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ABSTRACT

This paper undertakes meticulous scrutiny of the pure logit-based distillation un-
der multi-label learning through the lens of activation function. We begin with
empirically clarifying a recently discovered perspective (Yang et al., 2023b;a) that
vanilla sigmoid per se is more suitable than tempered softmax in multi-label distil-
lation, is not entirely correct. After that, we reveal that both the sigmoid and tem-
pered softmax have an intrinsic limitation. In particular, we conclude that ignoring
the decisive factor temperature τ in the sigmoid is the essential reason for its unsat-
isfactory results. With this regard, we propose unleashing the potential of temper-
ature scaling in the multi-label distillation and present Tempered Logit Distillation
(TLD), an embarrassingly simple yet astonishingly performant approach. Specif-
ically, we modify the sigmoid with the temperature scaling mechanism, deriving
a new activation function, dubbed as tempered sigmoid. With theoretical and vi-
sual analysis, intriguingly, we identify that tempered sigmoid with τ smaller than
1 provides an effect of hard mining by governing the magnitude of penalties ac-
cording to the sample difficulty, which is shown as the key property to its success.
Our work is accompanied by comprehensive experiments on COCO, PASCAL-
VOC, and NUS-WIDE over several architectures across three multi-label learning
scenarios: image classification, object detection, and instance segmentation. Dis-
tillation results evidence that TLD consistently harvests remarkable performance
and surpasses the prior counterparts, demonstrating its superiority and versatility.

1 INTRODUCTION

Figure 1: The general distilling pipeline for logit
KD. Through unleashing the potential of temper-
ature scaling, this paper introduces a better Acti-
vation Function, which is recognized as the foun-
dation for improving multi-label logit distillation.

Knowledge distillation (KD), which aims to im-
part the informative knowledge from a cumber-
some teacher (T ) model to a lightweight stu-
dent model (S), is an effective model compres-
sion technique (Hinton et al., 2015). In gen-
eral, KD is executed via minimizing the differ-
ence (e.g., Kullback-Leibler (LKL) divergence)
between classification responses (i.e., logit) of
the teacher and student. A crucial step of such
KD is how to activate the logits, as depicted
in Figure 1. In the common practice, the tem-
pered softmax is used to activate the logit, in
which a temperature scaling factor τ is intro-
duced to modulate the logit smoothness. The
temperature τ drastically affects the final KD
performance (Zhao et al., 2022; Xu et al., 2020;
Li et al., 2022b; Kim et al., 2021; Kobayashi,
2022; Chandrasegaran et al., 2022; Li et al., 2023b;a; Sun et al., 2024; Zheng & Yang, 2024) and
the sweet spots of τ is greater than 1 (τ > 1), both empirically and theoretically. Over the past few
years, KD has found success in plenty of single-label learning tasks (Huang et al., 2022; Yang et al.,
2022a; Ding et al., 2023; Miles et al., 2023; Zheng & Yang, 2024).

Recently, applying KD to the more challenging yet realistic multi-label setting has aroused wide
attention (Yang et al., 2023b;a; Zhang et al., 2023). Unfortunately, the concurrent publications L2D
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(Yang et al., 2023b) in the classification (Cls.) and BCKD (Yang et al., 2023a) in the detection (Det.)
discovered that directly migrating the classical KD, i.e., activating logits with tempered softmax,
to multi-label tasks results in trivial improvements. Specifically, L2D stated that the predictive
probabilities may not equal one in multi-label classification, thus causing tempered softmax to be
not suitable. BCKD, based on an overstrict presumption1, argued that the tempered softmax leads to
loss vanishing, curtailing the KD performance eventually. To combat this problem, they activate the
logit with the vanilla sigmoid and minimize the difference with Binary-Cross Entropy (LBCE) loss.

Nevertheless, both the exploration in L2D (Yang et al., 2023b) and BCKD (Yang et al., 2023a) lacks
a convincing theoretical understanding and comprehensive experimental evidence, therefore leaving
how to activate logit in multi-label KD remains an enigma, including: ❶ Whether the vanilla sigmoid
is truly superior to tempered softmax in practice? ❷ What are the limitations of them? ❸ If there is
a simple way that could simultaneously make logit KD excel in multi-label learning and provide a
theoretically sound justification? In this work, by presenting formal answers to these under-explored
questions, we attempt to make a thorough investigation and contribute to the multi-label logit KD.

Table 1: Motivation experiments on the COCO dataset
for comparing the activation functions (σ) in the multi-
label distillation. Related results for Cls. and Det. are
respectively collected from L2D (Yang et al., 2023b)
and BCKD (Yang et al., 2023a), if reported. The three
types of distance function (D) are the most adopted in
logit KD. For sample re-weighting (M), we choose the
strategy used in BCKD, and ✗ means the M can not be
applied. ∗ indicates the vanilla distance metric for each
activation function. ∆ represents the performance gains
over the undistilled student. The teacher-student are
ResNet101-ResNet34 and GFocal based ResNet101-
ResNet18 for Cls. and Det., respectively.

σ D M
Cls. Det.

mAP ∆ mAP ∆

Teacher - - 73.62 - 44.9 -
Student - - 70.31 - 35.8 -

tempered softmax
w/ τ > 1

LKL
∗ - 71.88 1.57 36.4 0.6

LDIST ✗ 72.03 1.72 36.0 0.2

sigmoid
LBCE

∗ - 70.68 0.37 36.5 0.7
LBCE

∗ ✓ 73.41 3.10 37.2 1.4
LDIST ✗ 73.43 3.13 37.2 1.4

LKL
∗ - 73.48 3.17 37.3 1.5tempered sigmoid

w/ τ < 1 (Ours) LDIST ✗ 74.26 3.95 37.5 1.7

We start by answering question ❶, and our
primary concern is to ascertain whether
the decent performance reported in L2D
(Yang et al., 2023b) and BCKD (Yang
et al., 2023a) can be attributed to sigmoid.
To this end, we perform pure logit KD
on classification and detection tasks. Ta-
ble 1 summarizes the KD results. Sur-
prisingly, when removing the confound-
ing factors (advanced distance function or
extra re-weight strategy2), we empirically
observe that the performance gain of sig-
moid substantially disappears and the tem-
pered sofmax obtains on par or even better
KD results, especially in the classification
task, which clearly negates the advantages
of vanilla sigmoid. As a short takeaway,
it seems that the vanilla sigmoid itself is
not better than tempered softmax in multi-
label logit KD. Additional experiments in
later sections further confirm our findings.

