591 6235
BCE 84.48 8407 80.29 | 9143 9025 88.12 BCE 5444 7536 60.73 | 5536 76.00  62.52
L2D 8542 85.08 81.46 | 91.65 90.84 88.96 L2D 5389 7519 61.07 | 5624 7650 63.15
TLD 86.32 8556 82.03 | 9259 9134 89.44 TLD 5524 75.68 60.60 | 56.91 76.76  63.43
BCE+L2D | 8571 8570 82.11 | 91.92 91.34 89.58 BCE+L2D | 5531 76.17 6279 | 5691 7692  63.89
TLD+12D 8670 85.72 82.35 | 92.80 91.47 89.81 TLD+L2D 56.83 76.64 63.52 | 57.86 77.30 64.44

4 EXPERIMENTS

Our experiments are conducted on three standard benchmark datasets, i.e., COCO (Lin et al., 2014),
PASCAL-VOC (Everingham et al., 2015), and NUS-WIDE (Chua et al., 2009), across three multi-
label learning tasks, including image classification, object detection, and instance segmentation.

Due to the page limitation, we attach all the experimental settings, e.g., datasets, evaluation metrics,
networks, training details, and the references of the related methods, in Appendix A.

4.1 IMAGE CLASSIFICATION

Comparison with State-of-the-Arts. We first validate TLD on the classification task. Table 2, Table
3, and Table 4 list the results. On average, the distilled student achieves outstanding 2~3% absolute
gains, which even outstrip the teacher in some cases, and extra improvements can be achieved with
an advanced loss function in (Huang et al., 2022). Furthermore, by only distilling with the logit, TLD
delivers competitive performance and surpasses prior sophisticated approaches with considerable
margins, strongly demonstrating its superiority and effectiveness. Moreover, cooperating with the
feature-based L2D, our TLD can be further enhanced and establishes a new state-of-the-art in the
multi-label classification KD community. Following L2D, Figure 2 visualizes the class activation
maps. It is observed that our TLD precisely locates the discriminative regions, especially for the
hard instances, eventually resulting in higher performance. In Appendix B.2, we provide more KD
results (Tables B.2, B.3), class-wise performance (Figure B.1), and visualizations (Figure B.2).
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Table 5: Relation between the student and
teacher on multi-label KD. We set ResNet18
as the student and vary teachers.

Teacher | Student
Backbone ~ mAP | mAP OF1  CFl
Tennis Racket Skateboard Broccoli Dinning Table Person ResNetl 8 67 8 1 6928 71 . 87 66 19

; RV ot PR ResNet34  70.40 | 69.68 7220 66.65
Figure 2: Visualizations of the class activation ResNets0 7336 | 7058 7277 6724

maps generated from L2D (top) and TLD (bot-  pocnNeiior 73562 | 7119 7321 6744

tom). The texts bellow the images are the query ResNet152 7497 | 71.23 7326 67.61
categories. The models are the distilled ResNet34.

Table 6: Comparison with o on object detection. Table 7: Comparison with logit KD on object

The results are reported on COCO. detection. The results are reported on COCO.
Method | MAP  APs, AP;s APs APy AP Method | mAP APs; AP;s APs APy APy
7:GFRIOl | 449 63.1 490 280 491 572 T:AT-R50 | 394 576 428 236 429 503

S: AT-RI8 | 348 531 371 193 379 456
S:GF-RI8 | 358 53.1 382 189 389 479
KL 364 539 390 196 398 483 CWD 357 531 386 195 388 473
BCE 365 540 390 197 400 482 RM 354 533 379 193 386 46.1
TLD 373 554 401 204 409 489  DIST 357 533 385 185 390 467
TLD 367 545 395 204 396 4738
S:GF-R34 | 389 566 422 215 428 514
KL 3908 578 428 221 442 524 T:GF-R50 | 402 584 433 233 440 522
BCE 396 575 428 224 438 518 S: GF-RI18 | 358 53.1 382 189 389 479
TLD 404 589 433 234 447 527 CWD 365 537 392 184 401 484
RM 364 538 387 198 393 480
S:GF-RS0 | 402 584 433 233 440 522 pigr 364 538 391 188 401 484
KL 410 594 443 236 450 530  ppry 371 549 398 199 409 489
BCE 407 592 439 234 447 532
TLD 419 608 453 249 460 544

