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ABSTRACT

In this paper, we consider non-smooth convex optimization with a zeroth-order
oracle corrupted by symmetric stochastic noise. Unlike the existing high-probability
results requiring the noise to have bounded κ-th moment with κ ∈ (1, 2], our
results allow even heavier noise with any κ > 0, e.g., the noise distribution can
have unbounded expectation. Our convergence rates match the best-known ones
for the case of the bounded variance, namely, to achieve function accuracy ε our
methods with Lipschitz oracle require Õ(d2ε−2) iterations for any κ > 0. We
build the median gradient estimate with bounded second moment as the mini-
batched median of the sampled gradient differences. We apply this technique to the
stochastic multi-armed bandit problem with heavy-tailed distribution of rewards
and achieve Õ(

√
dT ) regret. We demonstrate the performance of our zeroth-order

and MAB algorithms for different κ on synthetic and real-world data. Our methods
do not lose to SOTA approaches and dramatically outperform them for κ ≤ 1.

1 INTRODUCTION

During the recent few years, stochastic optimization problems with heavy-tailed noise received a lot
of attention from many researchers. In particular, heavy-tailed noise is observed in various problems,
such as the training of large language models [3; 44], generative adversarial networks [13; 14], finance
[35], and blockchain [43]. One of the most popular techniques for handling heavy-tailed noise in
theory and practice is the gradient clipping [15; 6; 31; 34] which allows deriving high-probability
bounds and considerably improves convergence even in case of light tails [37].

However, most of the mentioned works focus on the gradient-based (first-order) methods. For some
problems, e.g., the multi-armed bandit [10; 1; 23; 4], only losses or function values are available, and
thus, zeroth-order algorithms are required. Stochastic zeroth-order optimization is being actively
studied. For a detailed overview, see the recent survey [11] and the references therein. The only
existing works that handle heavy-tailed noise in convex zeroth-order optimization are [19; 20] which
combine clipping and gradient smoothing [12] techniques. Under noise with bounded κ-th moment
for κ ∈ (1, 2], the authors obtain optimal high-probability convergence for d-dimensional non-smooth
convex problems, i.e., function accuracy ε is achieved in Õ(

√
dε−1)

κ
κ−1 oracle calls. These rates

match the optimal rates for first-order optimization [15], however, they degenerate as κ→ 1, and the
convergence is not guaranteed for κ = 1.

For symmetric (and close to symmetric) heavy-tailed noise distributions, the degeneration issue can
be handled via median estimators [46; 34], which are frequently used in robust mean estimation
and robust machine learning [27]. In the case of first-order methods, the authors of [34] achieve
better complexity guarantees and show that the narrowing of the distributions’ class is essential for
it. However, the possibility of application of the median estimators to the case of the zeroth-order
optimization and multi-armed bandit remains open. In this paper, we address this question.

1.1 CONTRIBUTIONS

Theory I. We propose our novel theoretical zeroth-order oracle (Assumption 4) that allows us to
incorporate fine-grained features of the noise probability distributions. We use it to successfully
utilize symmetry of the heavy-tailed noise and dramatically improve current convergence results.
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Table 1: Number of successive iterations to achieve a function’s accuracy ε with high probability;
unconstrained optimization via Lipschitz oracle with bounded κ-th moment. Constants b, d,M ′

2
denote the batch size, dimensionality and the Lipschitz constant of the oracle, respectively.

ZO-clipped-SSTM [20] ZO-clipped-med-SSTM (this work)
κ > 1, b oracle calls per iter. κ > 0, symmetric noise, bκ calls

Convex Õ
(
max

{
d

1
4M ′

2

ε , 1b

(√
dM ′

2

ε

) κ
κ−1

})
Õ
(
max

{
d

1
4M ′

2

ε , 1b

(
dM ′

2

ε

)2})
µ-str. conv. Õ

(
max

{
d

1
4M ′

2

ε , 1b

(
d(M ′

2)
2

µε

) κ
2(κ−1)

})
Õ
(
max

{
d

1
4M ′

2

ε , 1b
d2(M ′

2)
2

µε

})

Theory II. We propose our novel ZO-clipped-med-SSTM (§3.2) for unconstrained optimization and
ZO-clipped-med-SMD (§3.3) for optimization on convex compact which successfully incorporate
median clipping technique. For any symmetric heavy-tailed noise with bounded κ-th moment κ > 0,
our methods achieve not degenerating convergence rates with high-probability which match the
optimal rates for ZO minimization under any noise with the bounded variance. In the Table 1, we
provide convergence guarantees for the unconstrained case.

Theory III. We propose Clipped-INF-med-SMD (§4) for the stochastic multi-armed bandit (MAB)
with symmetric heavy-tailed reward distribution. For MAB with d arms and time interval T , in
Theorem 3, we obtain the Õ(

√
dT ) bound on the regret, which is optimal and matches the lower

bound Ω(
√
dT ) for stochastic MAB with any reward distribution and bounded variance. Moreover,

this bound holds not only in expectation but with controlled large deviations.

Practice. We demonstrate in the series of experiments (§5) on extremely noised real and synthetic
data superior performance of our methods in comparison with previously known SOTA approaches.

We compare our algorithms with previous approaches and discuss its limitations in §6.

2 PRELIMINARIES

In this section, we introduce general notations and assumptions on optimized functions. We also
recall popular gradient smoothing and clipping techniques.

Notations. For vector x ∈ Rd and p ∈ [1, 2], we define p-norm as ∥x∥p
def
=

(
d∑
i=1

|xi|p
) 1

p

and

its dual norm as ∥x∥q, where 1
p + 1

q = 1. In the case q = ∞, we define ∥x∥∞ = max
i=1,...,d

|xi|.

We denote the Euclidean unit ball Bd2
def
= {x ∈ Rd : ∥x∥2 ≤ 1}, the Euclidean unit sphere

Sd2
def
= {x ∈ Rd : ∥x∥2 = 1} and the probability simplex ∆d

+
def
= {x ∈ Rd+ :

∑d
i=1 xi = 1}.

Median operator Median({ai}2m+1
i=1 ) applied to the elements sequence of the odd size 2m+1,m ∈ N

returns m-th order statistics. We also use short notation for max operator, i.e. a ∨ b def
= max(a, b).

Assumption 1 (Strong convexity). The function f : Rd → R is µ-strongly convex, if there exists
µ ≥ 0 such that for all x1, x2 ∈ Rd and λ ∈ [0, 1] :

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2)−
1

2
µλ(1− λ)∥x1 − x2∥22,

If µ = 0 we say that the function is just “convex”.
Assumption 2 (Lipschitz continuity). The function f : Rd → R is M2-Lipschitz continuous w.r.t.
the Euclidean norm, if there exists M2 > 0, such that for all x1, x2 ∈ Rd:

|f(x1)− f(x2)| ≤M2∥x1 − x2∥2.

If a differentiable function has L-Lipschitz gradient, we call it L-smooth.

Randomized smoothing. The main scheme that allows us to develop gradient-free methods for
non-smooth convex problems is randomized smoothing [9; 12; 29; 30; 40]. For the fixed smoothing

2
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parameter τ > 0, we build a smooth approximation f̂τ for a non-smooth f : Rd → R as:

f̂τ (x)
def
= Eu[f(x+ τu)], (1)

where u ∼ U(Bd2 ) is a random vector uniformly distributed on the Euclidean unit ball Bd2 .

If the function f is µ-strongly convex (As 1) and M2-Lipschitz (As 2), then the smoothed function f̂τ
is µ-strongly convex and

√
dM2/τ-smooth. Moreover, it does not differ from the original f too much,

namely, (See Lemma 2 from Appendix B.1)

sup
x∈Rd

|f̂τ (x)− f(x)| ≤ τM2. (2)

Clipping. To handle heavy-tailed noise, we use a clipping technique which clips tails of gradient’s
distribution. For the clipping level λ > 0 and q−norm, where q ∈ [2,+∞], we define the clipping
operator clip for arbitrary non-zero gradient vector g ∈ Rd as follows:

clipq (g, λ) =
g

∥g∥q
min (∥g∥q, λ) .

3 ZEROTH-ORDER OPTIMIZATION WITH SYMMETRIC HEAVY-TAILED NOISE

In this section, we present our novel algorithms for zeroth-order optimization with independent
and Lipschitz oracles. In subsection 3.1, we introduce the problem, symmetric heavy-tailed noise
assumptions and median estimation with its properties. In subsection 3.2, we propose our accelerated
batched ZO-clipped-med-SSTM for unconstrained problems. In subsection 3.3, we describe our
ZO-clipped-med-SMD for problems on convex compacts. All proofs are located in Appendix B.

3.1 THEORY

We consider a non-smooth convex optimization problem on a convex set Q ⊆ Rd:
min
x∈Q

f(x), (3)

where f : Rd → R is d-dimensional, µ-strongly convex (As 1) and M2-Lipschitz (As 2) function. A
point x∗ denotes one of the problem’s solutions. In zeroth-order setup, the optimization is performed
only by accessing the pairs of function evaluations rather than sub-gradients.

Two-point oracle. For any two points x, y ∈ Rd, an oracle returns the pair of the scalar values
f(x, ξ) and f(y, ξ), which are noised evaluation of real values f(x) and f(y). Moreover, noised
values have the same realization of the stochastic variable ξ and can be written as

f(x, ξ)− f(y, ξ) = f(x)− f(y) + ϕ(ξ|x, y),
where ϕ(ξ|x, y) is the stochastic noise, whose distribution depends on points x, y.

3.1.1 NOISE DISTRIBUTION.

We propose our novel assumption on distribution of ϕ(ξ|x, y), induced by a random variable ξ. It
allows us to introduce symmetry and heavy-tailed noise with bounded up to κ-th moments, κ > 0.
Assumption 3 (Symmetric noise distribution). Symmetry. For any two points x, y ∈ Rd, noise
ϕ(ξ|x, y) has symmetric probability density p(u|x, y), i.e. p(u|x, y) = p(−u|x, y),∀u ∈ R.

