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ABSTRACT

The ever-increasing token limits of large language models (LLMs) have enabled
long context as input. Many LLMs are trained and fine-tuned to perform zero/few-
shot inference using instruction-based prompts. Prompts typically include a de-
tailed task instruction, several examples, and a single data point for inference.
This baseline is referred to as “SinglePrompt” in this paper. In terms of token
count, when the data input is small compared to instructions and examples, this
results in lower token utilization, compared with encoder-based models like fine-
tuned BERT. This cost inefficiency, affecting inference speed and compute bud-
get, counteracts many of the benefits that LLMs offer. This paper aims to alle-
viate this problem by batching multiple data points in each prompt, a strategy
we refer to as “BatchPrompt”. We improve token utilization by increasing the
“density” of data points, however, this cannot be done naively. Simple batching
can degrade performance, especially as batch size increases, and data points can
yield different answers depending on their position within a prompt. To address
the quality issue while retaining high token utilization, we introduce Batch Per-
mutation and Ensembling (BPE) for BatchPrompt – a simple majority vote over
repeated permutations of data, that recovers label quality at the cost of more to-
ken usage. To counterbalance this cost, we further propose Self-reflection-guided
EArly Stopping (SEAS), which can terminate the voting process early for data
points that the LLM handles confidently. Our comprehensive experimental evalu-
ation demonstrates that BPE + SEAS can boost the performance of BatchPrompt
by a striking margin on a range of popular NLP tasks, including question an-
swering (Boolq), textual entailment (RTE), and duplicate questions identifica-
tion (QQP). This performance is even competitive with/higher than single-data
prompting (SinglePrompt), while using far fewer LLM calls and input tokens. At
batch size 32, our BatchPrompt + BPE + SEAS uses 15.7% the number of LLM
calls, and achieves: Boolq accuracy 90.6%→ 90.9% with 27.4% tokens, QQP ac-
curacy 87.2%→ 88.4% with 18.6% tokens, RTE accuracy 91.5%→ 91.1% with
30.8% tokens. We hope our simple yet effective approach will shed light on the fu-
ture research of large language models. Code: github.com/microsoft/BatchPrompt

1 INTRODUCTION

A recent trend in the NLP landscape is adapting large language models in various practical appli-
cations, including conversational interface, question answering, and context summarization. These
downstream tasks are primarily performed through prompting: The task specification and data are
combined as an input context to the language model, which generates a completed text to be re-
turned. The length of this input ranges from hundreds to thousands of tokens. Recent progress in
hardware and algorithms has enabled longer context windows with longer inputs. This trend forces
us to reflect on whether including only a single data sample as input is an efficient setting for prompt-
ing. Instead, a better input might contain the task specification (for simplification, task specification
represents both task description and examples of demonstrations in the paper) with batched data.

However, dealing with long context input is not easy for large language models which are imple-
mented with Transformers. Transformers scale poorly to long sequences, which leads to a severe
performance decrease in language models Liu et al. (2023a). The reason might be that the complex-
ity of the self-attention module in a transformer is quadratic with the input length. As prompting
with batched data inevitably stretches input length which decreases performance, finding a better
batch prompting strategy instead of naively batching data is necessary.
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Through experiments, we observe that LLM performance varies significantly when data is in dif-
ferent positions and orders, represented in Fig. 1 with ascending data index. This change of perfor-
mance could be due to the autoregressive nature of the LLM decoder, which predicts each output
token conditioned on previous outputs. This means that each answer is generated with a different
context, with different token distances to the original task specification and data.
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GPT-3.5-Turbo GPT-3.5-Turbo
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Example: Boolq, Validation dataset Voting round =5, batch size = 16:

'question': 'is song of songs in the old testament',

'passage': "Song of Songs -- The Song of Songs, also Song of Solomon or Canticles
 (Hebrew: שִׁיר הַשִּׁירִים\u202c, Šîr HašŠîrîm, Greek: ᾎσμα ᾎσμάτων, asma asmaton,

both meaning Song of Songs),
is one of the megillot (scrolls) found in the last section of the Tanakh,

known as the Ketuvim (or ``Writings''), and a book of the Old Testament.",

Voting round 2, position 6 Prediction: Label 1

Voting round 1: position 1 Prediction: Label 1

Voting round 3, position 4 Prediction: Label 0
Voting round 4, position 12 Prediction: Label 1

Voting round 5, position 8 Prediction: Label 0

Final Prediction: Label 1

Label 1: True
Label 0: False

Figure 1: An example of output from gpt-3.5-turbo/gpt-4 with prompts containing data in different
batch sizes (16, 32). We use the results of Boolq dataset as an example. We have m×n data in total
with m batches of size n, represented with batch indices 1 to n. We rotate the batches n times to
ensure that each data have visited every batch index. Finally, we calculate the average accuracy for
each position, specifically, an average accuracy of all m×n samples at each position. The prediction
varies largely. Also, with the increase of batch size, the overall accuracy decreases.

Based on this observation, we propose Batch Permutation and Ensembling (BPE) to boost perfor-
mance of BatchPrompt, which leverages the intuition that a uniformed LLM output for multiple
batches, with the same data assembled in diverse orders, will be more promising. Specifically, in-
stead of sampling the data sequence in its original order, we permute the data in each batch. Different
orders induce different outputs, and the ensemble is achieved through majority voting.

Compared with prior methods that annotate data and train additional models, BPE is far simpler, and
works off-the-shelf with pre-trained LLMs, requiring no extra human annotation. Also, different
from ensemble learning, BPE can be viewed as “self-ensembling” that works on top of a single
language model. An example of the BPE process can be found in Fig. 2.

The final goal of BatchPrompt is to accomplish more data processing with fewer tokens/LLMs calls.
We find that the number of LLM calls decreases substantially, while the decrease of total tokens
depends on the proportion of task tokens to data tokens, as well as the number of voting rounds.
Generally, we find there is an obvious decrease in tokens used when the number of voting rounds
in BPE is less than 10, while the batch size is higher than 64. Larger batch size with fewer voting
rounds will boost the frugality. In terms of performance, the accuracy of BatchPrompt can even be
competitive with single-data prompting when the number of voting rounds is larger than five.

To further boost frugality even with many voting rounds, we propose a Self-reflection-guided EArly
Stopping (SEAS) method. By prompting LLMs to provide a confidence label in addition to a pre-
diction, we encourage shorter voting rounds where possible. For each specific data, if consecutive
“confident” ratings are returned, it could be redundant to continue voting on that data, and predic-
tion can stop early. In this way, around 80% of data can be answered within two voting rounds, and
the total tokens used can be kept low. A side benefit of such self-reflection is a boost in prediction
accuracy, which is also demonstrated in experiments.

We thoroughly demonstrate the effectiveness of BatchPrompt with BPE and SEAS on three datasets
with different tasks from Glue and Super Glue benchmark (Boolq, QQP, RTE). Also, we extend the
BatchPrompt to a recently popular arithmetic reasoning task (GSM8K) in a small side experiment.
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A concrete example of the effectiveness of the proposed method is below, where for batch size 32
and five voting rounds, the total tokens used for Boolq, QQP, and RTE decrease by 72.6%, 81.4%,
and 69.2%, respectively. Note that tokens here are all input tokens - we do not count LLM-generated
output tokens which cannot be controlled/decreased. LLMs calls decrease by 84.4%, 90.6%, and
84.4%, respectively; and accuracies are competitive with SinglePrompt (single-data prompting),
90.6%→ 90.9%, 87.2%→ 88.4%, and 91.5%→ 91.1%, respectively, as in Fig. 4.

