Under review as a conference paper at ICLR 2026

DESIGN PRINCIPLES FOR TD-BASED MULTI-POLICY
MORL IN INFINITE HORIZONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Multi-Objective Reinforcement Learning (MORL) addresses problems with mul-
tiple, often conflicting goals by seeking a set of trade-off policies rather than a
single solution. Existing approaches that learn many policies at once have shown
promise in deep settings, but they depend on supervised retraining and care-
fully curated data, making them ill-suited for online and infinite-horizon tasks.
Temporal-Difference (TD) methods offer a natural alternative, as they update poli-
cies incrementally during interaction, but current TD-based approaches are lim-
ited to small, episodic problems. In this work, we present design principles for
extending TD-based multi-policy MORL to both predictable (stationary) and flex-
ible (non-stationary) policies, to avoid spurious dominance relations, and to detect
cycles. Through ablation studies, we show how each principle contributes to re-
covering diverse and reliable policies, providing a principled path toward scalable
TD-based multi-policy methods in deep MORL.

1 INTRODUCTION

Multi-Objective Reinforcement Learning (MORL) is an RL setting with multiple, often conflicting
objectives. MORL algorithms aim to approximate the Pareto Front (PF) — the set of value vectors
(and corresponding policies) for which no objective can be improved without degrading another —
capturing trade-offs to support preference-based decision-making (Hayes et al., [2021)). In standard
RL, no single policy can accommodate all preference trade-offs; objectives are typically aggregated
into a single scalar reward function via scalarization (combining multiple rewards into one) (Roijers
et al.,|2013)). When preferences are unknown beforehand, scalarization is insufficient, as it requires
retraining for each preference and often provides limited PF coverage (Moffaert & Nowé| 2014)).
Such challenges motivate methods that learn multiple policies to represent the full preference space.

Approaches for learning multiple policies fall broadly into two categories. Outer-loop methods it-
eratively derive new policies from previously learned ones (Roijers et al., [2015; |Parisi et al.| 2017}
Ropke et al.,2024)), while inner-loop methods aim to learn the entire policy set in a single run (Mof-
faert & Nowél, 2014} Ruiz-Montiel et al., |2017; Reymond & Nowé, |2019; Reymond et al., 2022a)).
Pareto Conditioned Networks (PCNs) (Reymond et al., |2022a) extend inner-loop methods to deep
RL by conditioning policies on desired return vectors, enabling scalability to high-dimensional
settings. However, PCNs are not based on Temporal-Difference (TD) updates and rely on costly
supervised-style retraining and careful trajectory curation, which limits scalability and online adap-
tation for infinite-horizon tasks. TD methods, in contrast, learn incrementally at each interaction and
naturally support infinite-horizon settings. Yet, existing TD-based multi-policy approaches remain
largely restricted to tabular, episodic settings (Moffaert & Nowé, |2014; Ruiz-Montiel et al., 2017).

To apply tabular inner-loop methods to the infinite-horizon setting via TD learning, we introduce
a series of design choices to tackle the challenges of this setting: allow tracking and following
policies when multiple options exist; learning solutions for tasks requiring predictable behavior vs.
discovering a broader range of solutions; ensuring policies are not prematurely discarded; computing
undiscounted returns to give the user an accurate sense of performance when selecting the policy;
and detecting cycles, which offer well-defined returns for infinite horizons. Together, these elements
provide the basis for a systematic analysis of tabular multi-policy RL in infinite-horizon settings,
providing a principled foundation for future deep-RL extensions.

Under review as a conference paper at ICLR 2026

Problem Setting: MORL is essential for tasks with conflicting objectives. Multi-policy meth-
ods like PCNs can produce solution sets in deep RL but rely on costly supervised retraining and
trajectory curation, limiting scalability and online adaptation in infinite-horizon settings. TD meth-
ods support incremental online learning but remain mostly tabular and episodic. As a result, no
TD-based multi-policy approach effectively handles infinite-horizon MORL, forcing a trade-off be-
tween supervised and simplistic TD methods. We address this gap by adapting tabular TD inner-loop
methods to infinite horizon problems, laying a principled foundation for future deep-RL extensions.

Our contributions include: (i) A systematic analysis of tabular multi-policy MORL in infinite-
horizon settings, outlining design principles guiding TD-based deep-RL methods. (ii) A novel
trajectory-based framework to track and execute both stationary and non-stationary policies, han-
dling cycles and supporting robust policy selection and trade-off analysis by the user. (iii) Identi-
fication and resolution of spurious domination from reward horizon mismatches, reward estimate
frequency, and incomplete structural information, with mechanisms for managing trajectories and
cycles efficiently, supporting reliable learning and retrieval of policies.

2 RELATED WORK ON MORL

MORL seeks to optimize several, typically conflicting, objectives, with preferences often unknown
beforehand. The goal is to find a set of non-dominated policies, where no objective can be improved
without sacrificing another. Such policies represent trade-offs subject to preference rather than an
objectively best solution, forming what is known as the Pareto Front (PF) (Hayes et al., 2021).

Multi-objective problems can be converted into single-objective ones through scalarization; how-
ever, choosing weights is difficult, and even exhaustive searches often miss parts of the PF where
non-isomorphic weight—objective mappings cause similar weights to yield very different trade-
offs (Das & Dennis} [1997; Moffaert & Nowél 2014). Inspired by Reward-Free Exploration
(RFE) (Jin et al., [2020), where agents first explore (learning) and later optimize for any reward
formulation (planning), Preference-Free Exploration (PFE) (Wu et al., 2020) allows agents to learn
with rewards and then search based on specific preferences. However, PFE also relies on weights
to define the preference and requires a new search for every new preference set. Multi-policy meth-
ods approximate the PF directly, allowing users to analyze trade-offs without predefined preference
weights. Outer-loop approaches (Roijers et al., [2015; [Parisi et al.| [2017; [Ropke et al. [2024) itera-
tively derive new policies from those learned in previous runs. In contrast, inner-loop methods (Mof-
faert & Nowé| |2014; Ruiz-Montiel et al., [2017; Mandow & de-la Cruz, |2018; Reymond & Nowé,
2019 [Reymond et al.,[2022a3b)), learn the entire policy set simultaneously within a single run.