Heavy tails. We assume that there exist κ > 0, γ > 0 and scale function B(x, y) : Rd × Rd → R,
such that ∀u ∈ R holds

p(u|x, y) ≤ γκ · |B(x, y)|κ

|B(x, y)|1+κ + |u|1+κ
. (4)

We consider two possible oracles:

Independent oracle: ϕ(ξ|x, y) distribution doesn’t depend on points x, y, i.e.,
γ ·B(x, y) ≡ ∆. (5)

Lipschitz oracle: ϕ(ξ|x, y) distribution becomes more concentrated around 0 as x, y become closer:
|γ ·B(x, y)| ≤ ∆ · ∥x− y∥2, (6)

where ∆ > 0 is the noise Lipschitz constant.
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This assumption covers a majority of symmetric absolutely continuous distributions with bounded up
to κ-th moments. For example (Remark 5), if ξ has Cauchy distribution, then one can use

• Independent oracle: f(x, ξ) = f(x) + ξx, f(y, ξ) = f(y) + ξy with independent ξx, ξy .
• Lipschitz oracle: f(x, ξ) = f(x)+⟨ξ, x⟩, f(y, ξ) = f(y)+⟨ξ, y⟩, where ξ is d-dimensional

random vector. Oracle gives the same realization of ξ for both x and y.

Comparison with previous oracles. Our Assumption 3 is quite different from the standard assump-
tions from [8; 20]. We make our assumption on variable ϕ(ξ|x, y) with fixed x, y. It allows us to set
and use fine-grained properties of the noise distribution, e.g., symmetry or heavy tails of particular
type (4). In [20], the authors fix ξ and make assumption on x, y. Hence, they can not access the
distribution of the noise and use only the fact of having bounded κ-th moment. Nevertheless, when
κ ∈ (1, 2], our Assumption 3 can be reduced to the standard one with the same constant, Remark 3.

We would like to highlight the fact that the common proof techniques from previous works can not
be trivially generalized to apply symmetry without our novel assumption. For example, the proof
of median estimator’s properties Lemma 1 is based on completely different approach. We refer to
Appendix A for more details and intuition behind Assumption 3.

3.1.2 MEDIAN ESTIMATION.

In our pipeline, instead of minimizing the non-smooth function f directly, we propose to minimize the
smooth approximation f̂τ with the fixed smoothing parameter τ via first-order methods. Following
(2), the solution for f̂τ is also a good approximate minimizer of f when τ is sufficiently small.

Following [38], the gradient of f̂τ at point x ∈ Rd can be estimated by the vector:

g(x, e, ξ) =
d

2τ
(f(x+ τe, ξ)− f(x− τe, ξ))e (7)

=
d

2τ
(f(x+ τe)− f(x− τe) + ϕ(ξ|x+ τe, x− τe))e,

where e ∼ U(Sd2 ) is a random vector uniformly distributed on the Euclidean unit sphere Sd2 .
Moreover, e, ξ are independent of each other conditionally on x. However, the noise ϕ might have
unbounded first and second moments. To fix this, we lighten tails of ϕ to obtain an unbiased estimate
of ∇f̂τ . For a point x ∈ Rd, we apply the component-wise median operator to 2m + 1 samples
{g(x, e, ξi)}2m+1

i=1 with independent ξi and the same x and e:

Medm(x, e, {ξ}) def
= Median({g(x, e, ξi)}2m+1

i=1 ). (8)

The median operator can be applied to the batch of {ej}bj=1 with batch size b and further averaging:

BatchMedmb (x, {e}, {ξ}) def
=

1

b

b∑
j=1

Medm(x, ej , {ξ}j). (9)

For a large enough number of samples, median estimations have bounded second moment.
Lemma 1 (Median estimation’s properties). Consider µ-strongly convex (As. 1) and M2-Lipschitz
(As. 2) function f with oracle corrupted by noise under As. 3 with ∆ and κ > 0. If median size
m > 2

κ with norm q ∈ [2,+∞], then ∀x ∈ Rd the median estimates (8) and (9) are unbiased, i.e.,

Ee,ξ[Med
m(x, e, {ξ})] = Ee,ξ[BatchMed

m
b (x, {e}, {ξ})] = ∇f̂τ (x),

and have bounded second moment, i.e.,

Ee,ξ[∥BatchMedmb (x, {e}, {ξ})−∇f̂τ (x)∥22] ≤ σ2

b
, (10)

Ee,ξ[∥Medm(x, e, {ξ})−∇f̂τ (x)∥2q] ≤ σ2a2q, aq = d
1
q−

1
2 min{

√
32 ln d− 8,

√
2q − 1}. (11)

For independent oracle, we have σ2 = 8dM2
2 + 2

(
d∆
τ

)2
(2m+ 1)

(
4
κ

) 2
κ , and, for Lipschitz oracle,

we have σ2 = 8dM2
2 + (16m+ 8)d2∆2

(
4
κ

) 2
κ .
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3.2 ZO-clipped-med-SSTM FOR UNCONSTRAINED PROBLEMS

We present our novel ZO-clipped-med-SSTM which works on the whole space Q = Rd with the
Euclidean norm. We base it on the first-order accelerated clipped Stochastic Similar Triangles Method
(clipped-SSTM) with the optimal high-probability complexity bounds from [15]. Namely, we use its
zeroth-order version ZO-clipped-SSTM from [20] with the batched median estimation (9).

Algorithm 1 ZO-clipped-med-SSTM

Input: Starting point x0 ∈ Rd, number of iterations K, median size m, batch size b, stepsize a > 0,
smoothing parameter τ , clipping levels {λk}K−1

k=0 .
1: Set L =

√
dM2/τ , A0 = α0 = 0, y0 = z0 = x0.

2: for k = 0, . . . ,K − 1 do
3: Set αk+1 = (k+2)/2aL, Ak+1 = Ak + αk+1, xk+1 = Aky

k+αk+1z
k

Ak+1
.

4: Sample independently sequences {e} ∼ U(Sd2 ) and {ξ} .
5: gk+1

med = BatchMedmb (xk+1, {e}, {ξ}).
6: zk+1 = zk − αk+1 · clip2

(
gk+1
med, λk+1

)
, yk+1 = Aky

k+αk+1z
k+1

Ak+1
.

7: end for
Output: yK

Theorem 1 (Convergence of ZO-clipped-med-SSTM). Consider convex (As. 1) and M2-Lipschitz
(As. 2) function f on Rd with two-point oracle corrupted by noise under As. 3 with ∆ and κ > 0. We
set batch size b, median size m = 2

κ + 1 and initial distance R = ∥x0 − x∗∥. To achieve function
accuracy ε, i.e., f(yK)− f(x∗) ≤ ε with probability at least 1− β via ZO-clipped-med-SSTM
with parameters A = ln 4K/β ≥ 1, a = Θ(min{A2, σK

2
√
Aτ/

√
bdM2R}), λk = Θ(R/(αk+1A)) and

smoothing parameter τ = ε
4M2

, the number of iterations K must be

Õ

(
d

1
4M2R

ε
∨ (

√
dM2R)

2

b · ε2

(
1 ∨

(
4

κ

) 2
κd∆2

ε2

))
, Õ

(
max

{
d

1
4M2R

ε
,
d(M2

2+d∆
2/κ

2
κ )R2

b · ε2

})
,

for independent and Lipschitz oracle, respectively. Each iteration requires (2m+ 1) · b oracle calls.
Moreover, with probability at least 1− β the iterates of ZO-clipped-med-SSTM remain in the ball
with center x∗ and radius 2R, i.e., {xk}K+1

k=0 , {yk}Kk=0, {zk}Kk=0 ⊆ {x ∈ Rd : ∥x− x∗∥2 ≤ 2R}.

For Lipschitz oracle, the first term matches the optimal bound in terms of ε for the deterministic
non-smooth problems [5], and the second term matches the optimal bound for zeroth-order problems
with the finite variance [29]. Under "optimal bound" here, we mean the optimal bound for the
problems with any noise. For the symmetric noise only, we are not aware of any proved bounds. In
terms of d, we obtain the factor dM2

2 + d2∆2/κ
2
κ instead of (

√
dM2 +

√
d∆)

κ
κ−1 from [20].

In case of one-point oracle, while noise ϕ is “small”, i.e.,

∆ ≤
(κ
4

) 1
κ ε√

d
(12)

convergence rate is preserved. This bound on ∆ is optimal in terms of ε, see [25; 33; 36].

For µ−strongly-convex functions with Lipschitz oracle or independent oracle with small noise, we
apply the restarted version of ZO-Clipped-med-SSTM. Algorithm’s description, more details and
results are located in Appendix C.1.

3.2.1 EXTENDED CLASSES OF THE OPTIMIZED FUNCTIONS

Remark 1 (Smooth objective). The estimates presented in Theorem 1 can be improved by in-
troducing a new assumption, namely the assumption that the objective function f is L-smooth
with L > 0: ∥∇f(y)−∇f(x)∥2 ≤ L∥y − x∥2, ∀x, y ∈ Rd. Using this assumption, we ob-
tain the following value of the smoothing parameter τ =

√
ε/L [see 11, the end of Section
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4.1]. Thus, assuming smoothness and convexity (As. 1) of the objective function and assum-
ing symmetric noise (As. 3), we obtain the following estimates for the iteration complexity:

Õ
(
max

{√
LR2

ε , (
√
dR)2

b·ε2

(
M2

2 ∨
(
4
κ

) 2
κ dL∆2

ε

)})
and Õ

(
max

{√
LR2

ε ,
d(M2

2+d∆
2/κ

2
κ )R2

b·ε2

})
for independent and Lipschitz oracle, respectively. These rates match the iteration’s complexity for
the full gradient coordinate-wise estimation.
Remark 2 (Polyak–Lojasiewicz objective). The results of Theorem 1 can be extended to the
case when the objective function satisfies the Polyak–Lojasiewicz condition via restarts: let a
function f(x) is differentiable and there exists constant µ > 0 s.t. ∀x ∈ Rd the following in-
equality holds ∥∇f(x)∥22 ≥ 2µ(f(x) − f(x∗)). Then, assuming smoothness (see Remark 1) and
Polyak–Lojasiewicz condition for the objective function and assuming symmetric noise (As. 3), we ob-

tain the following estimates for the iteration complexity: Õ
(
max

{
L
µ ,

dL
bµ2ε

(
M2

2 ∨
(
4
κ

) 2
κ dL∆2

ε

)})
and Õ

(
max

{
L
µ ,

dL(M2
2+d∆

2/κ
2
κ )

bµ2ε

})
for independent and Lipschitz oracle, respectively.