As to the question ❷, we disclose that both
the tempered softmax and vanilla sigmoid
have an intrinsic pitfall in multi-label KD.
For tempered softmax, we expose that it is
leveraged to capture and transfer the inter-
class relations, which is the primary attribution of such logit KD (Zhao et al., 2022; Chandrasegaran
et al., 2022; Li et al., 2022b; Zheng & Yang, 2024). With this perspective, tempered softmax is natu-
rally sub-optimal for logit distillation in multi-label learning, in which each class is optimized indi-
vidually. A similar conclusion can also be found in (Li et al., 2022a; Zhang et al., 2023). Intuitively,
as claimed in L2D (Yang et al., 2023b) and BCKD (Yang et al., 2023a), the one-versus-all (OVA)
approach, i.e., sigmoid, in multi-label learning can alleviate this problem. However, our empirical
results imply that the vanilla sigmoid per se does not have the capacity as expected. Something must
be largely overlooked. In this paper, we posit that ignoring τ (i.e., τ is fixed as 1) is the essential
reason for undermining the potential power of sigmoid. This argument is partially underpinned by
the constant superior results established in single-label learning tasks (Li et al., 2022b; 2023b; Sun
et al., 2024; Zheng & Yang, 2024) by analyzing the role of τ in KD. Besides, the exploratory ex-
periments in Table 1 directly attest to our conjecture that the temperature scaled sigmoid, termed
tempered sigmoid, could lead to better results in multi-label KD.

1BCKD introduced a constant tensor η to meet a presumption: zs = zt + η. z is the logit. However, such a
presumption can not be held for each sample/pixel. Interested readers may refer to their paper for more details.

2The re-weight strategy is widely used in the detection task. Hence, to fairly compare sigmoid and tempered
softmax, we also include the KD results without this strategy. BCKD did not conduct such an ablative study.
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Based on the above analysis, we are strongly encouraged to take the tempered sigmoid as a re-
sponse to the question ❸. Building upon the behavior of multi-label learning(Yang et al., 2023b)
and temperature scaling (Li et al., 2022b; 2023b), tempered sigmoid brings two desirable proper-
ties: 1) activate each class in the logit individually, successfully aligning the training protocol of the
original tasks; 2) bring back the critical factor τ , endowing us to unleash its effects for multi-label
KD. Particularly, the tempered sigmoid derives two intriguing findings regarding the selection of τ
in logit KD. First, a lower value (τ < 1) achieves more satisfactory performances with tempered
sigmoid, which is exactly opposite to the optimal setting (τ > 1) for tempered softmax. One is
encouraged to think about the reason. The theoretical and empirical answers will be provided later.
Besides, we find that L2D and BCKD are the special case of the proposed method but with τ = 1.

Our method also possesses two appealing merits: it is compatible with different distance functions
(i.e., LKL or LDIST); it is flexible cooperating with feature-based approaches. Massive empirical re-
sults on COCO (Lin et al., 2014), PASCAL-VOC (Everingham et al., 2015), and NUS-WIDE (Chua
et al., 2009) evidence that our method achieves state-of-the-art performance on image classifica-
tion, object detection, and instance segmentation tasks. The embarrassing simplicity and excellent
performance of the proposed method may foresee its broad application in multi-label logit KD and
warrant future research. To sum up, this paper makes the following contributions:

• We clarify that the vanilla sigmoid per se does not bring significant practical benefits than
tempered softmax in multi-label logit distillation, as claimed in previous publications. The
limitation of vanilla sigmoid and tempered softmax is further discussed.

• In particular, we disclose that ignoring the temperature parameter is the essential bottleneck
causing the vanilla sigmoid to produce poor results. This motivates us to introduce the
tempered sigmoid, which is theoretically shown as a hardness-aware activation function
with a proper τ in multi-label distillation.

• In light of the general character of tempered sigmoid, our method adapts surprisingly well
to three prevalent multi-label learning tasks, and is seamlessly embedded with other distil-
lation approaches to further enhance KD.

• Despite its simplicity, the proposed method consistently delivers notable performance gains
in multi-label distillation and beats its prior counterparts by a large margin.

2 RELATED WORK

Multi-Label Learning. Multi-label learning, in which each sample is generally associated with
multiple class labels, is more applicable for real-world applications (Yang et al., 2023b). Thanks to
the recent advance of backbones (e.g., ResNet (He et al., 2016) and Swin (Liu et al., 2021)), multi-
label learning supports several visual recognition tasks, including image classification (Chen et al.,
2019b), object detection (Lin et al., 2017b), and instance segmentation (Wang et al., 2020).

Knowledge Distillation. Knowledge distillation (KD), which aims to learn a compact yet powerful
model by inheriting knowledge from a high-capacity one, is popularized in single-label learning
(Hinton et al., 2015). Several papers have attempted to investigate KD in multi-label learning tasks.
L2D (Yang et al., 2023b) studied this problem in the classification task and introduced a one-versus-
all distillation manner. In object detection, BCKD (Yang et al., 2023a) further formulated the logit
maps as multiple binary-classification maps with sigmoid and then performed distillation. However,
these methods left some critical questions unanswered and did not explore this problem in general.

Temperature Scaling in KD. In temperature scaling, a parameter τ is involved to adjust the slope of
predictive distributions. Its pivotal role and practical benefits in logit KD are justified with sufficient
evidence (Xu et al., 2020; Kim et al., 2021; Chandrasegaran et al., 2022; Li et al., 2022b; Kobayashi,
2022; Li et al., 2023b; Zheng & Yang, 2024; Sun et al., 2024; Wang et al., 2024). For example, ATS
(Li et al., 2022b) teaches better students by applying different τ to the different classes. CTKD (Li
et al., 2023b) adjusted the τ through an easy-to-hard curriculum learning strategy. TTM (Zheng &
Yang, 2024) dropped the temperature τ on the student side, further boosting the standard logit KD.
LSKD (Sun et al., 2024) assigned distinct τ between the teacher and student and across samples.
However, all these methods are based on tempered softmax and devoted to single-label classification
KD. This paper, with distinct motivation, explores the specific properties of τ in multi-label distilla-
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tion and introduces tempered sigmoid. In addition, using the τ as a proxy, we recognize and verify
some intriguing phenomena among different logit KD under different learning tasks.