In tabular approaches, Moffaert & Nowée (2014) keeps track of policies by separating returns into
average immediate and future discounted rewards, while Ruiz-Montiel et al.|(2017)); Mandow & de-
la Cruz| (2018)) links each policy to the next action in a state. These methods are limited to episodic,
acyclic settings, restricting use in infinite-horizon problems. In deep RL, early single-run multi-
policy work (Reymond & Nowé¢, 2019)) struggled to scale even in simple domains. More recently,
Reymond et al.| (2022a) introduced Pareto Conditioned Networks (PCNs), training a supervised
model on an iteratively updated trajectory dataset to produce actions conditioned on a target return
and horizon. While PCNss yield flexible policies, they inherit key limitations of supervised/imitation-
style training: costly periodic retraining, adaptation constrained by dataset refresh rate, and reliance
on careful trajectory curation and exploration. In contrast, Temporal-Difference (TD) methods up-
date policies online at each interaction, using reward feedback for immediate improvement and more
reliable credit assignment — crucial in infinite-horizon settings. In this paper, we extend inner loop
tabular methods to infinite-horizon settings, laying a foundation for TD deep RL extensions. For a
broader MORL survey, see Hayes et al.|(2021)).

3 METHODOLOGY

We introduce a TD-based multi-policy MORL framework (Figure [I) that color-labels transitions
(Section and structures them into stationary or non-stationary trajectories (Section [3.2). Our
method accounts for spurious dominations (Section [3.3) and enables policies with well-defined
undiscounted returns in extended infinite-horizon settings (Section [3.4). It further provides explicit
tracking of stationary segments (Section[3.5)) and cycle detection (Section[3.6), ensuring stationarity.

Under review as a conference paper at ICLR 2026

W}- |
PS
8[sg,1. (15,30,-11)] = (1, OLIVE) }

(594, L, OLIVE, 81 1) = (-, OLIVE) | h A
(52,7, 1, OLIVE, s37) = (—, GREEN)-§"] @ S @
@ Policy @ Segment %a)j’ggw @ %gionary Cycle Detection Policy Selection
() Transition Swirl @9 Non-Stationary gg) Stationary Segments @) Policy Following

Figure 1: Overview of the components underpinning our analysis. A uniquely-colored segment
forest: a policy (1) unfolds as a sequence of trajectories (2), each decomposed into segments (3)
made of transitions (4). Trajectories may form cycles (5) or swirls (6), and policies can be stationary
(S) or non-stationary (NS). We highlight cycle detection (CD), the Stationary Segments Mapping
(SS), and the policy selection (PS) and policy following (PF).

3.1 FOLLOWING A POLICY THROUGH TRAJECTORIES

In RL, a policy 7 guides the agent along trajectories 7 (each trajectory is a sequence of transitions 6),
mapping states to action distributions that maximize cumulative reward. Since the agent can start
from any state, a policy can also be seen as a forest of independent or converging trajectories.
In multi-policy settings, multiple non-dominated actions may exist per state, producing a set of
non-dominated trajectories and making it non-trivial to determine which action continues a policy.
Without careful tracking, the agent may deviate from its intended trajectory and follow a dominated
policy, even if each action it takes remains non-dominated (Moffaert & Nowée, 2014).

Our method follows a policy tracking approach similar to |Ruiz-Montiel et al.| (2017), where we
maintain multiple non-dominated trajectories and update their returns via TD learning. Building
on this foundation, we formalize tracking with a trajectory-centric approach where a color-label
mechanism and a Policy-Transition Table (PTT) explicitly and intuitively tracks policies: we define
an extended Q-Table (s, a, c) mapping state s, action a, and a color label ¢, and then map, via the
PTT, which transitions are part of the same trajectory (e.g., (s,a,c) = (s',a’,') = (s",a”,c")),
providing a clear structure for executing policies in complex multi-policy scenarios while supporting
extensions for the infinite horizon setting. With the trajectory-centric mechanism in place, the agent
learns under a standard exploratory policy (e.g., e-greedy), updating value estimates via TD learning.
A complete algorithmic description is provided in Appendix [A]

Once training is complete, policy execution proceeds as follows. The user selects a policy based
on preferred trade-offs. The initial action a and color ¢ follow Equation [T where the © selection
operator represents the user’s choice, and N D (non-dominated operator) filters out dominated re-
turns; A is the action set. To execute the selected policy, we use the PTT: after transitioning to next
state s’ (Equation [2), we query the table with (s, a, c,s’) to obtain the next action a’ and color ¢/
(Equation [3). Alternating between Equations 2]and [3 keeps the agent on the intended trajectory 7.

(Policy Selection) (ag,co) ~ © (ND U Q(so, a, c)) (1)
a€A; cfrom §(-¢) €T (s0,a)

(Transition) s~ P(s' | s,a) 2)

(Policy Following) (a',c) ~m(s,a,cs") 3)

3.2 LEARNING STATIONARY AND NON-STATIONARY POLICIES

A stationary policy selects actions from a fixed distribution for each state (i.e., the action does
not vary with time: 7;(als) = m(als)), whereas a non-stationary policy explicitly depends on
time (m¢(als) = 7(a|s,t)). Most works focus on non-stationary, as they can outperform stationary
policies and recover the entire Pareto Front rather than just the convex part (Whitel |1982; Roijers

Under review as a conference paper at ICLR 2026

et al., |2013; |[Hayes et al., 2021)). Still, stationary policies can be applied to problems requiring
completely predictable behavior (i.e., always taking the same action in a given state), and stationary
policies may be faster to learn, since stationary policies are a subset of non-stationary policies. We
examine constructing both stationary and non-stationary policies and how they relate to each other.

a) & < b) alsyy= 1 (3 pass)

S10—=>S
e alsyy=— (2" pass)

alsy= L (15!pass)
start of the sub-
trajectories of sq4

multiple updates

—_ J =

at once
a stationary and a trajectories forming temporal information is
non-stationary trajectory a cycle and a swirl embedded in the pass order

Figure 2: Trajectory types and temporal encoding: (a) Stationary trajectory and cycle (outer
paths) vs. non-stationary trajectory and swirl (inner paths); (b) Time is encoded by pass order.