3.3 ZO-clipped-med-SMD FOR CONSTRAINED PROBLEMS

We propose our novel ZO-clipped-med-SMD to minimize functions on a convex compact Q ⊂ Rd.
We use unbatched median estimation (8) in the zeroth-order algorithm ZO-clipped-SMD from [19],
which is based on Mirror Gradient Descent.

We define 1-strongly convex w.r.t. p—norm and differentiable prox-function Ψp. We denote its
convex (Fenchel) conjugate and its Bregman divergence, respectively, as

Ψ∗
p(y) = sup

x∈Rd

{⟨x, y⟩ −Ψp(x)}, VΨp
(y, x) = Ψp(y)−Ψp(x)− ⟨∇Ψp(x), y − x⟩.

Algorithm 2 ZO-clipped-med-SMD
Input: Number of iterations K, median size m, stepsize ν, prox-function Ψp, smoothing parameter

τ , clipping level λ.
1: x0 = argmin

x∈Q
Ψp(x).

2: for k = 0, 1, . . . ,K − 1 do
3: Sample e from U(Sd2 ) and sequence {ξ}.
4: gk+1

med = Medm(xk+1, e, {ξ}).
5: yk+1 = ∇(Ψ∗

p)(∇Ψp(xk)− ν · clipq
(
gk+1
med, λ

)
), xk+1 = argmin

x∈Q
VΨp

(x, yk+1).

6: end for

Output: xK := 1
K

K∑
k=0

xk

Theorem 2. Consider convex (As. 1) and M2-Lipschitz (As. 2) function f with two-point oracle
corrupted by noise under As. 3 with κ > 0. To achieve function accuracy ε, i.e., f(xK)− f(x∗) ≤ ε
with probability at least 1− β via ZO-clipped-med-SMD with median size m = 2

κ + 1, clipping

level λ = σaq
√
K, stepsize ν =

DΨp

λ , diameter D2
Ψp

def
= 2 sup

x,y∈Q
VΨp(x, y), prox-function Ψp and

τ = ε
4M2

, the number of iterations K must be

Õ

(
(
√
dM2aqDΨp)

2

ε2

(
1 ∨

(
4

κ

) 2
κ d∆2

ε2

))
, Õ

(
d(M2

2 + d∆2/κ
2
κ )a2qD

2
Ψp

ε2

)
(13)

for independent and Lipschitz oracle, respectively. Each iteration requires (2m+ 1) oracle calls.

Bounds (13) match optimal in terms of ε bounds for stochastic non-smooth optimization on convex
compact with the finite variance [42]. The upper bound for ∆ under which the convergence rate is
preserved is the same as for unconstrained optimization (12).

For µ-strongly-convex functions with Lipschitz oracle or independent oracle with small noise, we
apply the restarted version of ZO-Clipped-SMD. Algorithm and results are located in Appendix C.2.
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4 APPLICATION TO THE MULTI-ARMED BANDIT PROBLEM WITH HEAVY TAILS

In this section, we present our novel Clipped-INF-med-SMD algorithm for multi-armed bandit
(MAB) problem with heavy-tailed rewards.

Introduction. The stochastic MAB problem [21] can be formulated as follows: an agent at each
time step t = 1, . . . , T chooses an action At from a given action set A = (a1, . . . , an) and suffers
stochastic loss. For each action ai, there exists a probability density function for losses p(ai), and an
agent doesn’t know them in advance. An agent can observe losses only for one action at each step,
namely, the one it chooses. At each round t, when action ai is chosen (i.e. At = ai), stochastic loss
µAt + ξAt,t sampled from p(ai) independently. Agent’s goal is to minimize average regret:

E[RT ] =

T∑
t=1

[µAt − µ∗] , µ∗ = min
ai∈A

µi.

One of the main approaches for solving the MAB problem is to use reduction to the online convex
optimization problem [17; 32]. Consider stochastic linear loss functions lt(xt) = ⟨µ+ ξt, xt⟩, with
noise ξt and unknown fixed vector of expected losses µ ∈ Rd. The decision variable xt ∈ △d

+ can be
viewed as the player’s mixed strategy (probability distribution over arms), which they use to sample
arms with the aim to minimize expected regret

E[RT (u)] = E

[
T∑
t=1

lt(xt)− min
u∈△d

+

(
T∑
t=1

lt(u)

)]
.

The player observes only sampled losses for the chosen arm, i.e., the (sub)gradient g(x) ∈ ∂l(x) is
not observed in the MAB setting, and one must use an inexact oracle instead.

Related works. Bandits with heavy tails were introduced in [23; 4]. The heavy noise assumption
usually requires the existence of κ ∈ (1, 2], such that E[∥µ+ξt∥κ] ≤ σκ (in this work, we use different
Assumption 3 with κ > 0). In [4], the authors provide lower bounds on regret Ω

(
σd

κ−1
κ T

1
κ

)
and

nearly optimal algorithmic scheme called Robust UCB. Recently, a few optimal algorithms were
proposed [22; 47; 18; 7] with regret bound Õ

(
σd

κ−1
κ T

1
κ

)
. HTINF [18] is an INF-type algorithm

with a specific pruning procedure. Algorithm 1/2-Tsallis [47] is similar to HTINF. INF-clip [7]
employs a clipping mechanism instead of pruning, it clips rewards at the initial stage of the estimator
construction process, prior to applying importance weighting. The main drawback of this procedure
that the importance weighting procedure can artificially produce a burst in the gradient estimator.
Finally, APE [22] is a perturbation-based exploration strategy that uses a p-robust mean estimator.
Its algorithmic scheme is UCB-type and is very different from our algorithm.

Our approach. We assume that noise ξt satisfy Assumption 3 for some κ > 0. We construct our
Clipped-INF-med-SMD (Algorithm 3) based on Online Mirror Descent, but in case of symmetric
noise we can improve regret upper bounds and make it Õ(

√
dT ) which is optimal compared to the

lower bound Ω(
√
dT ) for stochastic MAB with the bounded variance of losses. In our algorithm, we

use an importance-weighted estimator:

ĝt,i =

{
gt,i
xt,i

if i = At

0 otherwise
,

where At is the index of the chosen (at round t) arm. This estimator is unbiased, i.e. Ext
[ĝt] = gt.

The main drawback of this estimator is that, in the case of small xt,i, the value of ĝt,i can be arbitrarily
large. When the noise gt − µ has heavy tails (i.e., ∥gt − µ∥∞ can be large with high probability), this
drawback can be amplified. That is why we use robust median estimation with further clipping.
Theorem 3. Consider MAB problem where the conditional probability density function for each loss
satisfies Assumption 3 with ∆, κ > 0, and ∥µ∥∞ ≤ R. Then, for the period T , the sequence {xt}Tt=1

generated by Clipped-INF-med-SMD with parameters m = 2
κ + 1, τ =

√
d, ν =

√
(2m+1)√

T (36c2+2R2)
,

λ =
√
T and prox-function Ψ1(x) = ψ(x)

def
= 2

(
1−

∑d
i=1 x

1/2
i

)
satisfies

E [RT (u)] ≤
√
dT · (8c2/

√
d+ 4

√
(2m+ 1)(18c2 +R2)), u ∈ ∆d

+, (14)
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Algorithm 3 Clipped-INF-med-SMD
Input: Time period T , median size m, stepsize ν, prox-function Ψp, clipping level λ.

1: x0 = arg min
x∈△d

+

Ψp(x).

2: Set number of iterations K =
⌈
T−1
2m+1

⌉
.

3: for k = 0, 1, . . . ,K − 1 do
4: DrawAt for 2m+1 times (t = (2m+1)·k+1, . . . , (2m+1)·(k+1)) with P (At = i) = xk,i,

i = 1, . . . , d and observe rewards gt,At
.

5: For each observation, construct estimation ĝt,i =

{
gt,i
xk,i

if i = At

0 otherwise
,

i = 1, . . . , d.
6: gk+1

med = Median({ĝt}(2m+1)·(k+1)
t=(2m+1)·k+1).

7: yk+1 = ∇(Ψ∗
p)(∇Ψp(xk)− ν · clipq

(
gk+1
med, λ

)
), xk+1 = arg min

x∈△d
+

VΨp(x, yk+1).

8: end for

where c2 = (32 ln d− 8) ·
(
8M2

2 + 2∆2(2m+ 1)
(
4
κ

) 2
κ

)
. Moreover, high probability bounds from

Theorem 2 also hold. Proof of Theorem 3 is located in Appendix B.3.

5 NUMERICAL EXPERIMENTS

In this section, we demonstrate the superior performance of ours ZO-clipped-med-SSTM and
Clipped-INF-med-SMD under heavy-tailed noise on experiments on syntactical and real-world data.
Additional experiments and technical details are located in Appendix D.

5.1 MULTI-ARMED BANDIT

We compare our Clipped-INF-med-SMD with popular SOTA algorithms tailored to handle MAB
problem with heavy tails, namely, HTINF and APE. We focus on an experiment involving only
two available arms (d = 2). Each arm i generates random losses gt,i ∼ ξt + βi. Parameters
β0 = 3, β1 = 3.5 are fixed, and independent random variables ξt have the same probability density
pξt (x) =

1

3·
(
1+( x

3 )
2
)
·π

.

For all methods, we evaluate the distribution of expected regret and probability of picking the best
arm over 100 runs. The results are presented in Figure 1.