Hard Samples Mining in KD. Mining and prioritizing hard/important samples is a long-standing
issue in knowledge distillation. For example, (Hu et al., 2024; Li et al., 2022a; Yang et al., 2023a)
find that the samples exhibiting larger discrepancy between the teacher and student is hard for distil-
lation and paying more learning effort on them favors the student. This issue is more critical for the
detection KD, where the training samples have an extreme imbalance between positive and negative
pixels. To alleviate this, numerous methods propose to distill the “knowledge-dense” locations by
various sophisticatedly-designed strategies (Wang et al., 2019; Dai et al., 2021; Huang et al., 2023;
Li et al., 2022a; Yang et al., 2022b; Zheng et al., 2022). For instance, (Wang et al., 2019) selected an-
chors overlapping with the ground-truth object anchors as distillation regions. (Huang et al., 2023)
leveraged multiple receptive tokens to perceive each pixel via attention calculation, generating a
pixel-wise distillation mask. (Dai et al., 2021; Li et al., 2022a) distills student detectors based on
valuable locations selected by the predictive discrepancy between the teacher and student. In this
paper, we revealed that the simple temperature scaling operation is capable of providing the effect
of hard mining and consistently outperforms the previous publications.

3 METHODOLOGY

We elaborate our method under the classification task for simplicity, and extending it to dense pre-
diction tasks is straightforward. Let z = [z1, z2, ..., zc] ∈ RC represent the logit, where zi is the
logit output of the i-th class and C is the number of classes. With an activation function σ, z is
converted to the predictive probability p ∈ RC . We discriminate the notations with superscripts s
and t for the student (S) and teacher (T ).

3.1 PRELIMINARIES

Tempered Softmax. Following the classical KD (Hinton et al., 2015) in single-label learning, the
logit is activated by softmax with a temperature factor τ :

pi,τ = softmax(zi, τ) =
ezi/τ∑C
c=1 e

zc/τ
(1)

and the KD is implemented by minimizing the Kullback-Leibler (LKL) divergence :

LKL(p
s
τ ,p

t
τ ) = −τ2

C∑
i=1

pt
i,τ logp

s
i,τ (2)

where τ is involved to regulate the logit smoothness, and generally, τ > 1 (e.g., τ = 10 in LD
(Zheng et al., 2022)). Note that, we omit the denominator term in LKL as it does not contribute to
the gradient. We refer to this method as KL.

Sigmoid. Lately, L2D (Yang et al., 2023b) argued that the above KD scheme in single-label learning
can not be directly applied in the multi-label scenario, and advocated that the sigmoid activated logit
is more suitable for performing distillation. A similar conclusion can be also drawn in BCKD (Yang
et al., 2023a) with the detection task. Formally, sigmoid activates the logit as:

pi = sigmoid(zi) =
1

1 + e−zi
(3)

and KD loss is calculated by Binary Cross Entropy (LBCE), and we refer to this method as BCE.

LBCE(p
s,pt) = −

C∑
i=1

(pt
i log p

s
i + (1− pt

i) log(1− ps
i )) (4)

However, as discussed before, the tempered softmax and vanilla sigmoid both have an intrinsic
problem regarding performing KD in multi-label learning tasks. Our experimental results also prove
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that they actually distill similar inferior students in practice, as shown in Table 1. In this paper,
we put forth an alternative activation manner through a simple yet effective temperature scaling
operation that can attain better performance and provide convincing justification.

3.2 TEMPERED LOGIT DISTILLATION (TLD)

Loss Formulation. We reduce the multi-label classification score to a series of independent binary
classification tasks. Formally, we obtain the positive response of the i-th class with tempered sigmoid
as:

pi,τ = sigmoid(zi, τ) =
1

1 + e−zi/τ
(5)

where τ plays the same role as in Eq. (1). Under the OVA strategy, we derive the negative response
for the i-th class as 1− pi,τ = 1

1+ezi/τ
. By concatenating the positive and negative class response,

we have the binary predicted probabilities p̃τ = [[p1,τ , 1− p1,τ ] , ..., [pc,τ , 1− pc,τ ]] ∈ RC×2.
Then we distill the per-class independently with a binary version of LKL and the KD loss is as:

LTLD = LKL(p̃
s
τ , p̃

t
τ ) =

C∑
i=1

LKL(p̃
s
i,τ , p̃

t
i,τ )

= −τ2
C∑
i=1

(pt
i,τ log p

s
i,τ + (1− pt

i,τ ) log(1− ps
i,τ ))

(6)

Note that, we choose the vanilla LKL as the distance function in TLD to make fair comparisons with
KL and BCE. However, TLD works well with more advanced loss functions, e.g., LDIST in (Huang
et al., 2022). Furthermore, comparing Eq. (4) with Eq. (6), we can derive that L2D (Yang et al.,
2023b) and BCKD (Yang et al., 2023a) is equivalent to our method by setting τ = 1.

Overall Loss. The overall training objective of optimizing the student is formulated as:

Loverall = Ltask + λLTLD (7)

where Ltask is the original task loss for training the students and λ is the factor for balancing the
losses. In practical scenarios, any pure feature-based methods in the corresponding task can be
easily fused to gain extra improvements. Distillation results will be included for this consideration.

Theoretical Analysis. Here, we theoretically show that TLD pays more attention to hard samples
during KD when the τ is properly set, i.e., τ < 1. Since our TLD distill per-class individually, we
derive (more details are in Appendix C.1) the gradient of LTLD with respect to zsi as follows and:

∂LTLD

∂zsi
= τ(p̃s

i,τ − p̃t
i,τ ) (8)

This formula suggests that the gradient is proportional to the discrepancy between p̃s
i,τ and p̃t

i,τ ,
with τ controlling the penalty strength of each sample. Now, let us consider two cases.

(i) When τ < 1 and τ → 0, the p̃t
i,τ starts resembling to the ground-truth [1, 0]. Since the student

could make correct (i.e., ground-truth) predictions p̃s
i,τ for easy samples, therefore, the loss magni-

tude that comes from the hard samples is intensified with τ < 1. In other words, our TLD under
τ < 1 regulates the students to take more effort into emulating the hard areas, benefiting the KD
performance eventually. Note that an extremely small τ will cause the loss only to concentrate on
very limited samples, thus degrading the performance as well.

(ii) Conversely, when τ ≥ 1 and τ → ∞, the p̃t
i,τ is approaching to a uniform one, i.e., [0.5, 0.5]. In

this case, the loss tends to distribute over the whole logit space, accordingly attenuating the learning
effort put in hard samples. Besides, uniform targets render the identity information erasure, which
also negatively affects the student’s learning.

5
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Table 2: Multi-Label image classification KD performance on COCO. † indicates that we replace
the vanilla LKL with more advanced LDIST (Huang et al., 2022) in Eq. (6). The related results
reference the L2D (Yang et al., 2023b).