Whether a policy is strictly stationary or generally non-stationary depends on whether trajectories
are allowed to form cycles (Figure [2d] left). Because the decision is made locally, it can capture
only limited distinctions: forming cycles produces closed, repeating behavior, ensuring strict sta-
tionarity (outer, pink trajectories), while avoiding cycles allows the broader set of non-stationary
policies (inner, purple trajectories). To enforce this distinction, we define that stationary policies
assign the same color label to transitions whose trajectories end in the same state, forming single-
colored trajectory trees, whereas non-stationary policies assign each transition a distinct color label
(Equation [] refined from Equation[3). A key consequence is that stationary trajectories can limit
each other’s expansions: distinct branches of the same color cannot overlap since there cannot be a
transition with a repeated color leading to two distinct paths. This issue is addressed in Section 3.3}
Cycles are thus possible only by connecting matching-colored transitions. On the other hand, non-
stationary policies produce swirls: trajectories that revisit the same states yet treat transitions as
distinct, enabling cyclic-like behavior without committing to strict stationarity (Figure 23] right).

c=c ,for stationary policies
c# ¢, for non-stationary policies

(Policy Following) (a',c) ~ m(s,a,¢,8') { 4)

In our trajectory-based formulation, there is no need to track time — time is implicit in the structure
of the trajectory itself. For instance, in Figure[2b] an agent visiting state s1; three times (¢t=0, 6, 14)
the position of each occurrence in the trajectory (first, second, third) determines the appropriate
action (down, right, and up, respectively), allowing the agent to take different actions at each occur-
rence of s without referencing an explicit time step ¢. This implicit encoding offers a key advantage:
the agent can update the return estimates for all occurrences of a state in all trajectories at once (e.g.,
when moving from s to s11, update all transitions), rather than revisiting that state at different time
steps as required in time-dependent policies, leading to a greater sample efficiency. Moreover, each
transition in a given trajectory also marks the start of a well-defined (smaller) trajectory, capturing
the information from that point forward. In Figure 2b] state s1; appears in three “sub-trajectories’:
one covering all three visits, one for the last two, and one with the final visit (i.e., different tail sizes
of the trajectory).

3.3 SPURIOUS DOMINATION IN CYCLES, SWIRLS, AND REGULAR TRAJECTORIES

Domination occurs when a trajectory 7; yields a higher return than 75. Spurious (false) dominations
arise when there is: (i) differences in horizon length: when a longer trajectory may seem better
simply by having more opportunity to accumulate reward, even if a shorter one would eventually
yield a higher return (Figure [3a] left). This problem is exacerbated with cycles or swirls, which
repeatedly dominate the very transitions that support it (Figure [3a] right); (ii) reward estimate fre-
quency (also known as reward-frequency): when frequently visited transitions converge faster to

Under review as a conference paper at ICLR 2026

(60,-4) walus -
a) | eselee’ U (14-14)(22,22) B) . c) .ﬁ d) 20.1)
=) . .
T | 755 B . : @02 T -(603)
L] - - L
: : . "~ (70,-2)
. (6,-2) | ¢ (30,-2) H
. — :
. 1 visit | = 5 visits . (80,-5)
. - H (60.-5)
v d " L]
differences in differences in reward incomplete regular
horizon length estimate frequency structural information domination

Figure 3: (Spurious) Dominations. Dotted lines: dominated paths; ‘x’: early termination; tuples:
return and length (simplified). Spurious domination due to (a) differences in length of trajectories
(left), and cycles and swirls (right); (b) differences in reward estimate frequency; (¢) undetected
cycle (outer path). (d) Regular domination: dominated trajectory gets split and later updated.

stable and higher-valued reward estimates, dominating less visited ones (Figure [3b); or (iii) incom-
plete structural information: when undetected cycles may be incorrectly dominated by higher-return
trajectories, despite their structural ability to yield arbitrarily longer paths and greater returns (Fig-

ure |3c).

To address (i), we include a step-based reward component encoding rajectory length | (Equation[3).
In strictly positive-reward settings, a negative length term prevents trivial domination by penalizing
unnecessarily long trajectories; in strictly negative settings, a positive term allows the agent to learn
longer trajectories that would otherwise be dominated due to compounding penalties; while in mixed
rewards, both cases may occur. We handle all cases uniformly by treating length as a negative
reward and applying a min-shift to all rewards. This normalization, along with the uniform growth
of the trajectory length, supports fair comparisons and consistent treatment of trajectory length. To
address (ii), we use average rewards (Equation @, normalizing cumulative rewards 7, by visit
count 7.,n¢ for balanced convergence. Together, (i) and (ii) address spurious domination in non-
stationary policies, where trajectories and swirls extend naturally. We address (iii) in Section [3.6]
where cycle information is explicitly managed.

) I(s,a,d)+1 Lif(s',a',d)er
(Trajectory Length) I(s,a,¢) = {1 S (sal) ¢ T ®)
(Average Reward) 7(8,a) = Tsum (5, @) /Tcount (8, @) (6)

Ultimately, domination arises only when a shorter trajectory 7, yields higher returns than an existing
trajectory T with the same start and end states. When domination occurs, the 7 gets split at the start
state into a valid sub-trajectory, connected to the trajectory’s end, and to dangling, outdated transi-
tions, each of which must be re-learned — as in Figure[3d|(this issue is mitigated in Section[3.5). If
left outdated, the agent eventually reaches a state missing the corresponding PTT entry (from Sec-
tion [3.1)) despite the trajectory being unfinished from the agent’s perspective. Outdated transitions
can also be pruned. Furthermore, after learning, the length component can be omitted from policy
selection, leaving for execution only the trajectories that maximize the original task rewards.

3.4 INFINITE HORIZON BEHAVIOR AND UNDISCOUNTED RETURNS

With the inclusion of positive cycles and swirls, the problem naturally shifts from an episodic to an
infinite horizon setting, where cumulative returns may grow unbounded. Although we define tra-
jectories with well-defined return G and length [, the issue remains as the trajectories can still grow
unbounded in length. A common solution is to apply discounting to ensure returns converge. How-
ever, this undermines interpretability: the final return no longer reflects the total reward collected,
but rather a weighted sum that is harder to interpret. Additionally, discounting the trajectory length
component has the same effect as bounding the trajectories by a maximum length, which raises the
question of whether finite trajectories can approximate infinite-horizon behavior.