0 5000 10000 15000 20000 25000 30000

0.0

0.1

0.2

0.3

0.4

0.5

Average expected regret
APE
Clipped-INF-med-SMD
HTINF

0 5000 10000 15000 20000 25000 30000
0.0

0.2

0.4

0.6

0.8

1.0
Probability of best arm choice

Statistics for 100 tracks and arms count 2

Figure 1: Average expected regret and probability of optimal arm picking mean for 100 experiments
and 30000 samples with 0.95 and 0.05 percentiles for regret and ± std bounds for probabilities

As one can see from the graphs, HTINF and APE do not have convergence in probability, while our
Clipped-INF-med-SMD does, which confirms the efficiency of the proposed method. In Appendix
D.1, we provide technical details and additional experiments for different κ.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

5.2 CRYPTOCURRENCY PORTFOLIO OPTIMIZATION

We choose cryptocurrency portfolio optimization problem for Clipped-INF-med-SMD real world
application, since cryptocurrency pricing data is known by having heavy-tailed distribution. In our
scenario, we have n = 9 assets for investing. At step t, we choose assets’ distribution xt,i ∈ ∆n

and then observe the whole income vector rt,i for each asset i. The main goal is to maximize total
income maxE

∑T
t=1

∑n
i=1 rt,ixt,i over a fixed time interval with length T .

Portfolio selection has the full feedback for all assets, while, in standard bandits, we observe only
one asset per step. We adjust our Clipped-INF-med-SMD for the full feedback via calculating line
4 in Algorithm 3 for each asset i. As baselines, we use two strategies: hold ETH and the Efficient
Frontier method [28] with maximal sharp ratio portfolio selected. For a dataset, we use open prices
from Binance Spot for 2023.

The results are presented in Figure 2. As one can see, the Efficient Frontier strategy can’t efficiently
perform on cryptocurrency assets, and Clipped-INF-med-SMD achieved higher performance than
just holding the ETH strategy, so it can be applied for detecting potentially promising assets.
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Figure 2: Strategies profit coefficient and Clipped-INF-med-SMD assets distribution over 2023 year

5.3 ZEROTH-ORDER OPTIMIZATION

To demonstrate the performance of ZO-clipped-med-SSTM, we follow [20] and conduct experi-
ments on the following problem:

min
x∈Rd

∥Ax− b∥2 + ⟨ξ, x⟩,
where ξ is a random vector with independent components sampled from the symmetric Levy α-stable
distribution with different α = 0.75, 1.0, 1.25, 1.5, A ∈ Rl×d, b ∈ Rl. Note, that α has the same
meaning as κ, because this distribution asymptotic behavior is f(x) ∼ 1

|x|1+α for α < 2.

For ZO-clipped-med-SSTM, the best median size is m = 2. We compare it with the median
size m = 0 which is basically ZO-clipped-SSTM. We additionally compare our algorithm with
ZO-clipped-SGD from [20] and ZO-clipped-med-SGD — version of ZO-clipped-SGD with
gradient estimation step replaced with median clipping version from our work.

The results over 3 launches are presented in Figure 3. The green lines on the graphs represent
algorithms with median clipping. We can see that for extremely noised data κ ≤ 1, our median
clipping-based methods significantly outperform non-median versions. While, for standard heavy-
tailed noise κ > 1, our methods do not lose to other competitors.

In Appendix D.2, we provide technical details about hyperparameters, additional experiments with
enlarged number of launches and study asymmetric noise and its effect on our median methods.
Tuning of m. In experiments with both bandits and ZO methods, we grid search the median size
m among the range [3,5,7]. We noticed that unlike the choice of continuous the clipping level, the
choice of the discrete median size only slightly affects the convergence and does not require careful
fine-tuning. This range is enough to find an optimal median size for optimal convergence.

6 DISCUSSION

6.1 LIMITATIONS

Symmetric noise. The assumption of the symmetric noise can be seen as a limitation from a practical
point of view. It is indeed the case, but we argue that it is not as severe as it looks. A common
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Figure 3: Convergence of ZO-clipped-SSTM, ZO-clipped-med-SSTM, ZO-clipped-SGD and
ZO-clipped-med-SGD in terms of a gap function w.r.t. the number of consumed samples from the
dataset for different α = κ parameters (left-to-right and top-to-bottom: 0.75, 1.0, 1.25, 1.5)

strategy to solve a general optimization problem is to run several algorithms in a competitive manner
to see which performs better in practice. This approach is implemented in industrial solvers such
as Gurobi. Thus, if we have different algorithms, each suited to its own conditions, we can simply
test to see which one is faster for our particular case. In this scenario, we want a set of algorithms,
each designed for its specific case. Our algorithm can serve as one of the options in such mix, since it
provides considerable acceleration in a significant number of noise cases. Moreover, in experiments
with non-symmetric noises (§D.2.1), our methods do not lose to the baselines. Hence, running our
methods ends up with either typical convergence rates or faster rates for symmetric noises.

Known κ. In our Theorems 1, 2, 3, parameter κ is required to set optimal median size m = 2
κ + 1.

However, for the most common cases κ is at least 1 (i.e. expectation exists), hence we could take
median size m = 3. In case when parameter κ→ 0, we leave the construction of an adaptive scheme
[18] for future work. In practice, the choice of m can be limited to a small, discrete range.

6.2 COMPARISON WITH PREVIOUS WORKS

Unlike the baselines ZO-clipped-SSTM [20] and APE [22], HTINF [18] with simple clipping
and general heavy-tailed noise assumption κ ∈ (1, 2], our Algorithms 1, 2, 3 with median clipping
can work with extremely heavy-tailed noises κ ≤ 1. For any κ > 0, iterative complexity of our
methods remains as if noise had bounded variance, namely, Õ(d2ε−2) iterations to achieve function
accuracy or average regret ε. In contrast, the best-known baselines’ rates Õ((

√
dε−1)

κ
κ−1 ) deteriorate

depending on κ. However, such breaking results can be guaranteed only for symmetric noises, which
is not as serious limitation as it seems. Nevertheless, we show that, for asymmetric noises, our
methods in practice are competitive as well and perform at the same level as the baselines (§D.2.1).

6.3 FUTURE DIRECTIONS

Potential impact. We believe that ideas and obtained results from our work can inspire the community
to further develop both zeroth-order methods and clipping technique. Especially considering how
effectively our algorithms can work in a wide range of noise cases. For example, Lipschitz [26] and
linear [39] MAB and non-convex functions [24; 41; 45] remain out of the scope of our paper.

Broader impact. This paper presents work which goal is to advance the field of Optimization. There
are many potential societal consequences of our work, none of which we feel must be specifically
highlighted here.
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A REMARKS ABOUT THE ASSUMPTION ON THE NOISE

In this section, we discuss our novel noise Assumption 3. We provide comparison with previous
works (Remark 3), standard examples (Remark 5) and explain the roles of parameters (Remark 4).
Remark 3 (Comparison with previous assumptions). In works [8; 20], different assumption on
Lipschitz noise is considered. For any realization of ξ, the function f(x, ξ) is M ′

2(ξ)-Lipschitz, i.e.,

|f(x, ξ)− f(y, ξ)| ≤M ′
2(ξ)∥x− y∥2, ∀x, y ∈ Q (15)

and M ′
2(ξ)

κ has bounded κ-th moment (κ > 1), i.e., [M ′
2]
κ def
= Eξ[M ′

2(ξ)
κ] <∞.

We emphasize that if Assumption 3 holds with κ then one can find M ′
2(ξ, x, y) such that (15) holds

for any 1 < κ′ < κ with M ′
2 = O(M2 +∆), where constant in O(·) depends only on κ′.

Proof. Let noise ϕ(ξ|x, y) satisfies Assumption 3 with Lipschitz oracle and κ > 1, then it holds

|f(x, ξ)− f(y, ξ)| = |f(x)− f(y) + ϕ(ξ|x, y)|
≤ |f(x)− f(y)|+ |ϕ(ξ|x, y)|

As 2
≤ M2∥x− y∥2

+
|ϕ(ξ|x, y)|
∥x− y∥2

∥x− y∥2.

Let us denote M ′
2(ξ, x, y)

def
= M2 +

|ϕ(ξ|x,y)|
∥x−y∥2

and show that for any 1 < κ′ < κ random variable
M ′

2(ξ, x, y) has bounded κ′-th moment which doesn’t depend on x, y. We notice that

Eξ[|ϕ(ξ|x, y)|κ
′
] =

+∞∫
−∞

|u|κ
′
p(u|x, y)du

≤
+∞∫

−∞

|u|κ′
γκ|B(x, y)|κ

|B(x, y)|1+κ + |u|1+κ
du.

After substitution t = u/|B(x,y)|, we get

Eξ[|ϕ(ξ|x, y)|κ
′
] ≤ γκ|B(x, y)|κ

|B(x, y)|κ−κ′

+∞∫
0

|t|κ′

1 + |t|1+κ
dt

(6)
≤ γκ−κ

′
∆κ′

∥x− y∥κ
′

2

+∞∫
0

|t|κ′

1 + |t|1+κ
dt.

Integral I(κ′) =
+∞∫
0

γκ−κ′
|t|κ

′
dt

1+|t|1+κ converges since κ′ < κ but its value tends to ∞ as κ′ → κ − 0.

Finally, we have

Eξ[M ′
2(ξ, x, y)

κ′
]

= Eξ

[∣∣∣∣M2 +
|ϕ(ξ|x, y)|
∥x− y∥2

∣∣∣∣κ′]
Jensen inq, κ′ > 1

≤ 2κ
′−1

Mκ′

2 +
Eξ
[
|ϕ(ξ|x, y)|κ′

]
∥x− y∥κ′

2


≤ 2κ

′−1
[
Mκ′

2 + I(κ′)∆κ′
]
.

Therefore, M ′
2 = (Eξ[M ′

2(ξ, x, y)
κ′
])

1
κ′ = O(M2 + ∆), where constant in O(·) depends only on

κ′.
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Remark 4 (Role of the scale function B(x, y)). In inequality (4) due to normalization property of
probability density we must ensure that

+∞∫
−∞

γκ|B(x, y)|κ

|B(x, y)|1+κ + |u|1+κ
du ≥

+∞∫
−∞

p(u|x, y)du = 1.