Method
ResNet101-ResNet34 SwinTiny-MobileNetV2 RepVGGA2-RepVGGA0 WRN101-WRN50

mAP OF1 CF1 mAP OF1 CF1 mAP OF1 CF1 mAP OF1 CF1

Teacher 73.62 73.89 68.61 79.43 78.77 75.07 72.71 74.11 68.63 74.70 75.76 70.73
Student 70.31 72.49 66.82 71.85 73.59 68.26 70.02 72.49 66.77 74.45 75.43 70.61

RKD 70.13 72.44 66.78 71.74 73.68 68.37 70.13 72.39 66.73 74.70 75.71 70.84
PKT 70.43 72.64 66.68 71.84 73.76 68.37 70.11 72.47 66.80 74.54 75.47 70.58

Review KD 70.39 72.62 66.76 71.73 73.71 68.33 70.00 72.35 66.82 74.03 75.29 70.36
MSE 70.54 72.75 66.85 71.80 73.74 68.38 70.26 72.54 66.99 74.53 75.60 70.71
PS 70.86 72.66 67.12 72.42 74.14 68.94 70.65 72.89 67.60 75.12 76.05 71.63

BCE 70.68 72.69 67.19 72.35 74.10 68.91 70.74 72.81 67.46 74.92 75.75 71.21
L2D 72.02 73.63 68.27 73.45 75.19 69.92 72.17 74.00 68.85 74.82 75.79 71.25
TLD 73.48 74.84 69.37 73.93 75.21 70.45 72.71 74.34 69.20 77.29 77.65 72.97
TLD† 74.26 75.32 70.06 74.08 75.47 70.69 73.01 74.48 69.31 77.40 77.71 73.16

BCE + L2D 72.87 74.45 69.43 74.21 75.72 70.87 72.81 74.59 69.49 76.61 77.08 72.79
TLD + L2D 74.01 75.14 70.23 74.75 75.94 70.95 73.52 74.99 69.69 77.59 77.91 73.32

Table 3: Multi-Label image classification KD
performance on PASCAL-VOC. The related re-
sults reference the L2D (Yang et al., 2023b).

Method
ResNet50-ResNet18 SwinSmall-SwinTiny

mAP OF1 CF1 mAP OF1 CF1

Teacher 86.73 84.92 81.21 92.75 91.05 88.82
Student 84.01 83.60 79.42 91.31 89.98 88.00

RKD 84.48 83.54 79.83 91.52 90.44 88.51
PKT 84.12 83.10 79.31 91.28 90.17 88.03

Review KD 83.71 83.01 79.25 91.45 90.17 88.06
MSE 84.23 83.16 79.29 91.06 89.99 87.66
PS 84.44 83.78 79.95 91.21 90.25 88.12

BCE 84.48 84.07 80.29 91.43 90.25 88.12
L2D 85.42 85.08 81.46 91.65 90.84 88.96
TLD 86.32 85.56 82.03 92.59 91.34 89.44

BCE + L2D 85.71 85.70 82.11 91.92 91.34 89.58
TLD + L2D 86.70 85.72 82.35 92.80 91.47 89.81

Table 4: Multi-Label image classification KD
performance on NUS-WIDE. The related re-
sults reference the L2D (Yang et al., 2023b).

Method
ResNet101-ResNet34 SwinTiny-MobileNetV2

mAP OF1 CF1 mAP OF1 CF1

Teacher 55.32 75.56 61.13 59.73 77.30 65.44
Student 53.41 75.10 60.08 54.49 75.72 61.74

RKD 53.62 75.20 59.91 54.76 75.69 61.74
PKT 53.55 75.08 60.35 54.59 75.69 61.74

Review KD 53.52 75.23 60.44 54.85 75.84 61.75
MSE 53.52 75.13 59.94 54.86 75.80 61.69
PS 54.14 75.43 60.79 55.18 75.91 62.35

BCE 54.44 75.36 60.73 55.36 76.00 62.52
L2D 53.89 75.19 61.07 56.24 76.50 63.15
TLD 55.24 75.68 60.60 56.91 76.76 63.43

BCE + L2D 55.31 76.17 62.79 56.91 76.92 63.89
TLD + L2D 56.83 76.64 63.52 57.86 77.30 64.44

4 EXPERIMENTS

Our experiments are conducted on three standard benchmark datasets, i.e., COCO (Lin et al., 2014),
PASCAL-VOC (Everingham et al., 2015), and NUS-WIDE (Chua et al., 2009), across three multi-
label learning tasks, including image classification, object detection, and instance segmentation.

Due to the page limitation, we attach all the experimental settings, e.g., datasets, evaluation metrics,
networks, training details, and the references of the related methods, in Appendix A.

4.1 IMAGE CLASSIFICATION

Comparison with State-of-the-Arts. We first validate TLD on the classification task. Table 2, Table
3, and Table 4 list the results. On average, the distilled student achieves outstanding 2∼3% absolute
gains, which even outstrip the teacher in some cases, and extra improvements can be achieved with
an advanced loss function in (Huang et al., 2022). Furthermore, by only distilling with the logit, TLD
delivers competitive performance and surpasses prior sophisticated approaches with considerable
margins, strongly demonstrating its superiority and effectiveness. Moreover, cooperating with the
feature-based L2D, our TLD can be further enhanced and establishes a new state-of-the-art in the
multi-label classification KD community. Following L2D, Figure 2 visualizes the class activation
maps. It is observed that our TLD precisely locates the discriminative regions, especially for the
hard instances, eventually resulting in higher performance. In Appendix B.2, we provide more KD
results (Tables B.2, B.3), class-wise performance (Figure B.1), and visualizations (Figure B.2).
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Figure 2: Visualizations of the class activation
maps generated from L2D (top) and TLD (bot-
tom). The texts bellow the images are the query
categories. The models are the distilled ResNet34.

Table 5: Relation between the student and
teacher on multi-label KD. We set ResNet18
as the student and vary teachers.

Teacher Student

Backbone mAP mAP OF1 CF1

ResNet18 67.81 69.28 71.87 66.19
ResNet34 70.40 69.68 72.20 66.65
ResNet50 73.36 70.58 72.77 67.24
ResNet101 73.62 71.19 73.21 67.44
ResNet152 74.97 71.23 73.26 67.61

Table 6: Comparison with σ on object detection.
The results are reported on COCO.