To summarize, our contributions are the following:

• We propose BatchPrompt, an efficient prompting technique for LLMs;
• We propose the BPE method to boost the performance of BatchPrompt;
• We propose the SEAS method to boost both the accuracy and efficiency of BatchPrompt,

and keep LLM tokens/calls/cost low;
• We show that BatchPrompt with BPE and SEAS achieves promising performance on

benchmark tasks.

2 BATCHPROMPT

A typical prompt includes a task specification and data to be processed or labeled. It is less effi-
cient to process data one-by-one, and more efficient to use batching. However, we find that when
prompt lengths increase, the performance decreases correspondingly. To overcome this limitation,
we propose the Batch Permutation and Ensembling (BPE) method, which repeats multiple voting
rounds for each batch, each time using data in a different order. It is natural to suppose that LLMs
can process batched data in diverse orders, and we induce this diversity via permutation. Although
the model might still make mistakes for some data at specific positions in specific voting rounds,
such wrong answers are less likely to be the same. However, the correct answer generated for a spe-
cific data located at different positions in different voting rounds, tends to have greater agreement
compared to the incorrect one. BPE is compatible with many voting strategies.

Thinking conceptually, when people prioritize and ascribe different attention to different informa-
tion, each piece of information has a unique effect on the other. The same may be true for LLMs
processing data in batches. We formulate the problem as follows. Suppose the current batch of data
with batch size N is D = {d1, d2, ..., dN}, the answers to each data are A = {a1, a2, ..., aN}, and
the orders in K permutations are S = {s1, s2, ..., sK}. We formulate the majority voting as:

argmax
a

∑K
k=11(akn = a),∀n ∈ {0, 1, ..., N} (1)

to generate the final answer for dn. However, in different permutations, the answer an to the data dn
is not only conditioned on the task specification, but also on {a1, a2, ...an−1}, which can be viewed
as the context of an. Therefore, we can further formulate the majority voting as:

argmax
a

K∑
k=1

1(akn = a | prompt, ak1 , a
k
2 , ..., a

k
n−1),∀n ∈ {0, 1, ..., N} (2)

We can find from this equation that the output answer an for data dn will differ with different
permutations due to the change of context. This observation can explain why BatchPrompt with
BPE can perform even better than SinglePrompt.

We further explore a weighted majority voting method, in which the weight is generated by the
LLM itself to avoid extra training. We call this process self-weighted majority voting (sw-mv),
and provide an example in Fig. 2. Inspired by the reflexion idea Shinn et al. (2023), in the task
specification, we add this text: If you are confident in your output class, append a “confident” at the
end of the label; else, append a “not confident”. This causes the LLM to automatically generate a
binary weight. If the generated answer is “confident” we assign weight as w = 1; if “not confident”,
w = α, α ∈ [0, 1]. In experiments, we empirically set α to 0.2. We can formulate this self-weighted
majority voting as:

argmax
a

∑K
k=1wn · 1(akn = a | prompt, ak1 , a

k
2 , ..., a

k
n−1),∀n ∈ {0, 1, ..., N} (3)
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Task Specification: You are a
professional NLP expert at sentence
grammar check. Please generate
labels given the instructions.

Data: Heart disease is considered the
leading cause of death in the United
States.

Batching

Task Specification: You are a
professional NLP expert at sentence
grammar check. Please generate
labels given the instructions.

Data: The plan was approved of by
my mother.

Task Specification: You are a
professional NLP expert at sentence
grammar check. Please generate labels
for the [Batch_Size] data given the
instructions.

 Data 1: The plan was approved of by
my mother.
 Data 2: They'll be leaving.
 Data 3: Boston was flown to.
 Data 4: John will have been driving the
car.
 Data 5: The coat does not fit you.
 Data 6: Lee never left.
 Data 7: The roof is leak.

...
 Data 64: Heart disease is considered
the leading   cause of death in the
United States.

Batch Size = 64

SinglePrompt BatchPrompt

Permutation

Task Specification
Data 1, 
Data 55,
Data 64,

...
Data 2

Task Specification
Data 42, 
Data 60,
Data 51,

...
Data 40

Task Specification
Data 31, 
Data 35,
Data 53,

...
Data 46

BatchPrompt + BPE

Large Language Model

Answer 1: Incorrect, Answer 2: Correct, ...,
Answer 64: Correct 

Answer:
Correct

Answer:
Incorrect

Answer 1: Incorrect, Answer 2: Correct, ...,
Answer 64: Correct 

Ensemble

  Round 1

Self weighted
Majority Voting 

Task Specification: You are a professional NLP expert at sentence
grammar check. Please generate labels given the instructions.

If you are confident in your output class, append a "confident" at
the end of the label; else, append a "not confident".

Answer 1: Incorrect
(Confident)

 Answer 2: Correct
(Confident)

 ...
 Answer 64: Correct (Not

Confident) 

W1: 1.0
W2: 1.0

...
W 64: 0.2

Weights

Round 3

Round 2

SEAS (1 Batch, 4 Rounds as an example)

Round 1 (64 Data)

Task Specification
Data 1 (Confident), 
Data 32 (Confident),

Data 64 (Not Confident),
...

Data 2(Confident)

Round 2 (64 Data)

Task Specification
Data 1 (Confident Twice), 
Data 26 (Confident Twice),

Data 52 (Confident),
...

Data 2( Not Confident)

Round 3 (26 Data)

Task Specification
Data 1, 
Data 26,

Data 52 (Confident Twice),
...

Data 2(Confident Twice)

Round 4 (12 Data)

Task Specification
Data 2, 
Data 52,

Data 28 (Confident),
...

Data 4(Confident)

Figure 2: The flowchart for the proposed BatchPrompt. In the top row, the left column is Sin-
glePrompt, calling once for each data sample; the middle column shows BatchPrompt, which naively
batches data; and the right column is BatchPrompt + BPE, which adds batch permutation. The mid-
dle row shows corresponding model outputs, noting the Ensemble method on the right, for deriving
answers with BPE. The third and last rows show the proposed self-weighted majority voting and
SEAS. By adding confidence ratings to the task specification, weights can be self-generated by
LLMs. Through SEAS, the token number can be minimized while the accuracy can be improved.

We envision more, and more sophisticated, voting strategies, but focus in this work on regular ma-
jority voting (mv) and self-weighted majority voting (sw-mv).

3 SEAS

A deeper thinking of the proposed self-weighted majority voting (sw-mv) enables an even more
aggressive strategy for efficiency that we call Self-reflection-guided EArly Stopping (SEAS). When
a batch contains easy data samples, instead of continuing to vote many times, we utilize repeated
“confident” labels to truncate the procedure for those samples. As a result, the effective batch size is
reduced and total number of voting rounds can be shorter than the maximum, all while maintaining
high accuracy. The method is described using the pseudo-code in Alg. 1.

The SEAS method not only effectively cuts down the token count, but can also boost accuracy. As
voting rounds continue, easy samples will be removed earlier, leaving fewer/harder samples for later
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rounds. The harder samples might also become easier to predict, due to smaller effective batch size
in later rounds. For example, at the beginning in voting round 1, the batch size is 32. Later in voting
round 5, there might be only 2 hard samples without consistent “confident” predictions left in the
batch. The LLM now only needs to predict labels/answers of these 2 samples, which might be more
accurate compared to a prediction with 32 batched samples. One alternative is to fill in each batch
to the full batch size as easy samples are finished, but this sacrifices the side benefit of predicting
hard samples with smaller batches, and is not selected in SEAS.