One can make substitution t = u/|B(x, y)| and ensure that for κ ≤ 2
+∞∫

−∞

γκ|B(x, y)|κdu
|B(x, y)|1+κ + |u|1+κ

= γκ
+∞∫

−∞

dt

1 + |t|1+κ
κ=1
≥ γκπ.

Hence, γ is sufficient to satisfy

γ ≥
(
1

π

) 1
κ

.

As scale value |B(x, y)| decreases, quantiles of p(u|x, y) gets closer to zero. Therefore, |B(x, y)|
can be considered as analog of variance of distribution p(u|x, y).
Remark 5 (Standard oracles examples). To build noise ϕ(ξ|x, y) satisfying Assumption 3 with κ > 0
we will use independent random variables {ξk} with symmetric probability density functions pξk(u)

pξk(u) ≤
|γk∆k|κ

|∆k|1+κ + |u|1+κ
, ∆k, γk > 0,

such that for any real numbers {ak}nk=1 and sum
n∑
k=1

akξk it holds

p n∑
k=1

akξk
(u) ≤

(
n∑
k=1

|γkak∆k|
)κ

(
n∑
k=1

|ak∆k|
)1+κ

+ |u|1+κ
. (16)

Moreover, using Cauchy-Schwarz inequality we bound
n∑
k=1

|γkak∆k| ≤ ∥(γ1∆1, . . . , γn∆n)
⊤∥2 · ∥(a1, . . . , ak)⊤∥2. (17)

For example, variables ξk can have Cauchy distribution with κ = 1 and p(u) = 1
π

∆k

∆2
k+u

2

parametrized by scale ∆k. For the independent Cauchy variables with scales {∆k}nk=1 and any

real numbers {ak}nk=1, the sum
n∑
k=1

akξk is the Cauchy variable with scale
n∑
k=1

|ak|∆k. Therefore,

inequality (16) for Cauchy variables holds true. For oracles, we have the following constants.

• Independent oracle:

f(x, ξ) = f(x)+ξx, f(y, ξ) = f(y)+ξy, ϕ(ξ|x, y) = ξx−ξy , where ξx, ξy are independent
samples for each point x and y. Thus, we have the final scale ∆ = ∆x +∆y.

• Lipschitz oracle:

f(x, ξ) = f(x) + ⟨ξ, x⟩, f(y, ξ) = f(y) + ⟨ξ, y⟩, ϕ(ξ|x, y) = ⟨ξ, x − y⟩, where ξ is
d-dimensional random vector with components ξk. Oracle gives the same realization
of ξ for both x and y. In that case, the vector ξ can be restated to ξ = Aξind with
ϕ(ξ|x, y) = ⟨ξind, A⊤(x−y)⟩, where A is the correlation matrix and ξind are independent
Cauchy variables. Now, if the vector ξind has scales {∆k}nk=1, then we have γ and B(x, y)
from Assumption 3 equal to

γ =
1

π
,

B(x, y) =

d∑
k=1

|∆k[A
⊤(x− y)]k|

(17)
≤ ∥(∆1, . . . ,∆d)

⊤∥2||A⊤||2||x− y||2.
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B PROOFS

B.1 PROOF OF LEMMA 1.

To begin with, we need some properties of the smoothed approximation f̂τ .
Lemma 2 ([12], Theorem 2.1). Consider µ-strongly convex (As. 1) andM2-Lipschitz (As. 2) function
f . For the smoothed function f̂τ defined in (1), the following properties hold true:

1. Function f̂τ is M2-Lipschitz and satisfies

sup
x∈Rd

|f̂τ (x)− f(x)| ≤ τM2.

2. Function f̂τ is differentiable on Rd with the following gradient at point x ∈ Rd:

∇f̂τ (x) = Ee

[
d

τ
f(x+ τe)e

]
,

where e ∼ U(Sd2 ) is a random vector uniformly distributed on the unit Euclidean sphere.

3. Function f̂τ is L-smooth with L =
√
dM2/τ on Rd.

Proposition 1 (Strong convexity of f̂τ ). Consider µ-strongly convex (As. 1) function f . Then the
smoothed function f̂τ defined in (1) is also µ-strongly convex.

Proof. Function f is µ-strongly convex if for any points x, y ∈ Rd and t ∈ [0, 1] we have

f(xt+ y(1− t)) ≤ t · f(x) + (1− t) · f(y)− 1

2
µt(1− t)∥x− y∥22.

Following definition of f̂τ , we write down for u ∈ U(Bd2 ) inequality
f(xt+ y(1− t) + τu) = f((x+ τu) · t+ (y + τu) · (1− t))

≤ t · f(x+ τu) + (1− t) · f(y + τu)− 1

2
µt(1− t)∥x− y∥22.

Taking math expectation Eu from both sides, we have

Eu[f(xt+ y(1− t) + τu)] ≤ t ·Eu[f(x+ τu)] + (1− t) ·Eu[f(y+ τu)]− 1

2
µt(1− t)∥x− y∥22.

Proof of Lemma 1. Firstly, we notice from our construction of the oracle

f(x, ξ)− f(y, ξ) = f(x)− f(y) + ϕ(ξ|x, y), ∀x, y ∈ Rd,
we have

g(x, e, ξ) =
d

2τ
(f(x+ τe, ξ)− f(x− τe, ξ))

=
d

2τ
[f(x+ τe)− f(x− τe)]e+

d

2τ
ϕ(ξ|x+ τe, x− τe)e

and for Medm(x, e, {ξ}) we have

Medm(x, e, {ξ}) = Median
({
g(x, e, ξi)

}2m+1

i=1

)
= Median

({
d

2τ
[f(x+ τe)− f(x− τe)]e+

d

2τ
ϕ(ξi|x+ τe, x− τe)e

}2m+1

i=1

)

=
d

2τ
[f(x+ τe)− f(x− τe)]e (18)

+
d

2τ
Median

({
ϕ(ξi|x+ τe, x− τe)

}2m+1

i=1

)
e. (19)
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Finite second moment:

Further, we analyze two terms: gradient estimation term (18) and the noise term (19).

Following work [19] [Lemma 2.3.] we have an upper bound for the second moment of (18)

Ee

[∣∣∣∣∣∣∣∣ d2τ [f(x+ τe)− f(x− τe)]e

∣∣∣∣∣∣∣∣2
q

]
≤ da2qM

2
2 , (20)

where aq = d
1
q−

1
2 min{

√
32 ln d− 8,

√
2q − 1} is a special coefficient, such that,

Ee[∥e∥2q] ≤ a2q. (21)

See Lemma 2.1 from [16] and Lemma 8.4 from [19] for more details.

Next, we deal with noise term (19). For symmetric variable ϕ(ξ|x, y) for all x, y ∈ Rd under
Assumption 3 it holds

p(u) ≤ γκ|B(x, y)|κ

|B(x, y)|1+κ + |u|1+κ
.

Further, we prove that, for large enough m, noise term has finite variance. For this purpose, we
denote Y def

= Median
({
ϕ(ξi|x, y)

}2m+1

i=1

)
and cumulative distribution function of Y

P (t)
def
=

t∫
−∞

p(u)du.

Median of 2m+ 1 i.i.d. variables distributed according to p(u) is (m+ 1)-th order statistic, which
has probability density function

(2m+ 1)

(
2m
m

)
P (t)m(1− P (t))mp(t).

The second moment E[Y 2] can be calculated via

E[Y 2] =

+∞∫
−∞

(2m+ 1)

(
2m
m

)
t2P (t)m(1− P (t))mp(t)dt

≤ (2m+ 1)

(
2m
m

)
sup
t
{t2P (t)m(1− P (t))m}

+∞∫
−∞

p(t)dt

≤ (2m+ 1)

(
2m
m

)
sup
t
{t2P (t)m(1− P (t))m}.

For any t < 0, we have

P (t) =

t∫
−∞

p(u)du ≤
t∫

−∞

|γB(x, y)|κ

|B(x, y)|1+κ + |u|1+κ

≤
t∫

−∞

|γB(x, y)|κ

|u|1+κ
≤ |γB(x, y)|κ

κ
· 1

|t|κ
.

Similarly, one can prove that for any t > 0

1− P (t) =

∞∫
t

p(u)du ≤ |γB(x, y)|κ

κ
· 1

tκ
.
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Since for any number a ∈ [0, 1] holds a(1− a) ≤ 1
4 we have for any t ∈ R

P (t)(1− P (t)) ≤ min

{
1

4
,
|γB(x, y)|κ

κ
· 1

|t|κ

}
along with

t2P (t)m(1− P (t))m ≤ min

{
t2

4m
,

(
|γB(x, y)|κ

κ

)m
· 1

|t|mκ−2

}
. (22)

If mκ > 2 the first term of (22) increasing and the second one decreasing with the growth of |t|, then
the maximum of the minimum (22) is achieved when

t2

4m
=

(
|γB(x, y)|κ

κ

)m
· 1

|t|mκ−2
,

|t| = |γB(x, y)|
(
4

κ

) 1
κ

.

Therefore, we get for any t ∈ R

t2P (t)m(1− P (t))m ≤ |γB(x, y)|2

4m

(
4

κ

) 2
κ

,

and, as a consequence

E[Y 2] ≤ (2m+ 1)

(
2m
m

)
|γB(x, y)|2

4m

(
4

κ

) 2
κ

.

It only remains to note(
2m
m

)
=

(2m)!

m! ·m!
=

m∏
j=1

2j

j
·
m∏
j=1

2j − 1

j
≤ 4m.

Since Y has the finite second moment, it has finite math expectation

E[Y ] =

+∞∫
−∞

(2m+ 1)

(
2m
m

)
tP (t)m(1− P (t))mp(t)dt.

For any t ∈ R, due to symmetry of p(t), we have P (t) = (1− P (−t)) and p(t) = p(−t) and, as a
consequence,

E[Y ] =

+∞∫
−∞

(2m+ 1)

(
2m
m

)
tP (t)m(1− P (t))mp(t)dt = 0.