Method mAP AP50 AP75 APS APM APL

T : GF-R101 44.9 63.1 49.0 28.0 49.1 57.2

S: GF-R18 35.8 53.1 38.2 18.9 38.9 47.9
KL 36.4 53.9 39.0 19.6 39.8 48.3
BCE 36.5 54.0 39.0 19.7 40.0 48.2
TLD 37.3 55.4 40.1 20.4 40.9 48.9
S: GF-R34 38.9 56.6 42.2 21.5 42.8 51.4
KL 39.8 57.8 42.8 22.1 44.2 52.4
BCE 39.6 57.5 42.8 22.4 43.8 51.8
TLD 40.4 58.9 43.3 23.4 44.7 52.7
S: GF-R50 40.2 58.4 43.3 23.3 44.0 52.2
KL 41.0 59.4 44.3 23.6 45.0 53.0
BCE 40.7 59.2 43.9 23.4 44.7 53.2
TLD 41.9 60.8 45.3 24.9 46.0 54.4

Table 7: Comparison with logit KD on object
detection. The results are reported on COCO.

Method mAP AP50 AP75 APS APM APL

T : AT-R50 39.4 57.6 42.8 23.6 42.9 50.3
S: AT-R18 34.8 53.1 37.1 19.3 37.9 45.6
CWD 35.7 53.1 38.6 19.5 38.8 47.3
RM 35.4 53.3 37.9 19.3 38.6 46.1
DIST 35.7 53.3 38.5 18.9 39.0 46.7
TLD 36.7 54.5 39.5 20.4 39.6 47.8
T : GF-R50 40.2 58.4 43.3 23.3 44.0 52.2
S: GF-R18 35.8 53.1 38.2 18.9 38.9 47.9
CWD 36.5 53.7 39.2 18.4 40.1 48.4
RM 36.4 53.8 38.7 19.8 39.3 48.0
DIST 36.4 53.8 39.1 18.8 40.1 48.4
TLD 37.1 54.9 39.8 19.9 40.9 48.9

Better Teacher, Better Student. In single-label logit KD, (Mirzadeh et al., 2020; Huang et al.,
2022) found a counter-intuitive phenomenon that a stronger teacher may harm the performance of
students, i.e., better teacher, worst student. We study this issue in multi-label logit KD. As shown
in Table 5, there is a clear positive correlation between the mAP of the student and teachers, and a
better teacher tends to teach a better student in multi-label KD. Our method seems to enjoy the large
discrepancy between the teacher and student, i.e., better teacher, better student.

4.2 OBJECT DETECTION

Comparison with σ. As we focus on the activation function σ regarding logit KD, we first
compare the performance of existing methods to ours, and the corresponding results are listed
in Table 6. It is observed that TLD delivers notable performance enhancements, manifesting
the effectiveness of our method. For instance, distilled with GFocal-ResNet101, the ResNet18,
ResNet34, and ResNet50 based students obtain +1.5%, +1.5%, and +1.7% mAP gains, respectively.

(a) KL (τ = 10) (b) BCE (c) TLD (τ = 0.5)

Figure 3: KD loss distribution in the logit space, and
the value is normalized to [0, 1]. The teacher-student
pair is GFocal with ResNet101 and ResNet18.

More importantly, TLD consistently outper-
forms KL and BCE with a clear margin,
showing its superiority. In Figure 3, we plot
the training stimulus. We can see that the
loss distribution of KL (tempered softmax)
is diverse, almost covering the whole logit
map, which hinders the students from distill-
ing knowledge from informative areas. BCE
could filter out some background but still fails
to discriminate the most valuable pixels. Our
TLD (tempered sigmoid), however, clearly
lays a tight emphasis on the potential seman-
tic locations and removes the futile background regions, which directly translates to the elevation in
performance. In Appendix B.3, Table B.4 summarizes more KD results with various detectors.
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Table 8: Comparison with feature KD on object detection. The results are reported on COCO.

Method mAP AP50 AP75 APS APM APL

T : GF-R101 44.9 63.1 49.0 28.0 49.1 57.2
S: GF-R50 40.2 58.4 43.3 23.3 44.0 52.2

FitNet 40.7 58.6 44.0 23.7 44.4 53.2
GT Box 40.7 58.6 44.2 23.1 44.5 53.5
FGFI 41.1 58.8 44.8 23.3 45.4 53.1
MasKD 40.4 58.4 43.6 23.5 44.0 52.9
DeFeat 40.8 58.6 44.3 24.3 44.6 53.7
GID 41.5 59.6 45.2 24.3 45.7 53.6
FGD 41.3 58.8 44.8 24.5 45.6 53.0
MGD 42.1 60.3 45.8 24.4 46.2 54.7
SSKD 42.3 60.2 45.9 24.5 46.7 55.6
PKD 42.5 60.9 46.0 24.2 46.7 55.9

TLD 41.9 60.8 45.3 24.9 46.0 54.4
TLD + FitNet 42.4 60.8 45.8 24.5 46.5 55.0
TLD + MGD 42.3 60.8 45.8 24.4 46.4 54.8
TLD + PKD 43.4 61.4 47.0 25.2 47.9 56.9

Comparison with Other Logit KD. There are other efforts to promote the logit detection KD, e.g.,
the channel-wise KD (CWD) (Shu et al., 2021) or rank mimicking (RM) (Li et al., 2022a). Table 7
compares these schemes. The results showcase that our method consistently beats them, indicating
TLD is a more effective method for distilling the logit map in object detection.

Comparison with Feature KD. As verified in prior logit-based publications (Zheng et al., 2022;
Yang et al., 2023a; Huang et al., 2022; Zhao et al., 2022), feature-based methods are naturally
superior in distilling detectors. However, as shown in Table 8, our TLD could attain competitive
detection enhancements and surpass most of the feature KD methods devised for distilling detectors.
Additionally, our approach is complementary to the feature KD and can be combined with them to
further promote student performance. For example, paired with FitNet (Adriana et al., 2015), the
most plain feature KD for distilling detectors, we can even exceed the state-of-the-art feature KD
methods. Besides, our method accomplishes additional +0.2% and +0.9% mAP improvements over
MGD (Yang et al., 2022c) and PKD (Cao et al., 2022), respectively. An interesting finding is that
TLD leads to balanced improvements on different instance scales, while the feature KD methods
perform better in large objects. The possible reason is that the feature KD methods are typically
foreground-oriented, thereby distilling more information for large instances. In contrast, our method
is hardness-aware and can excavate the beneficial areas, regardless of the object sizes, accordingly
leading to balanced results. The loss distribution on multi-scale in Figure 5 backs up our conjecture.

4.3 INSTANCE SEGMENTATION

We further extend TLD to instance segmentation and conduct experiments on SOLOv2 (Wang et al.,
2020). As shown in Table 9, our TLD consistently outperforms the prior logit-based competitors and
yields comparable results to the strong feature-based methods (i.e., PKD and MGD). Moreover, once
again, we beat the state-of-the-art KD methods by introducing FitNet, and MGD realizes additional
mAP gains (+0.6%) by incorporating our method.