Better Teacher, Better Student. In single-label logit KD, (Mirzadeh et al., 2020; Huang et al.,
2022) found a counter-intuitive phenomenon that a stronger teacher may harm the performance of
students, i.e., better teacher, worst student. We study this issue in multi-label logit KD. As shown
in Table 5, there is a clear positive correlation between the mAP of the student and teachers, and a
better teacher tends to teach a better student in multi-label KD. Our method seems to enjoy the large
discrepancy between the teacher and student, i.e., better teacher, better student.

4.2 OBIJECT DETECTION

Comparison with . As we focus on the activation function ¢ regarding logit KD, we first
compare the performance of existing methods to ours, and the corresponding results are listed
in Table 6. It is observed that TLD delivers notable performance enhancements, manifesting
the effectiveness of our method. For instance, distilled with GFocal-ResNet101, the ResNet18,
ResNet34, and ResNet50 based students obtain +1.5%, +1.5%, and +1.7% mAP gains, respectively.
More importantly, TLD consistently outper-
forms KL and BCE with a clear margin,
showing its superiority. In Figure 3, we plot
the training stimulus. We can see that the
loss distribution of KL (tempered softmax)
is diverse, almost covering the whole logit
map, which hinders the students from distill-
ing knowledge from informative areas. BCE

cm:ll_d ﬁ!ter. out S(l)lme backgrlourl;(li bu_t Stlﬂl fgﬂs Figure 3: KD loss distribution in the logit space, and
to discriminate the most valuable pixels. QUr o vajye js normalized to [0, 1]. The teacher-student

TLD ({emp ered Singid)’ howeve.:r, clearly pair is GFocal with ResNet101 and ResNet18.
lays a tight emphasis on the potential seman-

tic locations and removes the futile background regions, which directly translates to the elevation in
performance. In Appendix B.3, Table B.4 summarizes more KD results with various detectors.

- F

(_a KL (7 = 1) (b) BCE (c) TLD (7 = 0.5)
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Table 8: Comparison with feature KD on object detection. The results are reported on COCO.

Method ‘ mAP APs5o AP7s APg APy APy,
T: GF-R101 449 63.1 49.0 28.0 49.1 57.2
S: GF-R50 40.2 58.4 433 233 44.0 52.2
FitNet 40.7 58.6 44.0 23.7 44.4 53.2
GT Box 40.7 58.6 44.2 23.1 44.5 53.5
FGFI 41.1 58.8 44.8 233 45.4 53.1
MasKD 40.4 58.4 43.6 23.5 44.0 52.9
DeFeat 40.8 58.6 44.3 24.3 44.6 53.7
GID 41.5 59.6 45.2 24.3 45.7 53.6
FGD 41.3 58.8 44.8 24.5 45.6 53.0
MGD 42.1 60.3 45.8 24.4 46.2 54.7
SSKD 423 60.2 459 24.5 46.7 55.6
PKD 42.5 60.9 46.0 24.2 46.7 55.9
TLD 41.9 60.8 453 24.9 46.0 54.4
TLD + FitNet 42.4 60.8 45.8 24.5 46.5 55.0
TLD + MGD 423 60.8 45.8 24.4 46.4 54.8
TLD + PKD 43.4 61.4 47.0 25.2 47.9 56.9

Comparison with Other Logit KD. There are other efforts to promote the logit detection KD, e.g.,
the channel-wise KD (CWD) (Shu et al., 2021) or rank mimicking (RM) (Li et al., 2022a). Table 7
compares these schemes. The results showcase that our method consistently beats them, indicating
TLD is a more effective method for distilling the logit map in object detection.