Algorithm 1 SEAS
Function SEAS(batch D, batch size N , permutation S(), voting round K, LLM)

Initialize last answer[N ]← None
Initialize last confidence[N ]← None
Initialize results[N ]← EmptyDictionaries
Initialize active indices← {1, 2, . . . , N}
for k ← 1 to K do

D′ ← S(D)
answers, confidences← LLM(D′)
for i ∈ active indices do

answer ← answers[i]
confidence← confidences[i]
results[i][answer] + = 1
if k > 1 and confidence == “confident” and last confidence[i] == “confident”
and answer == last answer[i] then

active indices← active indices \ {i}
last answer[i]← answer

end
end
for i← 1 to N do

final answer[i]←MajorityV oteOfResults[i]
end

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Tasks and datasets: We conduct our experiments on several NLP tasks, including question answer-
ing (Boolq), duplicate text identification (QQP), and textual entailment (RTE).

Boolq: Boolean Questions (Boolq) is a question-answering dataset for yes/no questions containing
15942 examples (9427 for training, 3270 for validation, 3245 for testing). Each example contains a
triplet of (question, passage, and answer). Question and passage are used as input prompts and the
answer is to be generated.

QQP: Quora Question Pairs (QQP) dataset Wang et al. (2017) consists of >400,000 question pairs,
and each question pair is annotated with a binary value indicating whether the two questions are
paraphrases of each other. Question pairs are used as input prompts while the label is to be generated.

RTE: The Recognizing Textual Entailment (RTE) datasets Poliak (2020) come from a series of
textual entailment challenges. Data from RTE1, RTE2, RTE3 and RTE5 is combined. The dataset
includes 2490 samples for training, 277 for validation, and 3000 for testing. Each data include
premise and hypothesis as input prompt and label as generated output. The label is to indicate
whether the premise is an entailment for the hypothesis.

For the data above, we first filter out sensitive/toxic content using gpt-3.5-turbo/GPT-4. Second, due
to the limited quotas for calling LLMs, for each dataset we randomly select 320 data (277 for RTE,
as there are only 277 validation samples in total) from the validation set to conduct our experiments.
We do not use the test sets as their annotations are not released, especially BoolQ, QQP, and RTE.
As there is no extra training/fine-tuning, the validation set can act as test set in our experiments.

5



Published as a conference paper at ICLR 2024

Voting Round Voting Round Voting Round

BatchPrompt
BatchPrompt

BatchPrompt
BatchPrompt

BatchPrompt
BatchPrompt
BatchPrompt
BatchPrompt

Figure 3: Left: An comparison for the number LLMs calls using BatchPrompt with BPE,
with/without SEAS. Right: Ablation study for different modules.

Language models and prompts: We evaluate BatchPrompt, as well as BPE over two transformer-
based language models with varying scales, i.e., gpt-3.5-turbo and GPT-4. The prompts can be found
in 6.

Parameters: We perform all experiments in the few-shot setting, without training or fine-tuning the
language model. We use 2, 4, and 4 few shot examples for RTE, QQP, BoolQ respectively, which
are all selected from training sets with given labels. As had been mentioned in Zhao et al. (2021)
that varying the permutation of few-shot examples can cause the accuracy of GPT-3 to range from a
low number to near state-of-the-art accuracy, we randomly choose two to four data from the training
sets without cherry picking. We also manually assign “confident”/“not confident” to the labels of
examples. Temperature is always set to 0 for consistent results. For the comparison, we use similar
prompts for different datasets. The batch sizes we use for RTE, QQP, BoolQ are 16/32/64/160 (not
for Boolq due to 32k token limit) for GPT-4 whose maximum input token number is 32k, and 16/32
for gpt-3.5-turbo whose maximum input token number is 8k. The number of voting rounds we
choose is 1, 3, 5, 7, and 9, which are all odd numbers to avoid situations of tied vote counts.

bs/vr/model gpt-3.5-turbo GPT-4
mv sw-mv sw-mv-neg mv sw-mv sw-mv-neg

16

1 77.5 78.4 78.8 89.1 88.8 89.7
3 80.0 81.3 78.1 89.4 89.7 89.7
5 79.7 80.3 80.3 89.1 89.7 90.3
7 82.5 82.2 80.6 89.4 89.1 90.6
9 81.3 81.6 80.3 89.7 89.1 90.6

32

1 70.0 77.2 75.3 87.8 85.6 87.8
3 75.9 79.4 76.4 89.7 89.1 90.9
5 77.2 80.0 78.8 90.6 89.4 89.7
7 81.0 78.2 79.1 90.6 89.4 90.6
9 77.81 77.8 78.8 90.9 89.7 91.6

64

1 72.8 76.9 75.9
3 76.8 81.3 81.9
5 82.8 84.1 83.1
7 85.3 86.6 85.9
9 86.3 85.9 86.6

1 1 86.8 86.9 85.0 90.6 90.9 90.0

Table 1: Comparisons of BatchPrompt + BPE on Boolq dataset (“bs” and “vr” are batch size and
number of voting rounds). We note that our methods perform better on GPT-4, and suspect that this
is because voting is most successful when baseline performance is strong.

4.2 RESULTS FOR BATCHPROMPT + BPE

Complexity comparison: We use both token count and number of LLM calls to compare the com-
plexity. As can be found in the left part of Fig. 3, LLM calls decrease significantly even with nine
voting rounds. The same goes for BatchPrompt with SEAS. Without SEAS, token count increases
linearly with increase in voting rounds. For all three tasks, although the token count for BatchPrompt
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is only 1/5 of SinglePrompt when the voting round is 1; that token count can even exceed that of
SinglePrompt when 9+ voting rounds are used. This also highlights the importance of SEAS from
the perspective of token saving. However, we note that BatchPrompt without SEAS cannot always
generate better accuracies than BatchPrompt with SEAS. More analysis will be provided below.

Accuracy comparison: Results are shown in Tables 1, 7, and 8 (latter two in Appendix). First,
prompting with larger batch size generally produces worse results. When batch size is 64, ac-
curacies for all datasets decrease significantly with one voting round, but increase to as high as
SinglePrompt with 5+ voting rounds. Second, with more voting rounds, accuracies do not always
increase consistently – this is because wrong labels will also accumulate for hard samples. However,
when we introduce SEAS, this phenomenon is relieved and accuracies consistently rise with more
voting rounds, as can be seen in the next section. Third, BatchPrompt works better on GPT-4 than
gpt-3.5-turbo. This is due to the inherent limitation of majority voting. If the accuracy is not good
enough as on gpt-3.5-turbo, the wrong prediction will also accumulate with more voting rounds.
Therefore, BPE cannot be effective enough. This also gives us a hint that if the general accuracy for
a task is quite low (30%), BatchPrompt might not be applicable. Finally, through comparison with
BatchPrompt + SEAS, we find BatchPrompt without SEAS can get even better accuracy although
with higher token count. For example, the best accuracy is 92.9% for RTE while only 91.7% when
SEAS is added. This is because the SEAS decreases the number of voting rounds for easy samples,
which might just have been a part of two or three voting rounds. The predicted labels/answers for
these easy samples might be wrong.

Batch size lower than 64: As can be found in Tables 1-8, accuracy is good for BatchPrompt even
with only one voting round, compared with SinglePrompt as shown in the last rows. More voting
rounds will increase token count, while the accuracy cannot improve proportionally. Therefore, in
this case, if the researcher cares more about efficiency, we encourage researchers to use BatchPrompt
without BPE. But when the accuracy is most important, we still encourage more voting rounds,
as BatchPrompt + BPE with low batch size might perform even better than SinglePrompt (Boolq:
90.6%-90.9%, RTE: 91.45%-92.9%, QQP: 87.2%-87.8%).