4.4 ABLATION ANALYSIS

Selection of τ . As described in prior sections, the temperature τ is a critical factor in deciding
the final KD performance. Here, we show its different impact in KL (tempered softmax) and our
TLD (tempered sigmoid) in multi-label KD. Table 10 lists the results by varying τ . Evidently, there
is a trade-off in the selection of τ , and the following observations could be made. (i) For KL,
τ > 1 and increasing τ produces better KD results. However, despite this same conclusion drawn
in prior single-label KD works, interestingly, we observe a special case of τ < 1 also delivering a
comparable result, and the accuracy saturates after τ > 4. The worst result is obtained with τ =
0.25. (ii) TLD exhibits the exact opposite performance trend with KL. Specifically, it is observed
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Table 9: Instance segmentation KD performance on COCO.

Method mAP AP50 AP75 APS APM APL

T : SOLOv2-R50 34.8 54.9 36.9 13.4 37.8 53.7
S: SOLOv2-R18 30.8 49.6 32.4 10.8 32.9 49.1

KL 31.4 50.6 32.9 10.6 33.3 50.1
BCE 31.3 50.5 33.0 10.2 33.4 50.1
CWD 31.9 51.0 33.7 10.3 33.9 51.7
DIST 31.8 51.2 33.5 10.3 34.0 50.5
PKD 31.8 50.6 33.6 10.8 33.9 50.7
MGD 32.5 51.5 34.6 11.4 35.3 51.8

TLD 32.3 52.1 34.1 10.9 34.5 51.1
TLD + FitNet 32.8 52.1 34.7 11.2 35.1 51.8
TLD + MGD 33.1 52.5 34.9 11.5 35.6 52.2

Table 10: Impact of τ in KL (softmax)
and our TLD (sigmoid) on COCO.

τ
KL TLD

Cls. Det. Cls. Det.

0.25 70.69 36.0 73.14 36.7
0.5 71.12 36.0 73.48 37.3
0.75 71.38 36.4 73.26 37.2
2.0 72.33 36.3 71.68 36.6
4.0 72.57 36.5 70.68 36.4
10.0 71.88 36.4 70.12 36.3

Table 11: Performance of TLD under the self-KD strategy.
The detector for Det. is GFocal (Li et al., 2020).

S TLD
Cls. Det.

mAP OF1 CF1 mAP AP50 AP75

R18 67.81 70.56 64.26 35.8 53.1 38.2
✓ 69.28 71.87 66.19 36.2 53.6 38.7

R34 70.40 72.66 66.88 38.9 56.6 42.2
✓ 72.94 74.49 69.13 40.0 57.8 43.2

R50 73.36 74.49 69.54 40.2 58.4 43.3
✓ 75.74 76.48 71.87 40.8 59.2 44.4

that the mAP drops rapidly when τ > 1 and as τ increases. TLD distills better students under τ < 1
(even with a very low τ of 0.25) and keeps relatively robust distillation results on τ ∈ [0.25, 1).
In Figure 4, we visually back up the above KD results under the dense detection task. (i) When
τ > 1, the loss distribution is similar across various τ for KL and our TLD, therefore leading to
similar distillation results. (ii) When τ < 1, the KD loss of our TLD is quickly dominated by the
areas, e.g., the hand of person and edge for surfboard. Those regions are supposed to be informative
for distillation (Zheng et al., 2022), consequently guaranteeing superior performance by mimicking
them. This observation is consistent with the theoretical analysis before. It is noteworthy that
τ = 0.25 produces the most sparse imitation regions with TLD but still gives us an acceptable result
and beats the best of KL. Such surprising results clearly manifest that TLD with τ < 1 regulating
the students to tilt distilling the most conducive samples can achieve better results. In comparison,
the loss generated by KL (w/ τ < 1) displays a broad impact and starts assigning large magnitudes
of penalties to the futile background, which may shed some light on its inferior performance.

Self-KD. In self-KD, the teacher and student share the network architectures. Here, we evaluate our
method under this special KD paradigm. As reported in Table 11, our TLD can still bring noticeable

Figure 4: Distribution of the distillation loss for KL (tempered softmax, top) and TLD (tempered
sigmoid, bottom) by varying τ . Best viewed with zoom-in.
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Figure 5: Visualization of loss distribution in different FPN levels with τ = 0.5. P3∼P6 represent
the FPN levels. The teacher-student pair is GFocal with ResNet101-ResNet18 as the backbones.
Best viewed with zoom-in.

performance promotion. For instance, with ResNet34 as the backbone, the student gets +2.54% and
+1.1% absolute mAP improvements in the classification and detection tasks, respectively.

Loss Distribution on Multi-Level. Here, we give details on loss distributions at different levels
of feature pyramid networks (FPN) (Lin et al., 2017a) in the detection task. As illustrated in Fig-
ure 5, the beneficial foreground regions provoke higher loss, while the meaningless background
gets negligible weights. More importantly, the loss in different FPN layers has different regions
of interest. The low-level FPN is more concentrated on the tiny objects (even the extremely small
sports ball, see P3), while the high-level FPN level pays more attention to the large instances. This
property effectively relieves the redundancy in the multi-level KD and leads to balanced detection
improvements. More visualizations can be found in Figure B.3.

Please refer to Appendix for additional experimental results and relevant discussions.

5 CONCLUSION

In this paper, we investigated knowledge distillation under multi-label learning. Our empirical re-
sults clarify that the vanilla sigmoid and tempered softmax are both inferior in performing distil-
lation in multi-label learning. As a simple yet effective solution, we introduced tempered sigmoid
and proposed the tempered logit distillation (TLD). We provided theoretical and visual justification,
showing that our method realizes hard mining during distillation, which is the primary attribute of
its success. Our TLD is general and achieves outstanding distillation results in various vision tasks,
including image classification, object detection, and instance segmentation. Only distilling with the
logit, TLD even outperforms state-of-the-art KD methods designed specifically for the correspond-
ing tasks. Besides, we notice some quite interesting observations regarding the temperature τ , which
may supplement and consummate its behavior in logit distillation.
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A EXPERIMENTAL SETTINGS

A.1 DATASETS

COCO. COCO (Lin et al., 2014), covering 80 categories, is the standard benchmark for classifica-
tion, detection, and instance segmentation tasks. COCO contains 115K and 5K images for training
and validation. For image classification, we use COCO-2014 following L2D (Yang et al., 2023b).
COCO-2017 is used for detection and instance segmentation as the common practice.

PASCAL-VOC. PASCAL-VOC (Everingham et al., 2015) consists of 5K and 4K images, across 20
classes, for training and validation.