Under review as a conference paper at ICLR 2026

We define a policy not as a single trajectory but as a sequence of trajectories, allowing the agent to
run indefinitely while letting users choose a learned return or a custom one, with the agent adjusting
collected returns (across subsequent trajectories) to preserve the chosen average return (Equation][7).
This modeling also allows swirls to emulate cycles: once a trajectory ends, the agent can repeatedly
reuse overlapping parts of the swirl. Infinite trajectories are thus unnecessary, and maximum length
can be tuned, particularly when longer trajectories add no further gain in maintaining the average
return. A planning phase can optionally complement learning by pre-checking the feasibility of
custom returns or verifying that learned trajectories suffice to guarantee the average returns.

7(s,a) — G(s',d,c)

I(s'a',c')+1

(Average Return) G(s,a,c) = G(s,a,c) + @)

With the average return defined, we introduce the Q-function (Equation [8), capturing the return G
as the product of the average return G and trajectory length [. Together, the components introduced
so far suffice for non-stationary policies; the following sections continue to address stationary ones.

(O-Function) Q(s,a,c) = G(s,a,c) = G(s,a,c) x I(s,a,c) (8)

3.5 IDENTIFYING AND MANAGING STATIONARY TRAJECTORIES

As noted in Section [3.2] stationary trajectories may block one another, since a transition cannot
belong to multiple trajectories of the same color. For example, in Figure {a] (left), two trajectories
diverge and later converge. Only one can retain the shared color, forcing the other to be recolored.
Recoloring, however, breaks the stationarity guarantee presented in Equation [4] even though the
trajectories remain stationary, which can cause the agent to miss many stationary trajectories.

Stationary Segments Mapping

o MumEE
(TRAJECTORY LENGTH, COLOR) b)

a) | no stationarity

L]
guarantee .
L
L]
v
(3,GREEN)
(1,GREEN)
;(1,GREEN)
;(1,GREEN)
from forced recoloring dominated segments are
to uniquely colored segments updated and reconnected

Figure 4: Managing stationary trajectories. Dotted lines show dominated paths. (a, left) Station-
ary trajectory must be recolored; (a, right) We propose uniquely-colored segments and a Stationary
Segments Mapping. (b) Revisited domination: the segment is updated and reconnected (in blue).

We propose (i) decomposing each trajectory into segments o — defined as a sequence of transitions
that forms a sub-partition of trajectories — and assigning a unique color to each segment, o(°), such
that whenever a trajectory branches into a new path, a new color is assigned to the forming segment;
(i1) introducing a Stationary Segments Mapping (SSM) that tracks such colored segments along
with where they start in the trajectory (by the remaining length) — depicted in Figure [a] (right).
To preserve stationarity across trajectories, the agent must then track the order of visited segments
during execution; and (iii) applying cycle detection (discussed in Section [3.6) to prevent trajectories
from extending past a cycle and becoming non-stationary. This approach replaces single-colored
trajectory trees with uniquely-colored segment trees, where each new branching introduces a new
color, allowing stationary trees to extend and change colors flexibly while preserving stationarity.
The policy-following rule is accordingly updated from Equation 4] to Equation [0}

c=c orc#c forstationary policies (w/ SSM)
c#c for non-stationary policies

(Policy Following) (a',c) ~7(s,a,c, s/),{ ©)

To preserve the structure of these segment trees, no two segments may share the same color. This
requires revisiting trajectory domination (Section[3.3). When a domination occurs, the head segment

Under review as a conference paper at ICLR 2026

of the split now receives a new color ¢, updated return G and length /, and is reconnected to the
dominant trajectory (Figure @b)). In addition to the trajectory return G and length [, we also store the
segment-level return G and length /, which under these domination dynamics, will remain up-to-
date. If a length mismatch is detected when switching segments, the entire segment can be updated
without revisiting every state (as observed in Section[3.3), improving sample efficiency.

3.6 PERFORMING CYCLE DETECTION

Cycles offer a clear benefit of representing an infinite horizon with a well-defined return while
remaining bounded in length. However, detecting cycles is nontrivial due to an inherent ambiguity.
As illustrated in Figurera'_ﬁl, when connecting transitions from s to s11, in faded green, it is unclear
whether this connection forms a cycle (in orange) — that is, whether the trajectory eventually leads
back to itself — or merely encounters a separate trajectory and forms a longer path (in blue), since
both cases yield the same return GG and length [. In addition to the ambiguity, cycles often lack a
well-defined end state (Section [3.3), causing them to dominate their tail transitions and rendering
incoming trajectories repeatedly outdated. If a maximum trajectory length is imposed, the cycle
eventually exhausts the length budget, preventing any incoming trajectory from reaching the cycle.

Stationary Segments Mapping

a) b) (TRAJECTORY LENGTH, COLOR))
510 (12,-6) SRR N — gg';'éi:))
i :(1,GREEN)
A :(1,GREEN)
(;r ' ;(1,GREEN)
(10,BLUE); ;(1,GREEN)
v , (9,BLUE); ;(1,GREEN)
(1,RED)
is it a potential cycle tail matches two cycles
or just a longer path? enable cycle detection detected

Figure 5: Performing cycle detection. Tuples denote return and length (simplified). (a) Ambiguity:
cycle or longer path? (b) Tail matches confirm a cycle. (c¢) Resulting detected cycles.

Building on the segment tree structure defined in Section [3.5] we propose the following cycle de-
tection mechanism. If the potential connection occurs between transitions with the same color ¢
(e.g., yellow to yellow, Figure[5b)), they must belong to the same segment, and a cycle can be safely
formed. If the colors differ, we must determine whether both transitions lie on the same trajectory.
This determination is done by checking whether the shorter trajectory is a suffix of the longer one,
that is, whether one is the tail of the other. To verify this, we use the SSM (Section [3.3)) to compare
the segments by color ¢ and length [. If one is indeed a suffix of the other, the transitions belong to
the same trajectory (e.g., blue to yellow); if not, the paths must have diverged and represent distinct
trajectories (e.g., red to blue and yellow to green), as illustrated in Figure [5bby the red Xs.