Batch size equal to or higher than 64: We can see that the token limits increase dramatically
for the latest LLMs, which should be the trend. As shown in the results, we find when batch size
is equal to or higher than 64, BatchPrompt cannot perform well without BPE, and accuracy in
most cases is much lower than SinglePrompt. For example, the accuracy on Boolq is only 72.8%,
while SinglePrompt is 90.6%. However, with more voting rounds, the accuracy of BatchPrompt can
smoothly increase to 86.3%, which is competitive with SinglePrompt.

Negative few-shot examples: In the tables, we also show results of self-weighted majority voting
with negative few-shot samples (sw-mv-neg). We note that if few-shot examples with correct an-
swers all carry “confident” labels, LLMs do not have “not confident” cases and give around 90%
“confident” ratings. Therefore, we add two negative few-shot samples to each experiment for com-
pleteness. Specifically, the label/answer of the negative few-shot samples will be wrong, followed
by a “not confident”. We can find in the result tables that “sw-mv-neg” achieves even worse results
than “sw-mv”. Our conclusion is that although the “not confident” cases are given, the existence of
negative few-shot samples will give LLMs a wrong guidance for the labels/answers that will affect
LLM judgment more. A better selection of negative few-shot sample might help in our future work.

4.3 RESULTS FOR BATCHPROMPT + BPE + SEAS

General Results: We show the results of BatchPrompt + BPE + SEAS in Fig. 4. We find the number
of LLM calls and token count is much lower than SinglePrompt (the black line), as shown in the
last two columns. With far fewer tokens, overall accuracies of BatchPrompt + BPE + SEAS are
competitive with SinglePrompt. We can also find when SEAS is applied, the token count increases
slowly after voting round 3, which means for most easy data, the two consecutive consistent answers
requirement has been fulfilled already at very early stage. This is also the reason that SEAS can
effectively save tokens.

Ablation Study: As in SEAS, from round three, each round will result in a decrease in batch size
which might also bring an increase in prediction accuracy. To demonstrate the effectiveness of self-
reflection, we compare the results of BatchPrompt + BPE + SEAS (yellow line) with BatchPrompt
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Dataset 1: Boolq dataset

Dataset 2: QQP dataset
QQPQQP

Dataset 3: RTE dataset

RTE RTE

Boolq Boolq

Voting Round Voting Round
Voting Round Voting Round

Voting RoundVoting RoundVoting RoundVoting Round

Voting Round Voting Round Voting Round Voting Round

Figure 4: Using SEAS consumes far fewer tokens (two right columns), while producing accuracies
near or above baseline SinglePrompt performance (left two columns). This is especially true for
GPT-4 (second column) with lower batch sizes. Please notice the black dotted line representing
batch size 1 is the result of SinglePrompt without voting. Detailed number can be found in appendix.

+ BPE +random drop (green line). The results comparing accuracies are shown in the right part of
Fig. 3. We also include the results of BatchPrompt + BPE as comparison.

5 RELATED WORK

A most related work can be found in Cheng et al. (2023), which introduces the idea of naive batch-
ing with batch size lower than 6. We noted earlier the significant degradation associated with this
technique, we advance several techniques to counteract this to improve performance.

Large language models prompting: This paper is mainly related to LLM prompting Petroni et al.
(2019). The recent trend of using LLMs is through pre-training, prompting, and prediction Liu
et al. (2023b) Radford et al. (2019) Schick & Schütze (2020). This type of method only needs to
be given a suite of appropriate prompts, as well as a single language model trained in an entirely
unsupervised fashion to solve a great number of tasks Sun et al. (2021b) Brown et al. (2020). The
major advantages of these methods are that no extra training/model fine-tuning is needed, and the
methods are generally compatible with a wide range of downstream applications. In these methods,
prompting is of paramount importance. Considering whether the prompt is human-interpretable,
prompt can also be divided into discrete prompt (hard prompt), as well as continuous prompt (soft
prompt) Li & Liang (2021). The typical prompt for LLMs is a discrete prompt. There is much
research trying to find the best template/format of discrete prompt through paraphrasing Haviv et al.
(2021), mining Jiang et al. (2020), Gradient-based Search Wallace et al. (2019) or scoring Davison
et al. (2019) etc. A typical discrete prompt for gpt-3.5-turbo/GPT-4 used in the paper is made up
of task specification and sample data. Most proposed methods are used to generate better task
specifications. Differently, in this paper, our work takes the orthogonal direction, which is batching
the sample data to boost prompting performance.
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Long context prompting: Recent work has demonstrated the length of text will influence the per-
formance of LLMs. In Krishna et al. (2022), it has been demonstrated that long contexts will be
more challenging for LLMs. The generation model will fail to condition on the long text which will
degrade performance. Another recent work Liu et al. (2023a) also points out that LLMs performance
on the multi-document question answering and key-value retrieval tasks will vary according to the
text position. The middle part of the input text performs worst. This observation further verifies
that when LLMs deal with the long context, the position of the text is significant. One more obser-
vation by Sun et al. Sun et al. (2021a) and Sharan et al.Sharan et al. (2018) show that the answer
from LLMs for long context come only from the most nearby context together with a set of simple
summary statistics for the far away context.

Consistency in LLMs: Researchers have gradually found that one of the best methods to improve
the performance of LLMs is through repeatedly calling LLMs to generate consistent answers. In
Imani et al. (2023), the authors propose MathPrompter which uses multiple ChatGPT calls to gen-
erate solutions for math problems Cobbe et al. (2021b), and select the most voted one. Similarly,
in Wang et al. (2022), self-consistency is proposed to generate consistent answers for different tasks
to boost the performance of LLMs, which is a follow-up work for a chain of thought (COT) Wei
et al. (2022). Another follow-up work for COT using self-consistency is Tree-of-Thought Yao et al.
(2023), in which multiple reasoning paths are generated while the consistency is achieved through
DFS/BFS, instead of simple voting strategy Davani et al. (2022)Chen et al. (2022)Zhou et al. (2002).
The basic idea of both methods is that the same problem can be solved in different ways, and the
right answer should have the largest possibility to achieve consistency. This idea is mainly bor-
rowed from Nye et al. (2021), in which the consistency of only two systems is used to generate
better performance for text generation, and the system is named dual-system. Self-consistency has
also been used in other applications, including code generation Chen et al. (2023b), chatbot design
Adiwardana et al. (2020), explanation generation Camburu et al. (2019), and knowledge extraction
Elazar et al. (2021). An inherent limitation of these consistency-based methods is the increase of
time complexity, input token count, number of LLM calls, and cost. It can never be an efficient way
to repeat the same problem many times to generate the right answer. In our paper, we for the first
time discuss the efficiency problem, and use batching to improve language model efficiency.

6 FUTURE WORK

We believe batch prompting should be the trend, with the ever-increasing token limits of LLMs.
Although the naive batch prompting way had been noticed before in Cheng et al. (2023), to the best
of our knowledge, our work represents the first formal analysis of prompt engineering focused not
on expanding context for higher precision on a single task, but on expanding the model’s work-
load in the most efficient and performant manner possible. We believe this line of research will be
increasingly important, considering the cost and power consumption that comes with increased use.