NUS-WIDE. NUS-WIDE (Chua et al., 2009), which is a large-scale dataset commonly used for
image classification with 81 concept categories, includes 161K and 107K annotated images for
training and validation, respectively.

A.2 EVALUATION METRICS

For classification, we choose the mean Average Precision (mAP), overall F1-score (OF1), and aver-
age per-category F1-score (CF1) as the metrics. For object detection and instance segmentation, we
report mAP as the main metric, together with AP under different IoU thresholds AP50, AP75 and
object scales APS, APM, APL.

A.3 NETWORK ARCHITECTURES

For backbones, we consider several models: ResNet (He et al., 2016), WRN (Zagoruyko & Ko-
modakis, 2016), RepVGG (Ding et al., 2021), MobileNet (Sandler et al., 2018). Besides, vision
transformer-based networks, such as Swin (Liu et al., 2021), are also included in the image classi-
fication task. For the detection task, various dense detectors are selected, i.e., RetinaNet (Lin et al.,
2017b), FCOS (Tian et al., 2019), ATSS (Zhang et al., 2020), GFocal (Li et al., 2020), and RepPoints
(Yang et al., 2019). For the instance segmentation task, we choose SOLOV2 (Wang et al., 2020).
All the backbones are pre-trained on ImageNet (Deng et al., 2009).

A.4 TRAINING DETAILS

For image classification, we use the L2D codebase (Yang et al., 2023b). Specifically, we respectively
train the teachers and students for 30 and 80 epochs with the Adam optimizer (Kingma & Ba,
2015). The one-cycle policy is used with a maximal learning rate of 1e-4 and a weight decay of
1e-4. The batch size is 64 and the input size is 224×224. For each training image, we apply a
weak augmentation consisting of random horizontal flipping and a strong augmentation consisting
of Cutout (DeVries & Taylor, 2017) and RandAugment (Cubuk et al., 2020). We fix the τ = 0.75
and tune the λ in a reasonable range.

For object detection and instance segmentation, our implementation is built upon the MMDetection
(Chen et al., 2019a) framework with default configure files. All the student models are trained under
the 1× learning schedule without any tricks, e.g., multi-scale training. We fix the τ = 0.5 and tune
the λ in a reasonable range.

A.5 COMPARED METHODS

The references of the compared methods in image classification are PKT (Passalis & Tefas, 2018),
RKD (Park et al., 2019), Review KD (Chen et al., 2021), PS (Song et al., 2021), MSE (Xu et al.,
2022), and L2D (Yang et al., 2023b).

The references of the compared methods in object detection and instance segmentation are FitNet
(Adriana et al., 2015), FGFI (Wang et al., 2019), DeFeat (Guo et al., 2021), CWD (Shu et al., 2021),
GID (Dai et al., 2021), FGD (Yang et al., 2022b), MGD (Yang et al., 2022c), PKD (Cao et al., 2022),
DIST (Huang et al., 2022), SSKD (De Rijk et al., 2022), RM (Li et al., 2022a), LD (Zheng et al.,
2022), MasKD (Huang et al., 2023), and BCKD (Yang et al., 2023a).
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Table B.1: Impact of loss weight hyper-parameter λ on GFocal ResNet101-ResNet18 with τ = 0.5.

λ 0.5 1.0 1.5 2.0 2.5 3.0

mAP 36.6 37.2 37.1 37.1 37.3 36.9
AP50 54.1 55.2 55.2 55.1 55.4 55.2
AP75 39.4 40.0 39.8 39.7 40.1 39.7

Table B.2: Multi-Label image classification KD performance on COCO.

Method
ResNet101-MobileNetV2 SwinTiny-ResNet34 ResNet101-RepVGGA0 SwinSmall-SwinTiny

mAP OF1 CF1 mAP OF1 CF1 mAP OF1 CF1 mAP OF1 CF1

Teacher 73.62 73.89 68.61 79.43 78.77 75.07 73.62 73.89 68.61 81.70 80.48 77.12
Student 71.85 73.68 68.40 70.31 72.49 66.82 70.02 72.49 66.77 79.59 79.18 75.42

RKD 71.76 73.68 68.40 70.00 72.34 66.64 70.08 72.35 66.72 79.59 79.18 75.42
PKT 71.88 73.60 68.35 69.99 72.35 66.56 70.11 72.47 66.80 79.64 79.09 75.39

Review KD 71.92 73.73 68.48 70.29 72.39 66.58 70.00 72.33 66.62 79.81 79.18 75.55
MSE 71.91 73.68 68.28 70.33 72.57 66.72 70.07 72.50 66.85 79.67 79.20 75.52
PS 72.11 73.89 68.42 70.94 72.93 67.57 70.30 72.61 67.10 79.96 79.64 76.20

BCE 72.17 73.84 68.52 71.14 72.99 67.63 70.48 72.77 67.10 80.11 79.68 76.44
L2D 73.17 74.71 69.37 72.39 74.15 68.63 72.01 73.99 68.58 80.86 80.36 77.20
TLD 73.40 74.80 69.52 73.98 75.23 70.34 72.91 74.50 69.26 82.24 81.19 78.30

BCE + L2D 73.24 74.85 69.72 73.42 74.97 70.20 72.14 74.08 68.78 81.59 81.03 77.86
TLD + L2D 74.40 75.59 70.31 75.04 76.08 71.18 73.84 75.13 69.81 83.05 81.95 78.91

B ADDITIONAL EXPERIMENTS AND VISUALIZATIONS

B.1 SENSITIVITY OF λ

Here, we perform additional experiments to study the impact of λ by setting τ = 0.5 with the
detection task. As shown in Table B.1, TLD achieves stable performance with λ’s range in [1.0, 3.0],
demonstrating that our method is not sensitive to the choice of λ. In practice, the loss weight is
suggested to keep a similar amount loss value of the task loss in the classification head (Zhao et al.,
2022; Hinton et al., 2015; Huang et al., 2022).

B.2 IMAGE CLASSIFICATION

Table B.2 and Table B.3 summarize more KD results on COCO (Lin et al., 2014) and PASCAL-
VOC (Everingham et al., 2015), respectively. It is observed that our TLD consistently surpasses the
previous methods on both homogeneous and heterogeneous KD pairs, verifying its effectiveness.

Figure B.1 plots the class-wise AP scores. It is shown that our method consistently achieves higher
results than L2D (Yang et al., 2023b) in most categories, showing that the performance gains of the
proposed approach are holistic.

Table B.3: Multi-Label image classification KD performance on PASCAL-VOC.