Finally, we have an upper bound for (19)

Ee,ξ

∣∣∣∣∣∣∣∣ d2τ Median({ϕ(ξi|x+ τe, x− τe)
})

e

∣∣∣∣∣∣∣∣2
q

=

(
d

2τ

)2

Ee[Eξ[Y 2|e] · ∥e∥2q]

≤
(
d

2τ

)2

(2m+ 1)

(
4

κ

) 2
κ

· Ee[|γB(x+ τe, x− τe)|2∥e∥2q]. (23)
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In case of the independent oracle, from Assumption 3 and (5) we simplify

Ee[|γB(x+ τe, x− τe)|∥e∥2q] ≤ ∆2Ee[∥e∥2q]
(21)
≤ ∆2a2q. (24)

In case of the Lipschitz oracle, we use (6) and get

Ee[|γB(x+ τe, x− τe)|∥e∥2q] ≤ 4∆2τ2Ee[∥e∥22∥e∥2q]
(21)
≤ 4∆2τ2a2q.

Combining upper bounds (20) and (24) or (25), we obtain total bound

Ee,ξ[∥Medm(x, e, {ξ})∥2q] ≤ 2 · (20) + 2 · (24)
(25).

For the batched gradient estimation BatchMedmb (x, {e}, {ξ}) and q = 2, we use Lemma 4 from
[20] that states

Ee,ξ[∥BatchMedmb (x, {e}, {ξ})∥22] ≤
1

b
· Ee,ξ[∥Medm(x, e, {ξ})∥22].

For the bound of the centered second moment, we use Jensen’s inequality for any random vector X

E[||X − E[X]||2q] ≤ 2E[||X||2q] + 2||E[X]||2q ≤ 4E[||X||2q].

Unbiasedness:

According to Lemma 2, the term (18) is an unbiased estimation of the gradient ∇f̂τ (x). Indeed, the
distribution of e is symmetrical and we can derive

Ee

[
d

2τ
[f(x+ τe)− f(x− τe)]e

]
= Ee

[
d

τ
[f(x+ τe)]

]
= ∇f̂τ (x).

Since Y has the finite second moment, it has finite math expectation

E[Y ] =

+∞∫
−∞

(2m+ 1)

(
2m
m

)
tP (t)m(1− P (t))mp(t)dt.

For any t ∈ R, due to symmetry of p(t), we have P (t) = (1− P (−t)) and p(t) = p(−t) and, as a
consequence,

E[Y ] =

+∞∫
−∞

(2m+ 1)

(
2m
m

)
tP (t)m(1− P (t))mp(t)dt = 0.

Hence, we obtained that Ee,ξ[Med
m(x, e, {ξ})] = ∇f̂τ (x) along with

Ee,ξ[BatchMed
m
b (x, {e}, {ξ})] = ∇f̂τ (x) as the batching is the mean of random vectors

with the same math expectation.

B.2 PROOF OF CONVERGENCE THEOREMS 1 AND 2

For any point x ∈ Rd, we might consider median estimations Medm(x, e, {ξ}) and
BatchMedmb (x, {e}, {ξ}) to be the oracle for the gradient of f̂τ (x) that satisfies Assumption 4.

Assumption 4. Let G(x, e, ξ) be the oracle for the gradient of function f̂τ (x), such that for any
point x ∈ Q it is unbiased, i.e.,

Ee,ξ[G(x, e, ξ)] = ∇f̂τ (x),
and has bounded second moment, i.e.,

Ee,ξ[∥G(x, e, ξ)−∇f̂τ (x)∥2q] ≤ Σ2
q, (25)

where Σq might depend on τ .
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Thus, in order to prove convergence of ZO-clipped-med-SSTM and ZO-clipped-med-SMD we
use general convergence theorems with oracle satisfying Assumption 4 for ZO-clipped-SSTM
(Theorem 1 from [20] with α = 2) and ZO-clipped-SMD (Theorem 4.3 from [19] with κ = 1). Next,
we take BatchMedmb (x, {e}, {ξ}) and Medm(x, e, {ξ}) as the necessary oracles and substitute Σq
from (25) with σ and σaq from Lemma 1, respectively.

B.2.1 UNCONSTRAINED PROBLEMS.

Theorem 4 (Convergence of ZO-clipped-SSTM). Consider convex (As. 1) and M2-Lipschitz (As.
2) function f on Rd with gradient oracle under As. 4 with Σ2.

We denote ∥x0 − x∗∥22 ≤ R2, where x0 is a starting point and x∗ is an optimal solution to (3).

We run ZO-clipped-SSTM for K iterations with smoothing parameter τ , batch size b, probability
1 − β and further parameters A = ln 4K/β ≥ 1, a = Θ(min{A2,Σ2K

2
√
Aτ/

√
dbM2R}), λk =

Θ(R/(αk+1A)). We guarantee that with probability at least 1− β:

f(yk)− f(x∗) = 2M2τ + Õ

(
max

{√
dM2R

2

τK2
,
Σ2R√
bK

})
.

Moreover, with probability at least 1− β the iterates of ZO-clipped-SSTM remain in the ball with
center x∗ and radius 2R, i.e., {xk}K+1

k=0 , {yk}Kk=0, {zk}Kk=0 ⊆ {x ∈ Rd : ∥x− x∗∥2 ≤ 2R}.

For ZO-clipped-med-SSTM, optimal convergence rate and parameters are presented in Theorem 5.

Theorem 5 (Convergence of ZO-clipped-med-SSTM). Consider convex (As. 1) and M2-Lipschitz
(As. 2) function f on Rd with two-point oracle corrupted by noise under As. 3 with κ > 0.

We denote ∥x0 − x∗∥22 ≤ R2, where x0 is a starting point and x∗ is an optimal solution to (3).

We run ZO-clipped-med-SSTM for K iterations with smoothing parameter τ , batchsize
b, probability 1 − β and further parameters m = 2

κ + 1, A = ln 4K/β ≥ 1, a =

Θ(min{A2, σK
2
√
Aτ/

√
bdM2R}), λk = Θ(R/(αk+1A)). We guarantee that with probability at least

1− β:

f(yk)− f(x∗) = 2M2τ + Õ

(
max

{√
dM2R

2

τK2
,
σR√
bK

})
, (26)

where σ comes from Lemma 1.

Moreover, with probability at least 1− β the iterates of ZO-clipped-med-SSTM remain in the ball
with center x∗ and radius 2R, i.e., {xk}K+1

k=0 , {yk}Kk=0, {zk}Kk=0 ⊆ {x ∈ Rd : ∥x− x∗∥2 ≤ 2R}.

Statement of Theorem 1 follows if we equate both terms of (26) to ε
2 , taking τ = ε

4M2
and explicit

formula for σ from Lemma 1.

B.2.2 CONSTRAINED PROBLEMS.

Theorem 6 (Convergence of ZO-clipped-SMD). Consider convex (As. 1) and M2-Lipschitz (As. 2)
function f on a convex compact Q with gradient oracle under As. 4 with Σq .

We run ZO-clipped-SMD for K iterations with smoothing parameter τ , norm q ∈ [2,+∞], prox-
function Ψp, probability 1 − β and further parameters λ = Σq

√
K, ν =

DΨp

λ , where squared

diameter D2
Ψp

def
= 2 sup

x,y∈Q
VΨp

(x, y). We guarantee that with probability at least 1− β:

f(yk)− f(x∗) = 2M2τ + Õ
(
ΣqDΨp√

K

)
.

For ZO-clipped-med-SMD, optimal convergence rate and parameters are presented in Theorem 7.

Theorem 7 (Convergence of ZO-clipped-med-SMD). Consider convex (As. 1) and M2-Lipschitz
(As. 2) function f on a convex compact Q with two-point oracle corrupted by noise As. 3 with κ > 0.
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We run ZO-clipped-med-SMD for K iterations with smoothing parameter τ , q ∈ [2,+∞], prox-
function Ψp, probability 1− β and further parameters m = 2

κ + 1, λ = σaq
√
K, ν =

DΨp

λ , where

diameter squared D2
Ψp

def
= 2 sup

x,y∈Q
VΨp(x, y). We guarantee that with probability at least 1− β:

f(yk)− f(x∗) = 2M2τ + Õ
(
σaqDΨp√

K

)
,

where σ, aq come from Lemma 1.

Statement of Theorem 2 follows if we equate both terms of (27) to ε
2 , taking τ = ε

4M2
and explicit

formulas for σ and aq from Lemma 1.

Recommendations for standard constrained problems. In this paragraph, we discuss some
standard sets Q and prox-functions Ψp taken from [2]. We can choose prox-functions to reduce
aqDΨp

and get better convergence constants. The two main setups are

1. Ball setup, p = 2, q = 2:

Ψp(x) =
1

2
∥x∥22,

2. Entropy setup, p = 1, q = ∞:

Ψp(x) = (1 + γ)

d∑
i=1

(xi + γ/d) log(xi + γ/d).

We consider unit balls Bdp′ and standard simplex △d
+ as Q. For Q = △d

+ or Bd1 , the Entropy setup is
preferable. Meanwhile, for Q = Bd2 or Bd∞, the Ball setup is better.

B.3 PROOF OF THEOREM 3

Lemma 3. Let f(x) be a linear function, then ∇f(x) = ∇f̂τ (x).

Proof.

∇f̂τ (x) = ∇Eu∼Bd
2
[f(x+ τu)] = ∇Eu∼Bd

2
[⟨µ, x+ τu⟩]

= ∇⟨µ, x+ τEu∼Bd
2
[u]⟩ = ∇⟨µ, x⟩ = ∇f(x).

Lemma 4. Let f(x) be a linear function, q = ∞, τ = α
√
d, then

Ee,ξ[∥gk+1
med − µ∥2∞] ≤ (32 ln d− 8) ·

(
8M2

2 + 2α2∆2(2m+ 1)

(
4

κ

) 2
κ

)
.