Once a cycle is detected (two resulting cycles in Figure [5¢)), we store a copy of its transitions for
two reasons. First, all cycle transitions receive a new color ¢, with each transition marked as part
of the cycle and sharing the same return G and length {. This copy ensures the original unmodified
trajectories remain stationary. With cycle detection in place, the agent avoids exhausting maximum
trajectory length budgets and repeatedly dominating its own transitions (discussed in Section [3.3).

4 ABLATION STUDIES

We analyze key design choices through ablations on the well-known DeepSeaTreasure (Vamplew
et al.l |2011)) problem, implemented in MO-Gymnasium (Alegre et al., 2022) and adapted to an
infinite-horizon setting (agent goes to the initial state after the end of an episode). DeepSeaTrea-
sure is a gridworld that tests the trade-off between treasure value and time (i.e., choosing between
shallow, low-value treasures and deeper, higher-value ones). Agents are trained for 10,000 steps,
averaging results over 20 seeds. Each ablation study (AS1-AS8) evaluates a specific aspect from
Section [3] with Figures [6aH6d] presenting the main results, and hypothesis, experiments, metrics,
and results summarized in Table[T] and further ablation explanations are below the table.

Under review as a conference paper at ICLR 2026

Table 1: Ablation plan. Each row tests a design choice with metrics and expected outcomes.

S - Stationary; NS - Non-stationary; NPS - Naive Policy Selection; PF - Pareto Front; ND - non dominated.

Id Ablation Hypothesis / Experiment / Metrics / Results

AS1 Policy tracking Lack of trajectory-level tracking causes agents to follow dominated poli-
vs. state-wise cies. Experiment: NPS (i.e., random non-dominated actions) vs. S and
ND selection NS policies. Metrics: Policy coverage. Results: NPS gets less treasure

value because it combines state-wise ND actions into trajectories that of-
ten yield dominated solutions (Figure @

AS2 Learning the Allowing NS policies enables full PF recovery; restricting to S policies
full/convex limits recovery to its convex subset (thus lower hypervolume). Experi-
PF with NS/S ment: S vs. NS policies. Metrics: Policy coverage; convergence speed.
policies Results: NS polices recover the full PF, whereas S ones recover only the

convex subset (Figure [6a| and [6b).

AS3 Horizon-length Longer trajectories spuriously dominate others without normalization.
bias in Experiment: Disable trajectory length. Metrics: Hypervolume over
domination time. Results: No observable difference, as the environment already in-

corporates a length-like component, time penalty (Figure @])

AS4 Reward- Reward frequency biases domination, causing frequent low-reward poli-
frequency cies to appear superior to sparse high-reward ones. Experiment: Disable
bias in average reward. Metrics: Hypervolume over time. Results: Imbalanced
domination reward frequencies destabilize learning and degrade performance (Fig-

ure [6b).

AS5 Structural-info Failure to detect cycles biases Pareto comparisons, making cycles appear
gaps in dominated by high-return trajectories. Experiment: S without cycle de-
domination tection. Metrics: Hypervolume over time. Results: Failing to detect

cycles sharply degrades performance (Figure @

AS6 Maximum Maximum trajectory length affects whether policies sustain stable re-
trajectory-length turns. Experiment: Vary max length (2, 5, 10, 20, 30). Metrics: Hy-
sensitivity and pervolume from promised (max_length steps) vs. realized (1,000 steps).
policy selection Results: Promised and realized returns align, indicating sustained return

over following multiple trajectories (Figure .

AS7 Blocking SSM prevents blocking and coloring conflicts, enabling stationary poli-
segments cies to be recovered correctly. Experiment: Disable SSM. Metrics: Hy-
and SSM pervolume from promised (max_length steps) vs realized (1,000 steps).

Results: Promised and realized returns not only align but also improve,
confirming correct recovery with SSM (Figure .

AS8 Split-and- Applying segment updates improves sample efficiency and accelerates
reconnect recovery after dominated trajectories. Experiment: Disable reconnec-
segment tion. Metrics: # of splits; # of mismatches. Results: Split-and-reconnect
updates yields substantially fewer trajectory-length mismatches (Figure @

Figure [6a (AS1, AS2) reports returns for non-stationary (NS), stationary (S), and naive policy se-
lection (NPS, i.e., selecting random non-dominated actions). We tested whether policies achieved
the learned returns on average, with NPS using the same target returns as NS. NS policies recover
the full Pareto Front, whereas S policies cover only the convex subset, and NPS yields many domi-
nated solutions. Note that NPS only performs better for small time penalties (—1 and —2) because
it captures better treasure/time penalty on average, while NS and S obtain their learned return.

Figure (AS2-AS5) shows hypervolume[]_-] convergence for S and NS policies, around 1,000 time
steps. The figure also highlights spurious domination, represented by 3 biases: horizon length bias
(red), reward-frequency bias (purple), and structural information (pink). Note that square markers
are all for NS and triangles for S policies. Disabling trajectory-length (AS3) does not affect horizon-

'A larger hypervolume indicates a better-performing algorithm for convergence (solutions are close to the
true PF) and diversity (solutions are well-spread along the PF, that is, a good range of trade-offs).

Under review as a conference paper at ICLR 2026

a) Policy Coverage b) Convergence Speed and Spurious Domination
M 80 4 .. m Non-Stationary 1750 4 —#— Non-Stationary Stationary
= 70 4 Hp A Stationary —— Horizon-length bias Structural-info bias
§ b [T] @ Naive Policy Selection 1500 1 —m— Reward-frequency bias
L 60+ o
3 E 1250 L L L L L L L L
@ 50+ 5
2 ' 10001
= 404 2
2 304 § 750
© T
S 204 500 |
£ > . N L "
> 10
Is} 250
01 0
-30 -25 -20 =15 -10 =5 0 0 2000 4000 6000 8000
Time Penalty Time Steps
c) Promised vs Realized Returns d) Trajectory Splits and Length Mismatches
a0 #. Total # of trajectories O Promised [400 175 | — Split-and-later-update

~# # of trajectories (width) @ Realized | 350 150 Split-and-reconnect
= 3629 |77329 34992 2 --= # of splits
= 301) Py e 1 300 g £ 135{ — # of mismaiches
3 E k250 5 E
> 2264 [} 100 A
520 i 200 2 3
= [T
"] a 751
Q 150 > ¢
T 10 839 r s _|\ e
= 100 o 501 e cmmememenE

77 328 S N et

e ¥ B A N e
129 116 199 205 205 | 3538 9373 o 0k
I=2 =5 I=10 =20 [=30 OFF ON 0 2000 4000 6000 8000
Method - NS max length (left), SSM ON or OFF (right) Time Step

Figure 6: Ablation study results. Each plot shows different aspects of policy evaluation: (a) returns
for Stationary, Non-Stationary, and naive policies; (b) convergence and spurious domination; (c) tra-
jectory lengths and promised vs realized returns; (d) trajectory splitting and length mismatches.

length bias (red line), as the time penalty already acts as a trajectory length, balancing the returns.
In contrast, the purple line shows that the reward-frequency bias (AS4) case causes slight instability
and lower performance. Disabling cycle detection in S (ASS5) removes structural guidance, further
limiting performance (pink line with almost no hypervolume).