Comparison with Feature KD. As verified in prior logit-based publications (Zheng et al., 2022;
Yang et al., 2023a; Huang et al., 2022; Zhao et al., 2022), feature-based methods are naturally
superior in distilling detectors. However, as shown in Table 8, our TLD could attain competitive
detection enhancements and surpass most of the feature KD methods devised for distilling detectors.
Additionally, our approach is complementary to the feature KD and can be combined with them to
further promote student performance. For example, paired with FitNet (Adriana et al., 2015), the
most plain feature KD for distilling detectors, we can even exceed the state-of-the-art feature KD
methods. Besides, our method accomplishes additional +0.2% and +0.9% mAP improvements over
MGD (Yang et al., 2022¢) and PKD (Cao et al., 2022), respectively. An interesting finding is that
TLD leads to balanced improvements on different instance scales, while the feature KD methods
perform better in large objects. The possible reason is that the feature KD methods are typically
foreground-oriented, thereby distilling more information for large instances. In contrast, our method
is hardness-aware and can excavate the beneficial areas, regardless of the object sizes, accordingly
leading to balanced results. The loss distribution on multi-scale in Figure 5 backs up our conjecture.

4.3 INSTANCE SEGMENTATION

We further extend TLD to instance segmentation and conduct experiments on SOLOv2 (Wang et al.,
2020). As shown in Table 9, our TLD consistently outperforms the prior logit-based competitors and
yields comparable results to the strong feature-based methods (i.e., PKD and MGD). Moreover, once
again, we beat the state-of-the-art KD methods by introducing FitNet, and MGD realizes additional
mAP gains (+0.6%) by incorporating our method.

4.4 ABLATION ANALYSIS

Selection of 7. As described in prior sections, the temperature 7 is a critical factor in deciding
the final KD performance. Here, we show its different impact in KL (fempered softmax) and our
TLD (tempered sigmoid) in multi-label KD. Table 10 lists the results by varying 7. Evidently, there
is a trade-off in the selection of 7, and the following observations could be made. (i) For KL,
7 > 1 and increasing 7 produces better KD results. However, despite this same conclusion drawn
in prior single-label KD works, interestingly, we observe a special case of 7 < 1 also delivering a
comparable result, and the accuracy saturates after 7 > 4. The worst result is obtained with 7 =
0.25. (ii) TLD exhibits the exact opposite performance trend with KL. Specifically, it is observed
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Table 9: Instance segmentation KD performance on COCO.

Method ‘ mAP AP50 AP75 APS APM APL
T: SOLOV2-R50 34.8 54.9 36.9 13.4 37.8 53.7
S: SOLOvV2-R18 30.8 49.6 324 10.8 32.9 49.1
KL 314 50.6 329 10.6 333 50.1
BCE 31.3 50.5 33.0 10.2 33.4 50.1
CWD 31.9 51.0 33.7 10.3 33.9 51.7
DIST 31.8 51.2 335 10.3 34.0 50.5
PKD 31.8 50.6 33.6 10.8 33.9 50.7
MGD 325 51.5 34.6 11.4 353 51.8
TLD 323 52.1 34.1 10.9 34.5 51.1
TLD + FitNet 32.8 52.1 34.7 11.2 35.1 51.8
TLD + MGD 33.1 52.5 34.9 11.5 35.6 52.2

Table 10: Impact of 7 in KL (softmax) Table 11: Performance of TLD under the self-KD strategy.

and our TLD (sigmoid) on COCO. The detector for Det. is GFocal (Li et al., 2020).
| KL | TLD Cls. Det.
T S TLD
| Cls. Det. | Cls. Det. mAP  OF1 mAP  AP5o  AP7s

| | |
| | !
025 | 70.69 360 | 73.14 367 ng‘ ‘67.81 70.56 6426‘ 358 531 382

0.5 7112 36.0 | 73.48 373 v | 6928 7187 66.19 | 362 53.6 387
0.75 | 71.38 36.4 | 73.26 37.2 R34 7040 72.66 66.88 | 389 56.6 422
2.0 7233 363 | 71.68 36.6 v | 7294 7449 69.13 | 40.0 578 432
40 | 7257 36.5 | 70.68 364 R50 7336 7449 69.54 | 402 584 433
10.0 | 71.88 36.4 | 70.12 36.3 v | 75774 7648 71.87 | 40.8 592 444