Proof. From 1 with q = ∞ and τ = α
√
d we get

Ee,ξ[∥Medm(x, e, {ξ})−∇f̂τ (x)∥2∞] ≤ σ2a2∞, a∞ = d−
1
2

√
32 ln d− 8,

where σ2 = d
(
8M2

2 + 2α2∆2(2m+ 1)
(
4
κ

) 2
κ

)
.

Hence, w.r.t (3) we get

Ee,ξ[∥gk+1
med − µ∥2∞] ≤ (32 ln d− 8) ·

(
8M2

2 + 2α2∆2(2m+ 1)

(
4

κ

) 2
κ

)
.
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Lemma 5. [Lemma 5.1 from [37]] Let X be a random vector in Rd and X̄ = clip(X,λ), then

∥X̄ − E[X̄]∥ ≤ 2λ. (27)

Moreover, if for some c ≥ 0

E[X] = x ∈ Rn, E[∥X − x∥2] ≤ c2

and ∥x∥ ≤ λ
2 , then ∥∥E[X̄]− x

∥∥ ≤ 4c2

λ
, (28)

E
[∥∥X̄ − x

∥∥2] ≤ 18c2, (29)

E
[∥∥X̄ − E[X̄]

∥∥2] ≤ 18c2. (30)

Remark 6. Combination of Lemma 4 and Lemma 5 with X = g
k(t)
med and x = µ in case when

λ ≥ 2∥µ∥∞ immidiatly get the following bounds:∥∥∥E[gk(t)med]− E[g̃k(t)med]
∥∥∥
∞

=
∥∥∥µ− E[g̃k(t)med]

∥∥∥
∞

≤ 4c2

λ
,

E
[
∥g̃k(t)med∥

2
∞

]
≤ 2E

[
∥g̃k(t)med − µ∥2∞ + ∥µ∥2∞

]
≤ 2∥µ∥2∞ + 36c2,

for c2 = (32 ln d− 8) ·
(
8M2

2 + 2α2∆2(2m+ 1)
(
4
κ

) 2
κ

)
.

Lemma 6. Suppose that Clipped-INF-med-SMD with 1/2-Tsallis entropy

ψ(x) = 2

(
1−

d∑
i=1

x
1/2
i

)
, x ∈ ∆d

+

as prox-function generates the sequences {xk}Kk=0 and {g̃kmed}Kk=0, then for any u ∈ ∆d
+ holds:

K∑
k=0

2m+1∑
s=1

⟨g̃kmed, xk − u⟩

≤ (2m+ 1)

[
2
d1/2 −

∑d
i=1 u

1/2
i

ν
+ ν

K∑
k=0

d∑
i=1

(⟨g̃kmed)2i · x
3/2
k,i

]
.

Proof. By definition, the Bregman divergence Vψ(x, y) is:

Vψ(x, y) = ψ(x)− ψ(y)− ⟨∇ψ(y), x− y⟩

= 2

(
1−

d∑
i=1

x
1/2
i

)
− 2

(
1−

d∑
i=1

y
1/2
i

)
+

d∑
i=1

y
−1/2
i (xi − yi)

= −2

d∑
i=1

x
1/2
i + 2

d∑
i=1

y
1/2
i +

d∑
i=1

y
−1/2
i (xi − yi).

Note that the algorithm can be considered as an online mirror descent (OMD) with batching and the
Tsallis entropy used as prox-function:

xk+1 = arg min
x∈∆d

+

[
νxTg̃kmed + Vψ(x, xk)

]
.

Thus, the standard inequality for OMD holds:

⟨g̃kmed, xk − u⟩ ≤ 1

ν
[Vψ(u, xk)− Vψ(u, xk+1)− Vψ(xk+1, xk)] + ⟨g̃kmed, xk − xk+1⟩. (31)
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From Tailor theorem, we have

Vψ(z, xk) =
1

2
(z − xk)

T∇2ψ(yk)(z − xk) =
1

2
∥z − xk∥2∇2ψ(yk)

for some point yk ∈ [z, xk].

Hence, we have

⟨g̃kmed, xk − xk+1⟩ −
1

ν
Vψ(xk+1, xk)

≤ max
z∈Rd

+

[
⟨g̃kmed, xk − z⟩ − 1

ν
Vψ(z, xk)

]
=

[
⟨g̃kmed, xk − z∗k⟩ −

1

ν
Vψ(z

∗
k, xk)

]
≤ ν

2
∥g̃kmed∥2(∇2ψ(yk))−1 +

1

2
∥z∗ − xk∥2∇2ψ(yk)

− 1

ν
Vψ(z

∗, xk)

=
ν

2
∥g̃kmed∥2(∇2ψ(yk))−1 ,

where z∗ = argmaxz∈Rd
+

[
⟨g̃kmed, xk − z⟩ − 1

νVψ(z, xk)
]
.

Proceeding with (31), we get:

⟨g̃kmed, xk − u⟩ ≤ 1

ν
[Vψ(u, xk)− Vψ(u, xk+1)] +

ν

2
∥g̃kmed∥2(∇2ψ(yk))−1 .

Sum over k gives

K∑
k=0

⟨g̃kmed, xk − u⟩

≤ Vψ(x0, u)

ν
+
ν

2

K∑
k=0

(g̃kmed)
T
(
∇2ψ(yk)

)−1
g̃kmed

= 2
d1/2 −

∑d
i=1 u

1/2
i

ν
+ ν

K∑
k=0

d∑
i=1

(g̃kmed)
2
i y

3/2
k,i , (32)

where yk ∈ [xk, z
∗
k] and z∗k = argmaxz∈Rd

+

[
⟨g̃kmed, xk − z⟩ − 1

νVψ(z, xk)
]
.

From the first-order optimality condition for z∗k we obtain

−ν(g̃kmed)i + (xk,i)
1/2 = (z∗k,i)

1/2

and thus we get z∗k,i ≤ xk,i.

Thus, (32) becomes

K∑
k=0

⟨g̃kmed, xk − u⟩ ≤ 2
d1/2 −

∑d
i=1 u

1/2
i

ν
+ ν

K∑
k=0

d∑
i=1

(g̃kmed)
2
i · x

3/2
k,i

and concludes the proof.

Lemma 7. Suppose that Clipped-INF-med-SMD with 1/2-Tsallis entropy as prox-function gener-
ates the sequences {xk}Kk=0 and {g̃kmed}Kk=0, and for each arm i random reward gt,i at any step t
has bounded expectation E[gt,i] ≤ λ

2 and the noise gt,i − µi has symmetric distribution, then for any
u ∈ ∆d

+ holds:

Exk,e[k],ξ[k]

[
d∑
i=1

(g̃kmed)
2
i · x

3/2
k,i

]
≤

√
d · (2∥µ∥2∞ + 36c2). (33)
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Proof:

Exk,e[k],ξ[k]

[
d∑
i=1

(g̃kmed)
2
i · x

3/2
k,i

]
≤ Exk,e[k],ξ[k]

[
d∑
i=1

(g̃kmed)
2
i · x

1/2
k,i

]

≤ Exk,e[k],ξ[k]


√√√√ d∑

i=1

(g̃kmed)
2
i ·
√
g̃kmed)

2
i · x

1/2
k,i


≤

√√√√Exk,e[k],ξ[k]

[
d∑
i=1

(g̃kmed)
2
i

]
·
√

Exk,e[k],ξ[k]

[
(g̃kmed)

2
i · x

1/2
k,i

]
≤

√
d · (2∥µ∥2∞ + 36c2).

Theorem 3 Consider MAB problem where the conditional probability density function for each loss
satisfies Assumption 3 with ∆, κ > 0, and ∥µ∥∞ ≤ R. Then, for the period T , the sequence {xt}Tt=1

generated by Clipped-INF-med-SMD with parameters m = 2
κ + 1, τ = α

√
d, ν =

√
(2m+1)√

T (36c2+2R2)
,

λ =
√
T and prox-function ψ(x) = 2

(
1−

∑d
i=1 x

1/2
i

)
satisfies

E [RT (u)] ≤
√
Td · (8c2/

√
d+ 4

√
(2m+ 1)(18c2 +R2)), u ∈ ∆d

+, (34)

where c2 = (32 ln d− 8) ·
(
8M2

2 + 2α2∆2(2m+ 1)
(
4
κ

) 2
κ

)
. Moreover, high probability bounds

from Theorem 2 also hold.

Proof of Theorem 3: Firstly, for any x, y ∈ △d
+ we have

∥x− y∥2 ≤
√
2. (35)

Next we obtain

E [RT (u)] = E

[
T∑
t=1

l(xt)−
T∑
t=1

l(u)

]
≤ E

[
T∑
t=1

⟨∇l(xt), xt − u⟩

]

≤ E

[
T∑
t=1

⟨µ− g
k(t)
med, xk(t) − u⟩

]
+ E

[
T∑
t=1

⟨gk(t)med − g̃
k(t)
med, xk(t) − u⟩

]
+ E

[
T∑
t=1

⟨g̃k(t)med, xk(t) − u⟩

]

= E

[
T∑
t=1

⟨gk(t)med − g̃
k(t)
med, xk(t) − u⟩

]
+ E

[
T∑
t=1

⟨g̃k(t)med, xk(t) − u⟩

]

≤

[
T∑
t=1

∥E[gk(t)med]− E[g̃k(t)med]∥∞ · ∥xk(t) − u∥1

]
+ E

[
T∑
t=1

⟨g̃k(t)med, xk(t) − u⟩

]
Remark 6, (35)︷︸︸︷

≤ 8c2T

λ
+ (2m+ 1)E

[
K∑
k=0

⟨g̃kmed, xk − u⟩

]
Lemma 6︷︸︸︷
≤ 8c2T

λ
+ (2m+ 1)

[
2
d1/2 −

∑d
i=1 u

1/2
i

ν
+ ν

K∑
k=0

d∑
i=1

(⟨g̃kmed)2i · x
3/2
k,i

]
Lemma 7︷︸︸︷
≤ 8c2T

λ
+ 2(2m+ 1)

√
d

ν
+ νT

√
d(36c2 + 2∥µ∥2∞)

=
√
Td · (8c2/

√
d+ 4

√
(2m+ 1)(18c2 +R2)),

where c2 = (32 ln d− 8) ·
(
8M2

2 + 2α2∆2(2m+ 1)
(
4
κ

) 2
κ

)
.
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C RESTARTED ALGORITHMS ZO-clipped-SSTM AND ZO-clipped-SMD.