Method
ResNet50-RepVGGA0 SwinTiny-ResNet18 ResNet50-MobileNetV2 SwinTiny-MobileNetV2

mAP OF1 CF1 mAP OF1 CF1 mAP OF1 CF1 mAP OF1 CF1

Teacher 86.73 84.92 81.21 91.43 89.81 87.63 86.73 84.92 81.21 91.43 89.81 87.63
Student 83.79 83.36 79.83 84.01 83.60 79.42 86.12 85.01 81.76 86.12 85.01 81.76

RKD 84.26 84.29 80.70 83.27 83.05 79.55 86.22 84.97 81.76 85.68 85.31 81.57
PKT 83.93 83.79 80.03 83.45 83.25 79.64 86.10 84.84 81.66 85.67 85.22 81.68

Review KD 84.07 83.62 80.34 83.37 83.08 78.93 85.87 85.04 81.73 85.69 85.10 81.56
MSE 84.01 84.05 80.52 83.60 83.06 79.46 86.20 84.94 81.84 85.80 85.51 81.98
PS 84.80 84.46 81.13 83.97 83.75 79.86 86.26 85.47 82.06 86.07 85.73 82.39

BCE 85.07 84.91 81.55 84.61 84.26 80.78 86.38 85.67 82.43 86.11 85.98 82.55
L2D 85.94 85.50 82.22 85.10 85.09 81.36 86.91 85.39 82.03 86.97 86.26 83.12
TLD 86.51 85.64 82.38 85.80 85.29 81.77 87.36 86.35 83.31 87.13 86.54 83.34

BCE + L2D 86.26 85.85 82.55 85.87 85.67 82.17 87.32 86.48 83.26 87.37 86.88 83.68
TLD + L2D 86.64 85.48 82.21 86.48 85.50 82.47 87.72 86.49 83.35 88.00 87.09 84.04
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Figure B.1: Per-class AP on PASCAL-VOC (Everingham et al., 2015). Best viewed with zoom-in.

Figure B.2: More visualizations of the class activation maps generated from L2D and our TLD (from
left to right: COCO (Lin et al., 2014), PASCAL-VOC (Lin et al., 2014), NUS-WIDE (Chua et al.,
2009)). The colored texts are the query categories. Best viewed in color with zoom-in.

Figure B.2 shows more visualizations of class activation maps. We can see that our TLD can locate
the specified objects more precisely than the L2D (Yang et al., 2023b), which directly transfers to
performance enhancement.

B.3 OBJECT DETECTION

Table B.4 gives more KD results on object detection. It is observed that our method consistently
boots the performance of various detectors, demonstrating its generalization and versatility.

In Figure B.3, we visualize more loss distribution in the logit space over different FPN levels. One
can see that our method successfully recognizes worthy pixels for targets, regardless of the instance
scales and categories. An interesting phenomenon is that the useful KD region for an instance is
generally smaller than the whole instance. A similar observation can be drawn from (Huang et al.,
2023), which performs the distillation with the feature.

C THEORETICAL ANALYSIS

C.1 EXPLANATION ABOUT THE GRADIENT IN EQ. (8)

In our method, we first reduce the multi-label classification task into a set of binary classification
tasks, then we distill each binary classification independently with KL-divergence. Formally, the
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Table B.4: Distillation performance of various detectors on COCO.

Method mAP AP50 AP75 APS APM APL

ATSS-R101 41.5 59.9 45.2 24.2 45.9 53.3
ATSS-R50 39.4 57.6 42.8 23.6 42.9 50.3
TLD 41.2 59.9 44.4 24.8 45.1 52.2
FCOS-R101 39.1 58.3 42.1 22.7 43.3 50.3
FCOS-R50 36.6 56.0 38.8 21.0 40.6 47.0
TLD 37.9 58.0 40.2 22.1 42.0 48.5
Rep-R101 40.5 61.3 43.5 23.4 44.7 52.2
Rep-R50 38.1 58.7 40.8 22.0 41.9 50.1
TLD 39.6 61.2 42.4 24.2 43.7 51.3
Retina-R101 38.9 58.0 41.5 21.0 42.8 52.4
Retina-R50 36.5 55.4 39.1 20.4 40.3 48.1
TLD 38.4 58.3 41.0 21.9 42.2 50.5

Figure B.3: More visualizations of the loss distribution in different FPN levels with τ = 0.5. P3∼P6
represent the FPN levels. The KD pair is GFocal with ResNet101-ResNet18 as the backbones. Best
viewed in color with zoom-in.
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Figure C.4: The value of LTLD by varying the temperature τ . A darker color indicates a higher loss.

prediction pτ ∈ RC×1 is converted to p̃τ = [[p1,τ , 1− p1,τ ] , ..., [pc,τ , 1− pc,τ ]] ∈ RC×2, where
pi,τ = 1

1+e−zi/τ
. zi is the logit, i = 1, ..., C. We distill the p̃τ with KL divergence in a per-class

manner as:

LTLD = LKL(p̃
s
i,τ , p̃

t
i,τ ) (9)

where p̃s
i,τ =

[
ps
i,τ , 1− ps

i,τ

]
and p̃t

i,τ =
[
pt
i,τ , 1− pt

i,τ

]
. Then, we can derive the standard KL

gradient as show in Eq. (8).

C.2 REFORMULATION LTLD

Here, we further theoretically explore the impact of temperature scaling in our TLD. Recall that, our
method distills per-class independently, so we take one class as an example to ease the presentation.
Extending it to the multi-class case is straightforward. First, we have p̃τ = [pτ , 1− pτ ], where:

pτ =
1

1 + e−z/τ
, 1− pτ = 1− 1

1 + e−z/τ
=

e−z/τ

1 + e−z/τ
= e−z/τ · pτ (10)

, and the z is the logit. Then, based on Eq. (10), the LTLD can be expressed as follows:

LTLD = −(ptτ log p
s
τ + (1− ptτ ) log(1− psτ ))

= −(ptτ log p
s
τ + (1− ptτ ) log(e

−zs/τ · psτ ))
= −(ptτ log p

s
τ + (1− ptτ )(log p

s
τ − zs/τ))

= −(ptτ log p
s
τ + (1− ptτ ) log p

s
τ ) + (1− ptτ )(z

s/τ)

= − log psτ + (1− ptτ )(z
s/τ)

= log(1 + e−zs/τ ) +
e−zt/τ

1 + e−zt/τ
(zs/τ)

(11)

In Figure C.4, we visualize the value of LTLD by varying the temperature τ . It is clear that our
method with τ < 1 is more sensitive to hard samples and will regulate the student to pay more
learning effort to them.
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