that the mAP drops rapidly when 7 > 1 and as 7 increases. TLD distills better students under 7 < 1
(even with a very low 7 of 0.25) and keeps relatively robust distillation results on 7 € [0.25,1).
In Figure 4, we visually back up the above KD results under the dense detection task. (i) When
7 > 1, the loss distribution is similar across various 7 for KL and our TLD, therefore leading to
similar distillation results. (ii)) When 7 < 1, the KD loss of our TLD is quickly dominated by the
areas, e.g., the hand of person and edge for surfboard. Those regions are supposed to be informative
for distillation (Zheng et al., 2022), consequently guaranteeing superior performance by mimicking
them. This observation is consistent with the theoretical analysis before. It is noteworthy that
7 = 0.25 produces the most sparse imitation regions with TLD but still gives us an acceptable result
and beats the best of KL. Such surprising results clearly manifest that TLD with 7 < 1 regulating
the students to tilt distilling the most conducive samples can achieve better results. In comparison,
the loss generated by KL (w/ 7 < 1) displays a broad impact and starts assigning large magnitudes
of penalties to the futile background, which may shed some light on its inferior performance.

Self-KD. In self-KD, the teacher and student share the network architectures. Here, we evaluate our
method under this special KD paradigm. As reported in Table 11, our TLD can still bring noticeable

Figure 4: Distribution of the distillation loss for KL (tempered softmax, top) and TLD (tempered
sigmoid, bottom) by varying 7. Best viewed with zoom-in.



Under review as a conference paper at ICLR 2025

Figure 5: Visualization of loss distribution in different FPN levels with 7 = 0.5. P3~P6 represent
the FPN levels. The teacher-student pair is GFocal with ResNet101-ResNet18 as the backbones.
Best viewed with zoom-in.

performance promotion. For instance, with ResNet34 as the backbone, the student gets +2.54% and
+1.1% absolute mAP improvements in the classification and detection tasks, respectively.

Loss Distribution on Multi-Level. Here, we give details on loss distributions at different levels
of feature pyramid networks (FPN) (Lin et al., 2017a) in the detection task. As illustrated in Fig-
ure 5, the beneficial foreground regions provoke higher loss, while the meaningless background
gets negligible weights. More importantly, the loss in different FPN layers has different regions
of interest. The low-level FPN is more concentrated on the tiny objects (even the extremely small
sports ball, see P3), while the high-level FPN level pays more attention to the large instances. This
property effectively relieves the redundancy in the multi-level KD and leads to balanced detection
improvements. More visualizations can be found in Figure B.3.

Please refer to Appendix for additional experimental results and relevant discussions.

5 CONCLUSION

In this paper, we investigated knowledge distillation under multi-label learning. Our empirical re-
sults clarify that the vanilla sigmoid and tempered softmax are both inferior in performing distil-
lation in multi-label learning. As a simple yet effective solution, we introduced tempered sigmoid
and proposed the tempered logit distillation (TLD). We provided theoretical and visual justification,
showing that our method realizes hard mining during distillation, which is the primary attribute of
its success. Our TLD is general and achieves outstanding distillation results in various vision tasks,
including image classification, object detection, and instance segmentation. Only distilling with the
logit, TLD even outperforms state-of-the-art KD methods designed specifically for the correspond-
ing tasks. Besides, we notice some quite interesting observations regarding the temperature 7, which
may supplement and consummate its behavior in logit distillation.
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A  EXPERIMENTAL SETTINGS

A.1 DATASETS

COCO. COCO (Lin et al., 2014), covering 80 categories, is the standard benchmark for classifica-
tion, detection, and instance segmentation tasks. COCO contains 115K and 5K images for training
and validation. For image classification, we use COCO-2014 following L2D (Yang et al., 2023b).
COCO-2017 is used for detection and instance segmentation as the common practice.

PASCAL-VOC. PASCAL-VOC (Everingham et al., 2015) consists of 5K and 4K images, across 20
classes, for training and validation.

NUS-WIDE. NUS-WIDE (Chua et al., 2009), which is a large-scale dataset commonly used for
image classification with 81 concept categories, includes 161K and 107K annotated images for
training and validation, respectively.

A.2 EVALUATION METRICS

For classification, we choose the mean Average Precision (mAP), overall F1-score (OF1), and aver-
age per-category F1-score (CF1) as the metrics. For object detection and instance segmentation, we
report mAP as the main metric, together with AP under different IoU thresholds AP5g, AP75 and
object scales APg, APy, APr,.