The restart technique is to run in cycle algorithm A, taking the output point from the previous run as
the initial point for the current one.

Algorithm 4 Restarted ZO-clipped-A

Input: Starting point x0, number of restarts Nr, number of iterations {Kt}Nr
t=1, algorithm A, param-

eters {Pt}Nr
t=1.

1: x̂0 = x0.
2: for t = 1, . . . , Nr do
3: Run algorithms A with parameters Pt and starting point x̂t−1. Set output point as x̂t.
4: end for

Output: x̂Nr

Strong convexity of function f with minimum x∗ implies an upper bound for the distance between
point x and solution x∗ as

µ

2
∥x− x∗∥22 ≤ f(x)− f(x∗).

Considering upper bounds from Corollary 1, 2 for f(x)−f(x∗), one can construct a relation between
∥x0 −x∗∥2 and ∥x−x∗∥2 after K iterations. Based on this relation, one can calculate iteration, after
which it is more efficient to start a new run rather than continue current with slow convergence rate.

We apply the general Convergence Theorem 2 from [20] for R-ZO-clipped-SSTM and Theorem 5.2
from [19] for R-ZO-clipped-SMD with oracle satisfying Assumption 4. However, oracle can not
depend on, τ which means that we should use either Lipschitz oracle or one-point oracle with small
noise, i.e.,

∆ ≤
(κ
4

) 1
κ ε√

d
. (36)

In the Convergence Theorems, minimal necessary value of τ = ε
4M2

, hence

σ2 = 8dM2
2 + 2

(
d∆

τ

)2

(2m+ 1)

(
4

κ

) 2
κ

≤ 32(2m+ 1) · dM2
2 .

C.1 UNCONSTRAINED PROBLEMS

Theorem 8 (Convergence of R-ZO-clipped-SSTM). Consider µ-strongly convex (As. 1) and
M2-Lipschitz (As. 2) function f on Rd with gradient oracle under As. 4 with Σ2.

We denote ∥x0 − x∗∥2 ≤ R2, where x0 is a starting point.

Let ε be desired accuracy, value 1 − β be desired probability and Nr = ⌈log2(µR
2
/2ε)⌉

be the number of restarts. For each stage t = 1, ..., Nr, we run ZO-clipped-SSTM with
batch size bt, τt = εt/4M2, Lt = M2

√
d/τt,Kt = Θ̃(max{

√
LtR

2
t−1/εt, (Σ2Rt−1/εt)2/bt}), at =

Θ̃(max{1,Σ2K
3
2
t /

√
btLtRt}) and λtk = Θ̃(R/αt

k+1), where Rt−1 = 2−
(t−1)

2 R, εt = µR2
t−1/4,

ln 4NrKt/β ≥ 1, β ∈ (0, 1]. Then, to guarantee f(x̂Nr ) − f(x∗) ≤ ε with probability at least
1− β, R-ZO-clipped-SSTM requires

Õ

max


√
M2

2

√
d

µε
,
Σ2

2

µε


 (37)

total number of oracle calls.
Theorem 9 (Convergence of Restarted ZO-clipped-med-SSTM). Consider µ-strongly convex (As. 1)
and M2-Lipschitz (As. 2) function f on Rd with oracle corrupted by noise under As. 3 with ∆, κ > 0.

To achieve function accuracy ε, i.e., f(x̂Nr )−f(x∗) ≤ ε with probability at least 1−β via Restarted
ZO-clipped-med-SSTM median size must be m = 2

κ + 1, other parameters must be set according
to Theorem 8 (Σ2 = σ from Lemma 1). Then, Restarted ZO-clipped-med-SSTM requires for
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• independent oracle under (36):

Õ

(2m+ 1) ·max


√
M2

2

√
d

µε
,
dM2

2

κµε


 , (38)

• Lipschitz oracle:

Õ

(2m+ 1) ·max


√
M2

2

√
d

µε
,
d(M2

2 + d∆2/κ
2
κ )

µε


 (39)

total number of oracle calls.

Similar to the convex case, the first term in bounds (39), (38) matches the optimal in ε bound for the
deterministic case for non-smooth strongly convex problems (see [5]). The second term matches the
optimal in terms of ε bound for zeroth-order problems with finite variance (see [29]).

C.2 CONSTRAINED PROBLEMS

Theorem 10 (Convergence of R-ZO-clipped-SMD). Consider µ-strongly convex (As. 1) and
M2-Lipschitz (As. 2) function f on a convex compact Q with gradient oracle under As. 4 with Σq .

We set the prox-function Ψp and norm p ∈ [1, 2]. DenoteR2
0

def
= supx,y∈Q 2VΨp

(x, y) for the diameter
of the set Q and Rt = R0/2

t.

Let ε be desired accuracy andN = Õ
(

1
2 log2

(
µR2

0

2ε

))
be the number of restarts. For each t = 1, Nr,

we run ZO-clipped-SMD with Kt = Õ

([
Σq

µRt

]2)
, τt =

ΣqRt

M2

√
Kt

, λt =
√
KtΣq and νt = Rt

λt
. To

guarantee f(x̂Nr )− f(x∗) ≤ ε with prob. at least 1− β, R-ZO-clipped-SMD requires

Õ

(
Σ2
q

µε

)
total number of oracle calls.

Theorem 11 (Convergence of Restarted ZO-clipped-med-SMD). Consider µ-strongly convex (As.
1) and M2-Lipschitz (As. 2) function f on Rd with two-point oracle corrupted by noise under As. 3
with κ > 0 and ∆ > 0.

To achieve accuracy ε, i.e., f(x̂Nr )− f(x∗) ≤ ε via Restarted ZO-clipped-med-SMD with prob-
ability at least 1− β median size must be m = 2

κ + 1, other parameters must be set according to
Theorem 10 (Σq = σaq from Lemma 1). In this case, Restarted ZO-clipped-med-SMD requires for

• independent oracle under (36):

Õ

(
(2m+ 1) ·

dM2
2 a

2
q

κµε

)
, (40)

• Lipschitz oracle:

Õ

(
(2m+ 1) ·

d(M2
2 + d∆2/κ

2
κ )a2q

µε

)
(41)

total number of oracle calls, where aq = d
1
q−

1
2 min{

√
32 ln d− 8,

√
2q − 1}.
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D EXPERIMENTS DETAILS

Each experiment is computed on a CPU in several hours. The code is written in Python and will be
made public after acceptance. For HTINF [18], APE [22], ZO-clipped-SSTM and ZO-clipped-SGD
[20], we provide our own implementation based on pseudocodes from the original articles.

D.1 MULTI-ARMED BANDITS

In our experimental setup, individual experiments are subject to significant random deviations. To
enhance the informativeness of the results, we conduct 100 individual experiments and analyze
aggregated statistics.

By design, we possess knowledge of the conditional probability of selecting the optimal arm for all
algorithms, which remains stochastic due to the nature of the experiment’s history.

To mitigate the high dispersion in probabilities, we apply an average filter with a window size of 30
to reduce noise in the plot. APE and HTINF can’t handle cases when noise expectation is unbounded,
so we modeled this case with a low value of α = 0.01, where 1 + α is the moment that exists in the
problem statement for APE and HTINF.

D.1.1 DEPENDENCE ON κ

We conduct experiments to check dependence on κ under the symmetric Levy α-stable noise, where
α = κ. We compare standard INFC method from [7] which allows κ ≤ 1 with Clipped-INF-med-
SMD, and comparison results can be found in Figure 4.

Figure 4: Convergence of Clipped-INF-med-SMD and INFC under κ = 1.5, 1, 0.5, respectively

D.2 ZEROTH-ORDER OPTIMIZATION

Figure 5: Convergence of ZO-clipped-
SSTM, ZO-clipped-med-SSTM, ZO-
clipped-SGD and ZO-clipped-med-SGD
over 15 launches

To generate A ∈ Rl×d and b ∈ Rl we draw them
from standard normal distribution with d = 16 and
l = 200. For algorithms, we gridsearch stepsize
a over {0.1, 0.01, 0.001, 0.0001} and smoothing pa-
rameter τ over {0.1, 0.01, 0.001}. For ZO-clipped-
med-SSTM, the parameters a = 0.001, L = 1 (note
that a and L are actually used together in the algo-
rithm, therefore, we gridsearch only one of them)
and τ = 0.01 are the best. For ZO-clipped-med-
SGD, we use a = 0.01, default momentum of 0.9
and τ = 0.1. For non-median versions, after the same
gridsearch, parameters happened to be the same.

To obtain better estimates for methods’ performance,
we conduct experiment with κ = 1 over 15 launches
and present the results in Figure 5.

D.2.1 SYMMETRIC AND ASYMMETRIC NOISE

To check the dependence on the addition of an asym-
metric part to the noise, we replace the noise ξ with
ξ = w ∗ ξ1 + (1−w) ∗ |ξ2| with ξ1 drawn from a symmetric Levy α-stable distribution with α = 1.0
and ξ2 being a random vector with independent components sampled from
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• the same distribution
• standard normal distribution.

For w, we consider 0.9 (meaning the weight of symmetric noise is bigger) and 0.5 (equal impact).
We take a component-wise absolute values of ξ2, which makes w a mix of symmetric and asymmetric
noise. The results are presented in Figures 6 (Levy noise) and 7 (normal noise).

Figure 6: Convergence of ZO-clipped-SSTM, ZO-clipped-med-SSTM, ZO-clipped-SGD and
ZO-clipped-med-SGD with asymmetric Levy noise addition with weight of symmetric part of 0.9
and 0.5 on left and right, respectively

Figure 7: Convergence of ZO-clipped-SSTM, ZO-clipped-med-SSTM, ZO-clipped-SGD and
ZO-clipped-med-SGD with asymmetric normal noise addition with weight of symmetric part of 0.9
and 0.5 on left and right, respectively
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