Figure [6c| (AS6, AS7) examines maximum-length sensitivity in NS policies and the effect of en-
abling SSM in S policies. Violin plots show trajectory length distributions, with promised returns
representing values presented to the user and realized returns representing values obtained after
1,000 steps. The match between promised and realized returns (right Y axis shows the hypervol-
ume) indicates the agent sustains average returns over longer horizons. In DeepSeaTreasure, the
return (8.2, —3) yields the best average among all treasures, explaining why [= 2 underperforms,
whereas [> 5 achieves greater hypervolume. Enabling SSM is crucial for stationary policies: with-
out it, cycle detection is disabled, limiting long-horizon performance. The figure also shows that
SSM causes trajectories to be shorter, as cycle detection halts growth once a cycle forms.

Figure[6d| (AS8) reports splits (dashed lines) and mismatches (solid lines). Mismatches occur when
trajectories end prematurely, while splits indicate domination. Since splits are similar, lower mis-
matches for Split-and-Reconnect (orange lines) demonstrate the agent quickly reconnects and up-
dates segments, leading to a higher sample efficiency.

5 CONCLUSION

We introduced design principles that extend TD-based multi-policy MORL from episodic to infinite-
horizon settings. Our trajectory-centric framework enables reliable tracking and execution of both
stationary and non-stationary policies, supports cycle detection, and prevents spurious domination
from horizon mismatches or incomplete information. Through ablation studies, we showed how
each principle contributes to recovering diverse, interpretable, and stable policies. Looking ahead,
these principles provide a foundation for extending TD-based methods to deep settings, where scal-
able representation and online adaptation remain open challenges. By ensuring well-defined behav-
ior in infinite horizons, our framework provides a path toward practical multi-policy MORL systems
that can support preference-driven decision-making in complex domains.

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We have taken several measures to ensure reproducibility. A detailed description of our algorithm,
training procedures, and evaluation protocols is provided in Section [3[and [4] of the main text, with
further implementation details in Appendix [A] We also provide our code and scripts in the supple-
mentary materials, which enable end-to-end reproduction of all experiments.

REFERENCES

Lucas N. Alegre, Florian Felten, El-Ghazali Talbi, Grégoire Danoy, Ann Nowé, Ana L. C. Bazzan,
and Bruno C. da Silva. MO-Gym: A library of multi-objective reinforcement learning environ-
ments. In Proceedings of the 34th Benelux Conference on Artificial Intelligence BNAIC/Benelearn
2022, 2022.

Indraneel Das and John E. Dennis. A closer look at drawbacks of minimizing weighted sums of ob-
jectives for pareto set generation in multicriteria optimization problems. Structural optimization,
14:63-69, 1997.

Conor F. Hayes, Roxana Ruadulescu, Eugenio Bargiacchi, Johan Kallstrom, Matthew Macfar-
lane, Mathieu Reymond, Timothy Verstraeten, Luisa M. Zintgraf, Richard Dazeley, Fredrik
Heintz, Enda Howley, Athirai Aravazhi Irissappane, Patrick Mannion, Ann Now’e, Gabriel
de Oliveira Ramos, Marcello Restelli, Peter Vamplew, and Diederik M. Roijers. A practical guide
to multi-objective reinforcement learning and planning. Autonomous Agents and Multi-Agent
Systems, 36, 2021.

Chi Jin, Akshay Krishnamurthy, Max Simchowitz, and Tiancheng Yu. Reward-free exploration for
reinforcement learning. ArXiv, abs/2002.02794, 2020.

Lawrence Mandow and José-Luis Pérez de-la Cruz. Pruning dominated policies in multiobjective
pareto g-learning. In Conferencia de la Asociacion Espariola para la Inteligencia Artificial, 2018.

Kristof Van Moffaert and Ann Nowé. Multi-objective reinforcement learning using sets of pareto
dominating policies. J. Mach. Learn. Res., 15:3483-3512, 2014.

Simone Parisi, Matteo Pirotta, and Jan Peters. Manifold-based multi-objective policy search with
sample reuse. Neurocomputing, 263:3-14, 2017.

Mathieu Reymond and Ann Nowé. Pareto-dqn: Approximating the pareto front in complex multi-
objective decision problems. 2019.

Mathieu Reymond, Eugenio Bargiacchi, and Ann Now’e. Pareto conditioned networks. In Adaptive
Agents and Multi-Agent Systems, 2022a.

Mathieu Reymond, Conor F. Hayes, Lander Willem, Roxana Réidulescu, Steven Abrams,
Diederik M. Roijers, Enda Howley, Patrick Mannion, Niel Hens, Ann Now’e, and Pieter J. K.
Libin. Exploring the pareto front of multi-objective covid-19 mitigation policies using reinforce-
ment learning. Expert Syst. Appl., 249:123686, 2022b.

Diederik M. Roijers, Peter Vamplew, Shimon Whiteson, and Richard Dazeley. A survey of multi-
objective sequential decision-making. ArXiv, abs/1402.0590, 2013.

Diederik M. Roijers, Shimon Whiteson, and Frans A. Oliehoek. Computing convex coverage sets
for faster multi-objective coordination. J. Artif. Intell. Res., 52:399—-443, 2015.

Willem Ropke, Mathieu Reymond, Patrick Mannion, Diederik M Roijers, Ann Nowé, and Rox-
ana Rédulescu. Divide and conquer: Provably unveiling the pareto front with multi-objective
reinforcement learning. arXiv preprint arXiv:2402.07182, 2024.