A.3 NETWORK ARCHITECTURES

For backbones, we consider several models: ResNet (He et al., 2016), WRN (Zagoruyko & Ko-
modakis, 2016), RepVGG (Ding et al., 2021), MobileNet (Sandler et al., 2018). Besides, vision
transformer-based networks, such as Swin (Liu et al., 2021), are also included in the image classi-
fication task. For the detection task, various dense detectors are selected, i.e., RetinaNet (Lin et al.,
2017b), FCOS (Tian et al., 2019), ATSS (Zhang et al., 2020), GFocal (Li et al., 2020), and RepPoints
(Yang et al., 2019). For the instance segmentation task, we choose SOLOV2 (Wang et al., 2020).
All the backbones are pre-trained on ImageNet (Deng et al., 2009).

A.4 TRAINING DETAILS

For image classification, we use the L2D codebase (Yang et al., 2023b). Specifically, we respectively
train the teachers and students for 30 and 80 epochs with the Adam optimizer (Kingma & Ba,
2015). The one-cycle policy is used with a maximal learning rate of le-4 and a weight decay of
le-4. The batch size is 64 and the input size is 224x224. For each training image, we apply a
weak augmentation consisting of random horizontal flipping and a strong augmentation consisting
of Cutout (DeVries & Taylor, 2017) and RandAugment (Cubuk et al., 2020). We fix the 7 = 0.75
and tune the A in a reasonable range.

For object detection and instance segmentation, our implementation is built upon the MMDetection
(Chen et al., 2019a) framework with default configure files. All the sfudent models are trained under
the 1x learning schedule without any tricks, e.g., multi-scale training. We fix the 7 = 0.5 and tune
the ) in a reasonable range.

A.5 COMPARED METHODS

The references of the compared methods in image classification are PKT (Passalis & Tefas, 2018),
RKD (Park et al., 2019), Review KD (Chen et al., 2021), PS (Song et al., 2021), MSE (Xu et al.,
2022), and L2D (Yang et al., 2023b).

The references of the compared methods in object detection and instance segmentation are FitNet
(Adrianaet al., 2015), FGFI (Wang et al., 2019), DeFeat (Guo et al., 2021), CWD (Shu et al., 2021),
GID (Dai et al., 2021), FGD (Yang et al., 2022b), MGD (Yang et al., 2022¢), PKD (Cao et al., 2022),
DIST (Huang et al., 2022), SSKD (De Rijk et al., 2022), RM (Li et al., 2022a), LD (Zheng et al.,
2022), MasKD (Huang et al., 2023), and BCKD (Yang et al., 2023a).
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Table B.1: Impact of loss weight hyper-parameter A on GFocal ResNet101-ResNet18 with 7 = 0.5.

A | 05 1.0 15 20 25 30

mAP | 36.6 372 371 371 373 369
APso | 54.1 552 552 551 554 552
AP75 | 394 40.0 398 39.7 401 39.7

Table B.2: Multi-Label image classification KD performance on COCO.

ResNet101-MobileNetV2 | SwinTiny-ResNet34 | ResNet101-RepVGGAO | SwinSmall-SwinTiny
| mAP OFI  CFl | mAP OFI CFl | mAP OFl CFl | mAP OFl CFl

Teacher 73.62  73.89 68.61 79.43 7877 7507 | 73.62 73.89 68.61 | 81.70 80.48 77.12
Student 71.85 73.68 68.40 7031 7249 66.82 | 70.02 7249 66.77 | 79.59 79.18 7542

RKD 7176 73.68 68.40 | 70.00 7234 66.64 | 70.08 7235 66.72 | 79.59 79.18 7542
PKT 71.88 73.60  68.35 69.99 7235 66.56 | 70.11 7247 66.80 | 79.64 79.09 75.39
Review KD | 71.92 73.73 68.48 7029 7239 66.58 | 70.00 7233 66.62 | 79.81 79.18 7555
MSE 7191 73.68 68.28 7033 7257 66.72 | 70.07 7250 66.85 | 79.67 79.20 7552