Despite finding stable strategies to increase efficiency and performance through voting, voting with
confidence, permutation, and varied batch sizes; we understand that such strategies must be tuned
for each use case, depending on the length of task description, variable performance across indi-
vidual tasks, and specific LLM used. We leave for future work the task to automate such designs.
For example, to implement learning environments that discover the optimal batch size, number of
votes, and confidence weighting, for an arbitrary model, context size, text domain, and task set.
A reinforcement learning or Bayesian optimization approach might sample from the joint space of
batch size, number of votes, and confidence weighting, to find optimal policies and combinations
of settings, to reduce calls, tokens, and overall cost. Also, given the boost in performance due to
confidence weights, we suspect that full exposition of this strategy is possible in future work.

We believe the recently proposed approach of optimally selecting among a set of LLMs to be another
useful strategy for efficiency Chen et al. (2023a), and could be combined with our BatchPrompt.

Finally, BatchPrompt is mainly used for three tasks which were transformed to binary classification
tasks in huggingface, as well as arithmetic reasoning tasks. However, we believe the BatchPrompt
+ BPE + SEAS framework is also applicable to other NLP tasks, if the task is to generate a specific
answer (e.g., machine translation, essay grading, etc.). The framework might not be applicable for
text summarization or generation, for which answers vary largely in repeated experiments (voting
rounds). Application of the proposed framework on these additional NLP tasks is left as future work.
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A DETAILS FOR FIG.4

The detailed numbers for Fig. 4 can be found in Table 2, 3, and 4.

bs/vt/model gpt-3.5-turbo+BPE+SEAS gpt-4+BPE+SEAS
Accuracy Token Accuracy Token

32 1 75.31 56346 88.13 56346
3 79.38 112780 90.31 105419
5 80.00 123623 90.94 107957
7 80.30 127807 90.94 108490

64 1 74.38 51046
3 87.81 113933
5 88.75 124424
7 89.06 126337

1 1 86.83 384946 90.63 384946

Table 2: Comparisons of BatchPrompt + BPE + SEAS; on Boolq dataset (“bs” and “vr” are batch
size and number of voting rounds).

bs/vt/model gpt-3.5-turbo+BPE+SEAS gpt-4+BPE+SEAS
Accuracy Token Accuracy Token

32 1 75.00 17641 88.13 17641
3 75.31 38148 88.44 31900
5 76.25 50514 88.44 33170
7 78.13 60133 88.44 33253

64 1 85.94 15161
3 87.81 29058
5 87.81 29509
7 87.81 29581

160 1 85.31 13673
3 86.25 27987
5 86.56 29765
7 87.50 30396

1 1 81.88 171401 87.2 171401

Table 3: Comparisons of BatchPrompt + BPE + SEAS; on QQP dataset (“bs” and “vr” are batch
size and number of voting rounds).

B EXTENSION TO ARITHMETIC REASONING TASK

GSM8K: The Graduate School Math 8K is a dataset of 8.5K high-quality linguistically diverse
grade school math word problems created by human problem writers Cobbe et al. (2021a). The
dataset includes 7.5K training problems and 1K test problems. It will take between 2 and 8 steps
to solve these problems. Each data include a question and an answer. We use the whole testing
set with 1280 filtered samples for GSM8K for inference, as there is no validation set for this data,
and the testing set is fully annotated. We use two few-shot examples for this dataset. We do not
do a large number of comparisons on GSM8K due to the current limit of token numbers. As the
chain-of-thought reasoning needs long text, we can only use GPT-4 (32k tokens) for this task and
have to keep the batch size lower than 32.

Results: We also demonstrate the proposed BatchPrompt on the GSM8K dataset. The accuracy of
SinglePrompt is 94.9% (ranks 5th on the leaderboard). When batch size is 32, accuracy changes
from 89.1% (1 voting round) to 92.0% (5 voting rounds) with the increase of voting rounds. We do
not use SEAS for this side experiment, our observation is that accuracy of large batch size is already
very high even using only one voting round. This observation might be caused by the existence of
new “few-shot samples” when the batch size is larger than 1. In a batch, the former data sample can
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bs/vt/model gpt-3.5-turbo+BPE+SEAS gpt-4+BPE+SEAS
Accuracy Token Accuracy Token

32 1 77.70 25921 88.10 25921
3 78.43 54000 90.33 47807
5 78.06 62838 91.08 48693
7 77.69 67191 90.70 48970

64 1 79.55 23366
3 85.50 48647
5 84.75 51420
7 84.75 51541

160 1 71.75 21833
3 76.58 51048
5 76.95 56633
7 76.58 57004

1 1 80.67 158270 91.45 158270

Table 4: Comparisons of BatchPrompt + BPE + SEAS; on RTE dataset (“bs” and “vr” are batch
size and number of voting rounds).

actually be viewed as few-shot samples for the later ones. When the accuracy is high (90%+), LLMs
can generate correct answers for these “few-shot samples”, which could give good guidance for the
later samples. As this arithmetic reasoning task relies heavily on few-shot logical deduction, more
“few-shot samples” can lead to a better result.

C EXTENSION TO CAUSAL REASONING AND NATURAL LANGUAGE
INFERENCE TASKS

To increase confidence, we include the following raw results on additional datasets, that have long
answers, and where all validation data (>300) is used.

COPA (Choice of Plausible Alternatives) Roemmele et al. (2011): See Table 5.

Multi-Genre Natural Language Inference (MNLI) Williams et al. (2017): See Table 6

D PROMPTS

We want to mention that the batched input must be in format of ”Data 1, Data 2...”. Not using the
index or just use a delimiter ”—” will result in the missing of answers (e.g., 15 generated answers
when input batch size is 16). This is also the reason that we give an extra ”batch size” reminder at
the end of each prompt.

[Conf-Description]: ’You not only need to generate The label/answer, but also your confidence. If
you are confident in your output class, append a ”(confident)” at the end of the label; else, append a
”(not confident)”.’

[Place-Holder-Conf]: ’(confident or not confident)’

If we are using Self weighted Majority Voting, the above two place holder will be added; else, we
will be using regular Majority Voting and the two place holder will be NONE.

Prompts for Boolq:

You are a professional NLP expert at Question Answering annotation. Please generate labels given
instructions. You will be given [BATCH-SIZE] passages with questions each time, as input.

Each input includes a ’passage’ and a ’question’ about the passage.

Your goal to determine whether the answer to the question is yes or no and classify, as below:

[class 0]: if the answer is ’No’.

14
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gpt-3.5-turbo Accuracy VT=1 VT=3 VT=5 VT=7 VT=9
BS=1 89.0625 - - - -
BS=16 82.8125 82.8125 85.5 85.9375 85.9375
BS=32 70.3125 76.5625 79.6875 85.9375 85.9375

gpt-3.5-turbo Token Num VT=1 VT=3 VT=5 VT=7 VT=9
BS=1 37466 - - - -
BS=16 4646 9642 9833 10112 10112
BS=32 3552 7961 8324 8525 8525

gpt-3.5-turbo Calling Num VT=1 VT=3 VT=5 VT=7 VT=9
BS=1 64 - - - -
BS=16 4 12 20 28 36
BS=32 2 6 10 14 18

GPT-4 Accuracy VT=1 VT=3 VT=5 VT=7 VT=9
BS=1 96.875 - - - -
BS=16 98.4375 98.4375 98.4375 98.4375 98.4375
BS=32 98.4375 98.4375 98.4375 98.4375 98.4375

GPT-4 Token Num VT=1 VT=3 VT=5 VT=7 VT=9
BS=1 37466 - - - -
BS=16 4646 9862 9862 9862 9862
BS=32 3552 8468 8468 8468 8468

GPT-4 Calling Num VT=1 VT=3 VT=5 VT=7 VT=9
BS=1 64 - - - -
BS=16 4 12 20 28 36
BS=32 2 6 10 14 18