Manuela Ruiz-Montiel, Lawrence Mandow, and José-Luis Pérez de-la Cruz. A temporal difference
method for multi-objective reinforcement learning. Neurocomputing, 263:15-25, 2017.

Peter Vamplew, Richard Dazeley, Adam Berry, Rustam Issabekov, and Evan Dekker. Empirical
evaluation methods for multiobjective reinforcement learning algorithms. Machine Learning, 84:
51-80, 2011.

10

Under review as a conference paper at ICLR 2026

Douglas John White. Multi-objective infinite-horizon discounted markov decision processes. Jour-
nal of Mathematical Analysis and Applications, 89:639-647, 1982.

Jingfeng Wu, Vladimir Braverman, and Lin F. Yang. Accommodating picky customers: Regret
bound and exploration complexity for multi-objective reinforcement learning. In Neural Infor-
mation Processing Systems, 2020.

A ALGORITHMIC DETAILS AND ANALYSIS

Tabular RL in the infinite-horizon setting follows the structure in Algorithm[I] The algorithm main-
tains a Q-Table of state—action values, updated incrementally as the agent interacts with the environ-
ment. At each step, the agent selects an action via an exploration policy (e.g., e-greedy), observes
the reward and next state, and applies the TD update on the Q-Table. As usual, the discount factor
~ weights future rewards, while the learning rate « controls how quickly new information overrides
old estimates. Repeated interactions refine the Q-values, which can then define a greedy policy. In
Sections and the Q-Table update is replaced by our non-stationary and stationary Multi-
Policy Update, respectively, and Section[A.3]discusses their time and space complexity.

Algorithm 1 Tabular RL for Infinite-Horizon

Require: State space S, action space A, learning rate «, discount factor ~y, exploration policy 7,

maximum steps 1’

1: Initialize Q(s, a) arbitrarily forall s € S,a € A

2: fort =1to T do

3: Observe current state s;

4: Select action a; according to m(Q, s¢)

5: Execute a;, observe reward r; and next state s

6 Update Q-Table:

Qs ar) = Qsp, ar) + |7 + ymax Q(se1, a') = Q(s4, ar)

~

St < St+1
end for
return Q)(s, a)

o %

A.1 NON-STATIONARY

Algorithm [2] outlines the update procedure for the non-stationary multi-policy. The method extends
standard TD updates to maintain multiple policies simultaneously via the Q-Table and a Policy-
Transition Table — PTT (from Section [3.1)).

Step 1. Retrieve from Q-Table the non-dominated set at the next state s’, consisting of tuples
(s',a’, ") whose Q-values are non-dominated.

Step 2. If the set is empty, then s’ is being visited for the first time and Q(s’, a’, ¢’) has no entries.
In this case, add a new Q-value estimate for (s, a, ¢) from reward r with trajectory length 1.

Step 3. Fetch all PTT entries (s, a, ¢, s, a’, ¢') associated with the current transition (s, a, s’). Delete
PTT entries whose successors (s, a’, ¢’) are no longer in the non-dominated set (obsolete). Their Q-
value estimates (i.e., (s, a, ¢) restart with reward r and trajectory length 1. Add any entries from the
non-dominated set to the PPT, associating them with the current (s, a) and generating a new color ¢
for each association (s, a, ¢, s’,a’, ¢’), thereby extending trajectories from s’ to s with distinct colors
¢; and adding 1 to the trajectory length.

Step 4. Use each updated PTT entry to update the Q-Table according to Equations [7]and 8]

Step 5. Prune dominated entries from (s, a) in the Q-Table and then in the PTT, preserving only
Pareto-optimal (s, a, ¢) entries for future updates.

11

Under review as a conference paper at ICLR 2026

Algorithm 2 Multi-Policy Update: Non-Stationary

Require: Current state s, action a, next state s’, Q-Table, Policy Transition Table (PTT)
1: Step 1: Fetch ND entries
next_state_nd_set < fetch_nd_set(Q, s’) > (s',a’, ') entries
Step 2: Initialize Q-Table if no ND entries at s’
if next_state_nd_set is empty then
¢ + generate_new_color()
ADD entry (s, a,c) to Q-Table
end if
Step 3: Fetch PTT entries for transition (s, a, s’), add new and discard old transitions
9: ptt_entry_set < fetch_ptt_entries(PTT, s, a, s") > (s,a,¢,8,ad,) entries
10: ptt_old_entries <— ptt_entries_set — next_state_nd_set > Compare (s',a’, c'), keep PTT entry
11: for (s,a,c,s’,a’, ') in ptt_old_entries do
12: DELETE entry (s,a,c,s',a’,c) from PPT
13: end for(s,a,c,s',da’,c)
14: ptt_new_entries <+ next_state_nd_set — ptt_entries_set > Compare (s',a’, '), keep (s, a’,c’)
15: for (s',a’, ') in ptt_new _entries do

PRI AL

16: ¢ < generate_new_color()
17: ADD entry (s,a,c,s',a',c) to PTT
18: end for

19: Step 4: Update Q-Table for each PTT entry

20: for (s,a,c,s’,a’,c’) in ptt_entries do

21: ADD/UPDATE entry (s, a, c) to Q-Table > Update done via Equation [7]and [§]
22: end for

23: Step 5: Clean up dominated entries

24: state_action_dominated_set <— fetch_dominated_set(Q, s, a)

25: for (s, a, ¢) in state_action_dominated_set do

26: DELETE entry (s, a, c) from Q-Table

27: DELETE entry from PTT which starts with (s, a, c) as in (s,a,c, s’ ,a’,)

28: end for

A.2 STATIONARY

Algorithm [3|outlines the update procedure for the stationary multi-policy. In addition to the Q-Table
and Policy Transition Table (PTT), it incorporates the Stationary Segments Mapping — SSM (from

Section [3.3)).

Step 1. Retrieve from Q-Table the non-dominated set at the next state s’, consisting of tuples
(s',d’, ") whose Q-values are non-dominated.

Step 2. If the set is empty, then s’ is being visited for the first time and Q(s’, a’, ¢’) has no entries.
In this case, add a new Q-value estimate for (s, a, ¢) from reward r with trajectory length 1.