Method

PS 72.11  73.89 68.42 7094 7293 6757 | 70.30 72.61 67.10 | 79.96 79.64 76.20
BCE 72.17 73.84 68.52 71.14 7299 67.63 | 70.48 72777 67.10 | 80.11 79.68 76.44
L2D 73.17 7471 69.37 7239 7415 68.63 | 72.01 7399 68.58 | 80.86 80.36 77.20

TLD 7340 7480 69.52 | 73.98 7523 70.34 | 7291 7450 69.26 | 82.24 81.19 78.30

BCE+L2D | 73.24 74.85 69.72 7342 7497 7020 | 72.14 7408 68.78 | 81.59 81.03 77.86
TLD +L2D | 7440 7559 7031 75.04 76.08 71.18 | 73.84 75.13 69.81 | 83.05 8195 78.91

B ADDITIONAL EXPERIMENTS AND VISUALIZATIONS

B.1 SENSITIVITY OF \

Here, we perform additional experiments to study the impact of A by setting 7 = 0.5 with the
detection task. As shown in Table B.1, TLD achieves stable performance with A’s range in [1.0, 3.0],
demonstrating that our method is not sensitive to the choice of A. In practice, the loss weight is
suggested to keep a similar amount loss value of the task loss in the classification head (Zhao et al.,
2022; Hinton et al., 2015; Huang et al., 2022).

B.2 IMAGE CLASSIFICATION

Table B.2 and Table B.3 summarize more KD results on COCO (Lin et al., 2014) and PASCAL-
VOC (Everingham et al., 2015), respectively. It is observed that our TLD consistently surpasses the
previous methods on both homogeneous and heterogeneous KD pairs, verifying its effectiveness.

Figure B.1 plots the class-wise AP scores. It is shown that our method consistently achieves higher
results than L2D (Yang et al., 2023b) in most categories, showing that the performance gains of the
proposed approach are holistic.

Table B.3: Multi-Label image classification KD performance on PASCAL-VOC.

| ResNet50-RepVGGAO | SwinTiny-ResNet18 | ResNet50-MobileNetV2 | SwinTiny-MobileNetV2
m m m m
AP  OF1 CF1 AP  OF1 CF1 AP  OF1 CF1 AP  OF1 CF1

Teacher 86.73 84.92 81.21 | 9143 89.81 87.63 | 86.73 84.92 81.21 | 91.43 89.81 87.63
Student 83.79 8336 79.83 | 84.01 83.60 7942 | 86.12 85.01 81.76 | 86.12 85.01 81.76

RKD 84.26 84.29 80.70 | 83.27 83.05 79.55 | 86.22 84.97 81.76 | 85.68 8531 81.57
PKT 83.93 83.79 80.03 | 8345 8325 79.64 | 86.10 84.84 81.66 | 85.67 8522 81.68
Review KD | 84.07 83.62 80.34 | 83.37 83.08 7893 | 85.87 8504 81.73 | 85.69 85.10 81.56
MSE 84.01 84.05 80.52 | 83.60 83.06 79.46 | 86.20 84.94 81.84 | 8580 85.51 81.98

Method

PS 84.80 8446 81.13 | 83.97 83.75 79.86 | 86.26 8547 82.06 | 86.07 85.73  82.39
BCE 85.07 8491 81.55 | 84.61 8426 80.78 | 86.38 85.67 8243 | 86.11 8598  82.55
L2D 8594 8550 8222 | 85.10 8509 &81.36 | 86.91 8539 82.03 | 8697 86.26 83.12

TLD 86.51 85.64 8238 85.80 8529 81.77 | 87.36 86.35 83.31 | 87.13 86.54 83.34

BCE+12D | 86.26 85.85 82.55 | 85.87 85.67 82.17 | 87.32 8648 83.26 | 87.37 86.88 83.68
TLD +1L2D 86.64 8548 82.21 86.48 85.50 8247 | 87.72 86.49 8335 | 88.00 87.09 84.04
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Figure B.1: Per-class AP on PASCAL-VOC (Everingham et al., 2015). Best viewed with zoom-in.
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Figure B.2: More visualizations of the class activation maps generated from L2D and our TLD (from
left to right: COCO (Lin et al., 2014), PASCAL-VOC (Lin et al., 2014), NUS-WIDE (Chua et al.,
2009)). The colored texts are the query categories. Best viewed in color with zoom-in.