Table 5: gpt-3.5-turbo and GPT4 Results on COPA

gpt-3.5-turbo Accuracy VT=1 VT=3 VT=5 VT=7 VT=9
BS=1 77.5% - - - -
BS=4 66.3% 68.2% 72.1% 72.7% 72.7%

BS=16 64.2% 63.4% 71.2% 71.6% 72.3%
gpt-3.5-turbo Token Num VT=1 VT=3 VT=5 VT=7 VT=9

BS=1 158401 - - - -
BS=4 51361 82723 90085 90447 90447

BS=16 24601 55963 62325 64435 65524
gpt-3.5-turbo Calling Num VT=1 VT=3 VT=5 VT=7 VT=9

BS=1 320 - - - -
BS=4 80 240 400 560 720

BS=16 20 60 100 140 180
GPT-4 Accuracy VT=1 VT=3 VT=5 VT=7 VT=9

BS=1 88.8% - - - -
BS=64 75.3% 80.3% 82.8% 82.2% 83.1%

GPT-4 Token Num VT=1 VT=3 VT=5 VT=7 VT=9
BS=1 152321 - - - -

BS=64 17816 49178 54540 54582 54668
GPT-4 Calling Num VT=1 VT=3 VT=5 VT=7 VT=9

BS=1 320 - - - -
BS=64 5 15 25 35 45

Table 6: gpt-3.5-turbo and GPT-4 Results on MNLI

[class 1]: if the answer is ’Yes’.

Given a input, please output a label ([class 0] or [class 1]) [Conf-Description].

You will be given [BATCH-SIZE] inputs each time, and the below is the format of input which will
be given:

============
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Input 0: xxxxx

Input 1: xxxxx

......

============

Below are the outputs you need to generate. ”X” can be ’0’ or ’1’.

============

Label for Input 0: [class X] [Place-Holder-Conf]

Label for Input 1: [class X] [Place-Holder-Conf]

......

============

Please make sure each generated label is in format of [class X].

Please make sure to generate [BATCH-SIZE] labels. You may include other additional sections here.

Prompts for QQP:

You are a professional NLP expert at duplicate question detection. You will be given [BATCH-SIZE]
pairs of data from Quora Question Pairs (QQP) dataset each time, as input. Each data includes a pair
data, ”Question1” and ”Question2”. Your goal to determine whether two questions are duplicates of
each other. You need to classify into below two classes:

[class 1]: if they have the same meaning (semantically equivalent).

[class 0]: if they do NOT have the same meaning.

You will be given [BATCH-SIZE] question pairs each time, and the below is the format of question
pairs which will be given:

============

Question pair 0:

Question1: xxxxx

Question2: xxxxx

Question pair 1:

Question1: xxxxx

Question2: xxxxx

......

============

Below are the outputs you need to generate. ”X” can be ’1’ or ’0’. [Conf-Description]

============

Label for Question pair 0: [class X][Place-Holder-Conf]

Label for Question pair 1: [class X][Place-Holder-Conf]

......

============

Please make sure each generated label is in format of [class X].

Please make sure to generate [BATCH-SIZE] labels.

Prompts for RTE:
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You are a professional NLP expert at sentence pair relationship annotation. You will be given
[BATCH-SIZE] sentence pairs from Textual Entailment Recognition dataset each time, as input.
Each data includes a sentence pair, ”Premise” and ”Hypothesis”. Your goal is to classify the sen-
tence pair into two classes as below:

[class 0]: the given Hypothesis and Premise are logical and following (entailment) to each other.

[class 1]: the given Hypothesis and Premise are NOT following (entailment) to each other.

You will be given [BATCH-SIZE] sentence pairs each time, and the below is the format of sentence
pairs which will be given:

============

Sentence pair 0:

Premise: xxxxx

Hypothesis: xxxxx

Sentence pair 1:

Premise: xxxxx

Hypothesis: xxxxx

......

============

Below are the outputs you need to generate. ”X” can be ’1’ or ’0’. [Conf-Description]

============

Label for Sentence pair 0: [class X][Place-Holder-Conf]

Label for Sentence pair 1: [class X][Place-Holder-Conf]

......

============

Please make sure each generated label is in format of [class X].

Please make sure to generate [BATCH-SIZE] labels.

Prompts for GSM8K:

You will be given [BATCH-SIZE] math probelms.

These problems take between 2 and 8 steps to solve, and solutions primarily involve performing a
sequence of elementary calculations using basic arithmetic operations to reach the final answer.

The below is the format of sentence pairs which will be given:

============

Input 0: xxxxx

Input 1: xxxxx

......

============

Below are the calculation results you need to generate. [Conf-Description]

============ Result for Input 0: [intermediate reasoning steps], The answer is xxxx. [Place-
holder-Conf]

Result for Input 1: [intermediate reasoning steps], The answer is xxxx. [Place-holder-Conf]

......
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============

Please make sure to write your a series of intermediate reasoning steps. Please make sure the final
sentence is ”The answer is xxx.”, and the answer should be a number.

Please make sure to generate [BATCH-SIZE] labels each time.

E DATA INDEX

To save LLMs calls, we use the gpt-3.5-turbo to filter out the data containing sensitive content that
cannot be used in LLMs, and randomly choose 320 samples for Boolq, QQP, RTE, 1280 samples
for GSM8K. There’s no bias for data selections.

Validation set on Boolq: 1538, 220, 1371, 2128, 1481, 1822, 37, 2696, 1276, 2292, 1057, 2537,
1490, 542, 3069, 1387, 1, 1780, 2788, 1930, 2807, 2918, 254, 2636, 2515, 3007, 1285, 909, 1973,
2894, 3178, 2629, 284, 460, 968, 774, 2280, 1650, 703, 1951, 2544, 439, 3263, 2993, 491, 804,
257, 1340, 1948, 2308, 994, 1579, 2350, 1574, 2834, 338, 2773, 1909, 2136, 1396, 2685, 2821,
2996, 1422, 2110, 850, 584, 1063, 1464, 3157, 1749, 671, 358, 2820, 659, 1509, 2574, 893, 3135,
798, 296, 2655, 2726, 1471, 3016, 2545, 2316, 336, 1769, 2732, 692, 1073, 2922, 2328, 322, 1784,
10, 2852, 3249, 2513, 951, 2631, 2677, 569, 127, 1913, 3184, 2389, 466, 167, 1857, 2327, 1448,
1322, 2242, 1275, 860, 2038, 918, 2707, 237, 1994, 1933, 2484, 442, 1287, 124, 1150, 429, 1684,
462, 416, 2660, 1494, 2891, 651, 2237, 1302, 51, 438, 1955, 986, 626, 140, 269, 2247, 2057, 2461,
1190, 1953, 3063, 783, 444, 2017, 886, 817, 79, 1567, 1314, 3118, 2329, 2806, 2602, 1426, 3174,
2647, 2623, 3096, 2674, 1090, 819, 1144, 1334, 3254, 669, 1794, 2609, 149, 1990, 313, 376, 690,
2854, 1935, 1732, 796, 2000, 2659, 1293, 294, 3086, 311, 827, 2510, 364, 1115, 2494, 1868, 305,
1670, 2433, 2348, 1700, 878, 1816, 2340, 1678, 56, 1069, 2747, 2905, 3182, 506, 691, 110, 2075,
1778, 2001, 1677, 3119, 544, 2653, 3143, 3004, 14, 2274, 1354, 1175, 1243, 70, 137, 2955, 177,
578, 2204, 496, 88, 1737, 563, 611, 2808, 621, 2421, 1456, 2163, 3122, 2770, 1828, 2753, 2373,
1172, 1030, 3169, 663, 1153, 956, 2332, 1171, 1429, 805, 1380, 3136, 1375, 2751, 1811, 2758,
277, 2931, 557, 813, 1008, 1028, 966, 1048, 2995, 1562, 2152, 1587, 108, 3209, 2692, 1091, 2671,
172, 652, 387, 1155, 3066, 1906, 2591, 1814, 349, 1774, 2141, 1232, 2422, 335, 2801, 1922, 1968,
1755, 2317, 881, 2524, 2884, 2558, 2290, 2272, 2330, 1734, 2621, 1239, 115, 3176, 2407, 2425,
1596, 1854, 1839, 818