Step 3. Fetch all PTT entries (s, a, ¢, s’,a’, ¢') associated with the current transition (s, a, s’). Un-
like the non-stationary case, no entries are obsolete: dominated trajectories are reconnected. Add
non-dominated successors from Step 1 to the PTT, linking them to (s, a) with the appropriate color c.
Assign a new color if (s, a, ¢) is already reached by another entry; otherwise, reuse the existing color,
thereby extending trajectories from s’ to s with trajectory length +1.

Step 4. Update the Q-Table using each revised PTT entry, according to Equations [7]and [§]

Step 5. Check for cycles. If one is found, duplicate its transitions and assign them a new shared
color; otherwise, update the SSM with the new PTT entry.

Step 6. Prune dominated entries from (s, a) in the Q-Table. Reconnect all prior associations from
pruned entries to their dominant counterparts in the PTT, updating their Q-Values, and generating
new colors as in Step 3. This preserves only Pareto-optimal (s, a, ¢) entries for future updates.

12

Under review as a conference paper at ICLR 2026

Algorithm 3 Multi-Policy Update: Stationary

Require: Current state s, action a, next state s’, Q-Table, Policy Transition Table (PTT), Stationary

PRI R

Segments Mapping (SSM)
Step 1: Fetch ND entries
next_state_nd_set < fetch_nd_set(Q, s”) > (s',a’,) entries
Step 2: Initialize Q-Table if no ND entries at s’
if next_state_nd_set is empty then
¢ < generate_new_color()
ADD entry (s, a,c) to Q-Table

end if
Step 3: Fetch PTT entries for transition (s, a, s’) and add new transitions
ptt_entry_set < fetch_ptt_entries(PT'T, s, a, s) > (s,a,c,8,d,) entries

ptt_new_entries < next_state_nd_set — ptt_entries_set > Compare (s',a’, '), keep (s',a’, ')

: for (s',a’,) in ptt_new_entries do

¢ + fetch_or_generate_color(s’, a’, c¢’) > Repeat color if first extension, new one otherwise
ADD entry (s,a,c,s',a’,c) to PTT

: end for
: Step 4: Update Q-Table for each PTT entry
: for (s,a,c,s',a’,) in ptt_entries do

ADD/UPDATE entry (s, a, c) to Q-Table > Update done via Equation [7]and

: end for
. Step 5: Check for cycles and update the SSM

for (s,a,c,s’,d’,) in ptt_entries do
if cycle is detected in PTT then
Identify all transitions in the cycle
c < generate_new_color()
for each transition in the cycle do
DUPLICATE the transition
UPDATE SSM with the new PTT entry
end for
else
UPDATE SSM with the new PTT entry
end if

: end for

: Step 6: Clean up dominated entries

: dominated_set + fetch_dominated_set(Q, s, a)
: for each d:(s, a, ¢) in dominated_set do

for each PTT entry ending in (s, a,c), i.e., (s%,..,, a%ycp, Choys 5, 0,) dO
Cnew < fetch_or_generate_color() > As in Step 3
RECONNECT previous links with color c and update Q-Table and PTT with ¢,

end for
DELETE Q-Table entry (s, a, c)
DELETE PTT entries starting from (s, a,c), i.e., (s,a,c,s',a’,c)

: end for

A.3 ALGORITHMIC COMPLEXITY

We summarize the worst-case computational complexity of the stationary and non-stationary multi-
policy updates.

The non-stationary update is dominated by computing the non-dominated set for the next state
(Step 1 in Algorithm[2). Let M denote the number of objectives and N, the total number of Q-value
estimates for all actions @’ in the next state s’. The worst-case complexity is O(MN2) ~ O(N2),
as the number of objectives is constant. This arises from pairwise comparisons of all Q-value vectors
in s’ across objectives.

In addition to doing the same work as the non-stationary update, the stationary update also iterates
over stationary segments (from SSM) when checking for cycles (Step 5 in Algorithm [3)) and over

13

Under review as a conference paper at ICLR 2026

outdated segments to update and reconnect them (Step 6 in Algorithm[3)). Let .S denote the number of
stationary segments, N, the number of Q-value estimates for the current state-action pair (s, a) used
for cycle detection, Ep and F,; the numbers of dominant and dominated entries, respectively, and Ld
the dominated trajectory length. The worst-case complexity is O(M N2 + SNy, Ny + LyE4Ep) ~
O(N 52, + SNgoNg + LgE4Ep), where the first term corresponds to computing the non-dominated
set, the second to iterating over stationary segments for cycle detection, and the third to updating
dominated segments. Here, N 32/ > Ny Ny since Ny, counts only the estimates for the current
action. In the worst case, S can be as large as the trajectory length of the smaller trajectory in each
pair comparison.

For both stationary and non-stationary updates, space complexity is dominated by the Q-Table and
PTT. The Q-Table stores one entry per non-dominated trajectory for each state-action pair, requiring
at most O(|S||A| Nmax) space, where Ny ax is the maximum number of non-dominated trajectories
per state-action. The PTT stores the transitions leading to these trajectories, with a worst-case bound
of O(|S)?|A| Nmax), though in practice it is much smaller. Similarly, the SSM stores stationary
segments, with space proportional to the number of non-dominated segments. Because the number
of stationary segments is smaller than the number of transitions, the SSM is smaller than the PTT.

B USE OF LARGE LANGUAGE MODELS (LLMS)

We used Large Language Models (LLMs) to support writing and research. Specifically, they were
employed to polish and refine phrasing for clarity and conciseness, to assist in exploring alternative
framings of ideas (e.g., refining how concepts and contributions are presented, not generating new
research directions), to complement traditional tools (e.g., Google Scholar) in identifying related
work, and to provide limited coding support, such as boilerplate code for plotting or debugging
assistance. The models did not contribute at the level of a coauthor, and all research design, imple-
mentation, analysis, and conclusions are our own.

14

	Introduction
	Related Work on MORL
	Methodology
	Following a policy through trajectories
	Learning stationary and non-stationary policies
	Spurious domination in cycles, swirls, and regular trajectories
	Infinite horizon behavior and undiscounted returns
	Identifying and managing stationary trajectories
	Performing cycle detection

	Ablation Studies
	Conclusion
	Algorithmic details and analysis
	Non-Stationary
	Stationary
	Algorithmic Complexity

	Use of large language models (LLMs)