Figure B.2 shows more visualizations of class activation maps. We can see that our TLD can locate
the specified objects more precisely than the L2D (Yang et al., 2023b), which directly transfers to
performance enhancement.

B.3 OBIJECT DETECTION

Table B.4 gives more KD results on object detection. It is observed that our method consistently
boots the performance of various detectors, demonstrating its generalization and versatility.

In Figure B.3, we visualize more loss distribution in the logit space over different FPN levels. One
can see that our method successfully recognizes worthy pixels for targets, regardless of the instance
scales and categories. An interesting phenomenon is that the useful KD region for an instance is
generally smaller than the whole instance. A similar observation can be drawn from (Huang et al.,
2023), which performs the distillation with the feature.

C THEORETICAL ANALYSIS

C.1 EXPLANATION ABOUT THE GRADIENT IN EQ. (8)

In our method, we first reduce the multi-label classification task into a set of binary classification
tasks, then we distill each binary classification independently with KL-divergence. Formally, the
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Table B.4: Distillation performance of various detectors on COCO.

Method ‘ mAP APs5 AP35 APg APy APy,
ATSS-R101 41.5 59.9 45.2 24.2 45.9 53.3
ATSS-R50 394 57.6 42.8 23.6 429 50.3
TLD 41.2 59.9 44.4 24.8 45.1 52.2
FCOS-R101 39.1 58.3 42.1 22.7 433 50.3
FCOS-R50 36.6 56.0 38.8 21.0 40.6 47.0
TLD 37.9 58.0 40.2 22.1 42.0 48.5
Rep-R101 40.5 61.3 43.5 23.4 44.7 52.2
Rep-R50 38.1 58.7 40.8 22.0 41.9 50.1
TLD 39.6 61.2 42.4 24.2 43.7 51.3
Retina-R101 38.9 58.0 41.5 21.0 42.8 52.4
Retina-R50 36.5 55.4 39.1 20.4 40.3 48.1
TLD 38.4 58.3 41.0 21.9 42.2 50.5

Figure B.3: More visualizations of the loss distribution in different FPN levels with 7 = 0.5. P3~P6
represent the FPN levels. The KD pair is GFocal with ResNet101-ResNet18 as the backbones. Best
viewed in color with zoom-in.
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Figure C.4: The value of Lr1,p by varying the temperature 7. A darker color indicates a higher loss.

prediction p, € R€*! is converted to p, = P11 —Pi+), s [Pers 1 —Per)] € RE*2_ where
Pir = ﬁ z; is the logit, ¢ = 1,...,C". We distill the p, with KL divergence in a per-class

manner as:

Lorp = Lxu(P ., P ,) ©)

where p; . = [piT, 1- pr] and p} , = [pﬁ)T, 1- pﬁ)T]. Then, we can derive the standard KL
gradient as show in Eq. (8).

C.2 REFORMULATION LT1,p

Here, we further theoretically explore the impact of temperature scaling in our TLD. Recall that, our
method distills per-class independently, so we take one class as an example to ease the presentation.
Extending it to the multi-class case is straightforward. First, we have p, = [p,, 1 — p,], where:

1 1 e~#IT

- . —1— — — e F/T.
L+e /7’ pr=1 1tesm 1+4eslt °© Pr (10)

br =

, and the z is the logit. Then, based on Eq. (10), the L11,p can be expressed as follows:

Lrrp = —(phlog ps + (1 — p})log(1 — p3))
—(pllog s + (1 —pt)log(e*"/7 - p3))
—(pylog pi + (1 —pt)(logp; — 2°/7))
—(pf log p? + (1 — pt)logps) + (1 — pk)(2°/7) an
—logp; + (1 —p7)(2°/7)
R efzt/r
=log(l+e /) + W(ZS/T)

In Figure C.4, we visualize the value of L11p by varying the temperature 7. It is clear that our
method with 7 < 1 is more sensitive to hard samples and will regulate the student to pay more
learning effort to them.
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