Validation set on QQP: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22,
23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48,
49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74,
75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100,
101, 102, 103, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121,
122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142,
143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162,
163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182,
183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202,
204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223,
224, 225, 226, 227, 228, 229, 230, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244,
245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264,
265, 266, 267, 268, 269, 270, 271, 272, 273, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285,
286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305,
306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324

Validation set on RTE: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23,
24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50,
51, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78,
79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103,
104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123,
124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 143, 144,
145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 165,
166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185,
186, 187, 188, 189, 190, 191, 192, 193, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206,
207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227,
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228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247,
248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267,
268, 269, 270, 271, 272, 273, 274, 275, 276

Testing set on GSM8K(1319 in total, 39 filtered out): 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39,
40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65,
66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91,
92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113,
114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133,
134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153,
154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173,
174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193,
194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213,
214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233,
234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253,
254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273,
274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293,
294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313,
314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333,
334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353,
354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373,
374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393,
394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413,
414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433,
434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453,
454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473,
474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493,
494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513,
514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533,
534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553,
554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 568, 569, 570, 571, 572, 573,
574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593,
594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613,
614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633,
634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653,
654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673,
674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693,
694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713,
714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 728, 729, 730, 731, 732, 733, 734,
735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754,
755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 769, 770, 771, 772, 773, 774,
775, 776, 777, 778, 779, 780, 781, 782, 783, 784, 785, 786, 787, 788, 789, 790, 791, 792, 793, 794,
795, 796, 797, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814,
815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834,
835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 850, 851, 852, 853, 854,
855, 856, 857, 858, 859, 860, 861, 862, 863, 864, 865, 866, 867, 868, 869, 870, 871, 872, 873, 874,
875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 887, 888, 889, 890, 891, 892, 893, 894,
895, 896, 897, 898, 899, 900, 901, 902, 903, 904, 905, 906, 907, 908, 909, 910, 911, 912, 913, 914,
915, 916, 917, 918, 919, 920, 921, 922, 923, 924, 925, 926, 927, 928, 929, 930, 931, 932, 933, 934,
935, 936, 937, 938, 939, 940, 941, 942, 943, 944, 945, 946, 947, 948, 949, 950, 951, 952, 953, 954,
955, 956, 957, 958, 959, 960, 961, 962, 963, 964, 965, 966, 967, 968, 969, 970, 971, 972, 973, 974,
975, 976, 977, 978, 979, 980, 981, 982, 983, 984, 985, 986, 987, 988, 989, 990, 991, 992, 993, 994,
995, 996, 997, 998, 999, 1000, 1001, 1002, 1003, 1004, 1005, 1006, 1007, 1008, 1009, 1010, 1011,
1012, 1013, 1014, 1015, 1016, 1017, 1018, 1019, 1020, 1021, 1022, 1023, 1024, 1025, 1026, 1027,
1028, 1029, 1030, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043,
1044, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052, 1053, 1054, 1055, 1056, 1057, 1058, 1059,
1060, 1061, 1062, 1063, 1064, 1065, 1066, 1067, 1068, 1069, 1070, 1071, 1072, 1073, 1074, 1075,
1076, 1077, 1078, 1079, 1080, 1081, 1082, 1083, 1084, 1085, 1086, 1087, 1088, 1089, 1090, 1091,
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1092, 1093, 1094, 1095, 1096, 1097, 1098, 1099, 1100, 1101, 1102, 1103, 1104, 1105, 1106, 1107,
1108, 1109, 1110, 1111, 1112, 1113, 1114, 1115, 1116, 1117, 1118, 1119, 1120, 1121, 1122, 1123,
1124, 1125, 1126, 1127, 1128, 1129, 1130, 1131, 1132, 1133, 1134, 1135, 1136, 1137, 1138, 1139,
1140, 1141, 1142, 1143, 1144, 1145, 1146, 1147, 1148, 1149, 1150, 1151, 1152, 1153, 1154, 1155,
1156, 1157, 1158, 1159, 1160, 1161, 1162, 1163, 1164, 1165, 1166, 1167, 1168, 1169, 1170, 1171,
1172, 1173, 1174, 1175, 1176, 1177, 1178, 1179, 1180, 1181, 1182, 1183, 1184, 1185, 1186, 1187,
1188, 1189, 1190, 1191, 1192, 1193, 1194, 1195, 1196, 1197, 1198, 1199, 1200, 1201, 1202, 1203,
1204, 1205, 1206, 1207, 1208, 1209, 1210, 1211, 1212, 1213, 1214, 1215, 1216, 1217, 1218, 1219,
1220, 1221, 1222, 1223, 1224, 1225, 1226, 1227, 1228, 1229, 1230, 1231, 1232, 1233, 1234, 1235,
1236, 1237, 1238, 1239, 1240, 1241, 1242, 1243, 1244, 1245, 1246, 1247, 1248, 1249, 1250, 1251,
1252, 1253, 1254, 1255, 1256, 1257, 1258, 1259, 1260, 1261, 1262, 1263, 1264, 1265, 1266, 1267,
1268, 1269, 1270, 1271, 1272, 1273, 1274, 1275, 1276, 1277, 1278, 1279, 1280

F EXPERIMENTAL RESULT OF BATCH GPT+BPE ON RTE AND QQP

Results can be found in Table. 7 and Table. 8.

bs/vr/model gpt-3.5-turbo GPT-4
mv sw-mv sw-mv-neg mv sw-mv sw-mv-neg

16

1 71.8 77.3 73.6 90.3 90.0 90.7
3 77.0 81.4 75.8 92.9 91.1 91.5
5 77.7 79.2 78.8 92.6 91.1 90.7
7 75.8 80.3 79.2 91.8 91.1 91.8
9 78.8 80.3 79.9 91.5 90.7 91.5

32

1 71.8 75.5 74.0 88.9 88.1 89.2
3 70.3 78.4 73.6 88.1 88.5 90.0
5 72.5 79.2 75.1 88.9 90.7 90.3
7 72.1 79.2 74.0 90.3 90.7 90.3
9 71.8 79.2 75.5 90.0 90.3 90.7

64

1 80.7 82.5 78.8
3 85.5 85.9 86.6
5 87.7 88.5 90.7
7 88.5 88.8 90.7
9 88.1 89.2 90.3

1 1 84.4 84.75 84.0 91.4 91.1 91.1

Table 7: Comparisons on RTE dataset.

G EXAMPLES FOR NEGATIVE FEW-SHOT SAMPLES (GSM8K, BOOLQ)

GSM8K:

Input 0: Question: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3
tennis balls. How many tennis balls does he have now?

Input 1: Question: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3
tennis balls. How many tennis balls does he have now?

Input 2: Question: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more,
how many apples do they have?

====Answer==== Result for Input 0: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6
tennis balls. 5 + 6 = 11. The answer is 11. (confident)

Result for Input 1: Roger started with 5 balls. 2 cans of 3 tennis balls each is 5 tennis balls. 5 + 5 =
10. The answer is 10. (not confident)

Result for Input 2: The cafeteria had 23 apples originally. They used 20 to make lunch. So they had
23 - 20 = 3. They bought 6 more apples, so they have 3 + 6 = 9. The answer is 9. (confident)
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bs/vr/model gpt-3.5-turbo GPT-4
mv sw-mv sw-mv-neg mv sw-mv sw-mv-neg

16

1 76.3 73.1 63.7 87.2 87.5 86.6
3 79.4 73.4 68.1 87.5 86.6 87.8
5 78.8 75.3 72.2 87.8 87.5 87.2
7 78.4 75.6 71.3 87.8 87.5 88.2
9 80.0 76.3 71.9 87.8 87.5 87.2

32

1 69.7 67.8 56.9 86.6 85.9 85.9
3 74.7 68.8 55.6 87.2 86.3 87.2
5 77.5 67.8 60.6 87.5 87.2 86.3
7 78.1 69.1 60.6 86.6 86.3 87.5
9 76.6 68.8 60.6 87.2 85.9 86.9

64

1 84.7 82.5 87.5
3 86.6 86.3 87.5
5 85.0 87.8 87.8
7 84.7 86.6 86.6
9 85.0 86.6 87.9

1 1 80.3 77.5 79.1 87.2 86.6 86.9

Table 8: Comparisons on QQP dataset.

Boolq:

Input 0: Passage: Property tax – Property tax or ’house tax’ is a local tax on buildings, along with
appurtenant land. It is and imposed on the Possessor (not the custodian of property as per 1978,
44th amendment of constitution). It resembles the US-type wealth tax and differs from the excise-
type UK rate. The tax power is vested in the states and is delegated to local bodies, specifying
the valuation method, rate band, and collection procedures. The tax base is the annual rental value
(ARV) or area-based rating. Owner-occupied and other properties not producing rent are assessed
on cost and then converted into ARV by applying a percentage of cost, usually four percent. Vacant
land is generally exempt. Central government properties are exempt. Instead a ’service charge’ is
permissible under executive order. Properties of foreign missions also enjoy tax exemption without
requiring reciprocity. The tax is usually accompanied by service taxes, e.g., water tax, drainage tax,
conservancy (sanitation) tax, lighting tax, all using the same tax base. The rate structure is flat on
rural (panchayat) properties, but in the urban (municipal) areas it is mildly progressive with about
80% of assessments falling in the first two brackets.

Question: is house tax and property tax are same

Input 1: Passage: Property tax – Property tax or ’house tax’ is a local tax on buildings, along with
appurtenant land. It is and imposed on the Possessor (not the custodian of property as per 1978,
44th amendment of constitution). It resembles the US-type wealth tax and differs from the excise-
type UK rate. The tax power is vested in the states and is delegated to local bodies, specifying
the valuation method, rate band, and collection procedures. The tax base is the annual rental value
(ARV) or area-based rating. Owner-occupied and other properties not producing rent are assessed
on cost and then converted into ARV by applying a percentage of cost, usually four percent. Vacant
land is generally exempt. Central government properties are exempt. Instead a ’service charge’ is
permissible under executive order. Properties of foreign missions also enjoy tax exemption without
requiring reciprocity. The tax is usually accompanied by service taxes, e.g., water tax, drainage tax,
conservancy (sanitation) tax, lighting tax, all using the same tax base. The rate structure is flat on
rural (panchayat) properties, but in the urban (municipal) areas it is mildly progressive with about
80% of assessments falling in the first two brackets.

Question: is house tax and property tax are same

Input 2: Passage: Pardon – The pardon power of the President extends only to an offense recog-
nizable under federal law. However, the governors of most of the 50 states have the power to grant
pardons or reprieves for offenses under state criminal law. In other states, that power is committed to
an appointed agency or board, or to a board and the governor in some hybrid arrangement (in some
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states the agency is merged with that of the parole board, as in the Oklahoma Pardon and Parole
Board).

Question: can the president pardon someone convicted of a state crime

Input 3: Passage: Pardon – The pardon power of the President extends only to an offense recog-
nizable under federal law. However, the governors of most of the 50 states have the power to grant
pardons or reprieves for offenses under state criminal law. In other states, that power is committed to
an appointed agency or board, or to a board and the governor in some hybrid arrangement (in some
states the agency is merged with that of the parole board, as in the Oklahoma Pardon and Parole
Board).

Question: can the president pardon someone convicted of a state crime

Input 4: Passage: Jurassic World: Fallen Kingdom – Filming took place from February to July
2017 in the United Kingdom and Hawaii. Produced and distributed by Universal Pictures, Fallen
Kingdom premiered in Madrid on May 21, 2018, and was released internationally in early June
2018 and in the United States on June 22, 2018. The film has grossed over $1.2 billion worldwide,
making it the third Jurassic film to pass the mark, the third highest-grossing film of 2018 and the
13th highest-grossing film of all time. It received mixed reviews from critics, who praised Pratt’s
performance, Bayona’s direction, the visuals, and the “surprisingly dark moments”, although many
criticized the screenplay and lack of innovation, with some suggesting the series has run its course.
An untitled sequel is set to be released on June 11, 2021, with Trevorrow returning to direct.

Question: will there be a jurassic world fallen kingdom sequel

Input 5: Passage: The Tudors – Showtime announced 13 April 2009, that it had renewed the show
for a fourth and final season. The network ordered 10 episodes that were first broadcast on 11 April
2010. The series finale was broadcast on 20 June 2010. The final season was shown in Canada on
CBC starting 22 September 2010, and ending on 23 November 2010. Question: is there a season 5
of the tudors

====Answer==== Label for Input 0: [class 1](’confident’) Label for Input 1: [class 0](’not confi-
dent’) Label for Input 2: [class 0](’confident’) Label for Input 3: [class 1](’not confident’) Label for
Input 4: [class 1](’confident’) Label for Input 5: [class 0](’confident’)

Few-shot examples of QQP and RTE are in the same format of Boolq, therefore we do not provide
more examples here.

H CALCULATION FOR TOKEN

We can calculate the token we need in BatchPrompt. An equation could be as below.

ltotal = ltask ×N/s+ ldata (4)
Here ltotal, ltask, and ldata are the token we need in total, task specification, and the whole data
respectively. N is the total number of data, S is the batch size. Let’s take Boolq as an example. For
Boolq, the task specification length is 501, the data length is 24011. When batch size is 1, the total
token we need is 501*320+24011 = 184331. And this number will be 501*20+24011=34031 for
batch size 16, and 501*10+24011=29031 for batch size 32.

We have to emphasize that when batch size is larger than 16, the decrease of token number is not
that obvious. However, we have to point out that we can save a large number of LLMs calls. When
the batch size doubles, the LLMs calls will decrease by half. As most companies have a limit of
quotes to call LLMs, such LLMs call saving is significant.

I PUTTING THE DATA AT THE VERY BEGINNING OR END

As mentioned in Liu et al. (2023a) and shown in Fig.1, we can find the data putting at the very
beginning or end can get better performance. We have to point out two limitations. First, ignoring
the LLMs generated results for data in the middle will be waste of token, which will bring much
more repeated experiments; Second, the exact range of middle, depending on the data length and
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the batch size, cannot be defined. Also, as we find for all the three datasets, the performance of
BatchPrompt is already competitive to SinglePrompt, a further boost of accuracy is not easy to
achieve only through putting data at specific positions (Beginning, end). Therefore we do not need
the repeated Therefore, we still keep our random permutation strategy in the paper.
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